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Abstract

Climate warming influences disease development by targeting critical components of the plant
immune system, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI)
and production of the central defence hormone salicylic acid (SA) at the primary pathogen
infection site. However, it is not clear if and/or how temperature impacts systemic immunity.
Here we show that pathogen-triggered systemic acquired resistance (SAR) in Arabidopsis
thaliana is suppressed at elevated temperature. This was accompanied by global
downregulation of SAR-induced genes at elevated temperature. Abolished SAR under warmer
conditions was associated with reduced biosynthesis of the SAR metabolite N-hydroxypipecolic
acid (NHP) in Arabidopsis and other plant species, as demonstrated by downregulation of NHP
biosynthetic genes (ALD1 and FMO1) and NHP precursor pipecolic acid (Pip) levels. Although
multiple SAR signals have been shown previously, exogenous Pip was sufficient to restore
disease protection at elevated temperature, indicating that heat-mediated SAR suppression is
due to Pip-NHP downregulation. Along with ALD71 and FMO1, systemic expression of the SA
biosynthetic gene ICS1 was also suppressed at warm temperature. Finally, we define a
transcriptional network controlling thermosensitive NHP pathway via the master transcription
factors CBP60g and SARD1. Our findings demonstrate that warm temperatures impact not only
local but also systemic immunity by impinging on the NHP pathway, providing a roadmap

towards engineering climate-resilient plant immune systems.

Keywords: Climate change, N-hydroxypipecolic acid, plant hormone, plant immunity,

systemic acquired resistance, temperature

Main Text

Warming global temperatures due to climate change pose serious threats to the natural
environment and human civilization (Altizer et al., 2016; Deutsch et al., 2018; Cavicchioli et al.,
2019; Delgado-Baquerizo et al., 2020). In agricultural systems, increasing average
temperatures are predicted to significantly reduce yields of the world's major crops (Zhao et al.,
2017; Chaloner et al., 2021; Singh et al., 2023). As many crop varieties are bred to be grown
outside the native growth ranges of their wild relatives, it is important to understand the impact
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of elevated temperatures on plant growth, development, immunity and phenology. Together with
other environmental factors, temperature profoundly affects various aspects of plant physiology,
ranging from growth and development (Quint et al., 2016; Lippman et al., 2018; Hayes et al.,
2020; Vu et al., 2021; Castroverde and Dina, 2021) to stress responses and immunity
(Velasquez et al., 2018; Kim et al., 2021; Castroverde and Dina, 2021; Singh et al., 2023).
Environmentally compromised immune signaling is associated with increased plant disease
development, as postulated as the plant disease triangle (Stevens, 1960; Colhoun, 1973;
Roussin-Léveillée et al., 2023).

Elevated temperatures target various components of the plant immune system (Velasquez
et al., 2018; Cheng et al., 2019; Cohen and Leach, 2020; Kim et al., 2021), which encompass
both cell surface (transmembrane) and intracellular immune receptors (Jones and Dangl, 2006;
Zhou and Zhang, 2020; Kim and Castroverde, 2020; Ngou et al., 2022). Cell surface immune
receptors recognize apoplastic immunogenic molecules, typically conserved pathogen-
associated molecular patterns (PAMPs; Bigeard et al., 2015; Gust et al., 2017; DeFalco and
Zipfel, 2021), while intracellular nucleotide-binding leucine-rich receptors (NLRs) perceive
pathogen effectors and/or effector-induced host modifications (Cui et al., 2015; Jones et al.,
2016; Saur et al., 2021). There is evidence that warm temperatures lead to reduced abundance,
membrane localization or signaling of cell surface receptors (De Jong et al., 2002; Janda et al.,
2019; Hilleary et al., 2020) and perturbed nuclear localization or activation of certain NLRs (Zhu
et al., 2010; Mang et al., 2012; Cheng et al., 2013; Venkatesh and Kang, 2019).

Recent studies show that both PRR signaling and NLR signaling activate convergent
downstream signaling, including increased cytoplasmic calcium influx, oxidative burst,
phosphorylation cascades and production of defence hormone salicylic acid (SA), leading to
overlapping defence gene expression and metabolism at the primary infection site (Pieterse et
al., 2009; Ngou et al., 2021; Yuan et al., 2021). Previous research has shown that elevated
temperature suppresses pathogen-induced biosynthesis of the central defence hormone
salicylic acid (SA) (Malamy et al., 1992; Huot et al., 2017; Li et al., 2021; Kim et al., 2022; Rossi
et al., 2023), which aligns with temperature modulation of other plant hormones (Franklin et al.,
2011; Sun et al., 2012; Ibafez et al., 2018; Martinez et al., 2018; Ferrero et al., 2019; Bruessow
et al., 2021; Castroverde and Dina, 2021). Apart from resistance at the local infection site, SA is
also involved in systemic immunity known as systemic acquired resistance (SAR) (Fu and
Dong, 2013; Zhang and Li, 2019; Kachroo and Kachroo, 2020; Lim et al., 2020; Peng et al.,

2021). Primary infection and immune activation lead to SAR, which primes non-infected
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86  systemic tissues against secondary infections (Cameron et al., 1994; Maldonado et al., 2002;
87 Fuand Dong, 2013; Yu et al., 2013; Vlot et al., 2021; Zeier, 2021). SAR is widely conserved

88  across the plant kingdom, leading to broad-spectrum host defences by rapidly generating

89  mobile signals at the infection site and transporting them throughout the plant (Carella et al.,

90 2016; Chen et al., 2018; Hartmann et al., 2018; Kachroo and Kachroo, 2020; Shine et al., 2022).

91 A major SAR signal is the immune-activating metabolite N-hydroxypipecolic acid (NHP)

92  (Chen et al., 2018; Hartmann and Zeier, 2018; Hartmann et al., 2018). NHP has been shown to

93 induce SAR, and blocking its biosynthesis results in SAR abolishment (Song et al., 2004;

94 Mishina and Zeier, 2006; Jing et al., 2011; Navarova et al., 2012; Huang et al., 2020). NHP

95  biosynthesis follows three consecutive enzymatic reactions (Hartmann and Zeier, 2018),

96 involving the aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1; Zeier,

97  2013; Bernsdorff et al., 2016), the reductase SAR-DEFICIENT 4 (SARD4; Ding et al., 2016;

98 Hartmann et al., 2017) and N-hydroxylase FLAVIN-DEPENDENT MONOOXYGENASE 1

99  (FMO1), which converts pipecolic acid (Pip) to N-hydroxypipecolic acid (NHP; Chen et al., 2018;
100  Hartmann et al., 2018). ALD1, SARD4 and FMO1 gene expression and NHP levels are induced
101  systemically following pathogenic attack at a primary site (Song et al., 2004; Mishina and Zeier,
102  2006; Ding et al., 2016; Bernsdorff et al., 2016; Hartmann et al., 2017; Yildiz et al., 2021).

103 Currently, the impact of elevated temperature on plant systemic immunity is

104  underexplored. Although previous studies have shown that increased temperatures have a

105  negative effect on several aspects of the plant immune system that occur in the local/primary
106  sites of infection (like PTI, ETI and SA production), it is unknown if and how elevated

107  temperature affect NHP-mediated plant immunity and the SAR response. In our study, we show
108 that elevated temperature suppresses SAR-associated NHP biosynthetic gene expression and
109  Pip production. Because it has been shown that the NHP immune pathway is redundantly

110  controlled by the master transcription factors CALMODULIN-BINDING PROTEIN 60-LIKE G
111  (CBP60g) and SAR-DEFICIENT 1 (SARD1) (Sun et al., 2015; Sun et al., 2018; Huang et al.,
112 2020), we further found that warm temperature-suppressed plant systemic immunity is restored
113 by constitutive CBP60g/SARD1 gene expression or exogenous Pip application. Collectively, our
114  study indicates that CBP60g and SARD1 control the temperature-vulnerability of Arabidopsis
115  systemic immunity by regulating Pip/NHP biosynthesis.
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116 Results

117  Warm temperature affects systemic acquired resistance in Arabidopsis plants

118 To determine if SAR is affected by temperature, lower leaves of Arabidopsis Col-0 plants
119  were inoculated with the virulent bacterial pathogen Pst DC3000 as the primary challenge. Two
120  days after primary infection, upper systemic leaves were inoculated with the pathogen Pst

121  DC3000 as the secondary challenge. As shown in Figure 1a, primary pathogen infection

122 expectedly lowered the systemic bacterial counts after secondary pathogen challenge at 23°C
123 but not at 28°C in Col-0 plants. This indicates that Arabidopsis SAR due to local Pst DC3000
124  infection is effective at normal but not at elevated temperature, suggesting that temperature
125  regulates plant systemic immunity.
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127 Fig. 1 Arabidopsis SAR is suppressed at elevated temperature.
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128 (A, B) Lower leaves of four-week-old Arabidopsis Col-0 plants were infiltrated with 0.25 mM MgClz (mock) and Pst
129 DC3000 (OD600 = 0.02) in (A) or Pst DC3000/AvrRpt2 (OD600 = 0.02) in (B). Plants were then incubated at either
130 23°C or 28°C. Two days after primary local inoculation, upper systemic leaves were infiltrated with Pst DC3000

131 (OD600 = 0.001), and plants were incubated again at their respective temperatures (23°C or 28°C). Bacterial

132 numbers (upper panels) and symptom expression photos (lower panels) were taken at 3 days post-inoculation (dpi)
133 of systemic tissues. Data show the mean log CFU Pst DC3000/mL (+ S.D.) and individual points (n=16 from 4

134 independent experiments) analyzed with two-way ANOVA and Tukey's Multiple Comparisons test. Statistical

135 differences of means are denoted by different letters. (C) Transcriptome analysis using SAR+ genes from Hartmann
136 et al. (2018) interfaced with temperature-regulated genes from Kim et al. (2022). The number of SAR+ genes that are
137 downregulated and upregulated at elevated temperature are shown (fold change cutoff > 2).

138

139 In addition to virulent pathogens, avirulent pathogens that induce local ETI can also

140  induce SAR (Cameron et al., 1994; Zeier, 2021). We therefore tested whether SAR activated by
141  the avirulent strain Pst DC3000/AvrRpt2, which activates RPS2-dependent immunity in Col-0
142  plants (Kunkel et al., 1993; Bent et al., 1994), is also impacted by warm conditions. As

143  expected, SAR was induced at normal temperature (23°C) after primary Pst DC3000/AvrRpt2
144  infection (Figure 1b). Strikingly, systemic Pst DC3000/AvrRpt2 levels remained similar

145  compared to mock treatment at elevated temperature (28°C), indicating that even ETI-induced
146  SAR protection is also negatively affected in Arabidopsis Col-0 plants at higher temperature.

147 To further understand global SAR immune signaling, we analyzed a previously generated
148  Arabidopsis SAR transcriptome after virulent P. syringae infection (Hartmann et al., 2018). We
149 interfaced the SAR-induced (SAR+) genes from that study with our previously published

150 temperature-regulated transcriptome (Kim et al., 2022) and categorized Arabidopsis SAR+
151  genes into downregulated or upregulated genes at elevated temperature. As shown in Figure
152  1c, 1037 SAR+ genes were downregulated, while 151 SAR+ genes were upregulated at

153  elevated temperatures. This demonstrates that a significant majority of temperature-regulated
154  SAR genes exhibit downregulated expression at elevated temperature, consistent with loss of
155  systemic protection against secondary infection at 28°C (Figures 1a-b). Overall, our collective
156  results indicate the Arabidopsis SAR induced by both virulent and avirulent pathogens are
157  negatively impacted by warm temperatures.

158
159  The N-hydroxypipecolic acid pathway is downregulated by elevated temperature

160 To determine the mechanism of how temperature regulates systemic immunity, we

161  measured expression levels of genes required for biosynthesis of NHP, which is an immune-
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162  activating metabolite crucial for SAR (Hartmann et al., 2018; Chen et al., 2018). As shown in
163  Figure 2a, transcript levels of ALD1 and FMO1 in local (primary) leaves of Arabidopsis Col-0
164  plants at 1 day post-infection with Pst DC3000 were lower at 28°C than at 23°C. In agreement,
165 pathogen-induced levels of the NHP precursor metabolite Pip were also lower at the warmer
166  temperature (Figure 2b). Similar trends in warm temperature-suppression of NHP biosynthetic
167  gene expression was observed in tomato and rapeseed plants (Figures 2c-d). Finally, as shown
168 in Figure 2e, systemic (uninfected) leaves of Arabidopsis plants at 2 dpi exhibited lower ALD1
169 and FMOT1 gene expression levels at 28°C compared to those at 23°C. Taken together, these
170  results indicate that elevated temperature impacts NHP biosynthesis in various plants species,
171  which is associated with loss of SAR at higher temperatures.
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172

173 Fig. 2 Plant NHP biosynthetic gene expression and Pip production are suppressed at elevated temperature.

174 (A-B) Leaves of four-week-old Arabidopsis Col-0 plants were infiltrated with 0.25 mM MgCl2 (mock) or Pst DC3000
175 (OD600 = 0.001). Plants in were then incubated at either 23°C or 28°C. (A) ALD1 and FMOT1 transcript levels and (B)
176 Pip levels of pathogen-inoculated tissues were measured at 1 day post-inoculation (dpi). (C) Leaves of four-week-old
177  tomato cultivar Castlemart plants were infiltrated with 0.25 mM MgClz (mock) or Pst DC3000 (OD600 = 0.001).

178 SIALD1 transcript levels of pathogen-inoculated tissues were measured at 1 dpi. (D) Leaves of 4- to 5-week-old

179 rapeseed cultivar Westar plants were infiltrated with 0.25 mM MgCl2 (mock) or Pst DC3000 (OD600 = 0.0001).

180 BnaALD1 and BnaFMO1 transcript levels of pathogen-inoculated tissues were measured at 1 dpi. (E) Lower leaves
181 of four-week-old Arabidopsis Col-0 plants were infiltrated with 0.25 mM MgClz (mock) or Pst DC3000 (OD600 = 0.02).
182 Plants in were then incubated at either 23°C or 28°C. ALD1 and FMOT1 transcript levels in upper systemic tissues
183  were measured at 2 dpi. Data show the means (+ S.D.) and individual points (n=3 to 4) analyzed with two-way

184 ANOVA and Tukey’s Multiple Comparisons test. Statistical differences of means are denoted by different letters.

185 Experiments were performed at least two times with reproducible results.
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Because SA is functionally linked and mutually amplified with Pip and NHP during plant
systemic immunity (Hartmann and Zeier, 2019; Huang et al., 2020; Zeier, 2021; Shields et al.,
2022), we also measured SA biosynthetic gene expression in upper, systemic leaves after

primary pathogen challenge. As shown in Figures 3a and 3b, systemic expression of the SA
biosynthetic gene ICS1 (Wildermuth et al., 2001) was induced at 2 days after virulent Pst
DC3000 or avirulent Pst DC3000/AvrRpt2 inoculation at 23°C. However, ICS1 transcript levels
in systemic tissues were comparable between mock and pathogen treatments at 28°C (Figures
3a-b), suggesting that elevated temperature downregulates SA accumulation systemically.
Altogether, these results demonstrate that the SA biosynthetic pathway is suppressed at higher
temperature similarly as NHP. This suggests that mutual amplification of these two important
SAR-associated metabolites is negatively affected when temperatures increase.
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Fig. 3 Systemic SA biosynthetic gene expression is suppressed at elevated temperature.
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200 Lower leaves of four-week-old Arabidopsis Col-0 plants were infiltrated with 0.25 mM MgClz (mock), Pst DC3000
201 (OD600 = 0.02) or Pst DC3000 AvrRpt2 (OD600=0.02). Plants were then incubated at either 23°C or 28°C. (A-B)
202 ICS1 transcript levels were measured in systemic tissues using RT-gPCR at 2 days post-inoculation (dpi) with Pst
203 DC3000 or Pst DC3000 AvrRpt2, respectively. (C-D) CBP60g and SARD1 transcript levels were measured in

204  systemic tissues at 2 dpi with Pst DC3000. Data show the means (+ S.D.) and individual points (n=4) analyzed with
205 two-way ANOVA and Tukey’s Multiple Comparisons test. Statistical differences of means are denoted by different
206 letters. Experiments were performed two times with reproducible results.

207

208 Local or systemic application of exogenous Pip restores Arabidopsis immune

209 priming at elevated temperature

210 Having observed that Pip levels were suppressed at elevated temperature, we

211  hypothesized that exogenous supplementation with Pip may restore disease protection at 28°C
212  if Pip production is the rate-limiting step at elevated temperature. We infiltrated leaves of

213 Arabidopsis plants with mock or 1 mM Pip and then infected the same leaves with Pst DC3000.
214 As shown in Figure 4a, pathogen levels were reduced after Pip treatment compared to mock
215  treatment at 23°C, expectedly indicating that Pip is sufficient to induce immune priming.

216  Remarkably, Pip-induced disease protection was maintained at 28°C (Figure 4a), which

217  confirms that Pip-NHP production is the rate-limiting step in SAR at elevated temperature.
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218

219 Fig. 4 Exogenous Pip treatment restores Arabidopsis immune priming at warm temperature.

220 Four-week-old Arabidopsis Col-0 plants were treated with mock or 1mM Pip solution by leaf-infiltration (A) or root-
221 drenching (B). Plants were then incubated at either 23°C or 28°C. Two days after Pip treatment, leaves were

222 infiltrated with Pst DC3000 (OD600 = 0.001), and plants were incubated again at their respective temperatures (23°C
223 or 28°C). Bacterial numbers were quantified at 3 days post-inoculation (dpi). Data show the mean log CFU Pst

224 DC3000/mL (x S.D.) and individual points (n=12 from 3 independent experiments in A; n=24 from 6 independent


https://doi.org/10.1101/2023.10.31.564368
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.31.564368; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

225 experiments in B) analyzed with two-way ANOVA and Tukey’s Multiple Comparisons test. Statistical differences of
226 means are denoted by different letters.

227

228 To determine if elevated temperature also affects systemic Pip-mediated disease

229  protection, we irrigated Arabidopsis roots with mock or 1 mM Pip two days before infiltrating the
230 leaves with Pst DC3000. Similar to the results with Pip-induced disease protection by leaf

231 infiltration, we also observed reduced pathogen levels after Pip root irrigation at both 23°C and
232 28°C (Figure 4b). These results indicate that the temperature-suppression of the Pip-NHP

233 pathway is governed at the level of biosynthesis and not systemic transport.

234
235 CBP60g and SARD1 control temperature-vulnerability of the NHP-SAR pathway

236 In addition to chemical supplementation, we next investigated if we could restore

237  systemic immune responses genetically at warm temperatures. We recently showed that

238  CBP60g and its functionally redundant paralog SARD1 control the temperature-sensitivity of
239  plant basal resistance and pathogen-induced SA biosynthesis (Kim et al., 2022). We therefore
240 investigated whether CBP60g and SARD1 also control temperature-sensitive systemic defence
241  responses. As shown in Figure 3c-d, CBP60g and SARD1 transcript levels are induced

242 systemically after local Pst DC3000 challenge at 23°C, but this systemic induction is lost at

243 28°C. These suggest that the loss of systemic immunity at elevated temperature could be due to
244 significantly decreased CBP60g and SARD1 gene expression.

245 To show a causative role for CBP60g/SARD1 downregulation with NHP immune

246  pathway suppression, we used plants constitutively expressing CBP60g (35S::CBP60g) or

247  SARD1 (35S::SARD1). As shown in Figures a-c, 35S::CBP60g lines restored NHP biosynthetic
248  gene expression (ALD1, FMOT) and Pip levels at 28°C in contrast to the wild-type Col-0 plants.
249  Consistent with this, constitutive expression of the functionally redundant SARD1 gene in

250  358::SARD1 plants also led to restored expression of ALD1 and FMO1 at warm temperature
251  (Figure 5d-e). Taken together, a major mechanism by which higher temperatures target plant
252 systemic immunity and NHP biosynthesis is through the expression of the master immune

253  transcription factor genes CBP60g and SARD1.

10
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255 Fig. 5 CBP60g and SARD1 control the temperature-vulnerability of NHP-mediated immunity.

256 Leaves of four-week-old Arabidopsis Col-0 and 35S::CBP60g (A-C) or 355::SARD1 plants (D-E) were infiltrated with
257 0.25 mM MgCl2 (mock) or Pst DC3000 (OD600 = 0.001). Plants were then incubated at either 23°C or 28°C. (A)

258 ALDT and (B) FMOT transcript levels were measured using RT-qgPCR at 1 day post-inoculation (dpi) of pathogen-
259 inoculated tissues of Col-0 and 35S::CBP60g plants. (C) Pip levels were measured at 1 dpi in the same tissues. (D)
260 ALD1 and (E) FMOT transcript levels were measured at 1 day post-inoculation (dpi) of pathogen-inoculated tissues of
261 Col-0 and 35S::SARD1 plants. Data show the means (+ S.D.) and individual points (n=4 in A-C; n=3 in D-E), with
262 experiments performed three times with reproducible results. Statistical analyses were conducted using two-way

263 ANOVA with Tukey’s Multiple Comparisons test, with statistically significant differences of means denoted by different
264 letters.

265

266 Discussion

267 In this study, we showed that pathogen-induced SAR and the SAR-activating NHP

268  pathway in Arabidopsis plants are sensitive to elevated temperatures. Local infection with both
269  virulent or ETl-activating avirulent pathogens triggers SAR at normal temperatures but not at
270  elevated temperatures. We showed that SAR regulation by temperature is caused by

271  temperature-sensitive NHP pathway in local and systemic tissues. SAR-induced NHP

272  biosynthetic gene expression and/or Pip levels are downregulated at elevated temperature.
273  Even though multiple SAR signals have been proposed previously (Fu and Dong, 2013;
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274  Navarova, et al., 2012; Hartmann et al., 2018; Wang, et al., 2018; Vlot et al., 2021; Zeier, 2021),
275  we show here that exogenous supplementation with the NHP precursor Pip (locally and

276  systemically) was sufficient to restore SAR at elevated temperature. This demonstrates a

277  causative relationship between temperature-suppressed Pip-NHP pathway and SAR.

278 Because NHP primes systemic SA biosynthesis and immunity (Yildiz et al., 2021; Zeier,
279  2021), we also observed that systemic SA biosynthetic gene expression is downregulated by
280  elevated temperature. SA induction is also important for SAR establishment since SA induction
281  deficient sid2 and SA-insensitive npr1 mutants also have abolished SAR (Fu and Dong, 2013;
282  Huang et al., 2020; Peng et al., 2021). Temperature-suppressed systemic SA pathway agrees
283  with our previous study showing a negative impact of higher temperatures on local pathogen-
284  induced SA biosynthesis and basal resistance (Huot et al., 2017; Kim et al., 2022). However, we
285  found that Pip supplementation alone can rescue SAR at elevated temperature, suggesting that
286  Pip-NHP signaling is sufficient in inducing SAR.

287 We previously showed that CBP60g and SARD1 controls the temperature-vulnerability of
288 local pathogen-induced SA biosynthesis (Kim et al., 2022). Functionally redundant paralogs
289 CBP60g and SARD1 are master transcription factors that directly target the promoters of

290  numerous immunity-related genes (Wang et al., 2009; Zhang et al., 2010; Wang et al., 2011;
291 Sunetal., 2015, Sun et al., 2018), including those important for SA biosynthesis (like /ICST1) and
292 NHP biosynthesis (like ALD1 and FMO1). In this study, we further demonstrate that CBP60g
293 and SARD1 control the temperature-regulation of NHP biosynthesis and systemic immunity.
294  Expression of CBP60g and SARD1 in systemic tissues are downregulated at elevated

295  temperature, which is associated with suppressed NHP pathway. Restoring systemic CBP60g
296  or SARD1 expression using constitutively expressing 35S::CBP60g or 355::SARD1 plants

297  rescues NHP biosynthetic gene expression and Pip levels under warming conditions.

298 Overall, changing climatic factors like elevated temperature have a broad and significant
299  impact on the plant immune system, not only at local sites of infection (PTI, ETI, SA) but also on
300 systemic immune priming in distal sites via the central SAR metabolite NHP. In this study, we
301 determined that elevated temperature regulates SAR by influencing NHP pathway. We further
302 demonstrated that this temperature-regulation of NHP-mediated SAR is also controlled by the
303  temperature-sensitive master regulators CBP60g and SARD1, reminiscent of their roles in local
304 immune responses (Kim et al., 2022). Not only does temperature affect the plant’s ability to

305 directly defend against pathogen attacks but also the plant’s immune preparedness for future
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306 infections. Our discoveries advance our understanding of how the plant immune landscape is
307 regulated by a changing environment. This foundational mechanistic knowledge of the plant
308 disease triangle is important to inform strategies in mitigating the negative impacts of warming
309 temperatures on plant health and to provide a molecular roadmap towards engineering climate-
310 resilient plants.

311

312 Materials and Methods

313  Plant materials and growth conditions

314 Arabidopsis thaliana Columbia-0 (Col-0), 355::CBP60g (Wan et al., 2012) and

315  35S::SARD1 seeds (Kim et al., 2022) were surface-sterilized with 70% ethanol for 10 minutes
316 and rinsed with autoclaved water. Seeds were suspended in sterile 0.1% agarose and

317 incubated in cold conditions (4°C) for three days. Seeds were sown into pots containing

318 autoclaved soil mix — one-part Promix-PGX soil (Plant Products, Ancaster, Ontario), one-part
319  Turface (Turface Athletics, Buffalo Grove, IL), and one-part Vermiculite Prolite (Therm-O-Rock,
320 New Eagle, PA) — supplemented with 100mL of Miracle-Gro solution (The Scotts Company,
321  Mississauga, ON). Tomato (Solanum lycopersicum) cultivar Castlemart plants were grown as
322  described previously (Shivnauth et al., 2023). Rapeseed (Brassica napus) cultivar Westar plants
323  were grown as described previously (Kim et al., 2022). Plants were grown in environmentally
324  controlled chambers at 23°C with 60% relative humidity and 12h light [100 £ 20 umolm2s7']/12
325  dark cycle.

326
327  Plant systemic immunity and SAR assays

328 Four-week-old Arabidopsis plants were covered with plastic domes to increase humidity
329 and open the stomata 24 hours before infiltration, Plants were infiltrated with 0.25 mM MgCl-
330  (mock), Pst DC3000 (OD600=0.02) or Pst DC3000/AvrRpt2 (OD600=0.02) in their lower leaves
331 (Xinetal., 2013; Xin et al., 2018). Following infiltration, plants were further incubated in

332  environmentally growth chambers at either 23°C or 28°C with identical relative humidity (60%)
333 and lighting conditions (12h light/12 dark). For SAR disease assays, upper systemic leaves
334  were orinfiltrated with Pst DC3000 (OD600 = 0.001). Bacterial levels were quantified 3 days
335  after systemic infiltration based on a previously published protocol (Huot et al., 2017; Kim et al.,

13


https://doi.org/10.1101/2023.10.31.564368
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.31.564368; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

336  2022). Briefly, in planta bacterial extracts were plated on rifampicin-containing LM media and
337  log colony forming units (CFUs) cm were calculated.

338
339  Pip treatment and protection assay

340 Four-week-old Arabidopsis plants were infiltrated with mock solution or 1 mM Pip (Sigma)
341 intheir lower leaves. In parallel to direct Pip infiltration into leaves, plants were irrigated with 1
342  mL of mock solution or 1 mM Pip (Sigma) for root inoculations. Following infiltration or irrigation,
343  plants were further incubated in environmentally growth chambers at either 23°C or 28°C with
344 identical relative humidity (60%) and lighting conditions (12h light/12 dark). After two days, the
345  Pip-treated leaves (for local Pip infiltration) or upper systemic leaves (for root irrigation) were
346  further infiltrated with Pst DC3000 (OD600 = 0.001). Bacterial levels were quantified 3 days
347  after systemic infiltration as stated in the previous section.

348
349  Gene expression analyses

350 Pathogen-infected leaves and upper systemic leaves at either 23°C or 28°C were

351 harvested at 1 or 2 days after local infection, respectively. Tissues were flash-frozen in liquid
352 nitrogen and stored at -80°C before total RNA extraction. Gene expression levels were

353 quantified based on a previously published protocol (Huot et al., 2017; Kim et al., 2022) with
354  slight modifications. RNA was extracted from flash-frozen plant tissues using the Qiagen Plant
355  RNeasy Mini Kit (Qiagen, Toronto, ON) or TRIzol Reagent (Aidlab Biotech, China) according to
356  the manufacturer’s protocol. Resulting cDNA was synthesized using qScript cDNA super mix
357  (Quantabio) or M-MLV reverse transcriptase (RT, Vazyme Biotech, China) based on

358  manufacturers’ recommendations. Real-time quantitative polymerase chain reaction (QPCR)
359  was performed using PowerTrack SYBR Green master mix (Life Technologies) or iTag™

360  Universal SYBR® Green Supermix (Bio-Rad, USA) with approximately 1.5-10 ng of template
361 cDNA. Equivalently diluted mRNA without the qScript cDNA mix were used as negative

362  controls. The resulting gPCR mixes were run using the Applied Biosystems QuantStudio3

363 platform (Life Technologies) or CFX96 Real-Time PCR Detection System (Bio-Rad, USA). The
364 individual Ct values were determined for target genes and the internal control gene: PP2AAS3 for
365  Arabidopsis; SIACTZ2 for tomato and BnaGDI1 for rapeseed (Huot et al., 2017; Kim et al., 2022;
366  Shivnauth et al., 2023). Gene expression values were reported as 272, where ACt is Ctiarget
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367  gene—Clinternal control gene. QPCR was carried out with three technical replicates for each biological
368 sample. Primers used for gPCR are shown in Supplementary Table 1.

369
370  Pip metabolite extraction and quantification

371 Pathogen-infected leaves at 23°C or 28°C were harvested at 1 day after infection. Pip
372  extraction and quantification were performed based on previous reports with slight modifications
373  (Yao et al., 2023). Approximately 100 mg leaf tissue was frozen and ground in liquid nitrogen,
374  and Pip was extracted at 4°C for 1h in 600 uL ice-cold extraction buffer (80% methanol in water,
375 0.1 g/L butylated hydroxytoluene). The extraction step was repeated twice, and a 1.2-mL

376  supernatant was speed-dried in a vacuum centrifugal concentrator (Beijing JM Technology).
377  The pellet was resuspended in 240 puL 30% methanol solution and diluted 10 times for

378  quantification. Pip level was quantified using the AB SCIEX QTARP 5500 LC/MS/MS system.
379  Selected ion monitoring (SIM) was conducted in the positive ES channel for Pip (m/z

380 130.0>84.0), which was done using a 20V collision energy and a 50V declustering potential.
381  The instrument control and data acquisition were performed using Analyst 1.6.3 software (AB
382  SCIEX), and data processing was performed using MultiQuant 3.0.2 software (AB SCIEX). Pip
383  was separated with an ACQUITY UPLC BEH Amide column (1.7 um, 2.0 x 100 mm, Waters)
384  using the method in Supplementary Table 2. Pip levels were quantified by calculating the area
385  of each individual peak and comparing it to standard curves. Reported Pip concentration was
386  normalized by sample fresh weight (FW) in gram.

387
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