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Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing
healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also
blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess
potentially beneficial effects in tumor therapy. As these channels are a frequent target of
numerous drugs, we hypothesized that currently used tumor therapeutics might have the
potential to block VGSCs in addition to their classical anti-cancer activity. In the present
work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-
cancer compounds, for its potency to interact with VGSCs.

Methods: Electrophysiological experiments were performed by means of the patch-
clamp technique using heterologously expressed human heart muscle sodium channels
(hNav1.5), which are among the most common subtypes of VGSCs occurring in
tumor cells.

Results: TIC10 angular inhibited the hNa, 1.5 channel in a state- but not use-dependent
manner. The affinity for the resting state was weak with an extrapolated K. of about
600 uM. TIC10 most probably did not interact with fast inactivation. In protocols for slow
inactivation, a half-maximal inhibition occurred around 2 uM. This observation was
confirmed by kinetic studies indicating that the interaction occurred with a slow time
constant. Furthermore, TIC10 also interacted with the open channel with an affinity of
approximately 4 uM. The binding site for local anesthetics or a closely related site is
suggested as a possible target as the affinity for the well-characterized F1760K mutant
was reduced more than 20-fold compared to wild type. Among the analyzed derivatives,
ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively
interacted with the different states.

Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the
anti-tumor properties of TIC10.
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INTRODUCTION

TIC10, also known as ONC201 or NSC350625, belongs to a novel
class of anti-cancer compounds called imipridones (Wagner et al.,
2017). It operates independently from p53 and provides anti-
proliferative and pro-apoptotic effects against a broad range of
tumors, including hematological malignancies, glioblastoma,
colorectal cancer or cancer stem cells (Allen et al., 2016).
Altogether, a favorable side effect profile was observed in
clinical trials (Stein et al., 2019; Arrillaga-Romany et al., 2020).
Meanwhile, several derivatives of TIC10 were generated with in
part significantly higher potency regarding inhibition of cell
growth of different types of human cancer cells. Nevertheless,
TIC10 still represents the most advanced imipridone with respect
to the pre-clinical and clinical investigations (Ishida et al., 2018;
Ma et al., 2019). So far, different modes of action were described
for TIC10: The antineoplastic activity of TIC10 was first identified
in a drug screen searching for compounds that induce TRAIL. As
a consequence, the name of TIC10 is derived from this function as
TRAIL-inducing compound 10 (Wagner et al., 2017). Recently,
the mitochondrial caseinolytic protease P has been proposed and
identified as the direct molecular target of TIC10 (Ishizawa et al.,
2019; Wang and Dougan, 2019). In addition, using a newly
developed algorithm, TIC10 has been predicted to exert a
highly specific interaction with dopamine D, receptors (Kline
et al., 2016). Meanwhile, the D, antagonizing property of TIC10
has been confirmed, which in turn has been demonstrated to have
anti-tumor effects (Allen et al., 2016). As the imipridones were
initially developed as anti-seizure medication, voltage-gated
sodium channels (VGSCs) might also be potential targets
(Kline et al., 2016; Pruss et al., 2020). Therefore, it is tempting
to speculate that a link to a possible anti-tumor activity exists, as
blockers of VGSCs are known to affect tumor metastasis
(Djamgoz et al., 2019).

VGSCs are composed from one out of nine different pore
forming a-subunits which are associated with no, one or two out
of four auxiliary 3-subunits (Catterall et al., 2005; Patino and
Isom, 2010). The a-subunits are designated as Na,1.1 to Na,1.9
according to their phylogeny. Other diversity arises from
alternative  splicing of mRNA and post-translational
modifications. The distribution of the different subunits is
tissue specific. Na,1.4 and Na,1.5 are predominantly found in
skeletal and heart muscle cells, whereas Na,1.1 to Na,1.3 and
Na,1.6 to Na,l.9 are found in neurons. According to
pharmacological parameters the individual channels are
classified as TTX-sensitive or TTX-resistant, depending on the
concentration of tetrodotoxin (TTX) which is required for their
blockage. Further classifications are based on different subunit-
specific electrophysiological properties (Theile and Cummins,
2011).

During a screening of different anti-cancer agents, we
identified TIC10/ONC201 as a potent blocker of VGSCs. In
the present work, we investigated the potential of TIC10 to
block VGSCs, which might add a supplementary effect on
therapy. So far, almost all VGSC subtypes have been detected
in different tumor entities (Roger et al., 2015). Most prevalent are
the Na,1.7 and the Na,1.5 subtype. The latter was found to be
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present in a huge variety of diverse malignancies including breast
cancer, colon cancer, ovarian cancer, melanoma, astrocytoma, or
neuroblastoma (Djamgoz et al., 2019). Therefore, we performed
the underlying experiments with the VGSC preferentially
expressed in the heart muscle (hNa,1.5). This study reports
about details regarding the mechanism of the underlying
interaction.

METHODS

Cell Culture

The tsA201 cell line is a transformed human kidney 293
(HEK293) cell line stably expressing an SV40 temperature-
sensitive T antigen (Sigma-Aldrich no. 85120602). TsA201
cells were cultured at 37°C in a humidified atmosphere at 95%
air and 5% CO, in MEM (minimum essential medium)
supplemented with 50 U/ml penicillin, 50 ug/ml streptomycin
(Gibco, Eggenstein, Germany), 2 mM L-glutamine (Boehringer,
Mannheim, Germany), and 10% fetal calf serum (Gibco). The
cells were grown on polyornithine-coated culture dishes to 40%
confluency and transfected using the TransFectin LipidReagent
kit (Bio-Rad, Miinchen, Germany). The construction of the
plasmid pTSV40G-hNa,1.5 encoding wild-type hNa,1.5 was
described previously (Walzik et al., 2011). This plasmid allows
for a simplified selection of transfected cells as EGFP is
simultaneously produced from a separate expression cassette.
Mutant channels (hNa,1.5_ WCW and hNa,1.5_ WCW_F1760K)
were obtained by respectively modified oligonucleotides and
overlapping PCR. The PCR fragments were inserted into the
pTSV40G-hNa,1.5 background using restriction sites Age/BsaBI
(for WCW) and BstEII/Spel (for F1760K), resulting in pTSV40G-
hNa,1.5_WCW and pTSV40G-hNa,1.5_ WCW_F1760K.

Electrophysiology
Electrophysiological experiments were performed as previously
described (Ludolph et al., 2010; Fohr et al., 2021). Briefly, tsA201
cells were used for experiments 24-48h after transfection.
Membrane currents were recorded in the whole-cell recording
mode using an EPC-9 amplifier and Patchmaster software
(v2x73; HEKA, Lambrecht, Germany (Hamill et al, 1981)).
Before recording, cells were rinsed twice with an extracellular
standard solution containing (in mM): 140 NaCl, 5 KCl, 1.5
CaCl,, 1.0 MgCl,, 10 glucose and 12 HEPES (4-(2-hydroxyethyl)
piperazine- 1-ethanesulfonic acid; pH 7.3). For establishing
activation curves, the concentration of NaCl was reduced to
30 mM to achieve current amplitudes in the range of 1nA.
Lacking cations were replaced equimolar by N-Methyl-p-
glucamine (NMDG). Patch pipettes were drawn from
borosilicate glass with tip resistances of about 2 M when
filled with (in mM): 125 CsF, 10 NaCl, 10 EGTA (ethylene
glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid), 10
HEPES; pH 7.2. To improve sealing, tips were briefly dipped
into 2% dimethylsilane dissolved in dichloromethane.

Unless otherwise stated, the membrane potential was held at
—-140 mV from which channel activations were elicited by brief
depolarizing pulses to —20 mV of 5ms duration. In order to
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FIGURE 1 | Structural formulae of analyzed imipridones. The graph
illustrates the structural formula of TIC10 also known as ONC201 and
ONC212. TIC10 linear and TIC10 angular are isomeres which differ in the
arrangement of the tricyclic structure.

minimize voltage errors, the series resistance was compensated up
to 80%. Cells with currents larger than 6 nA were excluded from
evaluation. Specific protocols are illustrated in figure legends
where appropriate.

Drug Application

The medium in the dish (1.5 ml) was continuously exchanged
using a “global” bath perfusion with the inflow set to 4.5 ml/min
and the outflow removing any excess fluid. Reagents were applied
locally to the cells by the L/M-SPS-8 superfusion system (List,
Darmstadt, Germany). Switching between the eight channels of
the superfusion system was controlled by magnetic valves. The
local inlet (tip of an eight-barreled pipette) was positioned at a
distance of 50-100 um upstream and the local outlet at about
300 um downstream of the patch pipette. A constant flow rate of
control and test solutions (1 ml/min) was achieved by means of a
pressure control system (MPCU-3, Lorenz, Goéttingen,
Germany). The time of solution exchange was estimated from
the changes in the liquid junction potential to be about 1 ms. If
not otherwise stated, drugs were pre-applied for 20s before
starting the experiments.

Chemicals

Trypsin was obtained from Biochrom AG, Berlin, Germany.
DNAse 1 was obtained from Invitrogen, Carlsbad, Germany;
fetal calf serum was obtained from HyClone, Perbio Science,
Bonn, Germany. Poly-L-ornithine was purchased from Sigma-
Aldrich, Schnelldorf, Germany. TIC10 angular was from Sigma-
Aldrich Chemie GmbH, Steinheim, Germany, TIC10 linear from
AOBIUS, United Stated and ONC212 from Selleckchem, United
Stated (Figure 1); 10 mM stocks of these drugs were prepared
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with DMSO. All other chemicals were obtained from Sigma-
Aldrich Chemie GmbH, Steinheim, Germany.

Data Analysis and Statistics
Concentration-Inhibition Curves
Concentration-inhibition curves for estimating K, (ICs5 at
—-140 mV; Figure 3), K; (Figures 8, 13, 14), K, (Figures 12,
17) or K,,, (Figure 9) were fitted to the Hill-equation.

I, 1
Tc_1+(ﬂ)"

ICso

1)

Ip and I¢ are the current amplitudes in the presence and
absence of the drug, where [D] is the concentration of the drug.
ICs5, represents the concentration of the blocker that causes 50%
inhibition and # is the Hill-coefficient.

Voltage-dependent Behavior

Voltage-dependence of activation was calculated in two steps:
First, changes in driving force owing to the different test
potentials were considered by calculating the conductance g
according to

1

S - 2
9=V En, @

Thereafter, normalized data were fitted with a Boltzmann
equation of the form:

9
Ymax 1+ e(%) (3)

Voltage-dependence of fast inactivation were fitted using a
Boltzmann equation of the form:

I 1

e (4)
I max 1+ e(%)

In case of slow inactivation, Eq. 4 was extended by the
additional parameter (S) which considers the steady-state level
of incomplete inactivation.

I 1
Imaxz(l_S)(He(V:S")>+s (5)

Abbreviations used for voltage-dependent parameters: V and
Vo are the actual clamp potential and the potential at which half-
maximal current (I) or conductance (g) occurs. Ey, indicates the
reversal potential for sodium ions, which was experimentally
determined for each cell. The slope factor is given by k.

Interaction With the Inactivated State
The interaction with the inactivated state cannot be directly
analyzed, as this state is non-conducting. Therefore, different
indirect approaches have been developed for this purpose.

1) In the first set of experiments, the drug-induced shift (AVs,)
of the inactivation curves on the potential axis was used to
estimate the affinity to the inactivated state K For this
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purpose, the relative shift of the inactivation midpoints was
plotted versus the concentration of TIC10. Data were fitted
with the following equation (Bean et al., 1983):

1+
AV50 = kxln [KDr] (6)
1+ 5

K, and K; denote the affinity for the resting and inactivated
state, respectively. Other identifiers have the same meaning as
before.

2) Estimation of apparent binding constants:

The affinity to the inactivated state (K;) was calculated here
according to (Bean et al., 1983) as:

1 h (1-h)

=+ )
Ky K K

K,pp is the apparent affinity determined at a selected
membrane potential at which the amount of non-inactivated
channels (resting channels) is given by h (determined from the
preceding inactivation curve). K, is the affinity for the resting
state, here 600 puM.

3) Time and concentration-dependent development of block:

The time constants (7;) of block development for different
concentrations of TIC10 were estimated by double exponential
fits of the form:

=S +a*e g a,*e (8)

I max

t denotes the time of inactivation, 7; are individual time constants
and g; represents the relative contribution of the two terms, with §
+a;+a,=1

Association and dissociation rates:

Association (k,,, in pM’lsfl) and dissociation rates (ko in sh
were estimated from the slope and the y-intercept of a linear
regression where the inverse of the fast time constants (1/7) was
plotted against the drug concentration [D] (Kuo et al., 1997).

1
;zkoff'i'kon*[D] (9)

The corresponding dissociation constants were calculated

according to:

Koy
K, = 10
4= 5 (10)

Recovery From Inactivation

Current amplitudes were normalized to the maximum amplitude
of Iy, in the absence and presence of TIC10. Recovery time
constants were estimated from double or triple exponential fits
according to:

3
=1—-a*e

(T)
— ay*e — asz*e ’ (11)

Imax

Variable identifiers have the same meaning as before, with a; +
a, +az= 1.
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All curve-fitting procedures were performed using SigmaPlot
13.0 (Sysstat, San Jose, California, United Stated).

Nomenclature

Upon activation of Nav1.5 channels the course of the current is
commonly described by two phases for which different terms
are in use. In the first phase the current rises to a maximal value
from which it continuously declines upon channel inactivation.
We use here the term “transient current” which is otherweise
also called “early” or “peak current”. The second phase is
characterized by an almost very small current amplitude
owing to the activity of non-inactivating channels. We use
here the term “persistent current” which is identical to “late”
or “plateau current”.

Statistics

If not directly stated by the presence of error bars, graphs show
representative data from single cells. Average values from at least
N = 5 cells are given as mean + SD in the results section and in
figure legends.

RESULTS

TIC10 Blocks Human Na,1.5 Channels

The principal capability of TIC10 angular (TIC10) to block
VGSCs is shown in Figure 2. To this end, channel activations
in the absence and presence of 10 uM TIC10 were carried out by
brief depolarizations to —20 mV using a holding potential of
—-90 mV, which was close to half-maximal inactivation in this
experiment. Under these conditions, the current amplitude
obtained for control was reduced to about half of its size in
the presence of 10 uM TIC10 (Figure 2).

Interaction With the Resting State

As many sodium channel blockers exert their effects in a
potential- or state-dependent manner, more specific
investigations were undertaken, starting with the analysis for a
probable interaction with the resting state. To this end, a double
pulse protocol was conducted as illustrated in Figure 3B. Briefly,
sodium channels were activated twice from a holding potential of
—140 mV. The first activation was performed in the absence of
drug and served as control. The second activation was elicited
after a 30s preincubation of control or TIC10 containing
solution. For evaluation, current amplitudes in the presence of
TIC10 were related to their respective controls and plotted against
the concentration of TIC10 (Figure 3A). Of note, the inhibitory
effect was far from being half-maximal. Even at the highest
concentration tested (40 uM), the remaining current was still
93.2 + 4.3% that of control. Therefore, a calculated affinity (K,)
can only be considered as a rough estimation for the interaction of
TIC10 with the resting state. According to Eq. 1, the half-
maximal inhibition is calculated to occur at 600.4 + 290.8 uM
TIC10. Nevertheless, the inhibitory potency of TICI10 was
strongly diminished when the channels were activated from a
very negative holding potential (140 mV) compared to an
activation from a membrane potential in the range of half-
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A hp:-90 mV

TIC10 (10 pM)

for 5 ms.

Co 2ms

FIGURE 2| Inhibition of hNa, 1.5 channels by TIC10. (A) Representative current traces obtained for control and in the presence of 10 uM TIC10. A similar outcome
was obtained from four other cells. (B) Experimental scheme. Channel activations were carried out from a holding potential of =90 mV by depolarization to —20 mV
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plotted against the concentration of TIC10.

FIGURE 3| Block of resting hNa, 1.5 channels. (A) llustrated are relative current amplitudes in relation to the applied concentration of TIC10. Data points were fitted
according to Eq. 1. Note, even at the highest concentration of TIC10 (40 pM), the inhibitory effect is far from being half-maximal. Thus, the calculated affinity (K, = 600.4 +
290.8 uM) has to be considered as a rough estimation. (B) Experimental scheme. Channel activations in the absence (control) and presence (test) of different
concentrations of TIC10 were carried out from a holding potential of —140 mV. Current amplitudes obtained for the test-pulses were related to their controls and

-20mVv

control
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test

-140 mV

_____ control /TIC10___.

control

maximal inactivation. Thus, it is obvious that the interaction of
TIC10 strongly depends on the membrane potential.

Voltage-Dependence of Activation

A next set of experiments was conducted to determine if TIC10
interacts with the process of channel activation. Here, brief
depolarizations from a holding potential of -140mV to
different test-pulse potentials (range: —90 to +20 mV in steps of
5mV) were carried out (Figure 4B). Original traces thereof are
illustrated in Figure 4A. From these traces, the maximal current
amplitude of each sweep was plotted against the applied test-pulse
potential, resulting in a biphasic curve (Figure 4C). For further
evaluation, current amplitudes converted to their
corresponding conductances respecting the reversal potential
(Eq. 2). Next, normalized conductances for control and in the
presence of TIC10 were plotted versus the test-pulse potential,
whereby activation curves were obtained (Figure 4D). The
potential of half-maximal activation and the slope of the curve
were obtained from a fit of data using Eq. 3. If the inhibitory effect
of TIC10 is based on an interaction with channel activation, a shift

were

of the activation curve to more positive potentials is expected.
However, this does not apply here. By contrast, TIC10 even
provoked a minor shift of the activation curve to more negative
potentials. With full details, midpoints of activation curves
averaged for control at —43.1 + 2.9 mV with a slope of 7.2 +
0.6 mV. The corresponding values in the presence of TICI10
(10 uM) were —44.8 + 2.8 mV with a slope of 7.9 + 0.8 mV.
Thus, the inhibitory impact of TIC10 on VGSCs does not arise
from an interaction with the process of channel activation.

Voltage-Dependence of Fast Inactivation

The aim of the following experiment was to see if and how
TIC10 interacts with the process of fast inactivation. To vary the
amount of inactivated channels, pre-pulses of constant duration
(500 ms) with an increasing pre-pulse potential (range —140 to
—-45mV) were applied immediately before the test-pulses
(Figure 5B). Thereby, the number of inactivated channels
increased as a function of the pre-pulse potential. For
evaluation, all current amplitudes were related to the
amplitude obtained from the most negative pre-pulse
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A B
control 10 uM TIC10
5ms
+20mV
-90 mV
1ms -140 mV
c 0.2 D 1.2
o 0.0 A o 1.0 4
o
S 021 5 081
kel o
2 -04 A 3 06 -
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test-pulse potential (mV) test-pulse potential (mV)
FIGURE 4 | Voltage-dependence of activation. (A) Original traces obtained from channel activations in the absence (left) and presence of 10 uM TIC10 (right). (B)
Experimental scheme: cells were clamped at a holding potential of —140 mV from which sodium currents were evoked by 5 ms test-pulses to potentials ranging from
-90 to +20 mV (increment 5 mV). (C) Plots of maximal current amplitudes in the absence (open circles) and presence of 10 uM TIC10 (filled circles) versus the test
potential. (D) Voltage-dependence of channel activation. Data from C were converted to conductance, normalized, and plotted versus the test-pulse potential.
Half-maximal activation occurred at —43.1 + 2.9 mV (k: 7.2 £ 0.6 mV) and -44.8 + 2.8 mV (k: 7.9 + 0.8 mV) for control and in the presence of 10 uM TIC10, respectively.

A 12 B
4 1.0 1
= 20 mvV
g— 0.8 4
©
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o ® TIC10 (10 uM) 7]
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T T T T T
-140  -120  -100 -80 -60 -40
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FIGURE 5 | Voltage-dependence of fast inactivation. (A) Data of normalized transient currents in the absence (open symbols) and presence of TIC10 (filled circles)

are plotted against the pre-pulse potential. Solid lines represent fits according to Eq. 4. Respecting the drug independent shift, inactivation midpoints shifted in the
presence of 10 M TIC10 by 1.2 + 1.4 mV to more negative potentials. (B) Experimental scheme. Voltage-dependence of fast inactivation was determined by measuring
sodium currents elicited by 5 ms depolarizations to —20 mV after conditioning pre-pulses for 500 ms to different potentials (range —140 to —45 mV).

potential (—140 mV). The relative current amplitudes were then
plotted versus the pre-pulse potential. Data were fitted
according to Eq. 4 in order to generate inactivation curves.
The most important parameters here are the potential at which
half of the channels are inactivated and the slope of the curve. If
the inhibitory action of TIC10 is based on an interaction with

fast inactivation a shift of the inactivation curve to more
negative potentials is expected. As inactivation curves also
undergo a drug independent left shift, mimicking an
inhibitory effect, this shift was separately estimated in
individual cells and taken into account in the evaluation of
drug effects. The outcome of a typical experiment is illustrated
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FIGURE 6 | Voltage-dependence of slow inactivation. (A) Relative

current amplitudes in dependence of the pre-pulse potential. Solid lines are fits
according to Eq. 5 for control (open circles) and TIC10 (10 pM, filled circles).
(B) Normalized data with resepct to control. (C) Experimental scheme.
Activations to —20 mV were elicited after long-lasting (10 s) conditioning pre-
pulses to different potentials (range: =160 to 0 mV; increment 10 mV) and a
short (20 ms) recovery period at —140 mV immediately before the test-pulse.

by Figure 5A. Altogether, for 10 uM TIC a shift of -1.2 *
1.4 mV was calculated. The slope was 5.3 + 0.9mV in the
absence and 5.4 + 0.9mV in the presence of 10 uM TIC10.
These data indicate that TIC10 exerted no or only a minimal
effect on fast inactivation.

TIC10 Blocks Voltage-Gated Sodium Channels

Interaction With the Slow Inactivated State
The protocol for analyzing an interaction with the slow
inactivated state differed in two points from that of fast
inactivation. First, the duration of the pre-pulse was prolonged
to 10 s. Second, immediately before the test-pulse a short recovery
period (20 ms, —140 mV) was inserted to eliminate or minimize
the contribution from fast inactivation (see Figure 6C). Under
control conditions, the current amplitudes become smaller at pre-
pulse potentials positive to around —100 mV. Half-maximal
inactivation occurred at —42.9 + 5.0 mV with a slope of 21.5 +
2.7mV. At a pre-pulse potential of 0mV, the remaining
current amplitude amounted to 45.6 + 10.9%. In the presence
of TIC10, the slow inactivation curve was shifted to more negative
values. In particular, half-maximal inactivation occurred at
-92.7 + 7.0mV with a slope of 12.8 + 0.9 mV. Furthermore,
availability at 0 mV dropped to 4.7 + 2.8% (Figure 6A). In order
to ascribe this behavior either to an interaction with the fast or
slow inactivated state, the potential-dependent behavior was
inspected in more detail. As even under control, a clear
potential dependency was obvious, TIC10-induced changes
were normalized with respect to control by dividing drug
values by control values (Figure 6B). If the inhibition is
related to an interaction with the slow inactivated state,
inhibition is expected to increase in the potential range where
slow inactivation is likely to occur, i.e. in a potential range positive
to that of fast inactivation. It turned out that the inhibition did not
increase significantly in the range between —40 and 0 mV. In
particular, inhibition amounted to 88.3 + 5.0% and 89.7 + 6.5%,
respectively. Taken together, these findings did not argue for an
interaction with the slow inactivated state. Nevertheless, the
interaction of TIC10 with the hNa,l1.5 occurred on a slow
time course.

Time Dependence of Interaction

Next, a set of experiments was performed to describe the time
course of block development. The protocol is illustrated in
Figure 7D. Briefly, after channel activation from a holding
potential of —140 mV for control, ample time for full recovery
at the holding potential was provided. Thereafter, the channels
were inactivated for a variable duration (range: 25 ms-30s) at a
potential of —20 mV. Immediately before the test-pulse, channels
were allowed to recover once more at the holding potential to
eliminate or minimize the impact from fast inactivation. For
evaluation, the current amplitudes obtained for test-pulses were
related to their controls. Using this protocol in the absence of
TIC10, relevant reductions of availability were observed at
inactivation times lasting longer than 1s. The estimated time
constant was 10.1 + 2.0 s. At the longest inactivation time, the
current amplitude dropped to 59.2 + 7.7%. In the presence of
TIC10, the availability already decreased at shorter inactivation
times with a much more pronounced reduction at the longest
inactivation time (Figure 7A). In particular, for 2.5 uM TIC10 a
time constant of 5.3 + 1.9 s with a remaining current of 46.0 +
4.8% was estimated. The corresponding values for 10 uM TIC10
were 2.0 + 0.8 s and 16.9 + 6.4%. For further evaluation, data were
normalized with respect to control values (Figure 7B). To obtain
time constants for block development, data were fitted with single
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fitting. (B) Data from A, normalized with respect to control. (C) Plot of the inverse of the time constants estimated from the data as illustrated in B versus the concentration
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0.8 4

0.6 -

041 @ TIC10(2.5uM)

A TIC10 (5 pM)

relative current amplitude @@

02 & TIC10 (10 M)
0.0 . . T
0.01 0.1 1 10 100
duration of inactivating pre-pulse (s)
D
At -20mV
—
S
5 &
-140mV |5 8
2s 20 ms

exponential functions. Afterwards, the inverse, the inverse of the
time constants was plotted versus the concentration of TIC10
(Figure 7C). The on-rate (k,,) was directly taken from the slope
of the linear regression and the off-rate (k.4 was given by the
y-intercept (Eq. 9, 10). For estimating the affinity for the
inactivated state, the K; values were separately calculated for
each cell according to the relation K; = k,g7k,,.. The values for one
representative cell are given as insert to Figure 7C. Overall, a K; of
1.86 + 0.7 uM was determined.

Interaction With the Inactivated State:

Steady-State Parameters

As TIC10 revealed strong effects after prolonged inactivation,
additional experiments were conducted under these conditions to
establish a full concentration-response relationship. To this end, a
double pulse protocol was used as outlined by Figure 8B. Briefly,
channel activations for control and in the presence of different
concentrations of TIC10 were carried out after channels had been
inactivated for 20 s at a potential of —20 mV. To minimize drift
effects during these long-lasting experiments, each run included
its own control. Thus, drug effects as measured by the test-pulse
were related to the timely executed control activation. Data
analysis was restricted to cells where the current amplitude

due to control- and test-pulse in the presence of mere control
solution did not deviate by more than 3%. Under these
conditions, an affinity for the inactivated state with a K; of
2.0 + 0.5 uM was calculated (Figure 8A). Interestingly, the K;
values estimated from kinetic data (see previous section) and
steady-state parameters are identical.

Interaction With Partially Inactivated

Channels

In order to reflect more the physiological situation, concentration-
relationships were performed at a presumed resting membrane
potential of ~90 mV were the channels exist in the fast and slow as
well as in the resting state. Again, the experimental scheme
consisted of a double pulse protocol that deviated from the
previous one by the potential for inactivation and the lack of a
recovery period before the control- or test-pulse (Figure 9B). In any
case, the inactivation potential was estimated for each cell
individually from another double pulse protocol, which was
restricted to the relevant part of the inactivation curve. For
evaluation, the current amplitudes obtained for the test-pulses
related to their controls and plotted versus the
concentration of TIC10 (Figure 9A). Data points were fitted
with Eq. 1, whereby so-called apparent affinity constants (Kypp,)

were
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FIGURE 9 | Interaction with partially inactivated channels. (A) llustrated are relative currents amplitudes in relation to the applied concentration of TIC10 upon partial
inactivation of the channels of one representative cell (out of five experiments). For evaluation data were fitted with Eq. 1, giving Kqpp. In order to estimate the affinity for the
inactivated state (Kj), the current amount of non-inactivated channels (h) was considered according to Eq. 7, resulting inamean K;of 4.7 + 1.3 uM (N = 5). Data evaluation
(relation of test-pulse to control pulse) was restricted to experiments where the current amplitudes obtained from mere control solution did not deviate by more than
3%. (B) Experimental scheme. From a holding potential of —140 mV conditioning pre-pulses to a potential of about half-maximal inactivation (Vso) were applied for 20 s
before the test-pulse to —20 mV was executed. This protocol was executed a second time, either in the presence of control solution or different concentrations of TIC10.

resulted. The word “apparent” is used to indicate that the resulting
affinity constant is composed from the affinity to the resting and the
affinity to the inactivated state. In order to recalculate the affinity for
the inactivated state, Eq. 7 was used. This requires the affinity for the
resting state (600 (M), obtained from previous experiments, and
the current amount of inactivated channels, which was estimated in
individual cells immediately before starting the experiments. As the
current amount of inactivated channels varies between individual
cells, each cell was evaluated separately. Altogether, an affinity to the
inactivated state of 4.7 + 1.3 pM resulted. Of note, the affinity for the
inactivated state estimated here is less than that obtained from the
other experiments.

Recovery From Inactivation

If a drug interacts with the inactivated state (fast or slow), it is
expected that also recovery from inactivation is affected. We
analyzed this aspect by the use of a tri-pulse experiment

(Figure 10B). After an initial control pulse, sufficient time was
provided for full recovery. Next channels were inactivated for
500 ms at —20 mV. The test-pulse was initiated after channels had
been allowed to recover at a potential of —140 mV for a variable
time (range: 0.2ms to 2.7s). For evaluation, the current
amplitudes of the test-pulses were related to their controls and
plotted versus the recovery time (Figure 10A). To describe the
time course of recovery, data points were fitted with double
exponential functions (Eq. 11). Under control condition, most
of the channels (92.6 + 4.0%) recovered with a time constant of
T; = 1.4 + 0.6 ms, the remainder with 1, = 23.6 + 12.0 ms. In the
presence of 10 uM TIC10, the proportion of fast recovering
channels decreased to 75.6 + 7.0% while the recovery time
slightly increased to 2.3 + 1.2 ms. The most prominent effect
of TIC10 here was the about tenfold increase of the second time
constant to 267.6 + 73.1 ms. In order to estimate recovery from
slow inactivation, the experimental scheme was modified to a
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TABLE 1 | Time constants for recovery from slow-inactivation of TIC10 (10 pM).

Control Amount TIC10 Amount
T4 (MS) 48 +49 53.3 +5.2% 128.1 £ 80.3 36.3 + 16.0%
1o (MS) 54.4 + 45.2 31.0 + 4.5% 548.4 + 287.4 62.2 + 15.7%
13 (MS) 486.9 + 389.0 14.8 + 2.9% - -

prolonged inactivation time (10s) and an expansion of the
recovery time up to 32.8s (Figure 10D). As expected, the
effect of TIC10 was more pronounced here (Figure 10C).
Under control, three exponentials were required to describe
the time course of recovery, whereas in case of TIC10, two
time constants were sufficient (Table 1).

Tests for an Open Channel Blocking
Mechanism —Interaction With the

Persistent Current.

There are several protocols in use to test for an open channel blocking
mechanism. In this work, two of them were used: Use-dependency
and inactivation-deficient mutants. In a first set of experiments, we
looked for a use-dependent behavior. To this end, short test-pulses
(1 ms) of —20 mV were applied from a holding potential of -140 mV
(Figure 11B). We fixed on this short activation time in order to
minimize the inactivation time during each activation cycle. Prior to

the high frequency stimulation, infrequent activations were carried
out (0.2 Hz) until a stable baseline was achieved. Thereafter, either
control solution or TIC10 was perfused for 20 s before the high
frequency stimulation (10 Hz) was started. For evaluation, the current
amplitude of each pulse was divided by the amplitude of the first
response of the high frequency stimulation train. For control, current
amplitude minimally declined to 99.5 + 0.6%. In the presence of
TIC10, the remaining current of the last activation amounted to
957 + 1.6% (Figure 11A). Thus, TICIO revealed no or only a
minimal use-dependent behavior.

In the next experiments, we tested a channel mutant with
reduced capability to inactivate (hNa,1.5_I408W_L409C _
A410W; WCW mutant). With this mutant, the channels stay
open to a large extent even after a prolonged activation
(500 ms), as evidenced by a persistent current. If a drug leads to
a concentration-dependent reduction of this persistent current, it
can also be regarded as an interaction with the open state. Original
traces from these experiments are illustrated in Figure 12A. It is
evident that the tranisent current, representing drug binding to the
resting state, is hardly affected in the presence of TIC10 up to a
concentration of 40 uM (Figure 12B). Thus, no estimation of the
half-maximal effective concentration was performed. By contrast,
the persistent current was strongly diminished in a concentration-
dependent manner with a half-maximal inhibition occurring at
4.1 £ 1.4 uM TIC10 with a Hill-coefficient 0of 0.9 + 0.1. Thus, TIC10
also operated as an open channel blocker.
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Identification of the Possible Interaction
Site by Channel Mutants

To look for a possible interaction site at the hNa,1.5, we used
two mutants, F1760K and N406C. The F1760K mutant is one
out of several mutants, which affects the local anesthetic binding
site (Catterall, 2014). This site is not only important for local
anesthetics but also for many blockers of VGSCs. If a drug
primarily interacts at the position 1760, a strongly reduced
affinity is expected in case of the F1760K mutant. This
clearly applied for TIC10. The estimated affinity for the slow
inactivated channels was 46.2 + 16.9 uM (Hill-coefficient: 1.5 +
0.1), which is more than 20-fold less affine compared to the wild
type (Figure 13A). Another important interaction site which
affects the affinity for local anesthetics is N406. This site
additionally has an impact on slow inactivation (McNulty
et al., 2006). Using the N406C mutant, the affinity for TIC10
marginally changed compared to the wild type (Figure 13B). In
particular, the estimated ICs, was 3.3 + 0.6 pM with a Hill-
coefficient of 1.2 + 0.1.

Investigation of Imipridone Derivatives

Beside TIC10 angular, two other imipridones were of special
interest. These were the linear isoform of TIC10 (TIC10ypear)
and a fluorinated derivative, called ONC212 (Figure 1).
Concerning the anti-tumoral activity, TIC10p,e,, is nearly
inactive, while ONC212 is more than 10 times more effective
than TIC10 angular (Lev et al., 2017; Wagner et al., 2017; Nii et al.,
2019). With respect to our investigations, we were interested to
investigate if this anti-tumoral behavior is paralleled in the
interaction with the hNay1.5. For this purpose, only selected
protocols were used. The experimental data show that in case
of ONC212 the affinity for the slow inactivated state (according to
Figure 8B) is nearly identical to that of TIC10 angular while
TIC10jpear Was about five-times less effective (Figure 14). In
particular, the affinity for ONC212 was 2.5 + 0.7 uM (Hill-
coefficient 1.5 + 0.1) and that for TIC10jp,, was 11.2 + 1.3 uM

(Hill-coefficient 1.0 + 0.1). In contrast to TIC10,ng1ars the time
course for block development had to be described for both
compounds with two time constants (Figure 15). Data, listing
the time constants and the relative amounts of the individual terms
are summarized by Table 2. Due to the additional fast component,
it was obvious that the derivatives might additionally affect fast
inactivation. Indeed, this was the case for both compounds with a
stronger effect obtained for ONC212 (Figure 16). ONC212
(10 uM) shifted mid points of fast inactivation by —4.7 +
04 mV and TIC10j,eor (10 uM) by —3.0 + 0.4 mV. The possible
interaction with the open state was analyzed using the WCW
mutant. Both derivatives revealed here affinities close to
TIC10,4nguar (Figure 17). In particular, for 10 uyM ONC212, the
calculated value was 4.8 + 0.5 uM (Hill-coefficient: 1.4 + 0.2); the
corresponding value for 10 uM TIC10}3¢,, Was 3.5 + 0.7 uM (Hill-
coefficient 1.1 + 0.2). Altogether, it turned out, that the anti-tumor
potency of the analyzed compounds was only partly mirrored in
individual experimental designs used to analyze their interaction
with the hNa,1.5.

DISCUSSION

TIC10, later renamed to ONC201, belongs to a novel class of anti-
cancer compounds called imipridones (Allen et al, 2016;
Anderson and Scott, 2017). Among this group, several
derivatives exist with a varying efficacy concerning anti-tumor
activity (Wagner et al., 2017). There are several mechanisms of
action that were reported to contribute to the anti-tumor activity
of TIC10. First, the induction of TRAIL (Allen et al., 2013).
Second, an interference with the dopamine receptor D, (Kline
et al,, 2018). Third, inhibition of oxidative phosphorylation by
hyperactivation of the mitochondrial caseinolytic protease P
(ClpP) (Ishizawa et al, 2019). Here, we described an as far
unknown pharmacological property of TIC10, which might
contribute to its anti-tumor activity: TIC10 is a potent blocker
of VGSCs. We determined that it interacts with the hNa,1.5 in a
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state- but not use-dependent manner. The interaction of TIC10

with different channel states occurs well within the concentration
range in which it is used in tumor therapy.

Voltage-Gated Sodium Channels and
Cancer

The functional expression of VGSCs in tumor cells has initially
been described for prostatic cancer cells (Grimes et al., 1995).
Meanwhile, corresponding observations have been made for
many other cancer cells. Altogether, there is no doubt that
voltage-gated sodium channels play an important role in
metastasis, especially in the processes controlling migration
and invasion of tumor cells. Accordingly, blockade of VGSCs
or reducing their expression level is expected to have beneficial

effects in tumor therapy (Djamgoz and Onkal, 2013; Djamgoz
et al,, 2019).

In the past, the occurrence of VGSCs has been associated with
excitable cells where they are required for generating action
potentials. Meanwhile, mRNA encoding for this type of
channel has been detected in a broad variety of non-excitable
cells, including cancer cells. In the latter, mRNA levels of VGSCs
can be upregulated more than 1000-fold, with the amount of
VGSCs directly correlating to their metastatic potency (Fraser
et al,, 2005). Of note, the functional expression of VGSCs in
tumor cells is much less than mRNA, but even strong enough to
make these cells potentially excitable. However, excitability does
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not seem to be of relevance VGSCs play in tumorigenesis
(Djamgoz et al, 2019). Moreover, it is their capability to be
selectively permeable for sodium ions, whereby an increased level
of the concentration of intracellular sodium ions results. Indeed,
an elevated concentration of sodium ions in the tissue and in the
cytosol of malignant cells has been found (Ouwerkerk et al., 2007;
Li et al.,, 2015). It is evident that increased intracellular sodium
levels cannot be achieved by the minute amount of sodium influx,
which would result from brief channel openings (Roger et al.,
2004; Carter and Bean, 2009). Aside from this, such activations
are very unlikely to happen regarding the rather positive resting
membrane potential (range: —40 to —20 mV) of these cells, which
makes the VGSCs not available for activation (Roger et al., 2015).
Once more, the relative positivity of the resting membrane
potential of the analyzed cell lines correlates with their
metastatic potency (Fraser et al., 2005). Thus, two ways for a
permanent sodium influx are in focus: first, a window current in
the range from —60 to —20 mV resulting from an incomplete
overlap of the VGSCs activation and inactivation curves, with the
maximum current at the more negative end of the resting
potential range observed in tumor cells (Djamgoz and Onkal,
2013). Second, a persistent, non-inactivating sodium current
(INaP) the activity of which is not restricted to a narrow
potential range as it is also observed at depolarized membrane
potentials (Maltsev et al., 1998). This latter current is also
enhanced under hypoxia, a condition commonly observed in
the tumor environment (Ju et al., 1996; Brahimi-Horn and
Pouysségur, 2007). All in all, this persistent sodium current is
favored as the base for the increased intracellular concentration of
sodium ions which in turn activates the sodium-hydrogen
exchanger 1 (NHE1l). By the export of protons, an
extracellular acidification is achieved, which is a prerequisite
for proteolytic enzymatic activity providing the basis for
invasiveness (Djamgoz et al, 2019). A pharmacological
hallmark of the INaP is, that it can be blocked by almost all
blockers of VGSCs as this current flows through the same
channels as the transient, fast inactivating current (INaT)
(Urbani and Belluzzi, 2000). Furthermore, there are also drugs
(mexiletine, flecainide, ranolazine) which preferentially interact
with this state while being less effective in other settings (Wang
et al., 2003, 2004, 2008). However, a mere selectively targeting of
the INaP is not a sufficient criterion for choosing and applying a
sodium channel blocker as the different interactions of a
particular blocker must be evaluated in toto.

Impact of TIC10,ngyiar

TIC10 blocked the hNa,1.5 in a state-dependent manner. The
interaction with the resting state was very low (around 600 uM),
while the affinity to the inactivated state was about 2 uM. The
ratio in affinity for the resting versus the inactivated state is
generally regarded as a safety margin, the higher the better (Ilyin
etal., 2005). To be judged as safe, the ratio should be at least 50-
fold. In case of TIC10, the ratio is about 300-fold, which rates
TIC10 as a safe drug in this setting. Next, the interaction of
TIC10 with the hNa,1.5 happens in a slow manner whereby an
interaction with INaT is rather unlikely. This applies to a single
activation as well as for repeated activations as observed in the

TIC10 Blocks Voltage-Gated Sodium Channels

test analyzing for a use-dependent behavior. Concerning heart
activity, this is a favorable property, as affecting INaT would
potentially be proarrhythmic due to an intracardial conduction
delay. Indeed, a prolongation of the QRS complex can be
observed by current reductions as little as 10% (Poulin et al,
2014). In this way, it has been proposed earlier that an ideal
VGSC blocker should only block the persistent current (INaP)
while leaving the transient current (INaT) unaffected (Noble,
2006). The main problem for the analysis of drug effects on the
INaP consists of its small size, which in wild-type channels is
almost less than 1% compared to the corresponding INaT.
Therefore, different experimental approaches have been
developed in order to amplify its size. These include
enzymatic or chemical treatment, the application of toxins,
or the use of inactivation-deficient mutants (Grant et al,
2000; Belardinelli et al., 2013; Wang et al., 2013). However, it
should be kept in mind, that all these manipulations might also
have unspecific effects on drug interaction (Fohr et al., 2021).
We performed our experiments with an inactivation-deficient
mutant. Again, INaT was hardly affected while INaP revealed an
affinity of about 4 uM, which is well beyond the maximal
concentration found in the plasma of treated patients (Allen
et al., 2016). In further experiments, we obtained hints that the
interaction of TIC10 with the hNa,1.5 most probably happens
via the binding site for local anesthetics as the affinity of the
corresponding mutant was more than 20-fold lower as for wild-
type channels. Thus, TIC10 uses the same mechanism/
interaction site as the majority of blockers of VGSCs.

These findings make it unlikely that TIC10 can also
discriminate between the adult and neonatal form of the
hNa,1.5. Of course, a drug which blocks the neonatal form
while leaving the adult form unaffected would be highly
desired (Roger et al.,, 2004; Fraser et al., 2005). An important
point here is that tumor cells, which express hNa,1.5 channels,
preferentially express the neonatal form, whereas the neonatal
form is expected to be absent to a large extent from normal adult
tissue (Onkal and Djamgoz, 2009; Yamaci et al., 2017). So far, to
the best of our knowledge, excepting a polyclonal antibody, no
drug is known to discriminate between the adult and neonatal
form of the hNa,1.5, including our previous study about the
inhibitory effect of IC261 on these channels (Fohr et al., 2017).
The main point here is that the two forms differ by only seven
amino acids in segment three and four of domain I introducing
one additional positive charge whereby amongst others channel
activation will be affected (Walzik et al., 2011). However, as
blockers of VGSCs, which affect channel activation, are
extremely rare, it remains challenging to discover or design
corresponding drugs.

Furthermore, it is tentative to speculate that the inhibitory
action of TIC10 might not be restricted to the hNa,1.5 as state-
dependent blocker often reveal a low isotype specificity (Ilyin
et al,, 2005). This might be of importance as almost all isoforms
have been reported to occur in different tumors, whereby the
isoform itself seems not to be critical for the biological effect in
cancer (Roger et al., 2015). Furthermore, all VGSCs expressed in
cancer cells also reveal an INaP irrespective of the subtype, at least
under hypoxic conditions (Djamgoz et al., 2019).
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Impact of Imipridone Derivatives
Thus far, our results indicate that the concentration used for

anti-tumor therapy and effective sodium channel-blocking
activity of TIC10 (throughout used for TIC10,ngu1.r) happen
in a similar concentration range (a weekly oral dose of 625 mg
TIC10 causes a maximal plasma concentration of 4.3 uM (Allen
etal.,2016)). To investigate whether there might be a correlation
between these two properties, we tested two other derivatives,
which were either inactive or more potent than TIC10
concerning their anti-tumor activity. These were TIC10jpear»
an isomer of TIC10, which is completely inactive and ONC212,
a fluorinated derivative which is at least 10 times more potent
than TIC10 (Levetal.,2017; Wagner et al., 2017; Nii et al., 2019).
Our data clearly demonstrated that ONC212 has about the same
potency as TIC10 angular while TIC10y;,.,, was less effective,
especially in the protocol analyzing for slow inactivation. This
poses the question, which property of the sodium channel is
most important for its ability to support tumor cells. So far, the
persistent sodium current is regarded as most important
(Djamgoz et al., 2019). In this case all imipridone derivatives

are expected to be equally effective as they suppress the
“persistent current” with almost identical efficacy. However,
this is not reflected by the anti-tumor activity of the different
imipridone derivatives. Clearly, it must be taken into account
that the anti-tumor activity refers to the ability of a drug to
induce TRAIL, leading to cell death or affecting cell
proliferation, whereas the blockade of sodium channels
targets migration and invasion of tumor cells but not
proliferation (Wagner et al, 2017). In this context, it is

TABLE 2 | Time-dependent interaction of imipridone derivatives with the
inactivated state of the hNa,1.5

ONC212 Amount TIC10 linear Amount
2.5 uM
T (9) 0.2 £ 0.06 8.8 + 4.5% 0.2 £ 0.02 106 + 3.1%
T (9) 4.6 +0.95 57.4+ 6.6% 6.7 +1.24 21.6 + 4.5%
10 uM
T (9) 0.1 £ 0.03 452 + 6.5% 0.1 £ 0.02 29.7 +9.7%
T2 (S) 22 +0.27 46.9 + 7.2% 50+ 1.14 37.4 +4.9%
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noteworthy that sodium channel blockers cannot completely
suppress invasion. If sodium channels are totally inhibited,
invasiveness is reduced only by about 35%. Another point is
that probably other channels/transporters contribute to an
increase in intracellular sodium concentration (Leslie et al.,
2019). Evidently, in these cases, invasiveness cannot be
suppressed by blockers of VGSCs (Driffort et al., 2014; Roger
et al., 2015). This also applies to tumor cells, which do not
express VGSCs. Finally, even though imipridones affect
different aspects of tumor progression, they do not eradicate
tumors (Wang and Dougan, 2019).

VGSCs Blocker and Cancer

The discovery of an unexpected anti-tumor activity of a drug
often starts with the observation of an obviously diminished
incidence for cancer under a selected medication. A prominent
example here is metformin, commonly used for treating
diabetes type 2, for which the anti-tumor properties have
been confirmed by many retrospective analysis (Evans et al.,

2005; Libby et al,, 2009). Similarly, the outcome from the
pharmacological treatment of neurological disorders has been
analyzed. From most investigations, a positive correlation with
respect to a beneficial outcome is reported (Reddy et al., 2015;
Zhuo et al., 2019). However, there are also inverse associations
(Takada et al, 2016). As many of the above-mentioned
drugs operate as blockers for VGSCs, well-known blockers of
this class are under investigation in different clinical studies
for purposes of drug repurposing (Leslie et al., 2019). The list
includes lidocaine, valproate, bupivacaine, or ranolazine.
Interestingly, some of them preferentially target the persistent
current (INaP) (Taverna et al., 1998; Wang et al., 2008). Beside
this, the search for new blockers of VGSCs with respect to its
potential application as a supplement in the tumor therapy is
ongoing (Wang and Dougan, 2019). However, it should be kept
in mind that beyond VGSCs many other ion channels and
transporters might be of importance as supplements in tumor
therapy (Cuddapah and Sontheimer, 2011; Biasiotta et al., 2016;
Prevarskaya et al., 2018).
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CONCLUSION

TIC10 is a potent blocker of hNa,1.5, an important VGSC. Half-
maximal effects occur well within the concentration range used
for tumor therapy. Thus, blockade of VGSCs might contribute to
the anti-tumor activity of TIC10.
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