

1 **Chloroplasts lacking class I glutaredoxins are functional but show a**
2 **delayed recovery of protein cysteinyl redox state after oxidative**
3 **challenge**

4 Finja Bohle^{1,2}, Jacopo Rossi³, Sadia S. Tamanna¹, Hannah Jansohn¹, Marlene Schlosser¹,
5 Frank Reinhardt⁴, Alexa Brox⁵, Stephanie Bethmann⁶, Stanislav Kopriva⁷, Oliver Trentmann¹,
6 Peter Jahns⁶, Marcel Deponte⁸, Markus Schwarzländer⁹, Paolo Trost³, Mirko Zaffagnini³,
7 Andreas J. Meyer², Stefanie J. Müller-Schüssele^{1*}

8 ¹ Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633
9 Kaiserslautern, Germany

10 ² Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES),
11 University of Bonn, D-53113 Bonn, Germany

12 ³ Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy

13 ⁴ Plant Physiology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633
14 Kaiserslautern, Germany

15 ⁵ Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES),
16 University of Bonn, D-53113 Bonn, Germany

17 ⁶ Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany

18 ⁷ Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University
19 of Cologne, Cologne 50674, Germany

20 ⁸ Biochemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, D-67633
21 Kaiserslautern, Germany

22 ⁹ Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster,
23 Germany

24 **Short title:** Chloroplasts lacking class I GRX

25 ***Correspondence:**

26 Stefanie Müller-Schüssele

27 Rheinland-Pfälzische Technische Universität Kaiserslautern Landau (RPTU)

28 Erwin-Schrödinger-Str. 70

29 67663 Kaiserslautern

30 mueschue@rptu.de

31 Tel.: +49 (0)631-205-4391

32 Fax: +49 (0)631-205-2998

33

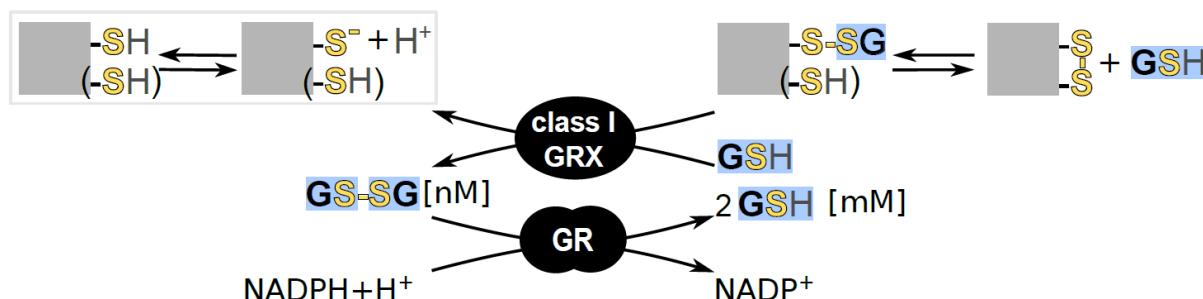
34 **ORCIDs:** FB: 0000-0001-8343-1399; SST: 0000-0001-7444-6222; FR: 0000-0001-6725-
35 1793; SK: 0000-0002-7416-6551; PJ: 0000-0002-5340-1153; MS: 0000-0003-0796-8308;
36 PT: 0000-0002-6347-8701; MZ: 0000-0001-5115-0859; AJM: 0000-0001-8144-4364; SJM-S:
37 0000-0003-4061-1175
38

39 **Keywords:** glutaredoxin, GRXC5, S-glutathionylation, redox-sensitive GFP, E_{GSH} , genetically
40 encoded biosensor, photosynthesis, plastid, glutathione
41

42 **One sentence summary:** Removal of class I GRX activity in the chloroplast stroma of
43 *P. patens* kinetically uncouples GRX-dependent cysteine redox changes from the local
44 glutathione redox potential, without an effect on NPQ or photosynthetic carbon reactions.

45 **Abstract**

46 Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin
47 (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce
48 post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I
49 GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and
50 protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for
51 each other in several subcellular compartments, but not in the plastid stroma where TRX/light-
52 dependent redox regulation of primary metabolism takes place. While the stromal TRX system
53 has been studied at detail, the role of class I GRX on plastid redox processes *in vivo* is still
54 unknown. We generate knockout lines of *GRXC5* as the only chloroplast class I GRX of the
55 moss *Physcomitrium patens*.


56 While we find that class I PpGRXC5 has high activities in glutathione-dependent
57 oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 (roGFP2) as
58 substrates *in vitro*, $\Delta grxc5$ plants show no detectable growth defect or stress sensitivity, in
59 contrast to mutants with a less negative stromal E_{GSH} ($\Delta gr1$). Using stroma-targeted roGFP2,
60 we show increased protein Cys oxidation and decreased reduction rates after oxidative
61 challenge in $\Delta grxc5$ plants *in vivo*, indicating kinetic uncoupling of the protein Cys redox state
62 from glutathione redox potential. Protein Cys disulfide and S-glutathionylation formation rates
63 after H_2O_2 treatment remained unchanged. Lack of class I GRX function in the stroma did not
64 result in impaired carbon fixation.

65 Our observations suggest specific roles for class I GRX in the efficient redox equilibration
66 between E_{GSH} and protein Cys in the plastid stroma as well as negligible cross-talk with
67 metabolic regulation via the TRX system. We propose a model for stromal class I GRX function
68 as efficient kinetic couplers of protein Cys redox state to the dynamic stromal E_{GSH} and highlight
69 the importance of identifying *in vivo* target proteins of GRXC5.

70 Introduction

71 Oxygenic photosynthesis has shaped our planet by increasing oxygen levels in the
72 atmosphere, and by enabling solar-driven carbon fixation. In phototrophic eukaryotic life forms,
73 former free-living cyanobacteria now serve as chloroplasts in light-harvesting and production
74 of reducing equivalents to power reductive processes in cell metabolism (Schreiber et al.,
75 2022). Land plant chloroplasts face multiple oxidative challenges as environmental conditions
76 such as light intensity, water availability and temperature can rapidly fluctuate and cause
77 imbalances between light reactions and carbon fixation. Plants have adapted to a frequently
78 changing environment by evolving mechanisms to regulate photochemistry and carbon fixation
79 in a matter of minutes, as well as mechanisms to acclimate to a changed steady state in a
80 matter of hours or days (Roach and Krieger-Liszkay, 2014; Schöttler and Toth, 2014; Alboresi
81 et al., 2019; Morales and Kaiser, 2020). Regulation of the enzymatic reactions of the Calvin-
82 Benson-Bassham cycle (CBB cycle) to match the activity of the light reactions guarantees
83 efficient re-oxidation of the electron acceptor of light reactions, NADP⁺, and avoids futile cycling
84 under dark conditions when the oxidative pentose phosphate pathway is active (Buchanan et
85 al., 2012). Thus, many stromal enzymes evolved Cys-based redox-regulation (Buchanan and
86 Balmer, 2005; Balsera et al., 2014). This regulation of protein activity or oligomerization (Marri
87 et al., 2014) can be mediated by post-translational changes in cysteinyl thiol redox states,
88 including the formation/reduction of regulatory disulfide bonds on target proteins (Michelet et
89 al., 2013; Gütle et al., 2016; Gurrieri et al., 2023). The thioredoxin (TRX) system derives
90 electrons from the photosynthetic electron transport (PET) or NADPH for the reduction of
91 specific regulatory disulfides on metabolic enzymes (Geigenberger et al., 2017). The redox
92 state of these thiol-switches depends on the redox state of TRXs, which in turn depend on
93 PET/NADPH-dependent reduction rates (Zimmer et al., 2021; Teh et al., 2023) and oxidation
94 rates (Yoshida et al., 2019). TRX oxidation rates can be linked via 2 Cys-peroxiredoxins (PRX)
95 to the detoxification of hydrogen peroxide (H₂O₂) (Pérez-Ruiz et al., 2017; Ojeda et al., 2018;
96 Vaseghi et al., 2018) which functions as terminal electron acceptor.
97 When the stromal NADP pool becomes increasingly reduced, generation of reactive oxygen
98 species (ROS) increases (photoinhibitory conditions) as photosystem I (PSI) becomes
99 acceptor-limited (Roach and Krieger-Liszkay, 2014). Via superoxide dismutases, superoxide
100 is rapidly (without input of additional electrons) converted to H₂O₂ that can react with cysteine
101 residues causing thiol oxidation, either directly (highly reactive Cys only) or via the Cys-redox
102 relays (Deponte, 2017; Alvarez and Salinas, 2022). To balance ROS formation and repair
103 ROS-induced oxidative damage, chloroplasts have evolved multiple detoxification and repair
104 systems that either draw electrons from the TRX system or the glutathione system.
105 Glutathione (GSH) is a cysteine-containing tri-peptide present at millimolar concentrations in
106 the cytosol and chloroplast stroma serving multiple roles in cellular metabolism and defense

107 (Bangash et al., 2019; Cassier-Chauvat et al., 2023). First, glutathione is an important electron
108 donor for H_2O_2 detoxification or repair of ROS-induced damages (reviewed in Noctor et al.,
109 2012 and Müller-Schüssele et al. (2021a)). Second, it can form mixed disulfides with cysteinyl
110 residues in proteins (protein *S*-glutathionylation), either as a consequence of cysteine oxidation
111 by H_2O_2 (*S*-sulfenylation), or enzymatically catalysed by class I glutaredoxins (GRXs) (Fig. 1)
112 (Deponte, 2017). Class I GRXs are small oxidoreductases belonging to the TRX superfamily,
113 that can form or release protein *S*-glutathionylation and disulfides (Fernandes and Holmgren,
114 2004; Lillig et al., 2008; Couturier et al., 2013; Trnka et al., 2020). *S*-glutathionylation can affect
115 protein activity and/or oligomerization as well as act as a protection against protein Cys over-
116 oxidation, depending on the modified protein and site (Michelet et al., 2005; Zaffagnini et al.,
117 2007; Bedhomme et al., 2009; Zaffagnini et al., 2013). GRXs and TRXs can at least partially
118 functionally complement each other, lack of both activities in the cytosol leads to lethality in
119 *S. cerevisiae* (Draculic et al., 2000). Thus, the redox state of individual cysteine residues
120 depends on an intricate network of redox reactions with partially overlapping but also specific
121 roles for TRX, NTRC- and GSH/GRX-dependent reactions.
122 In the plastid stroma, the presence of a glutathione reductase (GR) leads to a highly reducing
123 steady-state glutathione redox potential (E_{GSH}) with only nanomolar amounts of oxidized
124 glutathione, glutathione disulfide (GSSG) (Fig. 1) (Yu et al., 2013; Schwarzländer et al., 2016;
125 Marty et al., 2019; Müller-Schüssele et al., 2020). Stromal steady-state E_{GSH} monitored by the
126 genetically encoded biosensor Grx1-roGFP2 (Meyer et al., 2007; Gutscher et al., 2008;
127 Schwarzländer et al., 2008) revealed light-dependent redox dynamics (Müller-Schüssele et al.,
128 2020; Haber et al., 2021).

130 **Figure 1: Scheme of class I GRX and glutathione reductase function**

131 Class I glutaredoxins (GRX) can reversibly modify cysteinyl residues (thiol group SH, thiolate S⁻) in proteins by
132 forming a mixed disulfide with the tripeptide glutathione (GSH). If a second cysteine is present in a suitable distance,
133 this *S*-glutathionylation can be released by intramolecular disulfide formation, as observed for the genetically
134 encoded redox sensor roGFP2. Glutathione reductase (GR) regenerates glutathione disulfide (GSSG) to 2
135 glutathione (GSH) at the expense of NADPH, keeping the glutathione redox potential E_{GSH} reducing for most
136 cysteines. Grey squares represent GRX substrate proteins, black rounded shapes enzymes.

137 In contrast to mitochondria and cytosol, the plastid TRX system does not constitute an effective
138 functional backup system for the stromal GSH/GRX system, as a lack in stromal GR causes

139 embryo-lethality in *A. thaliana* (Marty et al., 2009; Marty et al., 2019). In the model moss
140 *Physcomitrium patens*, plants lacking mitochondria/plastid-targeted glutathione reductase
141 (PpGR1) had a shifted (less negative) stromal E_{GSH} and were viable, albeit dwarfed and light-
142 sensitive (Müller-Schüssele et al., 2020). Plant class I GRX clades that contain isoforms
143 targeted to different subcellular compartments are evolutionary conserved from bryophytes to
144 flowering plants (Müller-Schüssele et al., 2021a). In the model flowering plant *A. thaliana*, two
145 plastid-targeted class I GRXs exist that differ by the number of cysteines in the active site.
146 While AtGRXS12 contains a single cysteine (WCSYS active site), AtGRXC5 contains two
147 cysteines (YCPYC active site) (Couturier et al., 2011; Müller-Schüssele et al., 2021a).
148 According to previous phylogenetic analysis, GRXC5 represents the ancestral type of plastid-
149 targeted class I GRX with a single isoform of GRXC5 in the model moss *P. patens* (Müller-
150 Schüssele et al., 2021a).

151 The chloroplast stroma has been described as a 'redox battle ground' (Meyer et al., 2021) of
152 which we are still lacking a functional map. In particular, the roles of glutathione, class I GRX
153 and protein S-glutathionylation are largely uncharted. It is an open question how class I GRX
154 function and S-glutathionylation dynamically interact with the known thiol-switching cascades
155 in the crucial light/dark regulation of chloroplast metabolism.

156 Here, we set out to understand the role of class I GRX in the stromal redox network of plants.
157 To this end we generated plant lines lacking class I GRX activity in the stroma, by exploiting
158 the fact that only a single plastid-targeted class I GRX present in *Physcomitrium patens*. We
159 combine biochemical characterization of PpGRXC5 *in vitro* with *in vivo* biosensing using
160 stroma-targeted roGFP2 to dynamically monitor protein Cys redox changes after oxidative
161 challenge.

162 **Material and Methods**

163 ***In vitro* analyses of PpGRXC5**

164 For recombinant protein expression of PpGRXC5, *P. patens* cDNA was used to amplify
165 *GRXC5* without targeting peptide (starting at the Ala 120 codon) using the primer combination
166 PpGRXC5_A120_F GGGGACAAGTTGTACAAAAAAGCAGGCTTAGCAGCAGGTT
167 CGGGG and PpGrxC5_cds_R GGGGACCACTTGTACAAGAAAGCTGGGTG
168 TCAACTCCTGTTGCACCAG, adding *attB1* and *attB2* sites. The PCR-product was cloned
169 via Gateway™ into pDONR207, verified by sequencing, and subsequently inserted into the
170 pETG-10A vector. Recombinant proteins (roGFP2 (Meyer et al., 2007), PpGRXC5, AtGRXC1
171 (AT5G63030, (Rouhier et al., 2007)) were purified from transformed *E. coli* strain Rosetta2 as
172 described in Trnka et al., (2020) and Ugalde et al. (2021).

173 **Hydroxyethyl disulfide (HED) assay.** Deglutathionylation activity of PpGRXC5 was tested
174 according to Zaffagnini et al. (2008). Prior to the assay, the concentration of GRXC5 was
175 determined via Bradford assay (Bradford, 1976). All chemicals were dissolved in 100 mM Tris-
176 HCl pH 7.9. A 20 mM NADPH stock was prepared, and concentration was verified via
177 absorption measurements using the NADPH extinction coefficient of $6.23 \text{ mM}^{-1} \text{ cm}^{-1}$. To test
178 for the GRX concentration in which the GRX shows a linear activity, HED assays were
179 performed in 100 mM Tris-HCl, 1 mM EDTA pH 7.9 using 1 mM GSH and 0.7 mM HED, varying
180 the concentration of the GRX from 10-50 nM. The HED assay, with GSH as variable substrate,
181 was performed by preparing a 1 ml cuvette containing 0.5-4 mM GSH and 0.7 mM bis(2-
182 hydroxyethyl)disulfide (HED). With HED as variable substrate, GSH concentration was kept
183 constant at 1 mM, while HED concentrations varied from 0.3 mM to 1.5 mM. To the HED and
184 GSH mixture 200 μM NADPH and 100 mM Tris-HCl 1 mM EDTA pH 7.9 were added. After
185 exactly 3 min of incubation, GR (final concentration of $6 \mu\text{g ml}^{-1}$, *Saccharomyces cerevisiae*,
186 Sigma-Aldrich CAS 9001-48-3, 100-300 units/mg protein) and GRXC5 (final concentration 30
187 nM) were added to the cuvette adding up to a final volume of 1 ml. For each concentration of
188 varying GSH or HED, a background activity was determined by replacing GRX with buffer (Tris-
189 HCl, pH 7.9). The absorbance decrease at 340 nm was followed for 1 min using a NanoDropTM
190 2000c spectrophotometer (Thermo Fisher Scientific).

191 **roGFP2-based *in vitro* assays.** Oxidation and reduction assays using roGFP2 (Meyer et al.,
192 2007; Gutscher et al., 2008; Bohle et al., 2023) were performed in a 96-well plate in a
193 fluorescence plate reader (CLARIOstar[®] Plus, BMG Labtech). For oxidized and reduced
194 roGFP2 controls, roGFP2 was treated for 30 min with 10 mM DTT or 10 mM H_2O_2 before the
195 assay start. To assess the reduction capacities of PpGRXC5, 1 μM of untreated (oxidized)
196 roGFP2 was pipetted into a well containing 1 μM GRX (PpGRXC5, AtGRXC1), 100 μM NADPH
197 and 1 unit *S. saccharomyces* GR in 100 μl of 100 mM potassium phosphate buffer pH 7.4.
198 After measuring for 10 cycles, a final concentration of 2 mM GSH was added automatically by
199 the injection needles of the plate reader into the respective wells. Fluorescence was followed
200 until roGFP2 ratio stabilized. For assessing oxidation capacities of PpGRXC5, 10 μM roGFP2
201 was pre-reduced with 10 mM DTT for 30 min and subsequently desalting via ZebaTMSpin
202 Desalting Columns (ThermoFisher) following the manufacturer's instructions. 1 μM of pre-
203 reduced roGFP2 was mixed with 1 μM of PpGRXC5 or AtGRXC1 in potassium phosphate
204 buffer pH 7.4. 2 mM GSSG was added via the injection needles of the plate reader after 5 min
205 of initial measurements and the measurement continued until roGFP2 ratio stabilized.
206 Fluorescence intensities were collected by excitation at 390-10 nm or 480-10 nm and emission
207 at 530-10 nm.

208 **Plant materials and growth conditions**

209 *Physcomitrium patens* (Hedw.) Bruch & Schimp ecotype 'Gransden 2004' (International Moss
210 Stock Centre (IMSC, <http://www.moss-stock-center.org>), accession number 40001) was grown
211 axenically and regularly sub-cultured in agitated liquid medium (KNOP medium: 250 mg l⁻¹
212 KH₂PO₄, 250 mg l⁻¹ KCl, 250 mg l⁻¹ MgSO₄ × 7H₂O, 1 g l⁻¹ Ca(NO₃)₂ × 4H₂O and 12.5 mg l⁻¹
213 FeSO₄ × 7H₂O, pH 5.8) (Reski and Abel, 1985) supplemented with micro-elements (ME),
214 (H₃BO₃, MnSO₄, ZnSO₄, KI, Na₂MoO₄ × 2H₂O, CuSO₄, Co(NO₃)₂). For phenotypic analyses,
215 *P. patens* gametophores were grown on KNOP ME agar plates (12 g l⁻¹ purified agar; Oxoid,
216 Thermo Scientific, Waltham, MA, USA). Light intensity in growth cabinets was set to 70-
217 100 µmol photons m⁻² s⁻¹ and 16:8 h light/dark cycle at 22 °C, if not indicated otherwise.

218 **Generation of transgenic lines**

219 $\Delta grxc5$. The complete *GRXC5* (Pp3c3_7440V3.3 (V1.6 Pp1s321_10V6.1)) coding sequence
220 (cds) was exchanged via homologous recombination with a *nptII* resistance cassette under the
221 control of the *NOS* promoter and terminator. The knock-out construct was assembled by triple-
222 template PCR (Tian et al., 2004), using the following primer combinations: upstream (5')
223 homologous region (HR) PpGRXC5ko_5PHR_P1 ATCACAGGAAGCTATGGAAGGCA and
224 PpGRXC5ko_5PHR_P2 TTGACAGGATCCGATAATCCCCACTTAGCACCAGG, resistance
225 cassette GRXC5ko_npt_F: TGCTAAGTGGGGATTATCGGATCCTGTCAAACACTG and
226 GRXC5ko_npt_R: CGTATGTGATGGCATGACAGGAGGCCGATCTAGTA, downstream (3')
227 HR PpGrxC5ko_3PHR_P3 ATCGGGCCTCCTGTCAATGCCATCACATACGGAACT and
228 PpGrxC5ko_3PHR_P4 ATCTTCAGCTCCTCAGTTCCCTCG (**Table S1**). *EcoRV* restriction
229 sites were introduced by ligating the triple-template PCR product into the pJET1.2 (Thermo
230 Scientific, Waltham, MA, USA) vector. The resulting vector was amplified in and purified from
231 *E. coli* *DH5alpha* strain, digested with *EcoRV* and used for polyethylene glycol-mediated
232 protoplast transformation as previously described (Hohe et al., 2004). Regenerating plants
233 surviving geneticin G418 (12.5 mg l⁻¹) selection for four weeks were further screened via PCR
234 for homologous 5' and 3' integration of the knock-out construct at the target locus using the
235 primer combinations GrxC5_5P_F AAGTAGGGAAAAGAGAGCAGC and H3b_R
236 CCAAACGTAAAACGGCTTGT as well as NOST_F GCGCGGTGTCATCTATGTTA and
237 GrxC5_3P_R TGTCTGTGTTCGGACTTCT (**Table S1**). Absence of transcript on cDNA-level
238 was confirmed using the primer combination PpGrxC5_RT_F TTAATCGGCAGGTGTGGA
239 and PpGrxC5_RT_R AAAAGCTTCTTCACGCGCAT (**Fig. S1**). $\Delta grxc5$ lines are available from
240 the IMSC under the accession numbers: $\Delta grxc5$ #54 IMSC-Nr. 40954, $\Delta grxc5$ #249 IMSC-Nr.
241 40955). $\Delta gr1$ lines in $\Delta grxc5$ #54 genetic background were generated and identified as
242 described in Müller-Schüssele et al. (2020), see also (**Fig. S1, Table S1**).

243 **Plastid-targeted roGFP2.** The construct of plastid-targeted roGFP2 was generated by overlap
244 PCR. Two DNA templates were generated in separate PCR reactions adding *attB1* and *attB2*

245 sites to the 5' and 3' ends, respectively: the plastid transketolase targeting peptide (TKTP)
246 sequence of *N. tabacum* (Schwarzländer et al., 2008; Speiser et al., 2018) was amplified using
247 TKTP_F (GGGGACAAGTTGTACAAAAAAGCAGGCTATGGCGTCTCTTCTCT) and
248 TKTP_roGFP2_R (CCTCGCCCTTGCTCACCAAGCGCAGTCTCAGTT), creating an overlap to
249 the *roGFP2* coding sequence. Similarly, *roGFP2* was amplified with TKTP-roGFP2_F
250 (ACTGAGACTGCGCTGGTGAGCAAGGGCGAGGAG) and roGFP2-attB2_R
251 (GGGGACCACTTGTACAAGAAAGCTGGGTCTTACTTGTACAGCTCGTCCATG), creating
252 an overlap with the *TKTP* sequence (**Table S1**). The overlap PCR product was cloned by
253 Gateway BP reaction in the pDONR207 entry vector. A clone with correct sequence was
254 recombined via LR reaction into an expression vector (*PTA2_Act5_GW*) containing a Gateway
255 *attR1/attR2* cassette between the *PpActin5* promoter and nopaline synthase (*NOS*) terminator,
256 as well as homologous regions for integration at the *P. patens* *PTA2* locus (Kubo et al., 2013;
257 Mueller and Reski, 2015). For protoplast transformation, the expression vector was digested
258 with *BspQ1*, cutting at the ends of *PTA2* homologous regions, and co-transformed with a
259 second uncut plasmid containing the *hpt* resistance cassette (pJET1.2 *hpt*; cds of hygromycin
260 phosphotransferase under the control of *NOS* promoter and terminator). After four weeks of
261 selection on hygromycin (12.5 µg ml⁻¹) (Mueller et al., 2014), two transgenic lines expressing
262 plastid-targeted *roGFP2* in $\Delta grxc5\#54$ background (lines #17 (IMSC-Nr. 40957) and #21
263 (IMSC-Nr. 40958)) and one transgenic line in WT background (#20, IMSC-Nr. 40959) were
264 used for further analyses and are available from the IMSC.

265 Confocal laser scanning microscopy

266 Microscopy was carried out as described in Müller-Schüssele et al. (2020) using a LSM780
267 (attached to an Axio Observer.Z1) (Carl Zeiss, Oberkochen, Germany) with 25x (Plan-
268 Apochromat 25 \times /0.8 Imm Korr NA0.8) or 40x (C-Apochromat 40 \times /1.2W Korr NA1.2) objective.
269 *roGFP2* redox state was monitored by sequential excitation at 405 nm and 488 nm, detecting
270 emission from 508 to 535 nm. Autofluorescence was recorded using excitation at 405 nm and
271 emission detected from 430 to 470 nm. Chlorophyll autofluorescence was monitored after
272 488 nm excitation at an emission of 680 to 735 nm. Image intensities and 405/488 nm ratios
273 were calculated per pixel using a custom MATLAB (MathWorks, Natick, MA, USA)-based
274 software (Fricke, 2016). For experiments with dark/light/dark transitions, protonema and
275 gametophores of *TKTP-roGFP2*-expressing transgenic *P. patens* lines WT #20, $\Delta grxc5$ #17
276 and $\Delta grxc5$ #21 cultured in liquid medium were dark-adapted for at least 45 min. Subsequently,
277 *roGFP2* fluorescence was first imaged for 1 min in the dark (without pre-screening), then during
278 illumination from an external light source with c. 100 µmol photons m⁻²s⁻¹ from a 90° angle for
279 5 min (every 30 s), followed by a second period of continued imaging in the dark (Müller-
280 Schüssele et al., 2020).

281 ***In vivo* plate-reader based fluorometry**

282 Ratiometric time-course measurements for roGFP2 were conducted using a CLARIOstar®
283 Plus plate reader (BMG Labtech). During *in vivo* time series, roGFP2 signal was detected using
284 a sequential filter-based excitation of 400-10 nm and 482-16 nm, while emission was detected
285 at 530-40 nm. The degree of oxidation of roGFP2 (OxD) was calculated as described in Aller
286 et al. (2013). Protonema culture of *P. patens* expressing *TKTP-roGFP2* was dispersed and
287 transferred to fresh KNOP-ME pH 5.8 media one week prior to measurements. 200 µl of
288 protonema culture were pipetted with a wide cut pipette tip into wells of a 96-well plate.
289 Cultivation media was taken up after the moss settled to the bottom of the plate and substituted
290 by 200 µl of imaging buffer (10 mM MES, 5 mM KCl, 10 mM CaCl₂, 10 mM MgCl₂ pH 5.8)
291 (Wagner et al., 2019). To conduct an *in vivo* sensor calibration, the 200 µl imaging buffer were
292 removed with a 100 µl tip and substituted with the same volume of imaging buffer containing
293 either 10 mM H₂O₂ or 5 mM DPS (2,2'-dipyridyl disulfide) for complete oxidation, and 10 mM
294 dithiothreitol (DTT) for complete reduction.

295 For H₂O₂ recovery experiments, H₂O₂ in concentrations ranging from 1-10 mM were added
296 manually to the wells. After 30 min in the respective H₂O₂ in concentration, buffer was
297 exchanged to imaging buffer to follow roGFP2 re-reduction. For H₂O₂ oxidation rate
298 experiments the plate reader was used in “well mode” with a cycle time of 1.55 s. 200 µl of
299 one-week-old protonema culture expressing *TKTP-roGFP2* was transferred into a 96-well plate
300 and pre-reduced using 10 mM DTT in imaging buffer. DTT was removed and substituted with
301 160 µl imaging buffer. After 60 s H₂O₂ was automatically injected by the plate reader to a final
302 concentration of 2 mM.

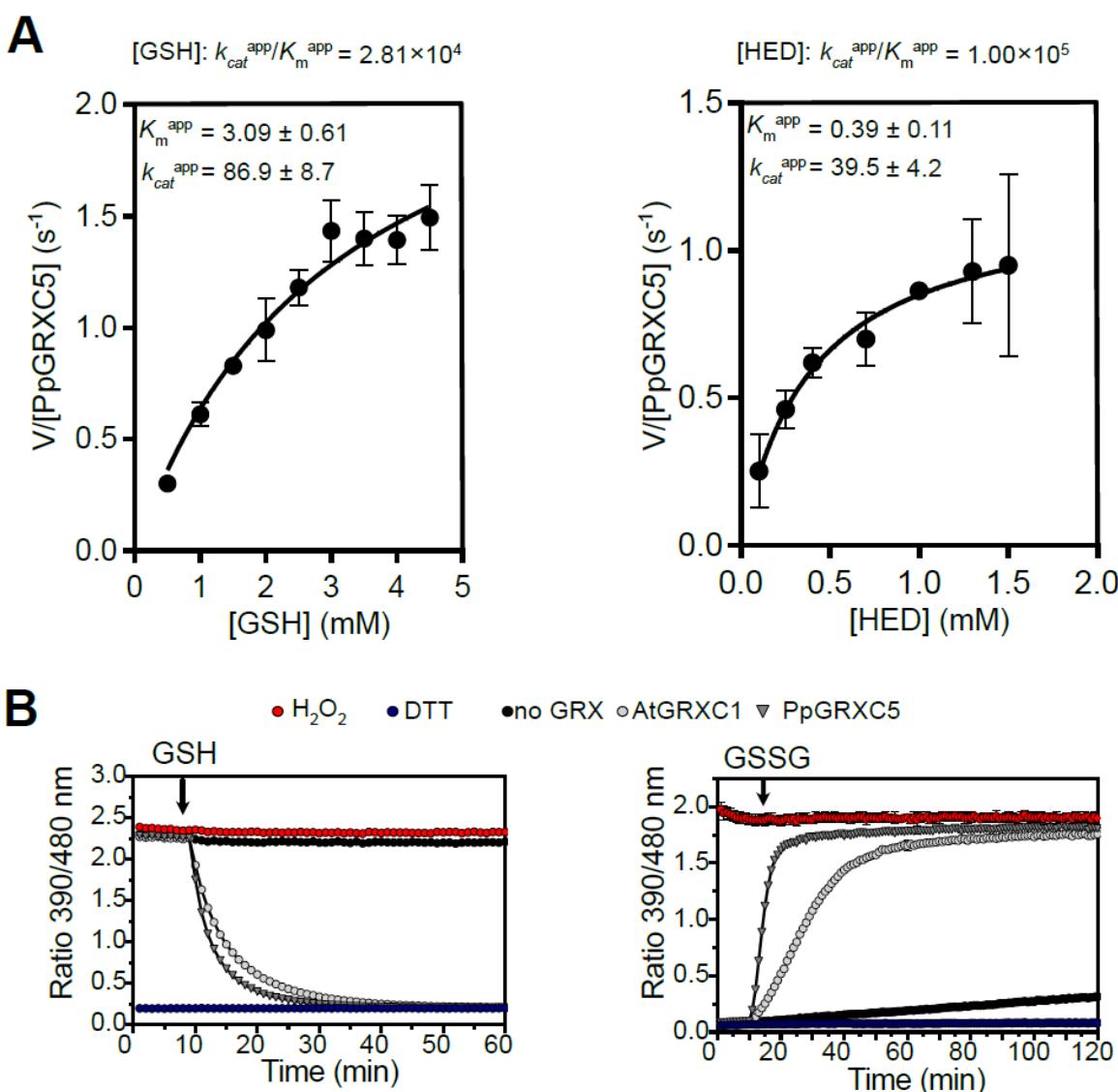
303 Excitation scans were performed on *P. patens* protonema tissue expressing *TKTP-roGFP2*:
304 100 µl of one-week-old liquid culture was transferred into a 96-well plate and either treated for
305 30 min with 10 mM DTT, 5 mM DPS or imaging buffer. Wells were excited at 390-490 nm using
306 a monochromator while emission was collected at 535-16 nm. Intensities of excitation spectra
307 were normalized to the intensity of the isosbestic point of roGFP2 at c. 425 nm.

308 **CO₂ exchange measurements**

309 CO₂ exchange measurements were performed with the GFS-3000 (Heinz Walz GmbH,
310 Effeltrich, Germany). For each measurement, WT, $\Delta grxc5$ #54, and $\Delta grxc5$ #249 protonema
311 cultures were cultivated in parallel to a similar density in liquid medium. Three days after sub-
312 culturing, 5 ml of each culture were applied onto a nylon membrane filter with a diameter of 35
313 mm, placed within a miniature petri dish (Ø 42 mm). Any excess liquid was removed using a
314 1000 µl pipette tip. CO₂ uptake was recorded for 7.5 min in light (75 µmol photons m⁻² s⁻¹),
315 followed by 7.5-minute in darkness. These measurements were performed consistently at a
316 humidity level of 98% and a temperature of 22 °C, with this cycle repeated three times per
317 biological replicate to ensure reliability. To establish a baseline measurement, a nylon

318 membrane filter wetted with KNOP-ME medium was used as a blank (zero point; ZP) before
319 each measurement. The recorded ZP value was subtracted from each measurement point
320 (MP). In **Fig. 6**, data from the last 2.5 min of the first dark cycle to the third dark cycle (dark-
321 light-dark transition) from five biological replicates from different weeks were plotted.

322 **SDS-PAGE and Western blotting**

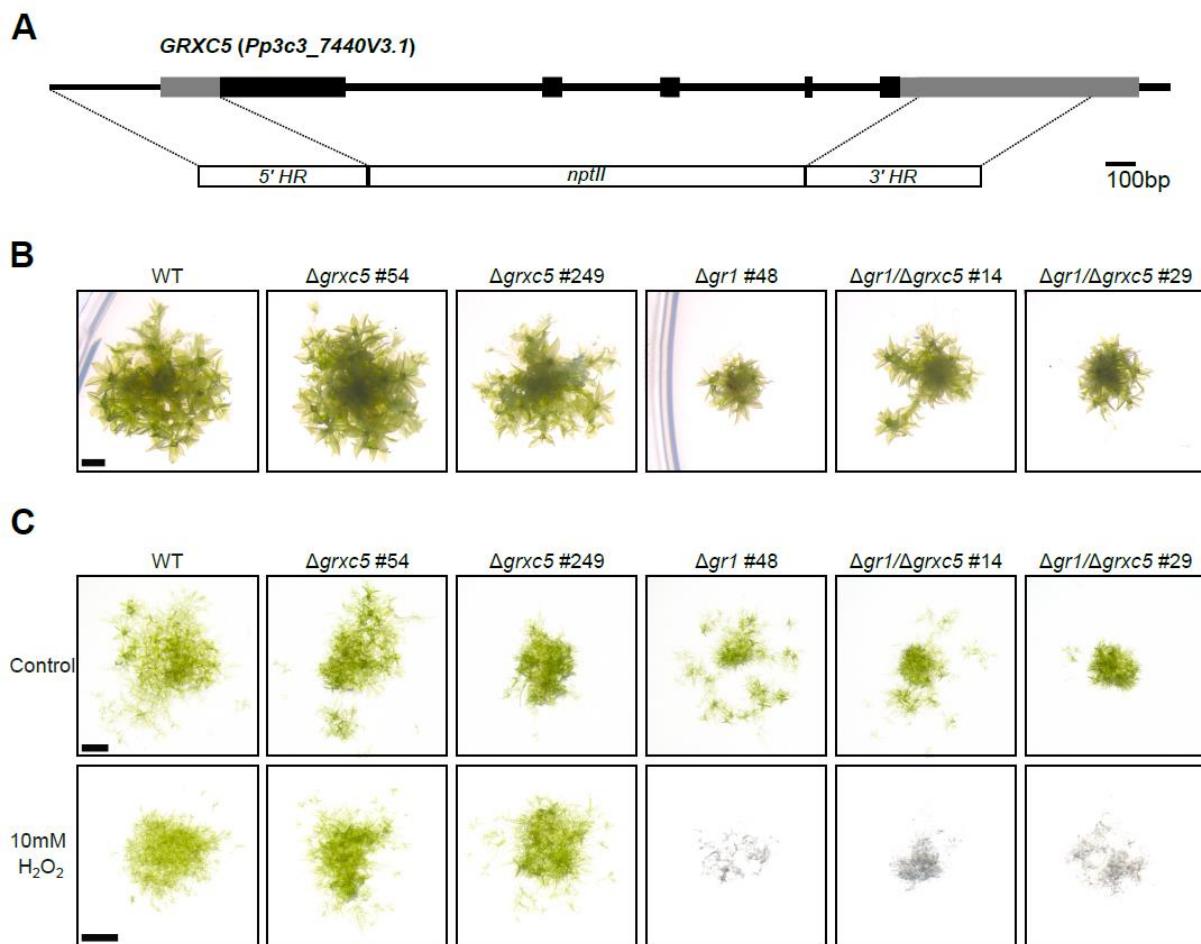

323 Protein extraction based on chloroform-methanol precipitation was performed according to
324 (Wessel and Flügge, 1984; Mueller et al., 2014) on frozen and pulverized plant material using
325 the TissueLyser II (Qiagen). 100 μ l lysis buffer (7.5 M urea, 2.5 M thiourea, 12.5% (v/v)
326 glycerol, 62.5 mM Tris-HCl pH 8, 0.1% (v/v) Sigma plant protease inhibitor cocktail (P9599))
327 was added per 10 mg pulverized plant material. Additionally, protein thiol groups were blocked
328 by a final concentration of freshly balanced 20 mM *N*-ethylmaleimide (NEM, Sigma 128-53-0)
329 directly added to the lysis buffer. Protein pellets were dissolved in 50-100 μ l protein
330 resuspension buffer (50 mM Tris-HCl, 8 M urea, pH 7.5-8). SDS-PAGE samples were prepared
331 by mixing the proteins sample with 1x non-reducing Laemmli buffer (2% (w/v) SDS, 50 mM
332 Tris-HCl pH 6.8, 0.002% (w/v) bromophenol blue, 10% (v/v) glycerol), and size-separated
333 using 10% Mini-PROTEAN® precast gels (Bio-Rad) (SDS-running buffer 25 mM Tris-HCl pH
334 8.3, 192 mM glycine, 0.1% (w/v) SDS) according to the manufacturer's instructions, using 5 μ l
335 PageRuler™ Prestained Protein Ladder (ThermoFisher) as marker. Equal loading was
336 confirmed by staining for >1 h in PageBlue™ protein staining solution (ThermoFisher).
337 Proteins were transferred to a PVDF membrane (Immobilon-P, Millipore Corporation, Billerica,
338 MA, USA) via semi-dry Western blotting. The membrane containing the proteins was blocked
339 in 5% (w/v) milk powder dissolved in TBS-T buffer (20 mM Tris-HCl pH 7.6, 137 mM NaCl, and
340 0.1% (v/v) Tween20) for 1 h at 25 °C or overnight at 4 °C before labelling with the primary
341 antibody (α -GSH, ThermoFisher, MA1-7620, 1:1000 in 2.5% (w/v) milk powder dissolved in
342 TBS-T). Membranes were washed three times with TBS-T for 5 min and incubated for 1 h in
343 the secondary antibody (Goat anti-Mouse, Agrisera, AS11 1772, 1:2500 in TBS). For
344 immunodetection the Agrisera ECL kit (Super Bright, AS16 ECL-SN) was used according to
345 the recommendations of the supplier. Western blots were imaged using the INTAS ECL
346 ChemoStar imaging system (Intas).

347 **Results**

348 **PpGRXC5 is a class I GRX with (de)glutathionylation activity**

349 First, we determined PpGRXC5 (de)glutathionylation activity and kinetic parameters *in vitro*,
350 by cloning and purifying PpGRXC5 (removing the N-terminal targeting sequence, starting with
351 Ala120). We characterized K_m^{app} and k_{cat}^{app} of PpGRXC5 using the hydroxyethyl disulfide
352 (HED)-assay. PpGRXC5 was able to very efficiently catalyse the GSH-dependent reduction of

353 HED (Begas et al., 2015) with catalytic efficiencies (k_{cat}^{app}/K_m^{app}) of $1.0 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ and $2.8 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$ when HED and GSH were used as variable substrate, respectively (Fig. 2A). These catalytic efficiency constants are in a comparable order of magnitude with class I GRX7 from *S. cerevisiae*, *Plasmodium falciparum* (Begas et al., 2017) and class I GRXs from the green lineage, such as *Chlamydomonas reinhardtii* GRX1 (Zaffagnini et al., 2008), poplar PtGRXS12 (Couturier et al., 2009; Zaffagnini et al., 2012a) and AtGRXC5 (Couturier et al., 2011).


360 **Figure 2: Catalytic activity of PpGRXC5 *in vitro***

361 (A) HED assays: PpGRXC5 [30 nM] was added to a cuvette containing GSH [0.5-4 mM], HED [0.3-1.5 mM], NADPH
362 [200 μ M], GR [6 μ g/ml] in 100 mM Tris-HCl, 1 mM EDTA, pH 7.9. The decrease in absorbance at 340 nm was
363 followed for 1 min (shown are means \pm SDs, $n = 4$). Varying concentration of GSH [0.5-4 mM] and a constant HED
364 concentration of 0.7 mM was used to determine GSH-dependent kinetics (left panel). Varying concentrations of
365 HED [0.3-1.5 mM] and a concentration of 1 mM GSH was used to determine HED-dependent kinetics (right panel).
366 Apparent K_m (K_m^{app}) is depicted in mM, apparent k_{cat} (k_{cat}^{app}) in s^{-1} and the rate constant (k_{cat}^{app}/K_m^{app}) in $\text{M}^{-1}\text{s}^{-1}$.
367 Non-linear regression was fitted using Prism 9 (GraphPad). (B) roGFP2 reduction assay (left panel): 1 μ M of
368 PpGRXC5 or 1 μ M AtGRXC1 were incubated with 1 μ M of oxidized roGFP2 in 100 mM KPE, pH 7.4. Arrow indicates
369 the time point of addition of 2 mM GSH; $n = 3 \pm$ SDs. roGFP2 oxidation assay (right panel): 1 μ M of PpGRXC5 or
370 1 μ M AtGRXC1 were incubated with 1 μ M of pre-reduced roGFP2. Arrows indicate the time point of addition of 40
371 μ M GSSG. As oxidation and reduction controls (calibration), 1 μ M of roGFP2 was treated with 10 mM of DTT or 10
372 mM H₂O₂; $n = 3 \pm$ SDs.

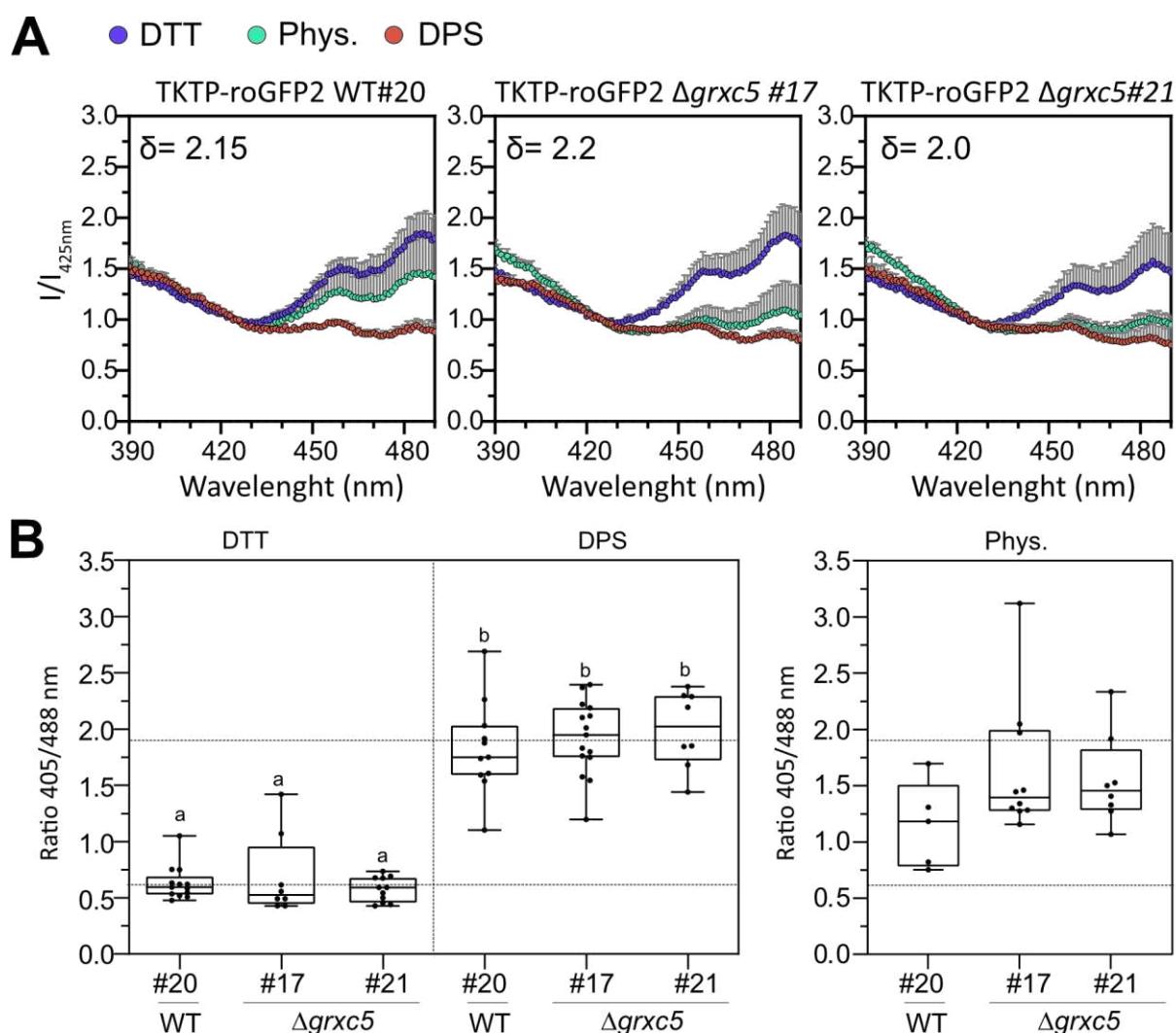
373 As class I GRXs show oxidoreductase activity on disulfides that are formed and released via
374 a S-glutathionylation intermediate (Lillig et al., 2008; Deponte, 2022), redox-sensitive GFP2 is
375 a suitable target protein for *in vitro* assays, providing a direct fluorescent read-out for disulfide
376 redox state (Meyer et al., 2007; Gutscher et al., 2008; Schwarzländer et al., 2008; Meyer and
377 Dick, 2010). Hence, we tested PpGRXC5 oxidizing and reducing activity on recombinant
378 roGFP2, in a direct comparison with the previously characterized AtGRXC1 (Trnka et al., 2020)
379 (**Fig. 2B**). In the *in vitro* roGFP2 reduction and oxidation assays PpGRXC5 was able to reduce
380 and oxidise roGFP2 kinetically faster than AtGRXC1, confirming high activity in the reductive
381 half-reaction and additionally showing high activity in the oxidative half-reaction of thiol-
382 disulfide oxidoreductase function. Thus, PpGRXC5 is a typical class I GRX that shows efficient
383 (de)glutathionylation as well as thiol-disulfide oxidoreductase activities.

384 **The single stromal class I GRX PpGRXC5 is dispensable and not a main cause for the**
385 **dwarfism in $\Delta gr1$ mutants**

386 To generate null mutants of PpGRXC5 in *P. patens* we used homologous recombination (**Fig.**
387 **3A**). We confirmed several independent transgenic lines of which we used the null mutants
388 $\Delta grxc5\#54$ and $\Delta grxc5\#249$ (**Fig. S1**) for further experimentation. Growth under standard
389 conditions was comparable to the wild-type (**Fig. 3B**), which is in contrast to the previously
390 characterised dwarfed *P. patens* glutathione reductase knockout lines ($\Delta gr1$) that exhibit a less
391 reducing stromal steady-state E_{GSH} (Müller-Schüssele et al., 2020). As PpGRXC5 can
392 contribute to plastid GSSG generation or mediate S-glutathionylation (**Fig. 1**), we additionally
393 tested whether the defects observed in $\Delta gr1$ were dependent on GRXC5 activity. To this end,
394 we generated $\Delta gr1/\Delta grxc5$ double knock-outs by transforming the PpGR1 knock-out construct
395 (Müller-Schüssele et al., 2020) into protoplasts of $\Delta grxc5\#54$ and confirmed the correct
396 integration and absence of transcript for *GR1* (**Fig. S1**). Lack of GRXC5 did not rescue the
397 $\Delta gr1$ phenotype, as $\Delta gr1/\Delta grxc5$ mutant lines were dwarfed (**Fig. 3B**). Quantification of growth
398 revealed a trend for increased fresh weight of $\Delta gr1/\Delta grxc5$ compared to $\Delta gr1$, that was not
399 statistically significant (**Fig. S2**). In addition, $\Delta gr1/\Delta grxc5$ showed the same sensitivity to
400 oxidative stress as $\Delta gr1$ (H_2O_2 treatment, **Fig. 3C**). Thus, neither GSSG generation by
401 PpGRXC5 nor an involvement in a putative toxic S-glutathionylation is contributing to the major
402 defects observed in $\Delta gr1$ lines.

403 **Figure 3: Phenotype of $\Delta grxc5$, $\Delta gr1$ and $\Delta gr1/\Delta grxc5$ plants**

404 **(A)** Schematic overview of the *PpGRXC5* gene structure and knock-out construct; exons = boxes; UTRs
405 (untranslated regions) light grey, coding sequence black; HR, homologous regions; *nptII*, neomycin
406 phosphotransferase resistance cassette. **(B)** *P. patens* grown on KNOP-ME pH 5.8 agar plates in 100 μ mol photons
407 $m^{-2}s^{-1}$ (16 h light, 8 h dark) for four weeks, scale bar = 1mm. Row represent colonies grown on the same plate. **(C)**
408 Protonema culture spotting assay on KNOP-ME plates after incubating with 10 mM of H_2O_2 for 15 minutes as
409 oxidative challenge. A 20 μ l aliquot of protonema culture was placed on a KNOP-ME agar plate and grown under
410 60 μ mol photons $m^{-2}s^{-1}$ (16 hours light, 8 hours dark) for 7 days. Control cultures were treated equally except for
411 addition of H_2O_2 . Images were taken after 7 days of recovery. Scale bar: 1 mm.
412
413

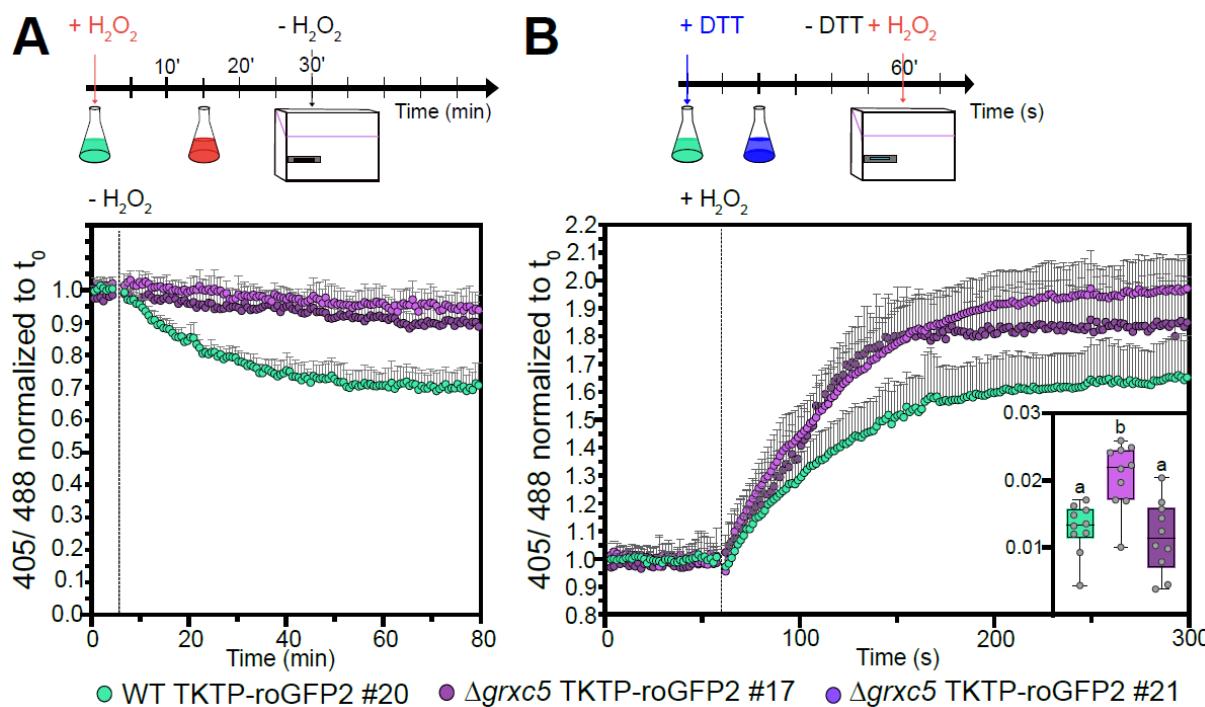

414 To further test for altered stress resilience or growth defects in $\Delta grxc5$ lines, we exposed plants
415 to low light, fluctuating low light/high light and heat, but did not identify any morphological
416 differences to WT (**Fig. S3**). To test for differences in photosynthetic light reactions, we
417 determined light-induction and relaxation kinetics, calculating non-photochemical quenching
418 (NPQ) under control conditions and after exposure to high light (450 μ mol photons $m^{-2}s^{-1}$).
419 $\Delta gr1$ plants showed increased non-photochemical quenching (NPQ) combined with retarded
420 relaxation kinetics consistent with a previous report (Müller-Schüssele et al., 2020), while
421 $\Delta grxc5$ lines did not show any significantly different response in NPQ induction or relaxation
422 (**Fig. S4**). Our results confirm that neither the growth defect nor the sensitivity to high light of
423 $\Delta gr1$ plants is detectable in $\Delta grxc5$ plants, indicating that the negative effects of the less

424 negative E_{GSH} in $\Delta gr1$ plants are not mediated via GRXC5. Instead, $\Delta grxc5$ plants showed WT-
425 like growth in all long-term stress assays.

426 **Lack of class I GRX leads to distinct roGFP2 oxidation state and changed reduction**
427 **kinetics after oxidative challenge in the stroma**

428 As we did not identify phenotypical deviations of $\Delta grxc5$ lines from WT macroscopically, we
429 sought to investigate stromal redox dynamics *in vivo* by introducing a genetically encoded
430 biosensor. Redox-sensitive GFP2 (roGFP2) specifically equilibrates with the steady-state E_{GSH}
431 of the local subcellular compartment (Meyer et al., 2007; Schwarzländer et al., 2008). As this
432 equilibration is catalysed by class I GRX, human GRX1 (hGrx1) fused to roGFP2 (Grx1-
433 roGFP2) is the standard probe used, to guarantee independence from local endogenous GRX
434 activities (Gutscher et al., 2008). Since it was our aim to measure the endogenous GRX activity
435 we exploited the requirement of GRX-mediated equilibration and targeted roGFP2 without
436 fused hGRX1 to the plastid stroma of WT and $\Delta grxc5\#54$ genetic backgrounds. We generated
437 a construct for expression of roGFP2 fused to the transketolase targeting peptide (TKTP)
438 (Schwarzländer et al., 2008; Speiser et al., 2018)), constitutively driven by the *PpActin5*
439 promoter, targeting roGFP2 to the plastid stroma. Exclusive targeting of roGFP2 to plastids in
440 stable transgenic lines was confirmed microscopically (**Fig. S5**) and sensor lines for each
441 background were characterised and selected for further analyses (*TKTP-roGFP2* in $\Delta grxc5\#54$
442 lines #17 and #21; *TKTP-roGFP2* in WT #20).

443 Sensor responsiveness to oxidation/reduction *in vivo* was confirmed via addition of either
444 10 mM DTT (reductant) or 5 mM DPS (2,2'-dipyridyl disulfide, thiol-specific oxidant) to moss
445 protonema. Using a fluorescence plate-reader, excitation spectra for roGFP2 fluorescence
446 were recorded (**Fig. 4A**), revealing a comparable dynamic range (between 2.0 and 2.2
447 (405/488)) of the sensor response in WT and $\Delta grxc5$ background. In comparison to *TKTP-*
448 *roGFP2* WT#20, the physiological (untreated, Phys.) spectra of $\Delta grxc5$ sensor lines revealed
449 lower excitation above the isosbestic point (c. 425 nm) and higher excitation below 425 nm,
450 showing increased oxidation of roGFP2 of c. 20% (calculated for 405/488 nm). We additionally
451 quantified this oxidation by ratiometric analysis of confocal images of the respective lines and
452 found an increase in median 405/488 ratio of 1.64 ± 0.59 in $\Delta grxc5\#17$, 1.54 ± 0.40 in
453 $\Delta grxc5\#21$ compared to 1.15 ± 0.38 in WT#20 (**Fig. 4B**). Taking into account sensor calibration
454 (*i.e.*, ratio values for complete reduction and oxidation *in vivo*), these values support a by c.
455 20% higher degree of oxidation (OxD) on stromal roGFP2, compared to WT, in untreated cells.

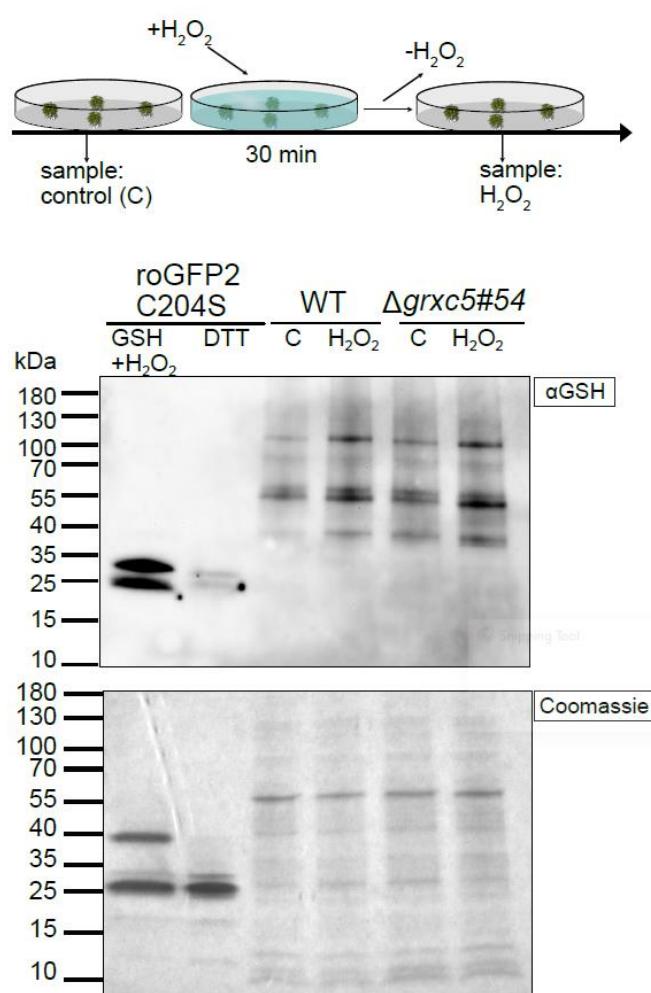


457 **Figure 4: Redox state of stroma-targeted roGFP2 in WT and $\Delta grxc5$**

458 **(A)** *In vivo* excitation spectra: protonema cultures of *P. patens* were not treated (Phys.) or treated for 30 min with
459 10 mM DTT or 5 mM DPS. Fluorescence was excited from 390 to 490 nm while emission was collected at 535-561
460 nm in a plate-reader based setup. Intensities were normalized to the intensity of the isosbestic point of roGFP2 (425
461 nm); n=3, mean + SD. Delta depicts the dynamic range (405/488 nm) for each line. **(B)** Left panel: Image-based
462 sensor calibration of TKTP-roGFP2 in *P. patens* with 10 mM DTT or 5 mM DPS incubated for at least 20 min before
463 imaging with the CLSM (ex. 405, 488 nm; em. 508-535 nm); n>7, box blots: line=median and whiskers=min/max
464 values; two-way ANOVA and Tukey's multiple comparison test was conducted (p<0.0001), different lowercase
465 letters indicate significant difference, dynamic range c. 3.2. Right panel: image-based analysis of steady state
466 sensor ratio (405/488 nm) under physiological conditions: *P. patens* protonema/gametophore culture was pre-
467 incubated in the dark for 30 min before imaging with the CLSM (ex. 405, 488 nm; em. 508-535 nm); n=5-10 pictures,
468 box blots: line=median and whiskers=min/max values, one-way ANOVA and Tukey's HSD test (ratio~genetic
469 background, p=0.08); horizontal lines: 0% and 100% oxidation based on mean DTT and mean DPS values,
470 according to sensor calibration, see left panel.

471 As higher OxD values for roGFP2 are interpreted as a less negative stromal E_{GSH} , at least in
472 the presence of GRX activity, we additionally quantified total GSH levels by HPLC from five
473 biological replicate samples of protonema and found a trend for an increase in total glutathione
474 in $\Delta grxc5$ #54 (p=0.15) and a significant increase in total glutathione in $\Delta grxc5$ #249 (p=0.0006),
475 compared to WT (one-way ANOVA, Tukey's multiple comparison) (Fig. S6). These analyses
476 suggest that loss of PpGRXC5 causes a higher steady state OxD of roGFP2 in the stroma, as
477 well as a trend to increased GSH levels.

478 As long-time exposure to various stresses did not reveal any defects in $\Delta grxc5$ lines, we
 479 simulated a pulse of oxidative stress to generate a temporary oxidation and compared the
 480 subsequent recovery. We exposed moss protonema to 10 mM H_2O_2 , which causes complete
 481 oxidation of roGFP2. After removal of H_2O_2 , we monitored the recovery kinetics of roGFP2
 482 reduction state. While the WT background showed a fast recovery almost immediately after
 483 removal of H_2O_2 , $\Delta grxc5$ null mutants showed slower, approximately linear recovery of roGFP2
 484 redox state (Fig. 5A). Using lower H_2O_2 concentrations in a 1-5 mM range, fast recovery was
 485 already observable during the presence of exogenously added oxidant in the WT background
 486 while $\Delta grxc5$ null mutants consistently showed slower, approximately linear recovery from
 487 oxidative stress (Fig. S7). To additionally monitor oxidation kinetics of the roGFP2 disulfide,
 488 we pre-reduced moss protonema and subsequently used injection of H_2O_2 combined with 1.5 s
 489 measuring intervals. We found that oxidation of roGFP2 in $\Delta grxc5$ stroma proceeded equally
 490 fast or slightly faster (Fig. 5B). Thus, disulfide formation in response to severe oxidative stress
 491 is fast in $\Delta grxc5$ null mutants while stromal GSH-dependent disulfide reduction is slow and
 492 almost linear.


493

494 **Figure 5: In vivo kinetics of stromal roGFP2 in response to oxidative challenge**

495 (A) Protonema culture expressing TKTP-roGFP2 was treated with 10 mM H_2O_2 for 30 min and H_2O_2 subsequently
 496 removed and exchanged with imaging buffer to monitor recovery from oxidative challenge. 405/488 nm ratio of n=6
 497 biological replicates was normalized to t_0 , graph depicts mean+SD. A two-way ANOVA with Tukey's multiple
 498 comparison test was conducted for each time point revealing significant differences in roGFP2 kinetics between
 499 WT and both $\Delta grxc5$ #17 and $\Delta grxc5$ #21 starting from 11 min after peroxide removal (p< 0.001, n=6). (B) In vivo
 500 oxidation rates after injection of H_2O_2 (final concentration = 2 mM) and monitoring of oxidation rate every 1.55 s.
 501 Protonema samples were pre-reduced using 10 mM DTT. Shown are the mean + SD, n=10. Slope (inset, $\Delta R/\Delta t$)
 502 was calculated for the first 10 s after injection (eight data points). Box plot whiskers depict min and max values with
 503 the horizontal line indicating the median. One-way ANOVA with Tukey's multiple comparison test was conducted
 504 to test for significant difference (p<0.027).

505 **Linking S-glutathionylation levels to oxidative challenge and GRX activities**

506 Using roGFP2 enabled us to observe disulfide formation and reduction kinetics in the absence
507 of a class I GRX under different environmental conditions. However, disulfides would only be
508 formed in response to *S*-glutathionylation if a second cysteine is present in a suitable distance
509 to reduce the mixed disulfide, forming an intramolecular disulfide and concomitant release of
510 GSH (**Fig. 1**). While this is the case for roGFP2, many *in vivo* targets of class I GRXs may
511 remain in a *S*-glutathionylated state (Zaffagnini et al., 2012b; Müller-Schüssele et al., 2021a).
512 Hence, we investigated if total protein *S*-glutathionylation levels are altered in $\Delta grxc5$ null
513 mutants, using Western blotting with an anti-GSH antibody (**Fig. 6**). As a control, we incubated
514 *in vitro* purified roGFP2 mutant lacking the resolving Cys204 (roGFP2C204S) (Trnka et al.,
515 2020) with 10 mM H₂O₂ in the presence of 2 mM GSH, inducing *S*-glutathionylation. Protein
516 extracts from non-stressed and stressed WT and $\Delta grxc5$ plants both showed equally increased
517 signal after immunodetection of protein-bound GSH, starting from a similar level. Increase of
518 protein-bound GSH was consistent and independent of presence of GRXC5 after oxidative
519 challenge (**Fig. S8**).

520


521 **Figure 6 Total protein-bound glutathione after oxidative challenge**

522 (A) Schematic overview of the experimental set-up and sampling. (B) Immunoblot using α -GSH (ThermoFisher).
523 Total protein extracts from *P. patens* WT and $\Delta grxc5$ #54 gametophore tissue either non-treated ('C') or treated with
524 10 mM H_2O_2 for 30 min (' H_2O_2 ') (see panel A); cysteine oxidation was blocked with 20 mM NEM (*N*-ethyl maleimide)
525 in the lysis buffer. As loading control, 10 μ g total protein was loaded onto a 4-20% gradient non-reducing SDS-
526 PAGE lower panel). As control for antibody specificity, purified roGFP2C204S (10 μ M) was treated with 10 mM
527 H_2O_2 in the presence of 2 mM of GSH for 30 min (positive control, glutathionylated roGFP2C204S) or treated with
528 10 mM DTT (negative control, no glutathionylated roGFP2C204S), and 12 μ l loaded per lane.

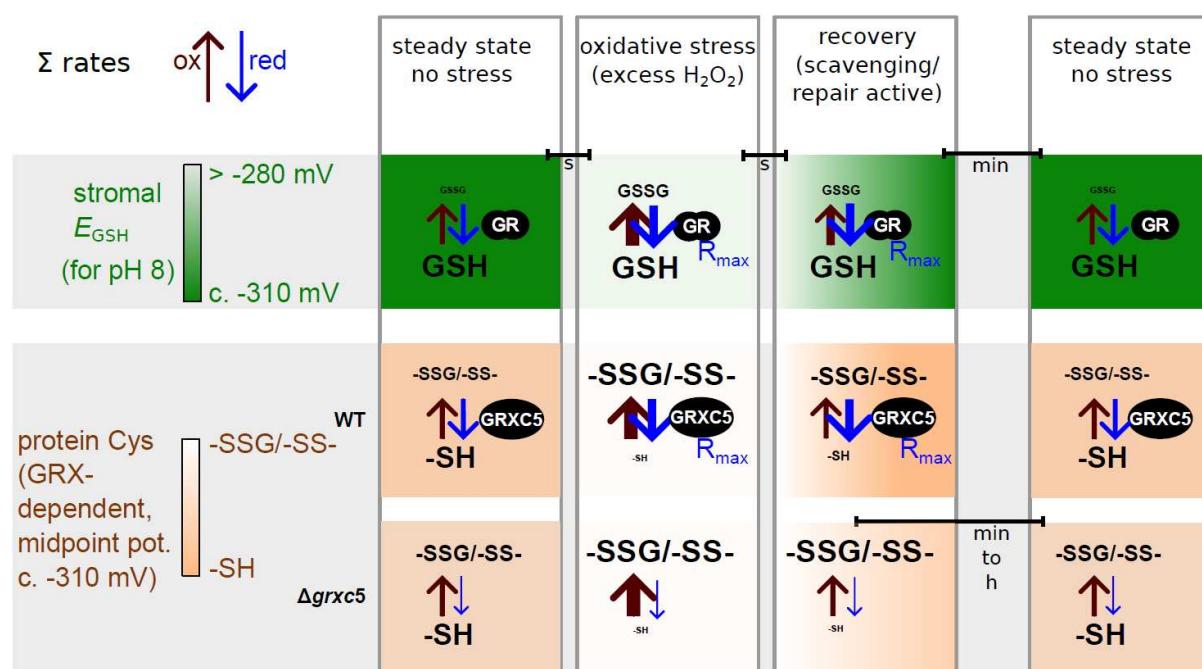
529 **Stromal GSH-dependent redox kinetics are altered in dark/light/dark transitions, without
530 an effect on carbon fixation**

531 As stromal Grx1-roGFP2 showed a previously unknown light/dark transition-dependent E_{GSH}
532 dynamics in WT (Müller-Schüssele et al., 2020), we next assessed stromal roGFP2 redox
533 dynamics in $\Delta grxc5$ null mutants using both a plate-reader based setup (**Fig. 7A**) and a
534 confocal microscopy-based setup (Müller-Schüssele et al., 2020) (**Fig. 7B**). We found that
535 light/dark transition-dependent dynamics of stromal roGFP2 oxidation state were also
536 observable using roGFP2 without fused Grx1 in WT background: a sudden light to dark
537 transition leads to rapid sensor oxidation, followed by a recovery phase. In contrast, light/dark
538 dependent roGFP2 redox changes were completely absent in $\Delta grxc5$ null mutants.
539 Responsiveness of the roGFP2 probe was confirmed after light/dark treatment by calibration
540 (**Fig. 7A**), demonstrating that roGFP2 redox state in $\Delta grxc5$ was well inside dynamic range of
541 roGFP2. As a complementary approach, we used a CLSM-based setup where we were also
542 able to follow roGFP2 redox state in the light and confirmed absence of dark/light/dark
543 transition-dependent roGFP2 redox dynamics in $\Delta grxc5$ (**Fig. 7B**).

544 As our results suggest potential differences in glutathione-dependent redox dynamics in the
545 chloroplast stroma, we assessed cross-talk to the TRX system by quantifying CO_2 release and
546 assimilation from protonema in a dark/light/dark transition (**Fig. 7C**). Our analysis did not find
547 any significant differences in either CO_2 release in the dark, nor in CO_2 uptake in the light,
548 suggesting overall unaltered redox-regulation of the CBB cycle enzymes in $\Delta grxc5$ lines,
549 compared to WT. Thus, fast responses of the roGFP2 redox state to light/dark dependent E_{GSH}
550 dynamics are absent in $\Delta grxc5$ plants, while regulation of carbon fixation was unaltered under
551 the tested conditions.

552
 553 **Figure 7: Light-dependent roGFP2 dynamics and CO₂ assimilation during dark-light-dark**
 554 **transitions in protonema culture of $\Delta grxc5$ and WT**

555 (A) Reduction/oxidation dynamics in dark/light/dark transitions. In a 96-well plate with 200 μ l of protonema culture
 556 from *P. patens*, initial fluorescence was measured after 30 min dark incubation using a plate reader-based setup.
 557 Subsequently, the plate was illuminated for 30 minutes to an intensity of ~ 200 μ mol photons $m^{-2}s^{-1}$ using external
 558 LED illumination. After dark/light/dark transition, each well was calibrated by first replacing the buffer with 10 mM
 559 DTT and then 10 mM H₂O₂. OxD = degree of oxidation, shown are the mean (+SD) of n=3. (B) Image-based analysis
 560 of oxidation/reduction dynamics of TKTP-roGFP2 in *P. patens* gametophores and protonema tissue grown in liquid
 561 culture. CLSM time series of dark-adapted samples: 1 min in the dark, illumination by external light source for 5 min
 562 (100 μ mol photons $m^{-2}s^{-1}$), followed by dark incubation. Images were taken every 30 seconds for 20 minutes; shown
 563 is the mean + SD of n=7-8. (C) Left panel: changes in CO₂ partial pressure during dark/light/dark transitions in
 564 protonema culture of $\Delta grxc5$ lines and WT using a 7.5 min light and 7.5 min dark cycle (98% humidity, 500 ppm
 565 CO₂, 22 °C, and 75 μ mol photons $m^{-2}s^{-1}$). The absolute changes in CO₂ levels were measured after zero-point (ZP)
 566 subtraction (nylon membrane filter wetted with KNOP-ME as ZP). Right panel: Changes in CO₂ partial pressure
 567 after reaching plateau phases during the light and dark phases, respectively (indicated by arrows in left panel). One-
 568 way ANOVA and Tukey's multiple comparison to assess significant differences between $\Delta grxc5$ lines and WT at
 569 the end of the light cycle (1350s) and the end of the dark cycle (1800s): p=0.99. Boxes display the 25-75 percentiles,
 570 with the minimum and maximum values indicated by the whiskers, and the median marked by the horizontal line
 571 (n=5).


572 Discussion

573 Glutathione as an electron donor in the plastid stroma

574 Thiol redox states depend on their reaction kinetics with different small molecules or protein
575 reductants and oxidants, including thiols in a suitable distance for disulfide formation. Different
576 thiol/oxidised thiol redox couples can be in thermodynamic equilibrium after incubation in the
577 range of minutes to hours, whereas enzymatically catalysed equilibration takes place in the
578 range of seconds to minutes. GRX-catalysed redox equilibration depends on GSH as electron
579 donor. We determined the enzyme kinetics of PpGRXC5 (YCPYC active site) *in vitro* and found
580 high deglutathionylation activity (HED assays) as well as thiol-disulfide oxidoreductase activity
581 (roGFP2 *in vitro* assays). The apparent second-order rate constant(s) ($k_{\text{cat}}^{\text{app}}/K_m^{\text{app}}$) for
582 PpGRXC5-catalyzed reactions (HED assay) was similar to AtGRXC1 (YCGYC active site)
583 (Riondet et al., 2012) or AtGRXC5 (WCSYC active site) (Couturier et al., 2011), showing that
584 GRXC5 is an evolutionary conserved redoxin (Müller-Schüssele et al., 2021a) with a typical
585 class I GRX functionality as GSH-dependent (de)glutathionylation and thiol/disulfide
586 oxidoreductase activity.

587 Disulfides can be characterized by their midpoint potential, *i.e.*, the redox potential at which
588 50% of the molecules are reduced and 50% oxidized. The disulfide formed by the genetically
589 encoded biosensor roGFP2 is well-characterised, with a consensus midpoint potential of -
590 280 mV (pH 7), and enzymatically catalysed by GRX in dependence on E_{GSH} ((Dooley et al.,
591 2004; Meyer et al., 2007; Gutscher et al., 2008; reviewed in Meyer and Dick (2010);
592 Schwarzländer et al. (2016); Müller-Schüssele et al. (2021b)). We targeted this redox sensor
593 protein to the plastid stroma, without the fusion to a GRX, to track local GSH-coupled redox
594 dynamics in the model moss *P. patens*. In the stroma of WT plants, roGFP2 redox state
595 indicated a steady-state stromal E_{GSH} of c. -312 mV (pH 8), consistent with the -311 mV (pH 8)
596 measured using Grx1-roGFP2 in WT background of *P. patens* plastid stroma (Müller-
597 Schüssele et al., 2020). A similar physiological steady-state stromal E_{GSH} in the dark-adapted
598 state of WT using either roGFP2 or Grx1-roGFP2 confirms similar functionality of roGFP2 in
599 WT stroma, without fused hGrx1. Compared to WT, we detected an increased 405/488 nm
600 ratio and corresponding increased roGFP2 degree of oxidation (OxD) of c. 20% in the stroma
601 of $\Delta grxc5$ lines. In addition, we found a trend for increased total GSH content, which would
602 according to the Nernst equation suggest more negative E_{GSH} , although HPLC measurements
603 do not allow for subcellular resolution. A shift of roGFP2 thiol/disulfide redox state to more
604 oxidized values usually reveals an oxidative shift in E_{GSH} , as roGFP2 specificity for the
605 glutathione/GRX system was tested *in vitro* and *in vivo* (Meyer et al., 2007; Begas et al., 2017;
606 Trnka et al., 2020; Schlößer et al., 2023). Thus, inefficient reduction of GSSG caused by
607 absence of glutathione reductase (GR) leads to an increase of OxD_{roGFP2} in the same
608 subcellular compartment (Marty et al., 2009; Marty et al., 2019; Müller-Schüssele et al., 2020).

609 In $\Delta gr1$ lines, a shift of c. 44% in OxD_{roGFP2} was measured using stroma-targeted Grx1-roGFP2
 610 which reports an oxidative stromal E_{GSH} shift of c. 33 mV (Müller-Schüssele et al., 2020). In
 611 theory, the measured shift in roGFP2 redox status in the $\Delta grxc5$ lines may either indicate
 612 altered E_{GSH} , i.e., local decrease in GSH and/or local increased GSSG concentration, or
 613 inefficient equilibration between E_{GSH} and roGFP2 (or a combination of both). The following
 614 argument supports an oxidative shift in OxD_{roGFP2} in the $\Delta grxc5$ stroma independent of a
 615 change in local E_{GSH} : (1) GR is still present in the stroma of $\Delta grxc5$, safeguarding the highly
 616 reducing stromal E_{GSH} . (2) *In vivo* stromal roGFP2 reduction rates after oxidative challenge
 617 (**Fig. 5A**) are similar (i.e. in the range of minutes to hours) to thermodynamically driven *in vitro*
 618 reduction rates based on highly negative E_{GSH} , but lacking addition of GRX (**Fig. 2B**, (Meyer
 619 et al., 2007)). Thus, without class I GRX present, a shifted OxD_{roGFP2} likely originates from a
 620 decreased glutathione-dependent reduction rate of the roGFP2 disulfide, never reaching
 621 thermodynamic equilibrium with E_{GSH} . Instead the interaction with other redox couples
 622 becomes apparent in the form of the oxidation (i.e. unchanged oxidation rates), resulting in an
 623 OxD_{roGFP2} steady state further away from thermodynamic equilibrium with glutathione as
 624 electron donor (schematic model **Fig. 8**). After oxidative challenge, lacking GRXC5 activity
 625 leads to slow recovery rates from higher thiol oxidation levels (**Fig. 8**). Thus, $\Delta grxc5$ and $\Delta gr1$
 626 mutants both show altered OxD_{roGFP2} *in vivo*, but through different mechanisms, i.e., lacking
 627 reduction of GSSG vs. kinetic uncoupling between E_{GSH} and disulfide redox state. Our data
 628 show that fast enzymatically catalysed equilibration of roGFP2 redox state with the highly
 629 reduced glutathione pool is not complemented by other redox systems present in the stroma
 630 and confirm PpGRXC5 as the sole stroma-targeted class I GRX in *P. patens*.

631

632 **Fig. 8: Schematic overview: Model of observed dynamic redox states as a consequence**
633 **of changing oxidation and reduction rates**

634 Simplified scheme of steady states of the GSH/GSSG redox couple and resulting E_{GSH} , as well as the protein
635 thiol/disulfide and thiol/glutathionylated redox couples before, during and after an oxidative challenge, as
636 investigated in this work using roGFP2. Redox potentials are given for pH 8 (midpoint potential of roGFP2 at pH 8
637 is -310 mV). Colour scales exemplify relative changes between reduced and oxidised forms. Bars indicate
638 approximate durations of transitions. Arrow thickness indicates sum of oxidation rates (i.e. all direct oxidation (slow)
639 and enzymatically catalysed oxidation (fast)) and sum of reduction rates that would result in the observed profile of
640 redox dynamics. Lack of GRXC5 leads to more oxidised steady state for target cysteines, as well as slow recovery
641 rates. Enzymes are depicted as black ovals. R_{max} = maximal reachable reduction rate with current enzyme copy
642 number.

643 Moreover, by generating $\Delta grxc5/\Delta gr1$ double mutant lines, we found that GRXC5 function is
644 not a main cause for the stress-sensitive and dwarfed $\Delta gr1$ phenotype. This excludes GRXC5
645 as main GSSG-producing enzyme in the stroma, as well as putatively toxic GRX-dependent
646 S-glutathionylations occurring in response to an oxidatively shifted E_{GSH} . Glutathione can serve
647 as electron donor for additional stromal enzymes involved in ROS-induced damage repair,
648 signalling or ROS scavenging, such as plastidial MSRB1 (1 Cys methionine sulfoxide
649 reductase B1) (Laugier et al., 2009), PRXIIIE (Gama et al., 2008), GST iota/lambda (GSH S-
650 transferase) and DHAR (dehydroascorbate reductase) (reviewed in (Müller-Schüssele et al.,
651 2021a). These processes represent additional candidates for stroma-localised GSSG
652 generation (see GSH oxidation rates in **Fig. 8**), and merit further investigation identifying their
653 specific contributions to stress tolerance.

654 **Is class I GRX function relevant in the chloroplast stroma?**

655 TRX and GRX functions are partially redundant in *E. coli*, mostly related to their function as
656 alternative electron donors to ribonucleotide reductase, powering cell growth (Fernandes and
657 Holmgren, 2004). In the cytosol of *S. cerevisiae*, $\Delta grx1/\Delta grx2$ null mutants grow normally but
658 show increased sensitivity to oxidative challenge (Luikenhuis et al., 1998; Eckers et al., 2009).
659 Lethality only occurred when concomitantly knocking-out all cytosolic TRX isoforms (Draculic
660 et al., 2000). GRXs can operate through a monothiol mechanism or a dithiol mechanism in
661 which only the N-terminal active site cysteine or both active site cysteines participate in the
662 redox process, respectively (Lillig and Berndt, 2013). One cytosolic monothiol GRX was able
663 and sufficient to compensate for loss of all TRX and GRX (Zimmermann et al., 2020). Partial
664 redundancy between the GSH/GRX and TRX redox systems was also demonstrated in plants,
665 regarding the cytosol and mitochondrial matrix (Marty et al., 2009), but not for the plastid
666 stroma (Marty et al., 2019). Regarding mutants lacking all class I GRX of one compartment,
667 double null mutants of *A. thaliana* lacking cytosolic GRXC1 and GRXC2 were originally
668 described to be lethal (Riondet et al., 2012) but have recently been reported to be viable and
669 with a WT-like phenotype (Schlößer et al., 2023). In the secretory pathway, which lacks a GR
670 and thus possesses a less reducing E_{GSH} , double mutants of GRXC3/GRXC4 grow normally
671 (Schlößer et al., 2023) but showed decreased hypocotyl length compared to WT when grown
672 in elevated temperature (Dard et al., 2022). Regarding plastid-targeted class I GRX, no null

673 mutants were described yet. PpGRXC5 has a CPYC active site and could operate via the
674 monothiol or the dithiol mechanism (Deponte, 2017; Zimmermann et al., 2020). During land
675 plant evolution, a second isoform of plastid-targeted class I GRX lacking the second active site
676 Cys, GRXS12, evolved within the same clade (Müller-Schüssele et al., 2021a). Poplar
677 GRXS12 was characterized as functional monothiol class I GRX (Couturier et al., 2009;
678 Zaffagnini et al., 2012a), but the biological relevance of either class I GRX plastid isoform
679 remains so far unclear.

680 While E_{GSH} is usually robust, except under extreme abiotic stress conditions challenging GR
681 capacity (Wagner et al., 2019; Ugalde et al., 2021; Bohle et al., 2022) (Fig. 8), recent results
682 have shown that stromal E_{GSH} is dynamic in response to physiological light/dark transitions
683 (Müller-Schüssele et al., 2020; Haber et al., 2021). We found that in $\Delta grxc5$ stroma, these light-
684 dependent E_{GSH} dynamics are not transferred anymore to glutathione-dependent disulfides,
685 such as in roGFP2 (Fig. 7A), raising the question which endogenous target disulfides may
686 respond differently (Fig. 8). As an obvious target for interference between the TRX and
687 GSH/GRX system in the stroma, we tested CO₂ release and uptake in WT compared to $\Delta grxc5$
688 lines and found no significant differences under the tested conditions (Fig. 7B). In accordance
689 with the normal plant growth observed in $\Delta grxc5$ lines, this result indicates that TRX-dependent
690 redox regulation of the CBB cycle (TRX-*m* and TRX-*f* isoforms) is not affected. This confirms
691 limited cross-talk between the TRX and class I GRX in the plastid stroma.

692 The remaining question is why GSH/GRX and TRX-dependent redox cascades can remain
693 largely separated in the same subcellular compartment. One possible explanation is substrate
694 specificity, e.g. mediated by electrostatic complementarity between redoxins and their target
695 proteins (Bodnar et al., 2023). As at least one stromal class I GRX isoform (GRXC5 or
696 GRXS12) is evolutionarily strictly conserved, an important function is likely, but may not consist
697 in backing-up TRX-dependent redox cascades. In accordance, plastid-localised PRXIIIE that is
698 efficiently reduced via class I GRX, does not function as TRX oxidase like other PRX (Telman
699 et al., 2020).

700 **S-glutathionylation: A needle in the haystack or important PTM?**

701 A remaining important question is for which plastid processes fast GRX-mediated reduction
702 kinetics of either protein S-glutathionylation or GSH-dependent protein disulfides would matter.
703 By exogenously challenging plants with H₂O₂, we found that kinetically fast roGFP2 reduction
704 was absent in the stroma. This leads to prolonged disulfide persistence in a time frame of at
705 least 30 min after such an oxidative challenge, as well as to an altered steady state OxD.
706 Thermodynamic equilibration of purified proteins with E_{GSH} can take hours (Meyer et al., 2007).
707 In contrast, stromal roGFP2 oxidation kinetics after addition of H₂O₂ were not slower (Fig. 5B).
708 Disulfides can be directly induced by H₂O₂, with the rate constant being dependent on the pK_a
709 of the more reactive cysteine (Zaffagnini et al., 2019a). In this case, the thiolate anion reacts

710 with H_2O_2 , forming a sulfenic acid (-SOH) and water. This sulfenic acid can react with a nearby
711 thiol, forming a disulfide (and water). In the presence of GSH, this reaction sequence can lead
712 to GRX-independent *S*-glutathionylation. Using an anti-GSH antibody on stressed and control
713 samples of WT and Δgrxc5 lines we found increased total *S*-glutathionylation after oxidative
714 challenge. Lack of GRXC5 did not interfere with the level of glutathionylated proteins after
715 oxidative stress treatment (Fig. 6, Fig. S8), indicating a minor contribution of GRXC5-mediated
716 *S*-glutathionylation under the tested conditions. Our results support the hypothesis that the
717 most likely scenario for protein *S*-glutathionylation (and *S*-glutathionylation-dependent
718 disulfide formation) *in vivo* involves activated thiol derivatives such as sulfenic acids, most
719 efficiently formed on cysteine residues that are in a deprotonated state (*i.e.*, thiolates) at
720 physiological pH (Zaffagnini et al., 2012b).

721 Previous studies have revealed around 150 stromal proteins as potential *S*-glutathionylation
722 targets, using different experimental approaches (reviewed in Zaffagnini et al. (2019a) and
723 Müller-Schüssele et al. (2021a)). However, it is still unclear under which physiological
724 conditions which fraction of principally susceptible cysteine residues really is *S*-
725 glutathionylated *in vivo*, including consequences to activity, stability or localization of the
726 affected protein molecules. If *S*-glutathionylation only occurs for a minor fraction of proteins or
727 a minor fraction of protein molecules of one protein isoform, effects on metabolic fluxes would
728 be unlikely, as there are still many non-glutathionylated protein molecules present in the entire
729 population. However, protein cysteines with stable thiolate anions are interesting candidates
730 to sense H_2O_2 or GSSG levels in signalling processes, with reduction rates mediated via class
731 I GRX. In this regard, cytosolic GAPDH provides an interesting example. This enzyme contains
732 a reactive cysteine which is essential for catalysis and is a major target of H_2O_2 -dependent
733 oxidation (Trost et al., 2017; Talwar et al., 2023). The subsequent reaction of GSH with the
734 sulfenylated catalytic cysteine induces *S*-glutathionylation and protects the enzyme from
735 irreversible oxidation. However, the persistence of the glutathionylated state, which causes an
736 unavoidable loss of function, has a drastic and irreversible effect on structural stability inducing
737 protein misfolding and aggregation (Zaffagnini et al., 2019b).

738 In order to understand the biological relevance of protein *S*-glutathionylation as PTM in the
739 chloroplast stroma, identification of *in vivo* targets of GRXC5 (and/or GRXS12 in angiosperms)
740 is necessary. This task will require fitting methodological tools for high-throughput protein
741 redox state analysis in combination with suitable mutants and time frames. Life imaging with
742 genetically encoded redox sensors can meet the challenge to follow oxidation and reduction
743 rates *in vivo*, and to effectively dose stress treatments.

744 Based on our results, we conclude that stromal class I GRX are necessary to quickly release
745 *S*-glutathionylation or disulfides formed via an *S*-glutathionylation intermediate. The question
746 of why GRX-assisted glutathione-dependent catalysis evolved (Deponte, 2013; Deponte,

747 2022) is still open, especially regarding the plastid stroma. The main difference of mutants
748 lacking class I GRX in comparison to mutants lacking GR may be that there is still sufficiently
749 high GSH (and sufficiently low GSSG) for GSH-dependent (GRX-independent) reduction. In
750 absence of class I GRX activity, reduction of disulfides still occurs, but at lower rates driven by
751 thermodynamics (**Fig. 8**).

752 In conclusion, the most likely class I GRX functions remain thiol protection and enzyme
753 regulation in response to oxidative challenge (Fernandes and Holmgren, 2004; Berndt et al.,
754 2014). Potentially, fast kinetic equilibration with E_{GSH} is just relevant for enzymes with an S-
755 glutathionylation intermediate on catalytic cysteines, as they would be temporarily “locked” in
756 their disulfide or -SSG form in absence of a class I GRX. In the stroma, 1Cys MSRB1 and
757 PRXIIIE are interesting candidates. Alternatively, protein Cys with low pK_a could have evolved
758 on proteins involved in (moonlighting) signalling functions in response to oxidative challenge,
759 which still await identification as specific GRX interaction partners.

760 **Competing Interest**

761 The authors declare that they have no conflicts of interest.

762 **Author Contributions**

763 FB, MZ, PT, AJM and SJM-S designed the research. FB, JR, SST, HJ, FR, AB, SB, OT, MS,
764 SK performed experiments and analysed data. SJM-S, MSchw., AJM, PJ, MD, EN, MZ, PT
765 supervised the research and provided resources.

766 FB and SJMS wrote the manuscript with contributions from all authors. All authors approved
767 the manuscript before submission.

768 **Data Availability**

769 All data needed to evaluate the conclusions in the paper are present in the paper and/or the
770 Supporting Information.

771 **Acknowledgements**

772 We thank Andreas Werle-Rutter (Molecular Botany RPTU), Maria Homagk (Chemical
773 Signalling, INRES, University of Bonn) and Bastian Welter (University of Cologne) for technical
774 assistance, as well as Prof. Frank Hochholdinger for support. We thank Dr. Marlene Elsässer
775 and Dr. Mareike Schallenberg-Rüdinger for generating a Gateway version of the *PTA2_Act5*
776 expression vector.

777 This work was supported by the DFG-funded Research Training Group GRK2064: ‘Water use
778 efficiency and drought stress responses: From *Arabidopsis* to Barley’ (AJM, MSchw., FB and

779 SJM-S) and via the Joint Mobility Program between the DAAD (PPP Italy 57397466) and the
780 MIUR (Prog. n. 34433) (AJM and PT). JR was supported by a PhD grant from the University
781 of Bologna (PhD programs in Cellular Molecular Biology). Research in SK's laboratory is
782 funded by DFG under Germany's Excellence Strategy – EXC 2048/1 – project 390686111.
783 SJM-S and OT are grateful for funding obtained from BioComp 3.0 'Dynamic Membrane
784 Processes in Biological Systems'. HJ, ST and SJM-S are grateful for support by the DFG-
785 funded Research Training Group GRK2737 'STRESSistance'.

786 **Literature**

787 Alboresi A, Storti M, Morosinotto T (2019) Balancing protection and efficiency in the regulation
788 of photosynthetic electron transport across plant evolution. *New Phytol* 221: 105–109

789 Aller I, Rouhier N, Meyer AJ (2013) Development of roGFP2-derived redox probes for
790 measurement of the glutathione redox potential in the cytosol of severely glutathione-
791 deficient *rlm1* seedlings. *Front Plant Sci* 4: 506

792 Alvarez B, Salinas G (2022) Basic concepts of thiol chemistry and biology. *Redox Chem. Biol.*
793 *Thiols*. Elsevier, pp 1–18

794 Balsara M, Uberegui E, Schürmann P, Buchanan BB (2014) Evolutionary Development of
795 Redox Regulation in Chloroplasts. *Antioxid Redox Signal* 21: 1327–1355

796 Bangash SAK, Müller-Schüssle SJ, Solbach D, Jansen M, Fiorani F, Schwarzländer M,
797 Kopriva S, Meyer AJ (2019) Low-glutathione mutants are impaired in growth but do not
798 show an increased sensitivity to moderate water deficit. *PLoS One* 14: e0220589

799 Bedhomme M, Zaffagnini M, Marchand CH, Gao X-H, Moslonka-Lefebvre M, Michelet L,
800 Decottignies P, Lemaire SD (2009) Regulation by Glutathionylation of Isocitrate Lyase
801 from *Chlamydomonas reinhardtii*. *J Biol Chem* 284: 36282–36291

802 Begas P, Liedgens L, Moseler A, Meyer AJ, Deponte M (2017) Glutaredoxin catalysis requires
803 two distinct glutathione interaction sites. *Nat Commun* 8: 14835

804 Begas P, Staudacher V, Deponte M (2015) Systematic re-evaluation of the bis(2-hydroxyethyl)
805 disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins.
806 *Chem Sci* 6: 3788–3796

807 Berndt C, Lillig CH, Flohé L (2014) Redox regulation by glutathione needs enzymes. *Front*
808 *Pharmacol.* 5, 168.

809 Bodnar Y, Gellert M, Hossain FM, Lillig CH (2023) Breakdown of *Arabidopsis thaliana*
810 thioredoxins and glutaredoxins based on electrostatic similarity—Leads to common and
811 unique interaction partners and functions. *PLOS ONE* 18: e0291272

812 Bohle F, Klaus A, Tegethof H, Schwarzländer M, Hochholdinger F, Meyer AJ, Acosta IF,
813 Müller-Schüssle SJ (2022) High robustness of cytosolic glutathione redox potential
814 under combined salt and osmotic stress in barley as revealed by the biosensor Grx1-
815 roGFP2. *bioRxiv* doi: 10.1101/2022.12.22.521445

816 Bohle F, Meyer AJ, Mueller-Schüssle SJ (2023) Quantification of Redox-Sensitive GFP
817 Cysteine Redox State via Gel-Based Read-Out. *In* M Sharma, ed, *Fluoresc. Proteins*.
818 Springer US, New York, NY, pp 259–268

819 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities
820 of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72: 248–254

821 Buchanan BB, Balmer Y (2005) REDOX REGULATION: A Broadening Horizon. *Annu Rev*
822 *Plant Biol* 56: 187–220

823 Buchanan BB, Holmgren A, Jacquot J-P, Scheibe R (2012) Fifty years in the thioredoxin field
824 and a bountiful harvest. *Biochim Biophys Acta BBA - Gen Subj* 1820: 1822–1829

825 Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F (2023) The Glutathione
826 System: A Journey from Cyanobacteria to Higher Eukaryotes. *Antioxid Basel Switz* 12:
827 1199

828 Couturier J, Jacquot J-P, Rouhier N (2013) Toward a refined classification of class I dithiol
829 glutaredoxins from poplar: biochemical basis for the definition of two subclasses. *Front*
830 *Plant Sci.* 4, 518.

831 Couturier J, Koh CS, Zaffagnini M, Winger AM, Gualberto JM, Corbier C, Decottignies P,
832 Jacquot J-P, Lemaire SD, Didierjean C, et al (2009) Structure-Function Relationship of
833 the Chloroplastic Glutaredoxin S12 with an Atypical WCSYS Active Site. *J Biol Chem*
834 284: 9299–9310

835 Couturier J, Ströher E, Albetel A-N, Roret T, Muthuramalingam M, Tarrago L, Seidel T, Tsan
836 P, Jacquot J-P, Johnson MK, et al (2011) Arabidopsis chloroplastic glutaredoxin C5 as
837 a model to explore molecular determinants for iron-sulfur cluster binding into
838 glutaredoxins. *J Biol Chem* 286: 27515–27527

839 Dard A, Weiss A, Bariat L, Picault N, Pontvianne F, Riondet C, Reichheld J-P (2022)
840 Glutathione-mediated plant response to high-temperature. *bioRxiv* doi:
841 10.1101/2022.03.28.485658

842 Deponte M (2017) The incomplete glutathione puzzle: Just guessing at numbers and figures?
843 *Antioxid Redox Signal* 27: 1130–1161

844 Deponte M (2022) Glutathione and glutathione-dependent enzymes. *Redox Chem. Biol.*
845 *Thiols*. Elsevier, pp 241–275

846 Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-
847 dependent enzymes. *Biochim Biophys Acta BBA - Gen Subj* 1830: 3217–3266

848 Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging
849 dynamic redox changes in mammalian cells with green fluorescent protein indicators.
850 *J Biol Chem* 279: 22284–22293

851 Draculic T, Dawes IW, Grant CM (2000) A single glutaredoxin or thioredoxin gene is essential
852 for viability in the yeast *Saccharomyces cerevisiae*. *Mol Microbiol* 36: 1167–1174

853 Eckers E, Bien M, Stroobant V, Herrmann JM, Deponte M (2009) Biochemical Characterization
854 of Dithiol Glutaredoxin 8 from *Saccharomyces cerevisiae*: The Catalytic Redox
855 Mechanism Redux. *Biochemistry* 48: 1410–1423

856 Fernandes AP, Holmgren A (2004) Glutaredoxins: Glutathione-Dependent Redox Enzymes
857 with Functions Far Beyond a Simple Thioredoxin Backup System. *Antioxid Redox*
858 *Signal* 6: 63–74

859 Fricker MD (2016) Quantitative redox imaging software. *Antioxid Redox Signal* 24: 752–762

860 Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot J-P, Rey P, Rouhier N (2008) Functional
861 analysis and expression characteristics of chloroplastic Prx IIE. *Physiol Plant* 133: 599–
862 610

863 Geigenberger P, Thormählen I, Daloso DM, Fernie AR (2017) The Unprecedented Versatility
864 of the Plant Thioredoxin System. *Trends Plant Sci* 22: 249–262

865 Gurrieri L, Sparla F, Zaffagnini M, Trost P (2023) Dark complexes of the Calvin-Benson cycle
866 in a physiological perspective. *Semin Cell Dev Biol* S1084-9521(23)00049–6

867 Gütle DD, Roret T, Müller SJ, Couturier J, Lemaire SD, Hecker A, Dhalleine T, Buchanan BB,
868 Reski R, Einsle O, et al (2016) Chloroplast FBPase and SBPase are thioredoxin-linked
869 enzymes with similar architecture but different evolutionary histories. *Proc Natl Acad
870 Sci U S A* 113: 6779–6784

871 Gutscher M, Pauleau A-L, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP
872 (2008) Real-time imaging of the intracellular glutathione redox potential. *Nat Methods*
873 5: 553–559

874 Haber Z, Lampl N, Meyer AJ, Zelinger E, Hipsch M, Rosenwasser S (2021) Resolving diurnal
875 dynamics of the chloroplastic glutathione redox state in *Arabidopsis* reveals its
876 photosynthetically derived oxidation. *Plant Cell* 33: 1828–1844

877 Hohe A, Egner T, Lucht JM, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved
878 and highly standardised transformation procedure allows efficient production of single
879 and multiple targeted gene-knockouts in a moss, *Physcomitrella patens*. *Curr Genet*
880 44: 339–347

881 Kubo M, Imai A, Nishiyama T, Ishikawa M, Sato Y, Kurata T, Hiwatashi Y, Reski R, Hasebe M
882 (2013) System for Stable β -Estradiol-Inducible Gene Expression in the Moss
883 *Physcomitrella patens*. *PLoS One* 8: e77356

884 Laugier E, Tarrago L, Vieira Dos Santos C, Eymery F, Havaux M, Rey P (2009) *Arabidopsis*
885 *thaliana* plastidial methionine sulfoxide reductases B, MSRBs, account for most leaf
886 peptide MSR activity and are essential for growth under environmental constraints
887 through a role in the preservation of photosystem antennae. *Plant J* 61: 271–282

888 Lillig CH, Berndt C (2013) Cellular functions of glutathione. *Biochim Biophys Acta BBA - Gen*
889 *Subj* 1830: 3137–3138

890 Lillig CH, Berndt C, Holmgren A (2008) Glutaredoxin systems. *Biochim Biophys Acta BBA - Gen*
891 *Subj* 1780: 1304–1317

892 Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The Yeast *Saccharomyces cerevisiae*
893 Contains Two Glutaredoxin Genes That Are Required for Protection against Reactive
894 Oxygen Species. *Mol Biol Cell* 9: 1081–1091

895 Marri L, Thieulin-Pardo G, Lebrun R, Puppo R, Zaffagnini M, Trost P, Gontero B, Sparla F
896 (2014) CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative
897 stress. *Biochimie* 97: 228–237

898 Marty L, Bausewein D, Müller C, Bangash SAK, Moseler A, Schwarzländer M, Müller-
899 Schüssele SJ, Zechmann B, Riondet C, Balk J, et al (2019) *Arabidopsis* glutathione
900 reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded
901 by additional reduction and transport systems. *New Phytol* 224: 1569–1584

902 Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ,
903 Reichheld J-P, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a
904 functional backup for cytosolic glutathione reductase in *Arabidopsis*. *Proc Natl Acad
905 Sci* 106: 9109–9114

906 Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot J-P, Hell R (2007) Redox-sensitive
907 GFP in *Arabidopsis thaliana* is a quantitative biosensor for the redox potential of the
908 cellular glutathione redox buffer. *Plant J* 52: 973–986

909 Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. *Antioxid Redox Signal* 13:
910 621–650

911 Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E, Dietz K-J, Schwarzländer M (2021) Shifting
912 paradigms and novel players in Cys-based redox regulation and ROS signaling in
913 plants - and where to go next. *Biol Chem* 402: 399–423

914 Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin J-M, Trost P,
915 Migniac-Maslow M, Noctor G, et al (2005) Glutathionylation of chloroplast thioredoxin
916 f is a redox signaling mechanism in plants. *Proc Natl Acad Sci* 102: 16478–16483

917 Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand
918 CH, Fermani S, Trost P, et al (2013) Redox regulation of the Calvin-Benson cycle:
919 something old, something new. *Front Plant Sci* 4: 470

920 Morales A, Kaiser E (2020) Photosynthetic Acclimation to Fluctuating Irradiance in Plants.
921 *Front Plant Sci* 11: 268

922 Mueller SJ, Lang D, Hoernstein SNW, Lang EGE, Schuessle C, Schmidt A, Fluck M,
923 Leisibach D, Niegl C, Zimmer AD, et al (2014) Quantitative analysis of the mitochondrial
924 and plastid proteomes of the moss *Physcomitrella patens* reveals protein
925 macrocompartmentation and microcompartmentation. *Plant Physiol* 164: 2081–2095

926 Mueller SJ, Reski R (2015) Mitochondrial Dynamics and the ER: The Plant Perspective. *Front
927 Cell Dev Biol* 3: 78

928 Müller-Schüssle SJ, Bohle F, Rossi J, Trost P, Meyer AJ, Zaffagnini M (2021a) Plasticity in
929 plastid redox networks: evolution of glutathione-dependent redox cascades and
930 glutathionylation sites. *BMC Plant Biol* 21: 322

931 Müller-Schüssle SJ, Schwarzländer M, Meyer AJ (2021b) Live monitoring of plant redox and
932 energy physiology with genetically encoded biosensors. *Plant Physiol* 186: 93–109

933 Müller-Schüssle SJ, Wang R, Gütle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert
934 F, Lüth VM, Kopriva S, Dörmann P, et al (2020) Chloroplasts require glutathione
935 reductase to balance reactive oxygen species and maintain efficient photosynthesis.
936 *Plant J* 103: 1140–1154

937 Noctor G, Mhamdi, A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer
938 CH (2012) Glutathione in plants: an integrated overview: glutathione status and functions.
939 *Plant, Cell & Environment* 35: 454–484.

940 Ojeda V, Pérez-Ruiz JM, Cejudo FJ (2018) 2-Cys Peroxiredoxins Participate in the Oxidation
941 of Chloroplast Enzymes in the Dark. *Mol Plant* 11: 1377–1388

942 Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ (2017) NTRC-dependent redox
943 balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic
944 apparatus. *Proc Natl Acad Sci U S A* 114: 12069–12074

945 Reski R, Abel WO (1985) Induction of budding on chloronemata and caulinemata of the moss,
946 *Physcomitrella patens*, using isopentenyladenine. *Planta* 165: 354–358

947 Riondet C, Desouris JP, Montoya JG, Chartier Y, Meyer Y, Reichheld J-P (2012) A
948 dicotyledon-specific glutaredoxin GRXC1 family with dimer-dependent redox regulation
949 is functionally redundant with GRXC2. *Plant Cell Environ* 35: 360–373

950 Roach T, Krieger-Liszka A (2014) Regulation of photosynthetic electron transport and
951 photoinhibition. *Curr Protein Pept Sci* 15: 351–362

952 Rouhier N, Unno H, Bandyopadhyay S, Masip L, Kim S-K, Hirasawa M, Gualberto JM, Lattard
953 V, Kusunoki M, Knaff DB, et al (2007) Functional, structural, and spectroscopic
954 characterization of a glutathione-ligated [2Fe–2S] cluster in poplar glutaredoxin C1.
955 *Proc Natl Acad Sci* 104: 7379–7384

956 Schröder M, Moseler A, Bodnar Y, Homagk M, Wagner S, Pedroletti L, Gellert M, Ugalde JM,
957 Lillig CH, Meyer AJ (2023) Localization of four class I glutaredoxins in the cytosol and
958 the secretory pathway and characterization of their biochemical diversification. *bioRxiv*
959 doi: 10.1101/2023.09.01.555924

960 Schöttler MA, Toth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants:
961 environmental acclimation and photosynthetic flux control. *Front Plant Sci* 5: 188

962 Schreiber M, Rensing SA, Gould SB (2022) The greening ashore. *Trends Plant Sci* 27: 847–
963 857

964 Schwarländer M, Dick TP, Meyer AJ, Morgan B (2016) Dissecting redox biology using
965 fluorescent protein sensors. *Antioxid Redox Signal* 24: 680–712

966 Schwarländer M, Fricker MD, Müller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R,
967 Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. *J
968 Microsc* 231: 299–316

969 Speiser A, Silbermann M, Dong Y, Haberland S, Uslu VV, Wang S, Bangash SAK, Reichelt M,
970 Meyer AJ, Wirtz M, et al (2018) Sulfur Partitioning between Glutathione and Protein
971 Synthesis Determines Plant Growth. *Plant Physiol* 177: 927–937

972 Talwar D, Miller CG, Grossmann J, Szyrwił L, Schwecke T, Demichev V, Mikecin Drazic A-
973 M, Mayakonda A, Lutsik P, Veith C, et al (2023) The GAPDH redox switch safeguards
974 reductive capacity and enables survival of stressed tumor cells. *Nat Metab* 5: 660–676

975 Teh JT, Leitz V, Holzer VJC, Neusius D, Marino G, Meitzel T, García-Cerdán JG, Dent RM,
976 Niyogi KK, Geigenberger P, et al (2023) NTRC regulates CP12 to activate Calvin-
977 Benson cycle during cold acclimation. *Proc Natl Acad Sci U S A* 120: e2306338120

978 Telman W, Liebthal M, Dietz K-J (2020) Redox regulation by peroxiredoxins is linked to their
979 thioredoxin-dependent oxidase function. *Photosynth Res* 145: 31–41

980 Tian G-W, Mohanty A, Chary SN, Li S, Paap B, Drakakaki G, Kopec CD, Li J, Ehrhardt D,
981 Jackson D, et al (2004) High-throughput fluorescent tagging of full-length *Arabidopsis*
982 gene products in planta. *Plant Physiol* 135: 25–38

983 Trnka D, Engelke AD, Gellert M, Moseler A, Hossain MF, Lindenberg TT, Pedroletti L,
984 Odermatt B, de Souza JV, Bronowska AK, et al (2020) Molecular basis for the distinct
985 functions of redox-active and FeS-transferring glutaredoxins. *Nat Commun* 11: 3445

986 Trost P, Fermani S, Calvaresi M, Zaffagnini M (2017) Biochemical basis of sulphenomics: how
987 protein sulphenic acids may be stabilized by the protein microenvironment. *Plant Cell*
988 *Environ* 40: 483–490

989 Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L,
990 Schwarzländer M, Müller-Schüssele SJ, Meyer AJ (2021) Chloroplast-derived photo-
991 oxidative stress causes changes in H_2O_2 and E_{GSH} in other subcellular compartments.
992 *Plant Physiol* 186: 125–141

993 Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz
994 K-J (2018) The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase
995 in redox regulation of chloroplast metabolism. *eLife* 7: 38194

996 Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JHM, Nietzel T,
997 Ruberti C, Van Aken O, Meyer AJ, et al (2019) Multiparametric real-time sensing of
998 cytosolic physiology links hypoxia responses to mitochondrial electron transport. *New*
999 *Phytol* 224: 1668–1684

1000 Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution
1001 in the presence of detergents and lipids. *Anal Biochem* 138: 141–143

1002 Yoshida K, Yokochi Y, Hisabori T (2019) New Light on Chloroplast Redox Regulation:
1003 Molecular Mechanism of Protein Thiol Oxidation. *Front Plant Sci* 10: 1534

1004 Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg
1005 H, Teale W, Paponov I, et al (2013) Plastid-Localized Glutathione Reductase2-
1006 Regulated Glutathione Redox Status Is Essential for *Arabidopsis* Root Apical Meristem
1007 Maintenance. *Plant Cell* 25: 4451–4468

1008 Zaffagnini M, Bedhomme M, Marchand CH, Couturier JRM, Gao X-H, Rouhier N, Trost P,
1009 Lemaire SPD (2012a) Glutaredoxin S12: unique properties for redox signaling. *Antioxid*
1010 *Redox Signal* 16: 17–32

1011 Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD (2012b) Redox
1012 regulation in photosynthetic organisms: Focus on glutathionylation. *Antioxid Redox*
1013 *Signal* 16: 567–586

1014 Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P (2013) Plant cytoplasmic GAPDH:
1015 Redox post-translational modifications and moonlighting properties. *Front Plant Sci*.
1016 doi: 10.3389/fpls.2013.00450

1017 Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P,
1018 Lemaire SD, Trost P (2019a) Redox Homeostasis in Photosynthetic Organisms: Novel
1019 and Established Thiol-Based Molecular Mechanisms. *Antioxid Redox Signal* 31: 155–
1020 210

1021 Zaffagnini M, Marchand CH, Malferrari M, Murail S, Bonacchi S, Genovese D, Montalti M,
1022 Venturoli G, Falini G, Baaden M, et al (2019b) Glutathionylation primes soluble
1023 glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble
1024 aggregates. *Proc Natl Acad Sci* 116: 26057–26065

1025 Zaffagnini M, Michelet L, Marchand C, Sparla F, Decottignies P, Le Maréchal P, Miginiac-
1026 Maslow M, Noctor G, Trost P, Lemaire SD (2007) The thioredoxin-independent isoform
1027 of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by
1028 glutathionylation. *FEBS J* 274: 212–226

1029 Zaffagnini M, Michelet L, Massot V, Trost P, Lemaire SD (2008) Biochemical Characterization
1030 of Glutaredoxins from *Chlamydomonas reinhardtii* Reveals the Unique Properties of a
1031 Chloroplastic CGFS-type Glutaredoxin. *J Biol Chem* 283: 8868–8876

1032 Zimmer D, Swart C, Graf A, Arrivault S, Tillich M, Proost S, Nikoloski Z, Stitt M, Bock R,
1033 Mühlhaus T, et al (2021) Topology of the redox network during induction of
1034 photosynthesis as revealed by time-resolved proteomics in tobacco. *Sci Adv* 7:
1035 eabi8307

1036 Zimmermann J, Oestreicher J, Hess S, Herrmann JM, Deponte M, Morgan B (2020) One
1037 cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol
1038 Grx. *Redox Biol* 36: 101598

1039

1040 **Supporting Information**

1041 **Fig. S1: Construct design and knock-out validation**

1042 **Fig. S2: Fresh weight analysis for $\Delta grxc5$, $\Delta gr1$ and $\Delta grxc5/\Delta gr1$**

1043 **Fig. S3: Stress phenotyping of *P. patens* protonema culture under fluctuating light and
1044 heat stress**

1045 **Fig. S4: Non-photochemical quenching (NPQ) measurements of 4-week-old
1046 gametophores under low and high light regimes**

1047 **Fig. S5: Targeting of roGFP2 to plastids**

1048 **Fig. S6: Quantification of total GSH in GRXC5 mutant lines by HPLC**

1049 **Fig. S7: roGFP2 oxidation state and recovery in response to externally added H_2O_2**

1050 **Fig. S8: Increase of protein-bound glutathione after H_2O_2 treatment**

1051 **Table S1: Primer sequences**

1052 **Supplementary Material and Methods:**

1053 **Measurement of photosynthetic parameters (light induction and relaxation curves)**

1054 **Glutathione measurement by HPLC**