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Abstract

RNA sequencing (RNA-seq) is the conventional genome-scale approach
used to capture the expression levels of all detectable genes in a biolog-
ical sample. This is now regularly used in the clinical diagnostic space
for cancer patients. While the information gained is intended to impact
treatment decisions, numerous technical and quality issues remain. This
includes inaccuracies in the dissemination of gene-gene relationships. For
such reasons, clinical decisions are still mostly driven by DNA biomark-
ers, such as gene mutations or fusions. In this study, we aimed to correct
for systemic bias based on RNA-sequencing platforms in order to improve
our understanding of the gene-gene relationships. To do so, we exam-
ined standard pre-processed RNA-seq datasets obtained from three stud-
ies conducted by two consortium efforts including The Cancer Genome
Atlas (TCGA) and Stand Up 2 Cancer (SU2C). We particularly exam-
ined the TCGA Bladder Cancer (n = 408) and Prostate Cancer (n = 498)
studies as well as the SU2C Prostate Cancer study (n = 208). Using var-
ious statistical tests, we detected expression-level dependent, per-sample
biases in all datasets. Using simulations, we show that these biases cor-
rupt the results of ¢t-tests designed to identify expression level differences
between subpopulations. Importantly, these biases introduce large errors
into estimates of gene-gene correlations. To mitigate these biases, we in-
troduce Local Leveling as a novel mathematical approach that transforms
count level data and corrects these observed biases. Local Leveling specif-
ically corrects for the bias due to the inherent differential detection of
transcripts that is driven by differential expression levels. Based on stan-
dard forms of count data (Raw counts, transcripts per million, fragments
per kilobase of exon per million), we demonstrate that local leveling effec-
tively removes the observed per-sample biases, and improves the accuracy
in simulated statistical tests. Importantly, this led to systemic changes
of gene-gene relationships when examining the correlation of key onco-
genes, such as the Androgen Receptor, with all other detectable genes.
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Altogether, Local Leveling improves our capacity towards understanding
gene-gene relationships, which may lead to novel ways to utilize the infor-
mation derived from clinical tests.

Keywords: RSEM (RNA Sequence by Expectation Maximization),
TPM (Transcripts Per Million), FPKM (Fragments Per Kilobase of
exon per Million), Local Leveling, PCA, ROC Curves, Populations.

1 Introduction

Gathering gene expression data from clinical samples is no longer a technical
hurdle, and RNA-seq data is now frequently conducted on biological samples
from the clinical and laboratory settings. When considering the holistic profile
of gene expression patterns, one can inform of perturbed activity in the cell or
tumor models. This information is clinically relevant since dysregulated gene
activity is what altogether drives the pathogenesis of the patient’s tumors. The
recognition of collective changes in tumor samples guides pre-clinical research by
identifying novel signaling mechanisms and oncogenic processes. Further, this
knowledge is purposed towards the development of biomarkers and precision
therapies that may altogether extend the survival of cancer patients. Altogether,
there is exceptional value in gathering RNA-seq data from clinical specimens.
However, quality issues remain due to sequencing platforms themselves or the
downstream informatics approaches and data aggregation used to interpret such
data.

In current practice, gene expression levels are estimated based on RNA se-
quence (RNA-Seq) data obtained from populations of patients. RNA-Seq data
is generated by isolating RNA from a cell or tissue, converting it to comple-
mentary DNA (¢cDNA), preparing a sequencing library, and using a sequencing
platform to convert to transcript counts [3]. The gene transcript raw counts for
each sample are typically first corrected for fragmentation effects by dividing
the raw counts for each transcript by the effective transcript length [3]. This
takes into account the fact that a read can occur at multiple locations along
the transcript, so the number of reads per gene will be proportional to the gene
transcript length. These corrected counts are then rescaled by multiplying by an
overall factor. The two most widely used rescalings are transcripts per million
(TPM) and fragments per kilobase of exon per million (FPKM) [1]. In partic-
ular,TPM multiplies the corrected counts so that the resulting rescaled counts
sum to 1 million. It is commonly recognized that TPM is more suitable than
FPKM for cross-sample comparisons [1]. Several other rescalings have also been
proposed [6] . Note that the only difference between these different rescalings
is an overall multiplicative factor, which varies from sample to sample.

After rescaling, additional data transforms may be applied to normalize
and uniformize the data. Several types of transform are used for this purpose
[4]. In particular, the log transform is widely used. The log transform data
has the advantage of being easy to interpret, because differences between log-
transformed values are roughly proportional to percentage differences in the
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original data. Altogether, each of these pre-processing steps and normalization
approaches has merits and are broadly applied to datasets from consortium
efforts as well as clinical reports that include RNA-seq data.

For research purposes, the pre-processed data is next used to study the
tumor biology based on patterns of gene expression. The approaches include
conducting differential expression analyses, gene-gene correlations, hierarchical
clustering of genes based on expression patterns, enrichment of gene sets, or
even machine learning approaches. Researchers adapt these approaches towards
identifying the genes that altogether act as drivers or vulnerabilities of the
tumors. The recurrently dysregulated genes also have potential as diagnostic
tools to evaluate clinical outcomes including overall survival, the development
of metastatic disease, or therapy response. Naturally, the methods in which
pre-processing is conducted can act as a source of bias when analyzing patterns
of gene expression, which reduced the accuracy of our understanding of gene
behavior.

This study was initially motivated by preliminary investigations of differen-
tial expression levels of genes between two populations of patients within the
same dataset. In multiple patient cohorts that exhibited distinct types of can-
cer, we identified large shifts in the overall distribution of ¢ statistics when com-
paring random populations within the cohort. This indicated that there were
per-sample biases that shifted the expression levels of all or most genes. We
subsequently discovered that these shifts were systematically related to mean
expression level. Altogether, if left unattended, we project these per-sample
biases would corrupt any biological understanding of these samples based on
conventional forms of downstream analysis.

This paper is structured as follows. In Section 2 we describe the data used,
the transforms used for preprocessing, and some statistical characteristics of the
preprocessed data. In Section 3 we identify the bias through block averaging of
sorted data and PCA of the block averaged data. The main contribution of this
paper is in Section 4, which describes a data correction filtering procedure that
we term local leveling (LL). We convert the correction problem to an estimation
problem, which can be used to remove the bias. In Section 5 we compare results
of statistical tests performed on the original and local leveled data. In Section
6 we provide a discussion and summarize the results.

2 Data overview

2.1 Datasets used

The data used in this study comes from the three datasets consisting of sam-
ples taken from three different populations of cancer patients (one sample per
patient). Two of these datasets are from the Cancer Genome Atlas Program
(TCGA), while the third was funded by Stand Up To Cancer (SU2C). The
datasets are summarized in Table 1. Both raw counts and TPM scaled data
was used as indicated in the table.
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Dataset designation Size Scalings
(samples X genes)
408 x 20216
TCGA bladder firehose (107 female, 301 male) raw counts, TPM
TCGA prostate firehose 498 x 20198 raw counts, TPM
(all male)
SU2C prostate 208 x 19158 FPKM, TPM
(all male)

Table 1: Summary of datasets used in study

All of the tests described in the following were conducted on all datasets.
Since results were similar in all cases, the figures are shown for only one case,
namely TCGA bladder firehose TPM.

2.2 Data preprocessing

The same data preprocessing steps were performed on all datasets. First, unex-
pressed genes were removed. Next, outliers (defined as expression level values
more than 5 standard deviations from the mean) were clipped to five standard
deviations. (Outliers are particularly common for low-expressed genes, some of
which record 0 expression levels for all but a handful of samples.) The choice
of 5 standard deviations was justified by the fact that for normally-distributed
random variables, the probability that the random variable takes a value higher
than 5 standard deviations above the mean is about 3E — 7, meaning that only
about 3 outliers would be expected in 10 million normally distributed samples.
Next, the data was log transformed as described in Section 1, using the

transformation function:
x — logy(z + ¢). (1)

Logging the data compresses the range (expression levels typically range from
close to 0 up to close to 100,000, with most between 1 and 100) and facilitates
comparison between genes that express at very different levels. Furthermore,
the distributions of log transformed expression level data for individual genes
are more nearly normal than the original untransformed data.

The constant ¢ is included in (1) so that unexpressed genes will not transform
to negative infinity. Some investigators take ¢ = 1, but this distorts the scale
for low-expressed genes. Taking ¢ < 1 may reduce this distortion, but if ¢
is taken too small then variance for the log transform of low expressed genes
becomes inflated. For most datasets we chose ¢ = 0.25, but for FPKM data we
chose ¢ = 0.125 because expression levels tend to be lower, due to the different
normalization.

In many investigations, the per-gene expression levels is converted to stan-
dard scores (Z scores), so that the per-gene expression levels all have mean 0 and
standard deviation 1. In our case we did not standardize because the bias’ effect
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on a given gene depends on its mean expression level, but not on its standard
deviation. Dividing each gene’s expression level by its own standard deviation
will scramble the bias so that it can no longer be estimated or corrected. (Note
however that the statistical tests in Section 5 do apply standardization to com-
pute ¢ statistics, but only after bias correction.)

2.3 Statistical characteristics of preprocessed data

In this section we establish some normality and uniformity properties of log
transformed RNA-seq data. We find that gene averages of small populations
are nearly normal, and that the log transform tends to uniformize the variance
across the scale of expression levels.

2.3.1 Normality of per-gene expression data

Many statistical tests depend on the assumption of normality. In order to
characterize the normality of log transformed expression level data, we applied
the d’Agostino test for normality to the transformed data for each gene across
samples. Figure 1 shows the sorted d’Agostino p-values for all genes for the
original data. A straight line from (0,0) to (1,1) is consistent with perfect
normality—however, we find that for the original data, most p-values are 0,
indicating poor agreement with normality.

The figure also shows sorted d’Agostino p-values for log transformed gene
data. The normality is somewhat improved, so that about 20 percent of the
genes have p values greater than 0.05. The normality is further improved if we
look instead at the distribution of per-gene averages across patients. Figure 1
also shows p-values obtained from averages of 16 samples from the preprocessed
TGCA bladder cancer dataset. Since this dataset has about 400 samples, this
means that each data point is calculated based on the distribution of 25 values.
Most of the curve is linear, indicating greater normality. However, there are
still about 10% of the genes that have p-values indistinguishable from 0 on the
scale of the figure. Examination of the data reveals that very low expressed
genes have highly irregular distributions. It follows that low-expressed genes
are likely to exhibit non-normality. Accordingly, we selected only those genes
with mean transformed expression level greater than -1.5 (about 83% of all
genes), and plotted the sorted p-values for averages of 16 for this restricted set
of genes. This time, the p-value distribution is very close to what would be
expected from normally-distributed data. This result justifies the assumption
of normality in tests that compare mean expression levels in subpopulations, as
long as the subpopulation size is greater than 16.

2.3.2 Uniformity of per-gene expression data

We also examine the expression level dependence of per-gene standard devia-
tions for log transformed data. Figure 2 shows the standard deviations of log
transformed gene expression levels for the bladder cancer TPM dataset. In the


https://doi.org/10.1101/2023.10.31.564992
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.31.564992; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

plot, genes are ordered in increasing order of mean expression level. The plot
shows that the standard deviations of log transformed data are indeed nearly
independent of expression level. The color bands in the plot indicate the ranges
for the five data quintiles: for example, about 60% of transformed expression lev-
els are between -1 and 5. The near-uniformity of per-gene standard deviations
across all expression levels shows that per-sample expression level deviations
from the mean are the same order of magnitude across all genes, regardless of
expression level. We will see that the effect of expression-level dependent bias
is also of the same order of magnitude across all expression levels.

3 Bias detection and characterization

In this section we describe various statistical tests that detect per-sample ex-
pression level biases in the studied datasets, and show that they are related to
gene expression level.

3.1 Randomized 2-population t-tests

The first test is designed to show the sensitivity of two-population ¢ tests to
the presence of actual genetic differences between the two populations. For this
purpose, we conducted 5000 trial simulations. In each trial we randomly chose a
subpopulation of 107 samples, computed 2-population ¢ statistics for each gene,
and recorded the top 2000 ¢ values (out of 20216 total genes). For each of these
5000 cases, for a range of ¢ levels we recorded the number of genes exceeding each
t-level. The resulting 5% and 95% confidence limits for each ¢ level are plotted
as solid red curves in Figure 3. These results show an enormous variation in
t-statistic distributions among random population divisions. For example, for
t = 3 the [5%,95%| confidence interval is roughly [0, 1000], meaning that different
choices of random subpopulations may produce as few as 0 and as many as 1000
gene outliers with ¢ statistic greater than 3.

On the other hand, if the gene expression levels are first shuffled gene-by-gene
among patients and then the same procedure is followed, the confidence limits
on t-statistics are much tighter (blue dotted lines in Figure 3), and approach
the theoretical ¢ distribution (black dashed line in Figure 3). The comparison
between shuffled and unshuffled samples show that there are shifts in expression
level from sample to sample, which affect multiple genes in each sample. When
the expression levels are first shuffled among samples, then genes from the same
sample are no longer together, so the overall shift is no longer observed.

We may compare these results with a case where subpopulations have known
genetic differences—in this case male versus female. The dashed red curve in
Figure 3 shows the gene outlier curves for the subpopulation consisting of all
107 female samples in the dataset. In this case, when ¢ < 4, the number of
genes greater than ¢ is well within the confidence limits. It follows that the
large variation in outlier distributions are not due to sex differences. Only ¢
values larger than 5 can definitively identify genes as sex-linked. If there are
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other genes that tend to be elevated in females, then they cannot be clearly
identifiable based on t values alone.

The observed variation in outliers could possibly be due to a few samples that
are skewing the results. We may test this hypothesis by correlating patients’
inclusion within the subpopulation with number of outliers. The red curve in
Figure 4 shows the sorted correlations of patient inclusion in the subpopulation
(a 0-1 random variable) with the number of genes having ¢ value greater than
2.5. This may be compared with the blue dashed curve in the same figure, which
shows sorted correlations generated similarly except with per-gene expression
levels shuffled among patients. We see that a large number of samples have
raised (or lowered) correlations, indicating that the variation in outliers cannot
be attributed to just a few patients, but rather most samples will have either a
net positive or net negative effect on the number of outliers if included in the
subpopulation.

We may similarly test the hypothesis that there is a limited subset of genes
that are involved in producing the large variation in the number of outliers
observed in Figures 3. The red curve in Figure 5 shows sorted correlations
of the mean expression levels of genes included in the subpopulation with the
number of genes having t value greater than 2.5. The blue dashed curve in the
same figure shows sorted correlations generated similarly except with per-gene
expression levels shuffled among patients. Evidently the majority of genes have
raised correlations, indicating that the effect cannot be attributed to just a few
genes.

3.2 Block averaging of sorted expression levels

In Section 3.1 we saw that there appears to be sample by sample shifts in
expression level. In this section, we investigate whether the size of these shifts
has any relation to the gene’s expression levels. This task is complicated by the
fact that shifts produce a relatively small effect compared to random expression
level variation on a per-gene basis. However, the relative effect of the shifts is
amplified by taking per-sample block averages of sorted expression level data.

The procedure for detecting expression-level shifts is described in detail as
follows. Note that “expression level” refers to the expression level of data that
has been cleaned and log transformed as described in Section 2.2.

1. Compute the per-gene mean expression levels across all samples, and then
sort the genes in order of increasing mean value.

2. Divide the sorted expression levels into consecutive blocks of equal size,
and sum the transformed expression levels in each block separately for each
sample. This step is made mathematically precise as follows. Let J, K
denote the number of genes and samples respectively, and g;. denotes
the transformed expression level for gene j (j = 1...J) and sample k
(k=1...K). Let B denotes the block size, and let b, (n =1... N,k =
1...K) denote the average expression level for all genes in block n and
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sample k. Then we have:

nN

b= Y. g  N:=[J/B] (2)

j=nN-—-N+1

3. In order to compare across samples, we then center the values {b,;} by
subtracting out block means across samples to obtain centered block av-
erages {b,i} as follows:

_ 1 &
bnk = bnk - E Z_ZI an- (3)

Figure 6(a) shows centered block averages as defined by (3) for selected
samples from the TPM bladder cancer data, with block sizes of B = 1000. The
trends show that individual samples have smoothly varying deviations from
mean gene expression level depending on expression level.

In order to confirm that the deviations shown in Figure 6(a) are dependent
on expression level, we repeat the process (1-3) described above, but without
sorting the genes by increasing expression level. Figure 6(b) shows that block
averages of unsorted genes do not show varying deviations: instead, there are
constant overall shifts from sample to sample. This confirms the systematic
effect of gene expression level on per-sample expression level deviations from
the mean.

3.3 Principal component analysis of block averaged data

Principal component analysis (PCA) is a well known tool to reduce the dimen-
sionality of high-dimensional data. We can use PCA to analyze the deviations
shown in Figure 6. Figure 7(a) shows the first three principal components for
the block averaged sorted data described in Section 3.2. These results may be
compared to Figure 7(b), which shows the first three principal components for
block averages of the same data, but unsorted. The sorted block averages show
clear trends, indicating systematic expression-level dependent deviations from
the mean.

Figures 8(a) and (b) shows the explained variance associated with the prin-
cipal components shown in Figures 7. For the block averages of sorted data, the
first two components account for 95% of the total variance, implying that the
per sample deviations can be almost completely characterized as linear combi-
nations of the first principal components. On the other hand, Figure 8(b) tells
a very different story for block averaged unsorted data. The block averaged
per-sample deviations are uniform, signifying that the varying trends seen in
sorted data have been smeared out.
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3.4 Implications of statistical test results

Sections 3.1-3.2 have established the existence of systematic shifts in gene ex-
pression levels that vary from sample to sample and depend on the expression
levels. These shifts apparently affect very large numbers of genes. We can ask
if the shifts are of biological origin, or if they are due to measurement bias.
The fact that the shifts depend on expression level independent of gene func-
tion strongly indicates that these results do not have biological significance, but
rather reflect measurement bias. Accordingly, in the subsequent discussion we
will refer to the effect as a bias rather than a shift.

4 Bias correction through local leveling

In Section 3 we have shown the existence of sample-by-sample bias, and have
shown that it has a large effect on t-tests such as could possibly be used in
clinical studies. Undoubtedly this bias will introduce errors into the results of
such tests, and may obscure effects due to varying levels of real activity among
patients or groups of patients. It behooves us therefore to find a way to reduce
these biases. The most straightforward way to do this is to estimate and then
subtract the bias. The correction problem is then reduced to an estimation
problem.

Let X, , be a random variable expressing the expression level of gene g in
sample p. Then we may characterize X, ; using the following probability model:

0
Xpg=Bpg+Xp g+ Vg (4)
where A, ; is the bias for gene g for sample p; X0 s the true (unbiased)
expression level of gene g in sample p; and v, , is mean-0 random statistical
variation.

Our goal is to estimate A, . For this purpose, we will make use of the
properties of statistical averaging. First we define notation: for any random
variable Y}, ; depending on p and g and for any set of genes G, let Y, g denote
the average of Y, ; over all genes g € G:

— 1
Ypg = 7l > Y(p.g). (5)
g9'€G
Then we have:
Xpg=ADpg++X) 6 +Tg- (6)

We may similarly denote the average of Y, ; over genes g € G and samples
p € P by Yp g. Then we have also:

Xpg=Apg+Xps+7pg. (7)

By rearranging and combining (6) and (7), we obtain:

Apg—Apg=(Xp6—Xpg)—(Xpg—Xpg)— (g —7rg). (8
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But since A, 4 is the mean bias for sample p and gene ¢, it follows that the
average over all samples of A, ;+ is 0 for all genes g’. It follows that Ap g =0,
so (8) simplifies to:

Apg = (Xpg—Xpg) — (XD 5~ Xp o) — (Tpg — TP o) 9)

Note the first term on the right-hand side of (9) is calculated from data,
while the second and third terms cannot be measured directly. To estimate the
second term, we assume that most of the genes in each sample are “typical”
in the sense that they do not have systematically elevated or depressed levels
relative to the same genes in other samples. Under this assumption, the true
average of expression levels for a large number of genes should not vary from
sample to sample. In other words, we have the condition that

Xpo=Xpg (10)
:>Xg7g—X70,7g ~ 0. (11)

As to the third term on the right-hand side of (9), since v, o has zero mean and
finite variance, by the Law of Large Numbers we have that the averages 7, g
and 7p g both approach 0 as |G| increases. This fact together with (9) and (10)
gives

Apg~X,g—Xpg when |G| is large. (12)

Now suppose that given a gene g, we can choose a set of genes G such that
A, g =24, Then we can use (12) to estimate the bias A, ;4 for person p for
gene g. The method therefore comes down to choosing a relatively large set of
genes G whose average bias is equal to A, 4. We can see from Figure 6 that
per-sample biases have approximately linear dependence on expression level for
blocks of consecutive genes of size less than a few thousand. Therefore for a
given g, if we choose G to be a consecutive set of B genes where B = 1000,
such that the X, g =~ X,, , for all samples p € P, it follows from linearity that
A, g~ A,, for all samples p € P.

In our experiments, we chose the sets {G} as follows. First, let g1,...gn,
denote all genes sorted by expression level. We defined gene sets G,,n =
1,... Ny — 1000 as follows:

gn = {gna In+1y--- gn+1000}7 (13)

i.e. G, contains 1001 consecutive genes beginning at g,,. Let m,, be the midpoint
expression level for G,

Mp = (Xp,gn + Xp,gn+1ooo)/2 (14)
Then for each gene g, we assign the set G, \ {g}, where n is chosen such that
My < Xp g < Mpy1. (15)

In other words, the midpoint of G,, is the largest midpoint that is smaller than
mean expression level of g. According to this specification, g is nearly equal to
the midpoint of the expression level interval spanned by the genes in G,,.

10
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We may graphically assess the effects of local leveling. In Figure 2, the yellow
dashed line gives moving averages of per-gene standard deviations of local leveled
log transformed data, plotted against mean expression level. The standard
deviations are slightly reduced compared to the black line which represents the
nonleveled data. This shows that the standard deviations of the log transformed
gene expression levels are not changed significantly by local leveling.

A much larger effect of local leveling is seen in block averages of per-sample
deviations. Figure 6(c) shows that block-average deviations virtually disap-
pear after local leveling. Figure 8(c) shows that different PCA components
make comparable contributions to the per-sample deviations. It appears that
local leveling has effectively removed the per-sample deviations, since both the
expression-level dependence seen in sorted data and the overall shifts seen in
unsorted data have been removed.

5 Comparison of statistical tests with original and
local leveled data

We have shown that the local leveling transform eliminates biases in block-
averaged, sorted data. In this section we investigate the effect of local leveling
on some statistical tests that may be used in clinical studies.

5.1 Summary of test types

Three types of tests are performed, in order to determine the effect of local
leveling on detectability of genetic differences. The three types are described in
the following three subsections.

Detection of differences in gene expression level between subpopula-
tions

As in Section 3.1, the population is divided into two subpopulations. In one of
the subpopulations, for a randomly chosen set of genes the expression levels are
altered in a pre-determined way by enhancing them by a multiplicative factor.
t-statistics are computed for all genes, which are then ranked in decreasing ¢
order. Different ranks are chosen as detection thresholds, and the number of
enhanced genes that are detected are recorded for both original and local leveled
data. Detection rates of the enhanced genes are plotted for both original and
local leveled data, for different thresholds and different enhancement factors.

Detection of individual samples with elevated expression levels in a
known set of genes

A sample is chosen randomly, and a randomly-chosen subset of genes are en-
hanced by multiplying them by a pre-determined factor greater than 1. Then
t-statistics for the genes in the subset are used to rank the samples. The rank of
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the sample for original and local leveled data is compared, for different subset
sizes and enhancement factors.

Effect of leveling on correlations

The distribution of gene-gene correlations are compared for genes with similar
expression levels versus randomly-selected genes. The block-averaged results
shown in Figure 6 imply that genes with similar expression levels will tend to
be correlated more than other genes. We compute the same correlations with
original and local leveled data, to see whether local leveling removes biases in
estimates of correlations between genes.

5.2 Results of statistical tests

Subpopulation comparisons

Figure 9 shows the results of the two population test performed for 5000 trials,
where 100 randomly-chosen genes were enhanced in a randomly-chosen subpop-
ulation of 100 samples. The three series of curves correspond to three different
enhancement factors (1.1, 1.3, 1.5). The curves show local leveling consistently
produces a slight improvement in detectability. For the larger enhancement
factors the standard deviation (indicated by error bars) is also decreased when
local leveled data is used, indicating that more consistent results are obtained.

Elevated single-sample detection

Figure 10 shows the results when the single patient test was performed for
1000 random sample/gene combinations for each enhancement factor and each
enhanced genes subset size. The means and standard deviations of ¢ ranks for
two different enhancement levels and for original and local leveled data for a
range of gene set sizes correspond to the four curves with error bars shown in
the figure. Compared to the original data, the local leveled data improves the
rank of the gene-enhanced sample considerably, as well as reducing the error
bars. For example, with 40 enhanced genes and enhancement factor 1.4, the
mean ¢ rank for local leveled is 1 (with small error bars) compared to about
9 for original data (with much larger error bars). The improvement increases
dramatically with an increase in the number of enhanced genes.

Gene-gene correlation tests

Figure 11 compares gene-gene Pearson correlations computed using the original
log transformed data, and using local-leveled log transformed data. To obtain
the curves labeled “Local correlation”, first the genes were sorted in order of
increasing log-transformed expression level, and 1000 consecutive genes starting
with index 12000 were selected. All correlations between these genes were com-
puted, and the resulting distribution is plotted. To obtain the curves denoted
“Random correlation”, 1000 genes were randomly selected from among all genes
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with index above 7000 (low-expressed genes we excluded because they are often
unexpressed and have highly irregular statistics). The figure shows that local
and random correlations for the original data both show a positive shift which
is especially pronounced for the local correlations. This result is an expected
consequence of the expression level-dependent block shifts observed in Figures 6
and 7. On the other hand, the local leveled correlations for both distributions
are centered at zero, and the distributions are nearly the same.

Figure 12 shows Spearman correlations between a particular gene (the an-
drogen receptor gene) and all other genes, for all samples within the TGCA
firehose prostate TPM dataset . In this case the original data is used with-
out applying the log transform, while the local leveled data is implemented by
first log transforming the data, then local leveling, then applying the inverse
transform. The figure shows that the correlations using original TPM data are
skewed positive, with a large proportion of values above 0.5. In contrast, the
distribution of correlations computed with local leveling is much more symmet-
ric, more sharply peaked and centered near 0. The reduction in correlation
indicates that local leveling has corrected for correlations due to the per-patient
shifts shown in Figure 6.

6 Discussion

6.1 Possible causes of systematic bias

In Section 3 Although we have shown figures only for TPM bladder cancer
data from TGCA, similar figures can be generated for all datasets described in
Table 1. In Section 5 we showed that these biases do affect tests designed to
identify genetic differences in populations and individuals, as well as correlations
between genes. We show furthermore that local leveling is partially effective in
mitigating the effects of systematic biases.

Until now we have not identified the cause(s) of these systematic biases. One
candidate is faulty normalization. But faulty normalization cannot fully explain
the phenomenon. Data is normalized by multiplying all expression levels by the
same constant. Under log transform, this multiplication translates to a con-
stant shift that is applied equally to all genes. Thus faulty normalization can
account for overall shifts in log transformed expression levels between samples,
such as shown in the scrambled samples in Figure 6(b). But faulty normaliza-
tion cannot explain the expression level-dependent shifts in the log transformed
samples that are seen in Figure 6(a). We note however, that the vertical shifts
in scrambled samples can be eliminated by adjusting the normalization, thus
improving the statistical behavior. The shifts in Figure 6(b) are clear evidence
that TPM normalization is not accurate, and the shifts can be used to correct
the multiplicative factor used for normalization.

Another potential source of systematic bias is errors in the gene length esti-
mates that are used to convert fragment counts to fragment counts per kilobase.
This is because the systematic variations also show up in the raw data, even
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before the conversions are made.

A further possible cause is mapping error. Mapping errors in the context
of intrepreting RNA-seq data are well documented in the literature [2]. These
inaccuracies arise during the alignment or mapping step of RNA-sequence anal-
ysis. This step involves aligning the short sequence with a reference genome to
determine where it comes from. Due to many factors (e.g. repetitive regions,
alternative splicing, sequencing errors, etc.), reads may be incorrectly assigned,
leading to biases in the gene expression levels. Researcher have used different
statistical methods to deal with these biases [2]. However, it is unclear why
mapping error would be related to gene expression level. This is a topic for
further investigation.

In sum, we have so far been unable to identify a cause for the observed biases.
We cannot rule out the possibility that what appears to be measurement bias
may in fact be of biological origin.

6.2 Implications of local leveling on population level data

A current need in the field of cancer is to interpret how genes can drive tumori-
genic processes and the pathogenesis of human tumors. As discussed, RNA-seq
or other forms of abundance level data are now collected at the population level
across hundreds of patients in the research setting, and even millions of patients
in the industry setting. Because of this, a specific need is to consider batch and
inter patient normalization processes when abundance level data is acquired,
which may include biases or artifacts that are due to the variations in collec-
tion process or differences in sequencing platform. These processes are areas of
active research and development. Local leveling acts as once such algorithm,
as it considers expression levels of genes from the entire population of interest
when making adjustments. Unlike other normalizations, the local leveling al-
gorithm takes into account both gene-to-gene and patient-to-patient variations.
TPM normalization or log transform apply the same transform to all genes on a
per-sample basis. Such transformations will reduce spurious variations in gene
expression levels, but do not address gene-to-gene differences in these spurious
variations. In contrast, Z-score normalization applies the same linear transfor-
mation to all samples, where the transformation is determined independently
for each gene. As a result, the Z-score transformation has no effect on gene-gene
correlations. (Note that in our application of local leveling we also apply Z-score
normalization, but only after local leveling has been applied.)

In this study we have applied local leveling only to RNA-seq data. It is
possible that the same technique may be applied to reduce biases in protein
abundance level estimates obtained from mass spectrometry data. This is a
topic for future investigation.
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6.2.1 Impact on biological functions and signaling pathways

7 Implications and conclusion

Data processing often introduces distortions and biases. Methods must be de-
vised to correct for these. In this paper, local leveling is proposed and validated
as a method for correcting biases in RNA-seq data. These corrections may
significantly effect various biological analyses. Some possible consequences are
described as follows.

In this study, we have demonstrated that local leveling has a global impact
on gene-gene correlations. In particular local leveling shifts the mean of the
distribution of the correlations towards zero. Conventionally, gene-gene cor-
relations across all the samples are often used as a measure of the degree of
similarity between two or more genes.

Differential expression analyses through bioinformatics tools such as DEseq2
[5] stratify patients into groups based on certain clinical or experimental anno-
tations, and then use statistical models to identify specific genes that exhibit
different expression levels between groups. The information is commonly used
to define potential biomarkers, or to nominate downstream experimental strate-
gies. Local leveling will impact differential expression analysis, and we predict
that this will nominate distinct gene sets that could inform of novel roles for
certain genes.

Local leveling may also impact gene set enrichment tools such as GSEA (7],
that evaluate whether specific biological pathways are active or inactive in sam-
ples. Like differential expression analyses, these tools examine whether an a
priori nominated gene set exhibits concordant differential expression. Many of
these gene sets are defined based on optimized conditions in cell models, which
are generally more synchronous and homogeneous as compared to biological
samples. In this regard, the genes sets may exhibit much more pronounced
activity and less variation. However, gene set enrichment approaches are also
applied on clinical samples. Unlike cell models, these are subject to many dis-
tinct collection and processing protocols on heterogeneous cell types or tumor
cells. Each of these factors may drive sub-optimal expression of genes. For these
reasons, local leveling may have a greater impact on studying gene sets or biolog-
ical pathways in clinical samples. Altogether, applying local leveling on more
clinical specimens may provide novel understanding of gene-gene interactions
and biological pathways.

Further investigations are being pursued into characterizing the observed
biases more precisely, with a view to identifying possible causes. In particular,
there may be other factors besides gene expression level that are associated with
systematic biases. Identifying and compensating for these factors can lead to
better bias correction procedures, thus producing data that is more representa-
tive of underlying biological conditions.
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Figure 1: Sorted p-values for d’Agostino test applied to per-gene data across
samples for untransformed data, log transformed data, log transformed sum of
blocks of 16 patients, and log transformed sum of blocks of 16 patients for genes
with log transformed expression levels above 1.
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Log transformed gene data: std. dev. versus mean
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Figure 2: Standard deviations of log transformed genes sorted by mean of trans-
formed expression level. The color bands indicate quintiles of log expression
levels from 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. The black line is
the moving average of standard deviations, where each point on the line is the
average of 1000 consecutive genes. The yellow dashed line is the moving average
of standard deviations after local leveling.
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Figure 3: Confidence limits on complementary cumulative distribution functions
for t-tests between randomized subpopulations. Dashed black line indicates the-
oretical Z distribution assuming no statistically significant differences between
populations. the two red solid lines show the 5% and 95% confidence limits for
original log-transformed data. The red dashed line shows the case when the
subpopulation consists of all female samples. Dashed blue lines show 5% and
95% confidence limits when the original log transformed data is shuffled gene
by gene. The solid green curves display the 5% and 95% confidence limits after
local leveling, and the dashed cyan lines show the shuffled local leveled case.
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Figure 4: Correlation of sample inclusion within subpopulation and number of
gene outliers with £>2.5, for the 2-population tests described in Section 3.1.
Curves for tests with original log transformed data (red), Local leveled (green
dashed), original log transformed data shuffled by gene (blue dashed), and local
leveled shuffled (cyan dashed) are shown.
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Figure 5: Correlation of mean expression level of genes of included samples with
number of gene outliers with ¢ > 2.5, for ¢ tests described in Section 3.1.Curves
for tests with original log transformed data (red), Local leveled (green dashed),
original log transformed data shuffled by gene (blue dashed), and local leveled
shuffled (cyan dashed) are shown.
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Figure 6: Centered block averages (B=1000) for selected samples from the TPM
bladder cancer data.
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Figure 7: Leading PCA components for block averaged data with different or-
derings and with local leveling.
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for: (a) Sorted transformed data; (b) Unsorted transformed data; (c) Local
leveled sorted transformed data.
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Figure 9: Detection rates for 100 enhanced genes in a subpopulation of 100
at different rank cutoffs, with and without local leveling. The three series of
curves correspond to three different enhancement factors (1.1, 1.3, 1.5). Means
and standard deviations are shown for 5000 trials with 100 randomly-chosen
genes from 100 randomly-chosen samples.
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Figure 10: Average t rank for a single sample with variable number of enhanced
genes. The number of enhanced genes is indicated on the x-axis. The solid and
dotted curves correspond to two different multiplicative enhancement factors
for original (blue) and local leveled (red) data. Means and standard deviations

are shown for 5000 trials, where the enhanced sample and enhanced genes were
re-randomized for each trial.
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Figure 11: Gene-gene log transformed expression level correlations between
intervals of genes with similar expression levels (local corr.) and genes with
randomly-selected expression levels (random corr), for original bladder cancer
TPM data and local leveled data.
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Figure 12: Distribution of Spearman correlation coefficients between androgen

receptor (AR) gene and all other genes, for original and for local leveled data.
Data is taken from TGCA prostate firehose dataset.
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