

1 **Warm temperature suppresses plant systemic acquired**
2 **resistance by intercepting the N-hydroxypipelicolic acid**
3 **immune pathway**

4 **Authors:** Alyssa Shields¹, Lingya Yao², Jong Hum Kim^{3,4,5}, Wasan Mudher Abo Al-
5 Timmen^{1,6}, Sha Li⁷, Eric J. R. Marchetta¹, Vanessa Shivnauth¹, Tao Chen⁷, Sheng Yang
6 He^{3,4}, Xiufang Xin², and Christian Danve M. Castroverde^{1,*}

7

8 **Affiliations:**

9 ¹Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

10 ²National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in
11 Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy
12 of Sciences, Shanghai 200032, China

13 ³Department of Biology, Duke University, Durham, North Carolina, USA 27708

14 ⁴Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
15 27708

16 ⁵Department of Life Sciences, Pohang University of Science and Technology, Pohang
17 University of Science and Technology, Pohang 37673, Republic of Korea

18 ⁶Department of Biology, College of Science, University of Babylon, Babylon, Iraq

19 ⁷State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University,
20 Wuhan, China

21 *Corresponding Author: dcastroverde@wlu.ca (ORCID: 0000-0002-9982-8451)

22

23 **Running Title:** Temperature regulation of plant SAR

24 **Abstract**

25 Climate warming influences disease development by targeting critical components of the plant
26 immune system, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI)
27 and production of the central defence hormone salicylic acid (SA) at the primary pathogen
28 infection site. However, it is not clear if and/or how temperature impacts systemic immunity.
29 Here we show that pathogen-triggered systemic acquired resistance (SAR) in *Arabidopsis*
30 *thaliana* is suppressed at elevated temperature. This was accompanied by global
31 downregulation of SAR-induced genes at elevated temperature. Abolished SAR under warmer
32 conditions was associated with reduced biosynthesis of the SAR metabolite *N*-hydroxypipelicolic
33 acid (NHP) in *Arabidopsis* and other plant species, as demonstrated by downregulation of NHP
34 biosynthetic genes (*ALD1* and *FMO1*) and NHP precursor pipelicolic acid (Pip) levels. Although
35 multiple SAR signals have been shown previously, exogenous Pip was sufficient to restore
36 disease protection at elevated temperature, indicating that heat-mediated SAR suppression is
37 due to Pip-NHP downregulation. Along with *ALD1* and *FMO1*, systemic expression of the SA
38 biosynthetic gene *ICS1* was also suppressed at warm temperature. Finally, we define a
39 transcriptional network controlling thermosensitive NHP pathway via the master transcription
40 factors CBP60g and SARD1. Our findings demonstrate that warm temperatures impact not only
41 local but also systemic immunity by impinging on the NHP pathway, providing a roadmap
42 towards engineering climate-resilient plant immune systems.

43 **Keywords:** Climate change, N-hydroxypipelicolic acid, plant hormone, plant immunity,
44 systemic acquired resistance, temperature

45

46 **Main Text**

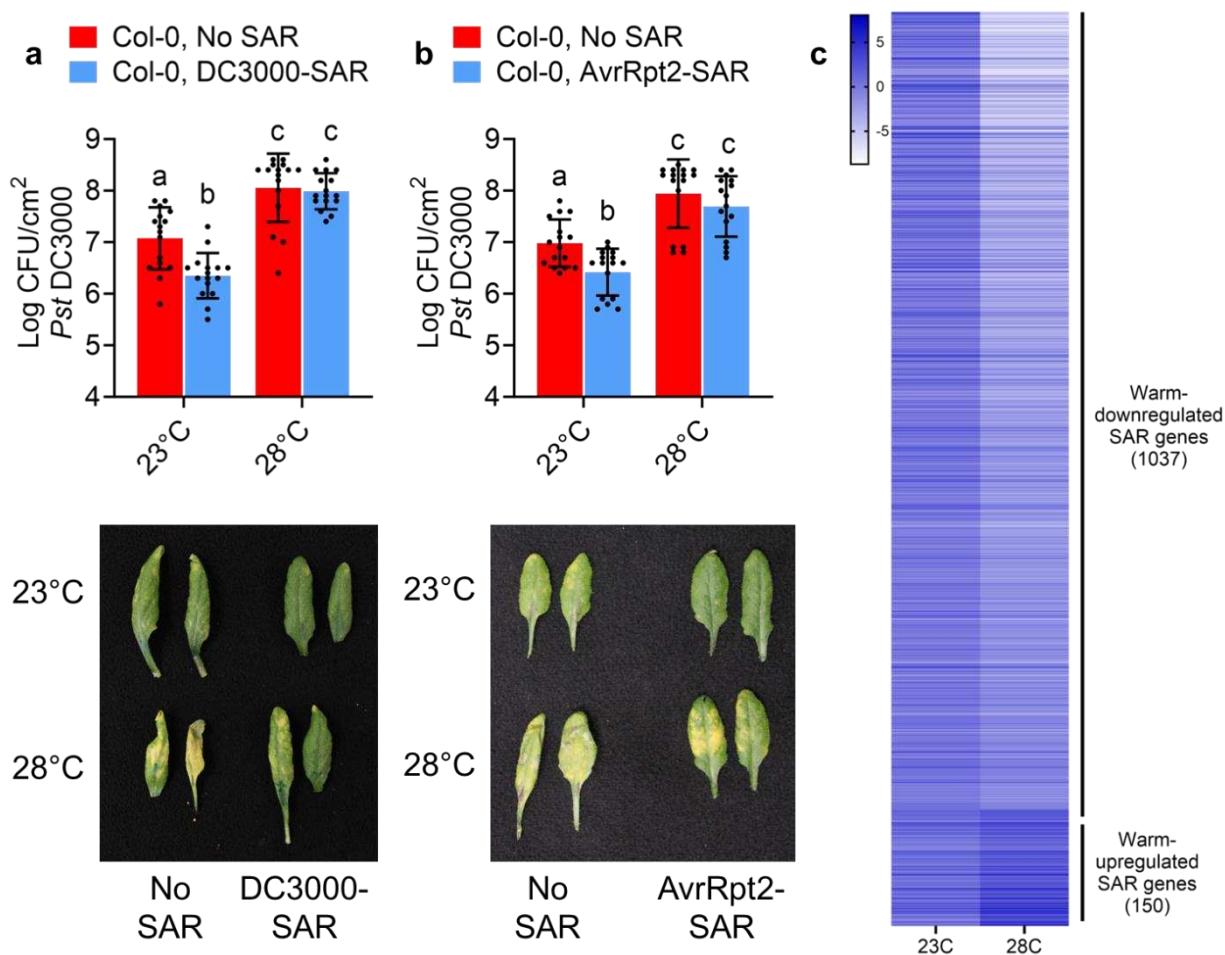
47 Warming global temperatures due to climate change pose serious threats to the natural
48 environment and human civilization (Altizer et al., 2016; Deutsch et al., 2018; Cavicchioli et al.,
49 2019; Delgado-Baquerizo et al., 2020). In agricultural systems, increasing average
50 temperatures are predicted to significantly reduce yields of the world's major crops (Zhao et al.,
51 2017; Chaloner et al., 2021; Singh et al., 2023). As many crop varieties are bred to be grown
52 outside the native growth ranges of their wild relatives, it is important to understand the impact

53 of elevated temperatures on plant growth, development, immunity and phenology. Together with
54 other environmental factors, temperature profoundly affects various aspects of plant physiology,
55 ranging from growth and development (Quint et al., 2016; Lippman et al., 2018; Hayes et al.,
56 2020; Vu et al., 2021; Castroverde and Dina, 2021) to stress responses and immunity
57 (Velasquez et al., 2018; Kim et al., 2021; Castroverde and Dina, 2021; Singh et al., 2023).
58 Environmentally compromised immune signaling is associated with increased plant disease
59 development, as postulated as the plant disease triangle (Stevens, 1960; Colhoun, 1973;
60 Roussin-Léveillée et al., 2023).

61 Elevated temperatures target various components of the plant immune system (Velasquez
62 et al., 2018; Cheng et al., 2019; Cohen and Leach, 2020; Kim et al., 2021), which encompass
63 both cell surface (transmembrane) and intracellular immune receptors (Jones and Dangl, 2006;
64 Zhou and Zhang, 2020; Kim and Castroverde, 2020; Ngou et al., 2022). Cell surface immune
65 receptors recognize apoplastic immunogenic molecules, typically conserved pathogen-
66 associated molecular patterns (PAMPs; Bigeard et al., 2015; Gust et al., 2017; DeFalco and
67 Zipfel, 2021), while intracellular nucleotide-binding leucine-rich receptors (NLRs) perceive
68 pathogen effectors and/or effector-induced host modifications (Cui et al., 2015; Jones et al.,
69 2016; Saur et al., 2021). There is evidence that warm temperatures lead to reduced abundance,
70 membrane localization or signaling of cell surface receptors (De Jong et al., 2002; Janda et al.,
71 2019; Hilleary et al., 2020) and perturbed nuclear localization or activation of certain NLRs (Zhu
72 et al., 2010; Mang et al., 2012; Cheng et al., 2013; Venkatesh and Kang, 2019).

73 Recent studies show that both PRR signaling and NLR signaling activate convergent
74 downstream signaling, including increased cytoplasmic calcium influx, oxidative burst,
75 phosphorylation cascades and production of defence hormone salicylic acid (SA), leading to
76 overlapping defence gene expression and metabolism at the primary infection site (Pieterse et
77 al., 2009; Ngou et al., 2021; Yuan et al., 2021). Previous research has shown that elevated
78 temperature suppresses pathogen-induced biosynthesis of the central defence hormone
79 salicylic acid (SA) (Malamy et al., 1992; Huot et al., 2017; Li et al., 2021; Kim et al., 2022; Rossi
80 et al., 2023), which aligns with temperature modulation of other plant hormones (Franklin et al.,
81 2011; Sun et al., 2012; Ibañez et al., 2018; Martínez et al., 2018; Ferrero et al., 2019; Bruessow
82 et al., 2021; Castroverde and Dina, 2021). Apart from resistance at the local infection site, SA is
83 also involved in systemic immunity known as systemic acquired resistance (SAR) (Fu and
84 Dong, 2013; Zhang and Li, 2019; Kachroo and Kachroo, 2020; Lim et al., 2020; Peng et al.,
85 2021). Primary infection and immune activation lead to SAR, which primes non-infected

86 systemic tissues against secondary infections (Cameron et al., 1994; Maldonado et al., 2002;
87 Fu and Dong, 2013; Yu et al., 2013; Vlot et al., 2021; Zeier, 2021). SAR is widely conserved
88 across the plant kingdom, leading to broad-spectrum host defences by rapidly generating
89 mobile signals at the infection site and transporting them throughout the plant (Carella et al.,
90 2016; Chen et al., 2018; Hartmann et al., 2018; Kachroo and Kachroo, 2020; Shine et al., 2022).


91 A major SAR signal is the immune-activating metabolite *N*-hydroxypipelicolic acid (NHP)
92 (Chen et al., 2018; Hartmann and Zeier, 2018; Hartmann et al., 2018). NHP has been shown to
93 induce SAR, and blocking its biosynthesis results in SAR abolishment (Song et al., 2004;
94 Mishina and Zeier, 2006; Jing et al., 2011; Navarova et al., 2012; Huang et al., 2020). NHP
95 biosynthesis follows three consecutive enzymatic reactions (Hartmann and Zeier, 2018),
96 involving the aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1; Zeier,
97 2013; Bernsdorff et al., 2016), the reductase SAR-DEFICIENT 4 (SARD4; Ding et al., 2016;
98 Hartmann et al., 2017) and *N*-hydroxylase FLAVIN-DEPENDENT MONOOXYGENASE 1
99 (FMO1), which converts pipelicolic acid (Pip) to *N*-hydroxypipelicolic acid (NHP; Chen et al., 2018;
100 Hartmann et al., 2018). *ALD1*, *SARD4* and *FMO1* gene expression and NHP levels are induced
101 systemically following pathogenic attack at a primary site (Song et al., 2004; Mishina and Zeier,
102 2006; Ding et al., 2016; Bernsdorff et al., 2016; Hartmann et al., 2017; Yildiz et al., 2021).

103 Currently, the impact of elevated temperature on plant systemic immunity is
104 underexplored. Although previous studies have shown that increased temperatures have a
105 negative effect on several aspects of the plant immune system that occur in the local/primary
106 sites of infection (like PTI, ETI and SA production), it is unknown if and how elevated
107 temperature affect NHP-mediated plant immunity and the SAR response. In our study, we show
108 that elevated temperature suppresses SAR-associated NHP biosynthetic gene expression and
109 Pip production. Because it has been shown that the NHP immune pathway is redundantly
110 controlled by the master transcription factors CALMODULIN-BINDING PROTEIN 60-LIKE G
111 (CBP60g) and SAR-DEFICIENT 1 (SARD1) (Sun et al., 2015; Sun et al., 2018; Huang et al.,
112 2020), we further found that warm temperature-suppressed plant systemic immunity is restored
113 by constitutive *CBP60g/SARD1* gene expression or exogenous Pip application. Collectively, our
114 study indicates that CBP60g and SARD1 control the temperature-vulnerability of *Arabidopsis*
115 systemic immunity by regulating Pip/NHP biosynthesis.

116 Results

117 Warm temperature affects systemic acquired resistance in *Arabidopsis* plants

118 To determine if SAR is affected by temperature, lower leaves of *Arabidopsis* Col-0 plants
119 were inoculated with the virulent bacterial pathogen *Pst* DC3000 as the primary challenge. Two
120 days after primary infection, upper systemic leaves were inoculated with the pathogen *Pst*
121 DC3000 as the secondary challenge. As shown in Figure 1a, primary pathogen infection
122 expectedly lowered the systemic bacterial counts after secondary pathogen challenge at 23°C
123 but not at 28°C in Col-0 plants. This indicates that *Arabidopsis* SAR due to local *Pst* DC3000
124 infection is effective at normal but not at elevated temperature, suggesting that temperature
125 regulates plant systemic immunity.

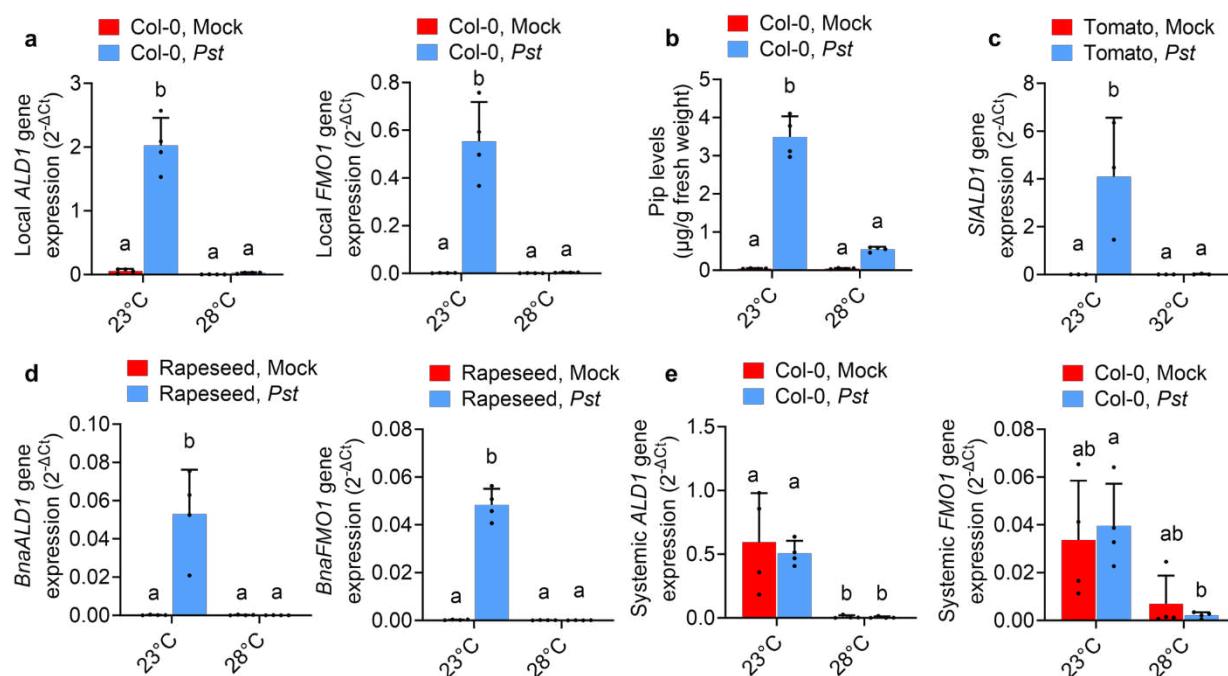
126

127 **Fig. 1** *Arabidopsis* SAR is suppressed at elevated temperature.

128 (A, B) Lower leaves of four-week-old *Arabidopsis* Col-0 plants were infiltrated with 0.25 mM MgCl₂ (mock) and *Pst*
129 DC3000 (OD600 = 0.02) in (A) or *Pst* DC3000/AvrRpt2 (OD600 = 0.02) in (B). Plants were then incubated at either
130 23°C or 28°C. Two days after primary local inoculation, upper systemic leaves were infiltrated with *Pst* DC3000
131 (OD600 = 0.001), and plants were incubated again at their respective temperatures (23°C or 28°C). Bacterial
132 numbers (upper panels) and symptom expression photos (lower panels) were taken at 3 days post-inoculation (dpi)
133 of systemic tissues. Data show the mean log CFU *Pst* DC3000/mL (± S.D.) and individual points (n=16 from 4
134 independent experiments) analyzed with two-way ANOVA and Tukey's Multiple Comparisons test. Statistical
135 differences of means are denoted by different letters. (C) Transcriptome analysis using SAR+ genes from Hartmann
136 et al. (2018) interfaced with temperature-regulated genes from Kim et al. (2022). The number of SAR+ genes that are
137 downregulated and upregulated at elevated temperature are shown (fold change cutoff > 2).

138

139 In addition to virulent pathogens, avirulent pathogens that induce local ETI can also
140 induce SAR (Cameron et al., 1994; Zeier, 2021). We therefore tested whether SAR activated by
141 the avirulent strain *Pst* DC3000/AvrRpt2, which activates RPS2-dependent immunity in Col-0
142 plants (Kunkel et al., 1993; Bent et al., 1994), is also impacted by warm conditions. As
143 expected, SAR was induced at normal temperature (23°C) after primary *Pst* DC3000/AvrRpt2
144 infection (Figure 1b). Strikingly, systemic *Pst* DC3000/AvrRpt2 levels remained similar
145 compared to mock treatment at elevated temperature (28°C), indicating that even ETI-induced
146 SAR protection is also negatively affected in *Arabidopsis* Col-0 plants at higher temperature.

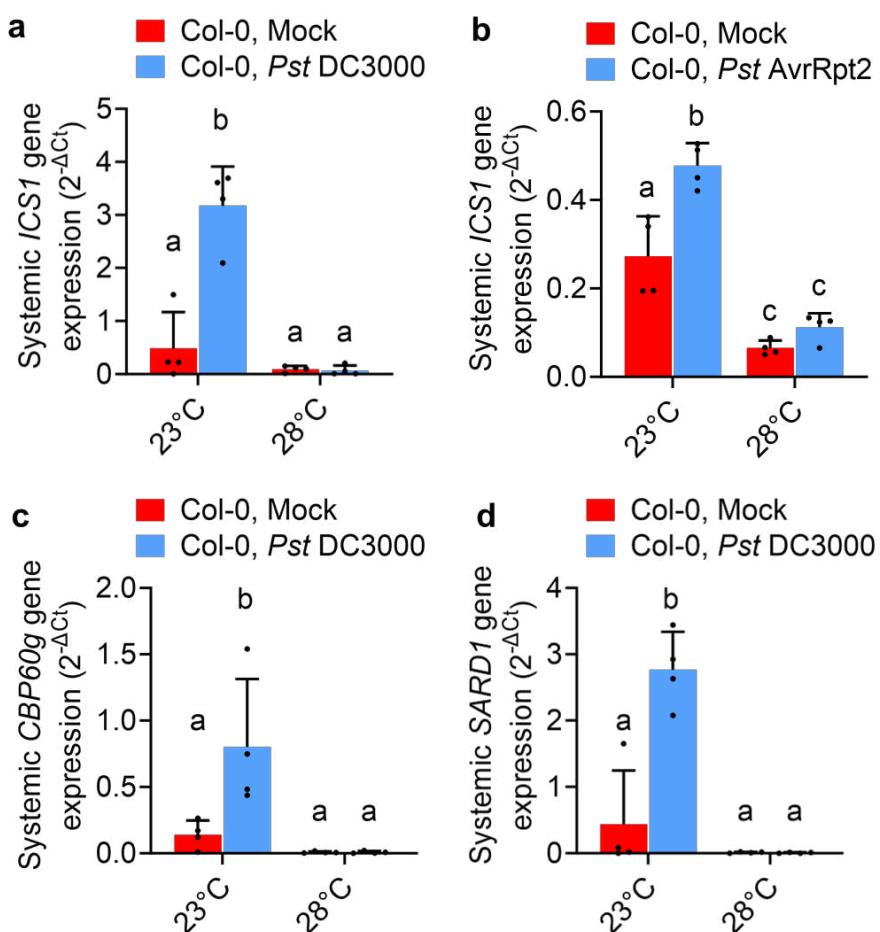

147 To further understand global SAR immune signaling, we analyzed a previously generated
148 *Arabidopsis* SAR transcriptome after virulent *P. syringae* infection (Hartmann et al., 2018). We
149 interfaced the SAR-induced (SAR+) genes from that study with our previously published
150 temperature-regulated transcriptome (Kim et al., 2022) and categorized *Arabidopsis* SAR+
151 genes into downregulated or upregulated genes at elevated temperature. As shown in Figure
152 1c, 1037 SAR+ genes were downregulated, while 151 SAR+ genes were upregulated at
153 elevated temperatures. This demonstrates that a significant majority of temperature-regulated
154 SAR genes exhibit downregulated expression at elevated temperature, consistent with loss of
155 systemic protection against secondary infection at 28°C (Figures 1a-b). Overall, our collective
156 results indicate the *Arabidopsis* SAR induced by both virulent and avirulent pathogens are
157 negatively impacted by warm temperatures.

158

159 **The N-hydroxypipelicolic acid pathway is downregulated by elevated temperature**

160 To determine the mechanism of how temperature regulates systemic immunity, we
161 measured expression levels of genes required for biosynthesis of NHP, which is an immune-

162 activating metabolite crucial for SAR (Hartmann et al., 2018; Chen et al., 2018). As shown in
163 Figure 2a, transcript levels of *ALD1* and *FMO1* in local (primary) leaves of *Arabidopsis* Col-0
164 plants at 1 day post-infection with *Pst* DC3000 were lower at 28°C than at 23°C. In agreement,
165 pathogen-induced levels of the NHP precursor metabolite Pip were also lower at the warmer
166 temperature (Figure 2b). Similar trends in warm temperature-suppression of NHP biosynthetic
167 gene expression was observed in tomato and rapeseed plants (Figures 2c-d). Finally, as shown
168 in Figure 2e, systemic (uninfected) leaves of *Arabidopsis* plants at 2 dpi exhibited lower *ALD1*
169 and *FMO1* gene expression levels at 28°C compared to those at 23°C. Taken together, these
170 results indicate that elevated temperature impacts NHP biosynthesis in various plants species,
171 which is associated with loss of SAR at higher temperatures.



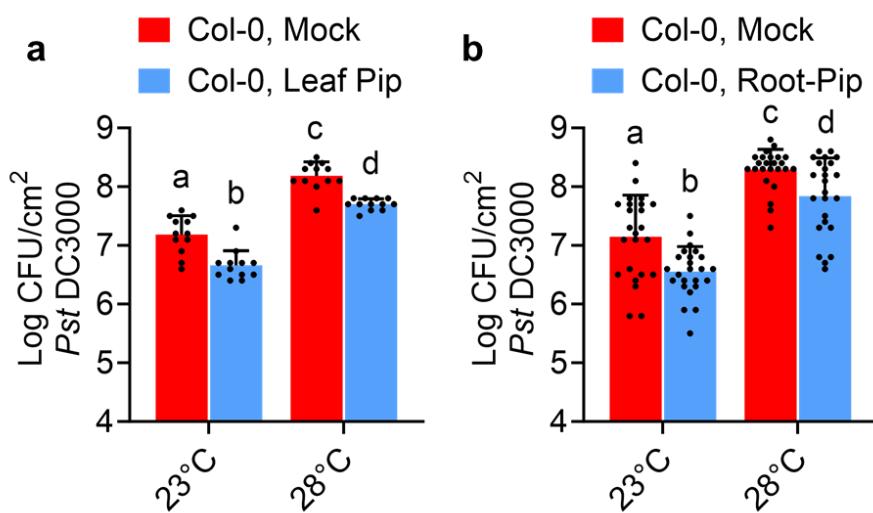
172
173 **Fig. 2 Plant NHP biosynthetic gene expression and Pip production are suppressed at elevated temperature.**

174 (A-B) Leaves of four-week-old *Arabidopsis* Col-0 plants were infiltrated with 0.25 mM MgCl₂ (mock) or *Pst* DC3000
175 (OD600 = 0.001). Plants were then incubated at either 23°C or 28°C. (A) *ALD1* and *FMO1* transcript levels and (B)
176 Pip levels of pathogen-inoculated tissues were measured at 1 day post-inoculation (dpi). (C) Leaves of four-week-old
177 tomato cultivar Castlemart plants were infiltrated with 0.25 mM MgCl₂ (mock) or *Pst* DC3000 (OD600 = 0.001).
178 *SiALD1* transcript levels of pathogen-inoculated tissues were measured at 1 dpi. (D) Leaves of 4- to 5-week-old
179 rapeseed cultivar Westar plants were infiltrated with 0.25 mM MgCl₂ (mock) or *Pst* DC3000 (OD600 = 0.0001).
180 *BnaALD1* and *BnaFMO1* transcript levels of pathogen-inoculated tissues were measured at 1 dpi. (E) Lower leaves
181 of four-week-old *Arabidopsis* Col-0 plants were infiltrated with 0.25 mM MgCl₂ (mock) or *Pst* DC3000 (OD600 = 0.02).
182 Plants were then incubated at either 23°C or 28°C. *ALD1* and *FMO1* transcript levels in upper systemic tissues
183 were measured at 2 dpi. Data show the means (\pm S.D.) and individual points (n=3 to 4) analyzed with two-way
184 ANOVA and Tukey's Multiple Comparisons test. Statistical differences of means are denoted by different letters.
185 Experiments were performed at least two times with reproducible results.

186

187 Because SA is functionally linked and mutually amplified with Pip and NHP during plant
188 systemic immunity (Hartmann and Zeier, 2019; Huang et al., 2020; Zeier, 2021; Shields et al.,
189 2022), we also measured SA biosynthetic gene expression in upper, systemic leaves after
190 primary pathogen challenge. As shown in Figures 3a and 3b, systemic expression of the SA
191 biosynthetic gene *ICS1* (Wildermuth et al., 2001) was induced at 2 days after virulent *Pst*
192 DC3000 or avirulent *Pst* DC3000/AvrRpt2 inoculation at 23°C. However, *ICS1* transcript levels
193 in systemic tissues were comparable between mock and pathogen treatments at 28°C (Figures
194 3a-b), suggesting that elevated temperature downregulates SA accumulation systemically.
195 Altogether, these results demonstrate that the SA biosynthetic pathway is suppressed at higher
196 temperature similarly as NHP. This suggests that mutual amplification of these two important
197 SAR-associated metabolites is negatively affected when temperatures increase.

198


199 **Fig. 3 Systemic SA biosynthetic gene expression is suppressed at elevated temperature.**

200 Lower leaves of four-week-old *Arabidopsis* Col-0 plants were infiltrated with 0.25 mM MgCl₂ (mock), *Pst* DC3000
201 (OD600 = 0.02) or *Pst* DC3000 AvrRpt2 (OD600=0.02). Plants were then incubated at either 23°C or 28°C. (A-B)
202 *ICS1* transcript levels were measured in systemic tissues using RT-qPCR at 2 days post-inoculation (dpi) with *Pst*
203 DC3000 or *Pst* DC3000 AvrRpt2, respectively. (C-D) *CBP60g* and *SARD1* transcript levels were measured in
204 systemic tissues at 2 dpi with *Pst* DC3000. Data show the means (\pm S.D.) and individual points (n=4) analyzed with
205 two-way ANOVA and Tukey's Multiple Comparisons test. Statistical differences of means are denoted by different
206 letters. Experiments were performed two times with reproducible results.

207

208 **Local or systemic application of exogenous Pip restores *Arabidopsis* immune
209 priming at elevated temperature**

210 Having observed that Pip levels were suppressed at elevated temperature, we
211 hypothesized that exogenous supplementation with Pip may restore disease protection at 28°C
212 if Pip production is the rate-limiting step at elevated temperature. We infiltrated leaves of
213 *Arabidopsis* plants with mock or 1 mM Pip and then infected the same leaves with *Pst* DC3000.
214 As shown in Figure 4a, pathogen levels were reduced after Pip treatment compared to mock
215 treatment at 23°C, expectedly indicating that Pip is sufficient to induce immune priming.
216 Remarkably, Pip-induced disease protection was maintained at 28°C (Figure 4a), which
217 confirms that Pip-NHP production is the rate-limiting step in SAR at elevated temperature.

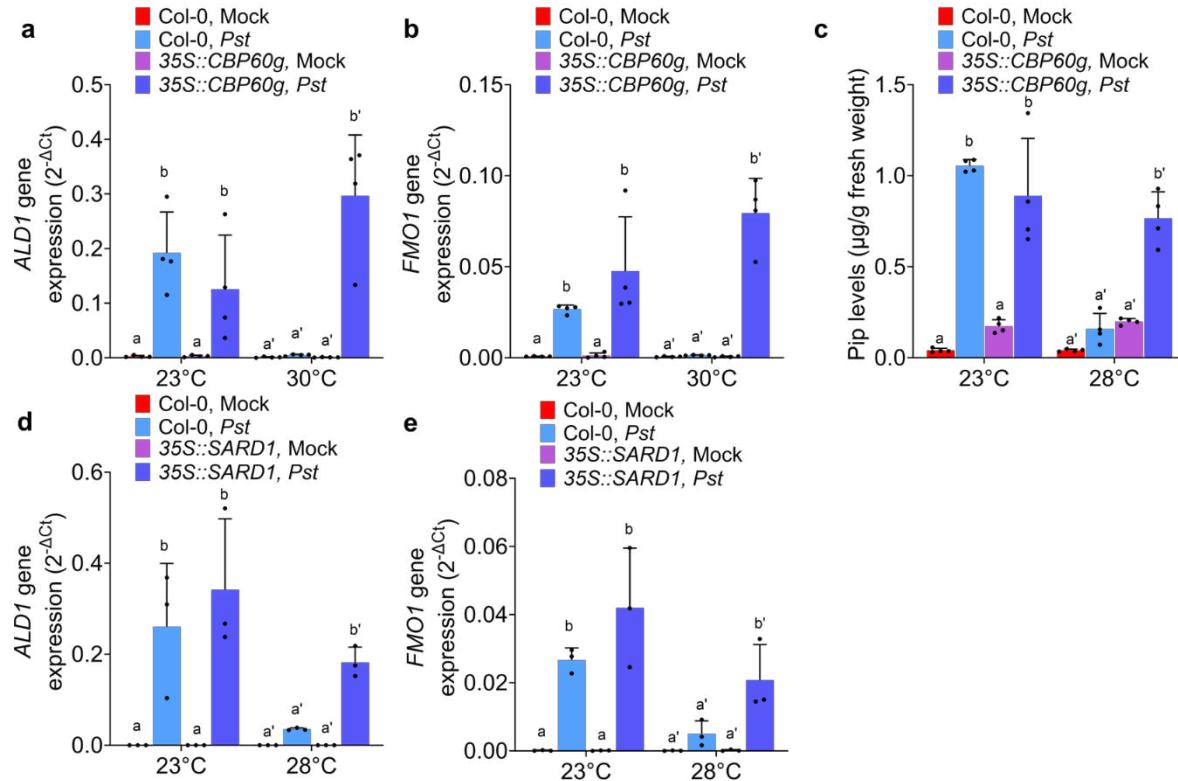
218

219 **Fig. 4 Exogenous Pip treatment restores *Arabidopsis* immune priming at warm temperature.**

220 Four-week-old *Arabidopsis* Col-0 plants were treated with mock or 1mM Pip solution by leaf-infiltration (A) or root-
221 drenching (B). Plants were then incubated at either 23°C or 28°C. Two days after Pip treatment, leaves were
222 infiltrated with *Pst* DC3000 (OD600 = 0.001), and plants were incubated again at their respective temperatures (23°C
223 or 28°C). Bacterial numbers were quantified at 3 days post-inoculation (dpi). Data show the mean log CFU *Pst*
224 DC3000/mL (\pm S.D.) and individual points (n=12 from 3 independent experiments in A; n=24 from 6 independent

225 experiments in B) analyzed with two-way ANOVA and Tukey's Multiple Comparisons test. Statistical differences of
226 means are denoted by different letters.

227


228 To determine if elevated temperature also affects systemic Pip-mediated disease
229 protection, we irrigated *Arabidopsis* roots with mock or 1 mM Pip two days before infiltrating the
230 leaves with *Pst* DC3000. Similar to the results with Pip-induced disease protection by leaf
231 infiltration, we also observed reduced pathogen levels after Pip root irrigation at both 23°C and
232 28°C (Figure 4b). These results indicate that the temperature-suppression of the Pip-NHP
233 pathway is governed at the level of biosynthesis and not systemic transport.

234

235 ***CBP60g* and *SARD1* control temperature-vulnerability of the NHP-SAR pathway**

236 In addition to chemical supplementation, we next investigated if we could restore
237 systemic immune responses genetically at warm temperatures. We recently showed that
238 *CBP60g* and its functionally redundant paralog *SARD1* control the temperature-sensitivity of
239 plant basal resistance and pathogen-induced SA biosynthesis (Kim et al., 2022). We therefore
240 investigated whether *CBP60g* and *SARD1* also control temperature-sensitive systemic defence
241 responses. As shown in Figure 3c-d, *CBP60g* and *SARD1* transcript levels are induced
242 systemically after local *Pst* DC3000 challenge at 23°C, but this systemic induction is lost at
243 28°C. These suggest that the loss of systemic immunity at elevated temperature could be due to
244 significantly decreased *CBP60g* and *SARD1* gene expression.

245 To show a causative role for *CBP60g*/*SARD1* downregulation with NHP immune
246 pathway suppression, we used plants constitutively expressing *CBP60g* (35S::*CBP60g*) or
247 *SARD1* (35S::*SARD1*). As shown in Figures a-c, 35S::*CBP60g* lines restored NHP biosynthetic
248 gene expression (*ALD1*, *FMO1*) and Pip levels at 28°C in contrast to the wild-type Col-0 plants.
249 Consistent with this, constitutive expression of the functionally redundant *SARD1* gene in
250 35S::*SARD1* plants also led to restored expression of *ALD1* and *FMO1* at warm temperature
251 (Figure 5d-e). Taken together, a major mechanism by which higher temperatures target plant
252 systemic immunity and NHP biosynthesis is through the expression of the master immune
253 transcription factor genes *CBP60g* and *SARD1*.

254

255 **Fig. 5 CBP60g and SARD1 control the temperature-vulnerability of NHP-mediated immunity.**

256 Leaves of four-week-old *Arabidopsis* Col-0 and 35S::CBP60g (A-C) or 35S::SARD1 plants (D-E) were infiltrated with
 257 0.25 mM MgCl₂ (mock) or *Pst* DC3000 (OD₆₀₀ = 0.001). Plants were then incubated at either 23°C or 28°C. (A)
 258 ALD1 and (B) FMO1 transcript levels were measured using RT-qPCR at 1 day post-inoculation (dpi) of pathogen-
 259 inoculated tissues of Col-0 and 35S::CBP60g plants. (C) Pip levels were measured at 1 dpi in the same tissues. (D)
 260 ALD1 and (E) FMO1 transcript levels were measured at 1 day post-inoculation (dpi) of pathogen-inoculated tissues of
 261 Col-0 and 35S::SARD1 plants. Data show the means (± S.D.) and individual points (n=4 in A-C; n=3 in D-E), with
 262 experiments performed three times with reproducible results. Statistical analyses were conducted using two-way
 263 ANOVA with Tukey's Multiple Comparisons test, with statistically significant differences of means denoted by different
 264 letters.

265

266 Discussion

267 In this study, we showed that pathogen-induced SAR and the SAR-activating NHP
 268 pathway in *Arabidopsis* plants are sensitive to elevated temperatures. Local infection with both
 269 virulent or ETI-activating avirulent pathogens triggers SAR at normal temperatures but not at
 270 elevated temperatures. We showed that SAR regulation by temperature is caused by
 271 temperature-sensitive NHP pathway in local and systemic tissues. SAR-induced NHP
 272 biosynthetic gene expression and/or Pip levels are downregulated at elevated temperature.
 273 Even though multiple SAR signals have been proposed previously (Fu and Dong, 2013;

274 Návarová, et al., 2012; Hartmann et al., 2018; Wang, et al., 2018; Vlot et al., 2021; Zeier, 2021),
275 we show here that exogenous supplementation with the NHP precursor Pip (locally and
276 systemically) was sufficient to restore SAR at elevated temperature. This demonstrates a
277 causative relationship between temperature-suppressed Pip-NHP pathway and SAR.

278 Because NHP primes systemic SA biosynthesis and immunity (Yildiz et al., 2021; Zeier,
279 2021), we also observed that systemic SA biosynthetic gene expression is downregulated by
280 elevated temperature. SA induction is also important for SAR establishment since SA induction
281 deficient *sid2* and SA-insensitive *npr1* mutants also have abolished SAR (Fu and Dong, 2013;
282 Huang et al., 2020; Peng et al., 2021). Temperature-suppressed systemic SA pathway agrees
283 with our previous study showing a negative impact of higher temperatures on local pathogen-
284 induced SA biosynthesis and basal resistance (Huot et al., 2017; Kim et al., 2022). However, we
285 found that Pip supplementation alone can rescue SAR at elevated temperature, suggesting that
286 Pip-NHP signaling is sufficient in inducing SAR.

287 We previously showed that CBP60g and SARD1 controls the temperature-vulnerability of
288 local pathogen-induced SA biosynthesis (Kim et al., 2022). Functionally redundant paralogs
289 CBP60g and SARD1 are master transcription factors that directly target the promoters of
290 numerous immunity-related genes (Wang et al., 2009; Zhang et al., 2010; Wang et al., 2011;
291 Sun et al., 2015, Sun et al., 2018), including those important for SA biosynthesis (like *ICS1*) and
292 NHP biosynthesis (like *ALD1* and *FMO1*). In this study, we further demonstrate that CBP60g
293 and SARD1 control the temperature-regulation of NHP biosynthesis and systemic immunity.
294 Expression of *CBP60g* and *SARD1* in systemic tissues are downregulated at elevated
295 temperature, which is associated with suppressed NHP pathway. Restoring systemic *CBP60g*
296 or *SARD1* expression using constitutively expressing 35S::*CBP60g* or 35S::*SARD1* plants
297 rescues NHP biosynthetic gene expression and Pip levels under warming conditions.

298 Overall, changing climatic factors like elevated temperature have a broad and significant
299 impact on the plant immune system, not only at local sites of infection (PTI, ETI, SA) but also on
300 systemic immune priming in distal sites via the central SAR metabolite NHP. In this study, we
301 determined that elevated temperature regulates SAR by influencing NHP pathway. We further
302 demonstrated that this temperature-regulation of NHP-mediated SAR is also controlled by the
303 temperature-sensitive master regulators CBP60g and SARD1, reminiscent of their roles in local
304 immune responses (Kim et al., 2022). Not only does temperature affect the plant's ability to
305 directly defend against pathogen attacks but also the plant's immune preparedness for future

306 infections. Our discoveries advance our understanding of how the plant immune landscape is
307 regulated by a changing environment. This foundational mechanistic knowledge of the plant
308 disease triangle is important to inform strategies in mitigating the negative impacts of warming
309 temperatures on plant health and to provide a molecular roadmap towards engineering climate-
310 resilient plants.

311

312 **Materials and Methods**

313 **Plant materials and growth conditions**

314 *Arabidopsis thaliana* Columbia-0 (Col-0), 35S::CBP60g (Wan et al., 2012) and
315 35S::SARD1 seeds (Kim et al., 2022) were surface-sterilized with 70% ethanol for 10 minutes
316 and rinsed with autoclaved water. Seeds were suspended in sterile 0.1% agarose and
317 incubated in cold conditions (4°C) for three days. Seeds were sown into pots containing
318 autoclaved soil mix – one-part Promix-PGX soil (Plant Products, Ancaster, Ontario), one-part
319 Turface (Turface Athletics, Buffalo Grove, IL), and one-part Vermiculite Prolite (Therm-O-Rock,
320 New Eagle, PA) – supplemented with 100mL of Miracle-Gro solution (The Scotts Company,
321 Mississauga, ON). Tomato (*Solanum lycopersicum*) cultivar Castlemart plants were grown as
322 described previously (Shivnauth et al., 2023). Rapeseed (*Brassica napus*) cultivar Westar plants
323 were grown as described previously (Kim et al., 2022). Plants were grown in environmentally
324 controlled chambers at 23°C with 60% relative humidity and 12h light [100 ± 20 $\mu\text{mol m}^{-2} \text{s}^{-1}$]/12
325 dark cycle.

326

327 **Plant systemic immunity and SAR assays**

328 Four-week-old *Arabidopsis* plants were covered with plastic domes to increase humidity
329 and open the stomata 24 hours before infiltration. Plants were infiltrated with 0.25 mM MgCl₂
330 (mock), *Pst* DC3000 (OD600=0.02) or *Pst* DC3000/AvrRpt2 (OD600=0.02) in their lower leaves
331 (Xin et al., 2013; Xin et al., 2018). Following infiltration, plants were further incubated in
332 environmentally growth chambers at either 23°C or 28°C with identical relative humidity (60%)
333 and lighting conditions (12h light/12 dark). For SAR disease assays, upper systemic leaves
334 were infiltrated with *Pst* DC3000 (OD600 = 0.001). Bacterial levels were quantified 3 days
335 after systemic infiltration based on a previously published protocol (Huot et al., 2017; Kim et al.,

336 2022). Briefly, in planta bacterial extracts were plated on rifampicin-containing LM media and
337 log colony forming units (CFUs) cm^{-2} were calculated.

338

339 **Pip treatment and protection assay**

340 Four-week-old *Arabidopsis* plants were infiltrated with mock solution or 1 mM Pip (Sigma)
341 in their lower leaves. In parallel to direct Pip infiltration into leaves, plants were irrigated with 1
342 mL of mock solution or 1 mM Pip (Sigma) for root inoculations. Following infiltration or irrigation,
343 plants were further incubated in environmentally growth chambers at either 23°C or 28°C with
344 identical relative humidity (60%) and lighting conditions (12h light/12 dark). After two days, the
345 Pip-treated leaves (for local Pip infiltration) or upper systemic leaves (for root irrigation) were
346 further infiltrated with *Pst* DC3000 (OD600 = 0.001). Bacterial levels were quantified 3 days
347 after systemic infiltration as stated in the previous section.

348

349 **Gene expression analyses**

350 Pathogen-infected leaves and upper systemic leaves at either 23°C or 28°C were
351 harvested at 1 or 2 days after local infection, respectively. Tissues were flash-frozen in liquid
352 nitrogen and stored at -80°C before total RNA extraction. Gene expression levels were
353 quantified based on a previously published protocol (Huot et al., 2017; Kim et al., 2022) with
354 slight modifications. RNA was extracted from flash-frozen plant tissues using the Qiagen Plant
355 RNeasy Mini Kit (Qiagen, Toronto, ON) or TRIzol Reagent (Aidlab Biotech, China) according to
356 the manufacturer's protocol. Resulting cDNA was synthesized using qScript cDNA super mix
357 (Quantabio) or M-MLV reverse transcriptase (RT, Vazyme Biotech, China) based on
358 manufacturers' recommendations. Real-time quantitative polymerase chain reaction (qPCR)
359 was performed using PowerTrack SYBR Green master mix (Life Technologies) or iTaq™
360 Universal SYBR® Green Supermix (Bio-Rad, USA) with approximately 1.5-10 ng of template
361 cDNA. Equivalently diluted mRNA without the qScript cDNA mix were used as negative
362 controls. The resulting qPCR mixes were run using the Applied Biosystems QuantStudio3
363 platform (Life Technologies) or CFX96 Real-Time PCR Detection System (Bio-Rad, USA). The
364 individual Ct values were determined for target genes and the internal control gene: *PP2AA3* for
365 *Arabidopsis*; *SIACT2* for tomato and *BnaGDI1* for rapeseed (Huot et al., 2017; Kim et al., 2022;
366 Shivnauth et al., 2023). Gene expression values were reported as $2^{-\Delta\text{Ct}}$, where ΔCt is $\text{Ct}_{\text{target}}$

367 gene–Ct_{internal control gene}. qPCR was carried out with three technical replicates for each biological
368 sample. Primers used for qPCR are shown in Supplementary Table 1.

369

370 **Pip metabolite extraction and quantification**

371 Pathogen-infected leaves at 23°C or 28°C were harvested at 1 day after infection. Pip
372 extraction and quantification were performed based on previous reports with slight modifications
373 (Yao et al., 2023). Approximately 100 mg leaf tissue was frozen and ground in liquid nitrogen,
374 and Pip was extracted at 4°C for 1h in 600 µL ice-cold extraction buffer (80% methanol in water,
375 0.1 g/L butylated hydroxytoluene). The extraction step was repeated twice, and a 1.2-mL
376 supernatant was speed-dried in a vacuum centrifugal concentrator (Beijing JM Technology).
377 The pellet was resuspended in 240 µL 30% methanol solution and diluted 10 times for
378 quantification. Pip level was quantified using the AB SCIEX QTARP 5500 LC/MS/MS system.
379 Selected ion monitoring (SIM) was conducted in the positive ES channel for Pip (m/z
380 130.0>84.0), which was done using a 20V collision energy and a 50V declustering potential.
381 The instrument control and data acquisition were performed using Analyst 1.6.3 software (AB
382 SCIEX), and data processing was performed using MultiQuant 3.0.2 software (AB SCIEX). Pip
383 was separated with an ACQUITY UPLC BEH Amide column (1.7 µm, 2.0 x 100 mm, Waters)
384 using the method in Supplementary Table 2. Pip levels were quantified by calculating the area
385 of each individual peak and comparing it to standard curves. Reported Pip concentration was
386 normalized by sample fresh weight (FW) in gram.

387

388 **Reference List**

- 389 1. Altizer, S., Ostfeld, R.S., Johnson, P.T., Kutz, S., Harvell, C.D. (2013) Climate change and
390 infectious diseases: from evidence to a predictive framework. *Science*. 341(6145):514-9.
- 391 2. Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J.,
392 Staskawicz, B.J. (1994). RPS2 of *Arabidopsis thaliana*: a leucine-rich repeat class of plant
393 disease resistance genes. *Science*. 265(5180):1856-60.
- 394 3. Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A., Zeier, J. (2016).
395 Pipericolic Acid Orchestrates Plant Systemic Acquired Resistance and Defence Priming via
396 Salicylic Acid-Dependent and -Independent Pathways. *The Plant Cell*. 28(1): 102-129.

397 4. Bigeard J., Colcombet J., Hirt H. (2015). Signaling Mechanisms in Pattern-Triggered
398 Immunity (PTI). *Mol. Plant.* 8, 521–539.

399 5. Bruessow, F. et al. (2021) Natural variation in temperaturemodulated immunity uncovers
400 transcription factor bHLH059 as a thermoresponsive regulator in *Arabidopsis thaliana*. *PLoS
401 Genet.* 17, e1009290

402 6. Cameron, R.K., Dixon, R.A., Lamb, C.J. (1994) Biologically induced systemic acquired
403 resistance in *Arabidopsis thaliana*. *Plant J.* 5: 715-725.

404 7. Carella, P., Merl-Pham, J., Wilson, D.C., Dey, S., Hauck, S.M., Vlot, A.C., Cameron, R.K.
405 (2016). Comparative Proteomics Analysis of Phloem Exudates Collected during the
406 Induction of Systemic Acquired Resistance. *Plant Physiol.* 171(2):1495-510.

407 8. Castroverde, C. D. M., Dina, D. (2021). Temperature regulation of plant hormone signaling
408 during stress and development. *J. Exp. Bot.* 72, 7436–7458.

409 9. Cavigchioli, R., Ripple, W.J., Timmis, K.N. et al. (2019). Scientists' warning to humanity:
410 microorganisms and climate change. *Nat. Rev. Microbiol.* 17, 569–586.

411 10. Chaloner, T.M. et al. (2021) Plant pathogen infection risk tracks global crop yields under
412 climate change. *Nat. Clim. Chang.* 11, 710–715

413 11. Chen, Y.C., Holmes, E.C., Rajniak, J., Kim, J.G., Tang, S., Fischer, C.R., Mudgett, M.B.,
414 Sattely, E.S. (2018). N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic
415 disease resistance in *Arabidopsis*. *Proc. Natl. Acad. Sci. A.* 115(21):E4920-E4929.

416 12. Cheng, C., Gao, X., Feng, B. Sheen, J., Shan, L., He, P. (2013). Plant immune response to
417 pathogens differs with changing temperatures. *Nat Commun* 4, 2530.

418 13. Cheng, Y.T., Zhang, L., He, S.Y. (2019). Plant-Microbe Interactions Facing Environmental
419 Challenge. *Cell Host Microbe.* 26(2):183-192.

420 14. Cohen, S.P., Leach, J.E. (2020). High temperature-induced plant disease susceptibility:
421 more than the sum of its parts. *Curr. Opin. Plant Biol.* 56, 235–241.

422 15. Colhoun, J. (1973). Effects of environmental factors on plant disease. *Annu. Rev.
423 Phytopathol.* 11, 343–364.

424 16. Cui, H., Tsuda, K., Parker, J.E. (2015). Effector-triggered immunity: from pathogen
425 perception to robust defense. *Annu. Rev. Plant Biol.* 66:487-511.

426 17. De Jong, C.F., Takken, F.L., Cai, X., de Wit, P.J., Joosten, M.H. (2002) Attenuation of Cf-
427 mediated defense responses at elevated temperatures correlates with a decrease in elicitor-
428 binding sites. *Mol. Plant Microbe Interact.* 15(10):1040-9.

429 18. DeFalco, T. A., Zipfel, C. (2021). Molecular mechanisms of early plant pattern-triggered
430 immune signaling. *Mol. Cell* 81, 3449–3467.

431 19. Delgado-Baquerizo, M., Guerra, C.A., Cano-Díaz, C. et al. (2020) The proportion of soil-
432 borne pathogens increases with warming at the global scale. *Nat. Clim. Chang.* 10, 550–
433 554.

434 20. Deutsch, C.A. et al. (2018) Increase in crop losses to insect pests in a warming climate.
435 *Science* 361, 916–919.

436 21. Ding, P., Rekhter, D., Ding, Y., Feussner, K., Busta, L., Haroth, S., Xu, S., Li, X., Jetter, R.,
437 Feussner, I., Zhang, Y. (2016). Characterization of a pipecolic acid biosynthesis pathway
438 required for systemic acquired resistance. *Plant Cell.* 28(10):2603-2615.

439 22. Ferrero, V., Viola, I.L., Ariel, F.D., Gonzalez, D.H. (2019). Class I TCP transcription factors
440 target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1
441 and PRE6 during thermomorphogenic growth in *Arabidopsis*. *Plant Cell Physiol.* 60, 1633–
442 1645.

443 23. Franklin, K.A., Lee, S.H., Patel, D. et al. (2011). Phytochrome-interacting factor 4 (PIF4)
444 regulates auxin biosynthesis at high temperature. *Proc. Natl. Acad. Sci.* 108, 20231–20235.

445 24. Fu, Z. Q., Dong, X. (2013). Systemic acquired resistance: turning local infection into global
446 defense. *Annu. Rev. Plant Biol.* 64, 839–863.

447 25. Gust, A.A., Pruitt, R., Murnberger, T. (2017). Sensing danger: key to activating plant
448 immunity. *Trends Plant Sci.* 22: 779-791.

449 26. Hartmann, M., Zeier, J. (2018). L-lysine metabolism to N-hydroxypipecolic acid: an integral
450 immune-activating pathway in plants. *Plant J.* 96: 5-21.

451 27. Hartmann, M., Zeier, J. (2019). N-hydroxypipecolic acid and salicylic acid: a metabolic duo
452 for systemic acquired resistance. *Curr. Opin. Plant Biol.* 50, 44–57.

453 28. Hartmann, M., Kim, D., Bernsdorff, F., Ajami-Rashidi, Z., Scholten, N., Schreiber, S., Zeier,
454 T., Schuck, S., Reichel-Deland, V., Zeier, J. (2017). Biochemical principles and functional
455 aspects of pipecolic acid biosynthesis in plant immunity. *Plant Physiol.* 174(1), 124–153.

456 29. Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M.,
457 Schloten, N., Schuck, S., Bräutigam, A., Hözel, T., Ganter. C., Zeier, J. (2018). Flavin
458 Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic
459 Immunity. *Cell* 173(2), 456-469.e16.

460 30. Hayes, S., Schachtschabel, J., Mishkind, M., Munnik, T., Arisz, S.A. (2020). Hot topic:
461 Thermosensing in plants. *Plant Cell Environ.* 44(7): 2018–2033.

462 31. Hilleary R, Paez-Valencia J, Vens C, Toyota M, Palmgren M, Gilroy S. (2020). Tonoplast-
463 localized Ca²⁺ pumps regulate Ca²⁺ signals during pattern-triggered immunity in
464 *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci.* 117(31):18849-18857.

465 32. Huang, W., Wang, Y., Li, X., Zhang, Y. (2020). Biosynthesis and Regulation of Salicylic
466 Acid and N-Hydroxypipelicolic Acid in Plant Immunity. *Mol. Plant* 13: 31-41.

467 33. Huot, B., Castroverde, C. D. M., Velásquez, A. C., Hubbard, E., Pulman, J. A., Yao, J.,
468 Childs, K.L., Tsuda, K., Montgomery, L.B., He, S. Y. (2017). Dual impact of elevated
469 temperature on plant defence and bacterial virulence in *Arabidopsis*. *Nat. Commun.* 8(1),
470 1808.

471 34. Ibañez, C., Delker, C., Martinez, C., et al. (2018). Brassinosteroids dominate hormonal
472 regulation of plant thermomorphogenesis via BZR1. *Curr. Biol.* 28, 303–310.e3.

473 35. Janda, M., Lamparova, L., Zubíkova, A., Burketova, L., Martinec, J., Krckova, Z. (2019).
474 Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in
475 *Arabidopsis thaliana*. *Mol. Plant Pathol.* 20:1005-1012.

476 36. Jing, B., Xu, S., Xu, M., Li, Y., Li, S., Ding, J., Zhang, Y. (2011). Brush and spray: a high-
477 throughput systemic acquired resistance assay suitable for large-scale genetic screening.
478 *Plant Physiol.* 157:973–980.

479 37. Jones, J. D. G., Dangl, J. L. (2006). The plant immune system. *Nature* 444, 323–329.

480 38. Jones, J.D., Vance, R.E., Dangl, J.L. (2016). Intracellular innate immune surveillance
481 devices in plants and animals. *Science*. 354(6316):aaf6395.

482 39. Kachroo A, Kachroo P. (2020). Mobile signals in systemic acquired resistance. *Curr. Opin.*
483 *Plant Biol.* 58:41-47.

484 40. Kim, J.H. Castroverde, C.D.M. (2020). Diversity, Function and Regulation of Cell Surface
485 and Intracellular Immune Receptors in Solanaceae. *Plants* 9(4):434.

486 41. Kim, J.H., Hilleary, R., Seroka, A., He, S.Y. (2021). Crops of the future: building a climate-
487 resilient plant immune system. *Curr. Opin. Plant Biol.* 60, 101997.

488 42. Kim, J.H., Castroverde, C.D.M., Huang, S. et al. (2022). Increasing the resilience of plant
489 immunity to a warming climate. *Nature* 607(7918):339-344.

490 43. Kunkel, B.N., Bent, A.F., Dahlbeck, D., Innes, R.W., Staskawicz, B.J. (1993). RPS2, an
491 *Arabidopsis* disease resistance locus specifying recognition of *Pseudomonas syringae*
492 strains expressing the avirulence gene *avrRpt2*. *Plant Cell*. 5(8):865-75.

493 44. Li, Z., Liu, H., Ding, Z., Yan, J., Yu, H., Pan, R., Hu, J., Guan, Y., Hua, J. (2020). Low
494 temperature enhances plant immunity via salicylic acid pathway genes that are repressed by
495 ethylene. *Plant Physiol.* 182, 626–639.

496 45. Lim, G.H., Liu, H., Yu, K., Liu, R., Shine, M.B., Fernandez, J., Burch-Smith, T., Mobley, J.K.,
497 McLetchie, N., Kachroo, A., Kachroo, P. (2020). The plant cuticle regulates apoplastic
498 transport of salicylic acid during systemic acquired resistance. *Sci. Adv.* 6: eaaz0478.

499 46. Lippmann, R., Babben, S., Menger, A., Delker, C., Quint, M. (2019). Development of wild
500 and cultivated plants under global warming conditions. *Curr. Biol.* 29, R1326–R1338.

501 47. Malamy, J., Hennig, J., Klessig, D.F. (1992). Temperature-dependent induction of salicylic
502 acid and its conjugates during the resistance response to tobacco mosaic virus infection.
503 *The Plant Cell* 4, 359–366.

504 48. Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J., Cameron, R.K. (2002). A putative
505 lipid transfer protein involved in systemic resistance signalling in *Arabidopsis*. *Nature*.
506 419(6905):399-403.

507 49. Mang, H.G., Qian, W., Zhu, Y., Qian, J., Kang, H.G., Klessig, D.F., Hua, J. (2012). Abscisic
508 acid deficiency antagonizes high-temperature inhibition of disease resistance through
509 enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in *Arabidopsis*. *The*
510 *Plant Cell* 24, 1271–1284.

511 50. Martínez, C., Espinosa-Ruiz, A., de Lucas, M., Bernardo-García, S., Franco-Zorrilla, J.M.,
512 Prat, S. (2018.) PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic
513 growth. *EMBO J.* 37, e99552.

514 51. Mishina, T. E., Zeier, J. (2006). The *Arabidopsis* flavin-dependent monooxygenase FMO1 is
515 an essential component of biologically induced systemic acquired resistance. *Plant Physiol.*
516 141(4), 1666–1675.

517 52. Návarová, H., Bernsdorff, F., Döring, A. C., Zeier, J. (2012). Pipecolic acid, an endogenous
518 mediator of defence amplification and priming, is a critical regulator of inducible plant
519 immunity. *Plant Cell*, 24(12), 5123–5141.

520 53. Ngou, B.P.M., Ahn, H.K., Ding, P., Jones, J.D.G. (2021). Mutual potentiation of plant
521 immunity by cell-surface and intracellular receptors. *Nature*. 592(7852):110-115.

522 54. Ngou, B.P.M., Ding, P., Jones, J.D.G. (2022). Thirty years of resistance: Zig-zag through the
523 plant immune system. *Plant Cell*. 34(5):1447-1478.

524 55. Peng, Y. et al. (2021) Salicylic acid: biosynthesis and signalling. *Annu. Rev. Plant Biol.* 72,
525 761–791

526 56. Pieterse, C. M. J., Leon-Reyes, A., Van Der Ent, S., Van Wees, S. C. M. (2009).
527 Networking by small-molecule hormones in plant immunity. *Nat. Chem. Biol.* 5(5):308-16.

528 57. Quint, M., Delker, C., Franklin, K. et al. (2016). Molecular and genetic control of plant
529 thermomorphogenesis. *Nat. Plants* 2, 15190.

530 58. Rossi, C.A.M., Marchetta, E.J.R., Kim, J.H., Castroverde, C.D.M. (2023). Molecular
531 regulation of the salicylic acid hormone pathway in plants under changing environmental
532 conditions. *Trends Biochem. Sci.* 48(8):699-712.

533 59. Roussin-Léveillée, C., Rossi, C.A.M., Castroverde, C. D. M. Moffett, P. 2023. The Plant
534 disease triangle facing climate change. *Trends Plant Sci.* (under review).

535 60. Saur, I.M.L., Panstruga, R., Schulze-Lefert, P. (2021). NOD-like receptor-mediated plant
536 immunity: from structure to cell death. *Nat. Rev. Immunol.* 21(5):305-318.

537 61. Shields, A., Shivnauth, V., Castroverde, C.D.M. (2022) Salicylic acid and N-hydroxypipelicolic
538 acid at the fulcrum of the plant immunity-growth equilibrium. *Front. Plant Sci.* 13, 841688

539 62. Shine, M.B., Zhang, K., Liu, H., Lim, G.H., Xia, F., Yu, K., Hunt, A.G., Kachroo, A., Kachroo,
540 P. (2022). Phased small RNA-mediated systemic signaling in plants. *Sci. Adv.*
541 8(25):eabm8791.

542 63. Shivnauth, V., Pretheepkumar, S., Marchetta, E.J.R., Rossi, C.A.M., Amani, K.,
543 Castroverde, C.D.M. (2023). Structural diversity and stress regulation of the plant immunity-
544 associated CALMODULIN-BINDING PROTEIN 60 (CBP60) family of transcription factors in
545 *Solanum lycopersicum* (tomato). *Funct. Integr. Genomics* 23(3):236.

546 64. Singh, B.K., Delgado-Baquerizo, M., Egidi, E. et al. (2023). Climate change impacts on plant
547 pathogens, food security and paths forward. *Nat. Rev. Microbiol.* 21(10):640-656.

548 65. Song, J.T., Lu, H., McDowell, J.M., Greenberg, J.T. (2004) A key role for *ALD1* in activation
549 of local and systemic defences in *Arabidopsis*. *Plant J.* 40: 200-212.

550 66. Stevens, R.B. (1960). Pages 357-429 in: *Plant Pathology, an Advanced Treatise*, Vol. 3.
551 J.G. Horsfall and A.E. Dimond, eds. Academic Press, NY.

552 67. Sun, J., Qi, L., Li, Y., Chu, J., Li, C. (2012). PIF4-mediated activation of YUCCA8 expression
553 integrates temperature into the auxin pathway in regulating *Arabidopsis* hypocotyl growth.
554 *PLoS Genet.* 8, e1002594.

555 68. Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y., Zhang, Y. (2015) ChIP-seq reveals broad
556 roles of SARD1 and CBP60g in regulating plant immunity. *Nat. Commun.* 6:10159.

557 69. Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R., Zhang, Y. (2018) TGACG-BINDING
558 FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipelicolic acid biosynthesis by
559 modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1
560 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). *New Phytol.* 217:344–354.

561 70. Velásquez, A. C., Castroverde, C. D. M., He, S. Y. (2018). Plant-Pathogen Warfare under
562 Changing Climate Conditions. *Curr. Biol.* 28(10):R619-R634.

563 71. Venkatesh, J., Kang, B-C. (2019). Current views on temperature-modulated *R* gene-
564 mediated plant defense responses and tradeoffs between plant growth and immunity. *Curr.*
565 *Opin. Plant Biol.* 50: 9-17.

566 72. Vlot, A.C., Sales, J.H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenigand,
567 M., Nayem, S. (2021). Systemic Propagation of Immunity in Plants. *New Phytol.* 229:1234–
568 1250.

569 73. Vu, L.D., Xu, X., Zhu, T., et al. (2021). The membrane-localized protein kinase
570 MAP4K4/TOT3 regulates thermomorphogenesis. *Nat. Commun.* 12(1):2842.

571 74. Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, Y., Li, G. (2012). Calmodulin-
572 binding protein CBP60g is a positive regulator of both disease resistance and drought
573 tolerance in *Arabidopsis*. *Plant Cell Rep.* 31(7):1269–1281.

574 75. Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., Glazebrook, J. (2009). *Arabidopsis*
575 CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is
576 involved in disease resistance against *Pseudomonas syringae*. *PLoS Pathog.* 5:e1000301.

577 76. Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F., Glazebrook, J.
578 (2011). CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling.
579 *Plant J.* 67:1029–1041.

580 77. Wang, C., Liu, R., Lim, G. H., De Lorenzo, L., Yu, K., Zhang, K., Hunt, A.G., Kachroo, A.,
581 Kachroo, P. (2018). Pipecolic acid confers systemic immunity by regulating free radicals.
582 *Sci. Adv.* 4(5), 4509.

583 78. Wildermuth, M. C., Dewdney, J., Wu, G., Ausubel, F. M. (2001). Isochorismate synthase is
584 required to synthesize salicylic acid for plant defence. *Nature*, 414(6863), 562–565.

585 79. Xin, X. F., Kvitko, B., He, S. Y. (2018). *Pseudomonas syringae*: What it takes to be a
586 pathogen. *Nat. Rev. Microbiol.* 16, 316–328.

587 80. Xin, X.F., He, S.Y. (2013). *Pseudomonas syringae* pv. *tomato* DC3000: A Model Pathogen
588 for Probing Disease Susceptibility and Hormone Signaling in Plants. *Annu. Rev.*
589 *Phytopathol.* 51: 473-498.

590 81. Yao, L., Jiang, Z., Wang, Y., Hu, Y., Hao, G., Zhong, W., Wan, S., Xin, X.F. (2023). High air
591 humidity dampens salicylic acid pathway and NPR1 function to promote plant disease.
592 *EMBO J.* 20:e113499.

593 82. Yildiz, I., Mantz, M., Hartmann, M., Zeier, T., Kessel, J., Thurow, C., Gatz, C., Petzsch, P.,
594 Köhrer, K., Zeier, J. (2021). The mobile SAR signal N-hydroxypipecolic acid induces NPR1-
595 dependent transcriptional reprogramming and immune priming, *Plant Physiol.* 186(3):1679–
596 1705.

597 83. Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J.S.,
598 Navarre, D., Kachroo, A., Kachroo, P. (2013). A Feedback Regulatory Loop between G3P

599 and Lipid Transfer Proteins DIR1 and AZI1 Mediates Azelaic-Acid-Induced Systemic
600 Immunity. *Cell Rep.* 3(4), 1266–1278.

601 84. Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.M., He, S.Y., Xin,
602 X.F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity.
603 *Nature*. 592(7852):105-109.

604 85. Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic
605 pathways. *Plant Cell Environ.* 36: 2085-2103.

606 86. Zeier, J. (2021). Metabolic regulation of systemic acquired resistance. *Curr. Opin. Plant Biol.*
607 62:102050.

608 87. Zhao, C., Liu, B., Piao, S., et al. (2017). Temperature increase reduces global yields of
609 major crops in four independent estimates. *Proc. Natl. Acad. Sci.* 114, 9326–9331.

610 88. Zhang, Y., Xu, S., Ding, P., Wang, D., Cheng, Y.T., He, J., Gao, M., Xu, F., Li, Y., Zhu, Z.,
611 Li, X., Zhang, Y. (2010) Control of salicylic acid synthesis and systemic acquired resistance
612 by two members of a plant-specific family of transcription factors. *Proc. Natl. Acad. Sci.*
613 107:18220–18225.

614 89. Zhang, Y., Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant
615 immunity. *Curr. Opin. Plant Biol.* 50, 29–36.

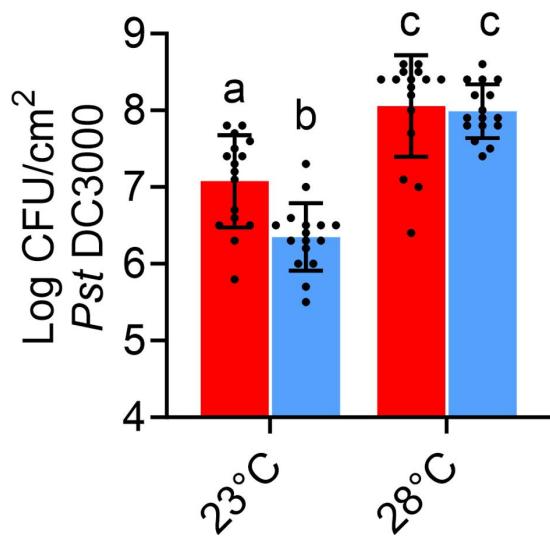
616 90. Zhou, J.M., Zhang, Y. (2020). Plant Immunity: Danger Perception and Signaling. *Cell*. 181:
617 978-989.

618 91. Zhu, Y., Qian, W., Hua, J. (2010). Temperature modulates plant defense responses through
619 NB-LRR proteins. *PLoS Pathog.* 6, e1000844.

620

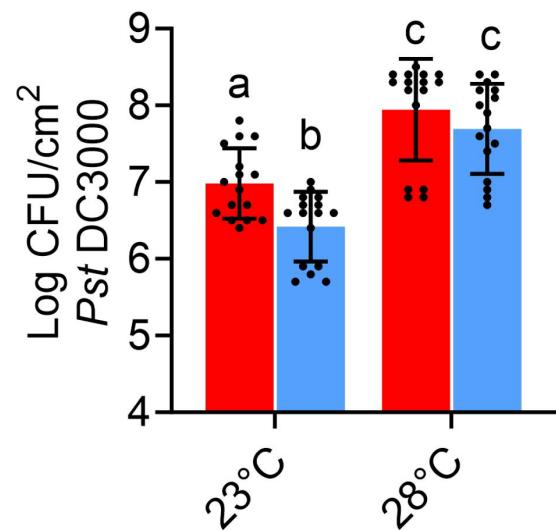
621 Acknowledgements

622 We thank the following colleagues for sharing biological materials: G. Howe for Castlemart
623 tomato, B. Staskawicz for *Pst* DC3000/AvrRpt2, and G. Li and D. Wan for 35S::*CBP60g*. We
624 are grateful to the Laurier Faculty of Science (Max Pottier and Gena Braun), Michigan State
625 University (MSU) Growth Chamber Facility and Duke Phytotron for instrumentation support.
626 This work was supported by research funding from the NSERC Discovery Grant, Canada
627 Foundation for Innovation, Ontario Research Fund and Wilfrid Laurier University Faculty of
628 Science start-up funds. Our Laurier Biology research is located on the shared traditional territory
629 of the Neutral, Anishinaabe, and Haudenosaunee peoples.

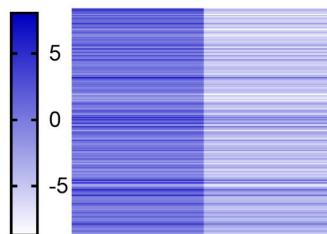

630

631 **Authors' contributions**

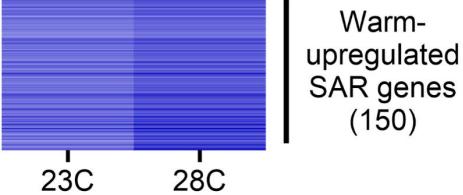
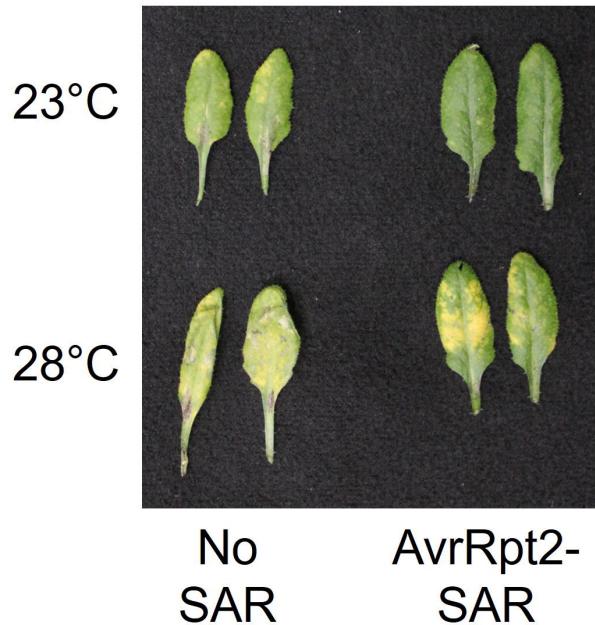
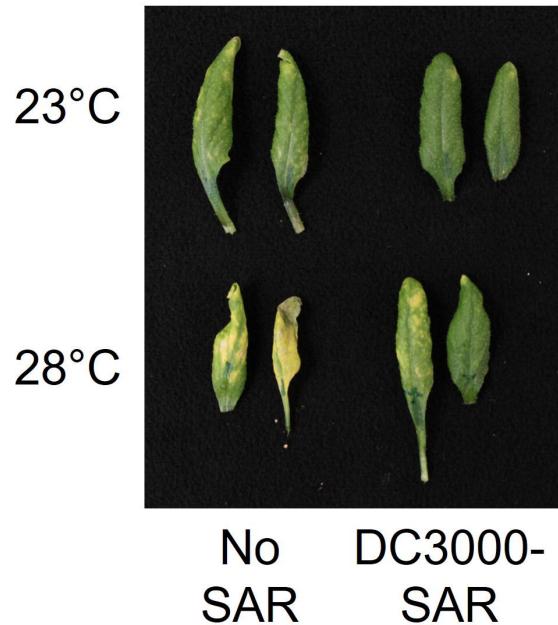
632 C.D.M.C conceptualized and supervised the study. A.S. performed most of the experiments.
633 L.Y.Y. performed the Pip metabolite measurements. J.H.K. performed gene expression
634 experiments of 35S::*SARD1* plants. W.M.A.A.T. and E.M. conducted experimental replicates of
635 the SAR assays. V.S. conducted temperature experiments of tomato plants, extracted RNA and
636 synthesized cDNA. S.L. and T.C. performed gene expression analyses of rapeseed plants.
637 L.Y.Y., J.H.K. and S.L. were supervised by X.F.X., S.Y.H. and T.C., respectively. Everyone
638 analyzed the data. A.S. and C.D.M.C. wrote the paper with input from all authors.

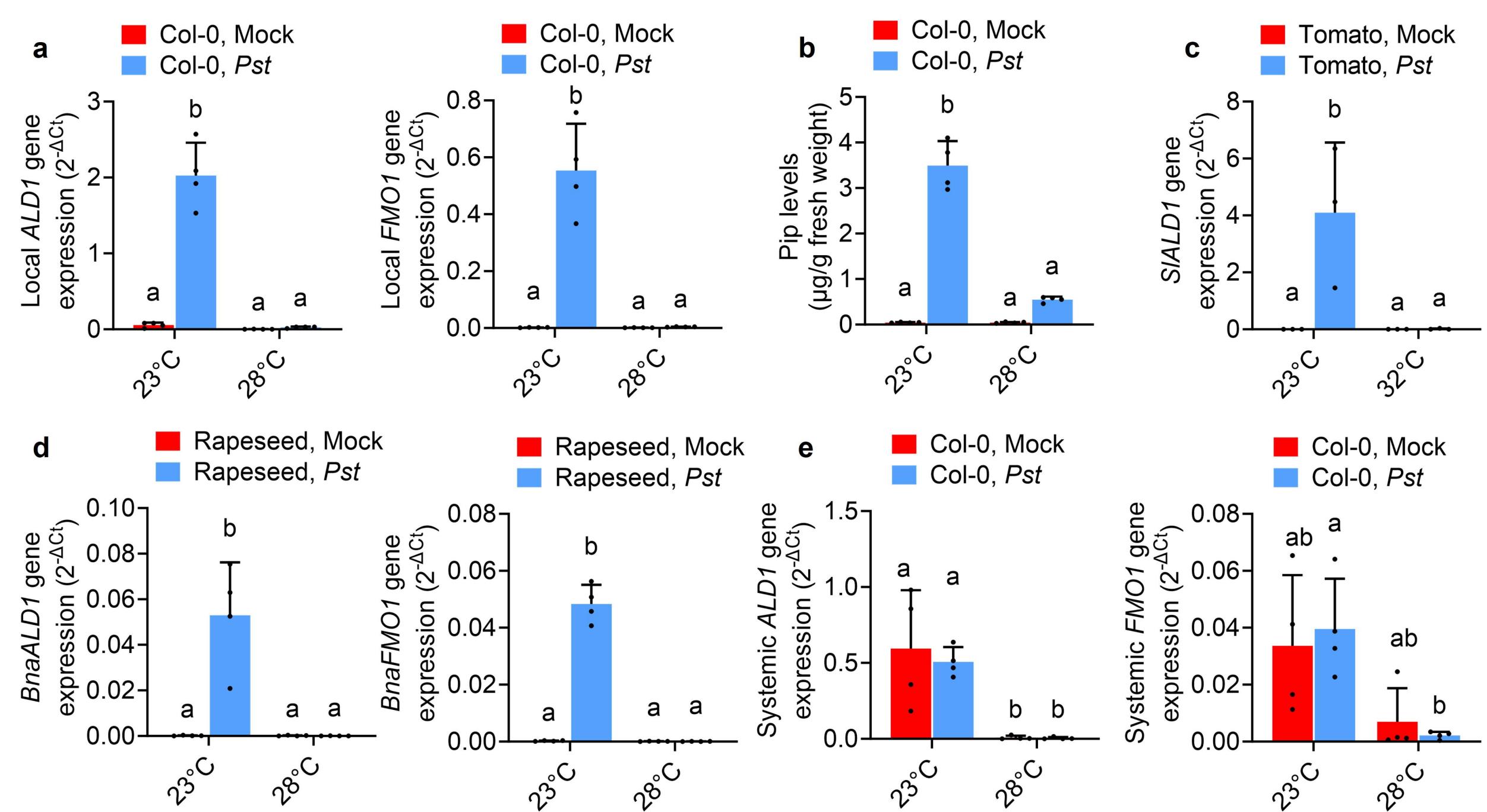

a

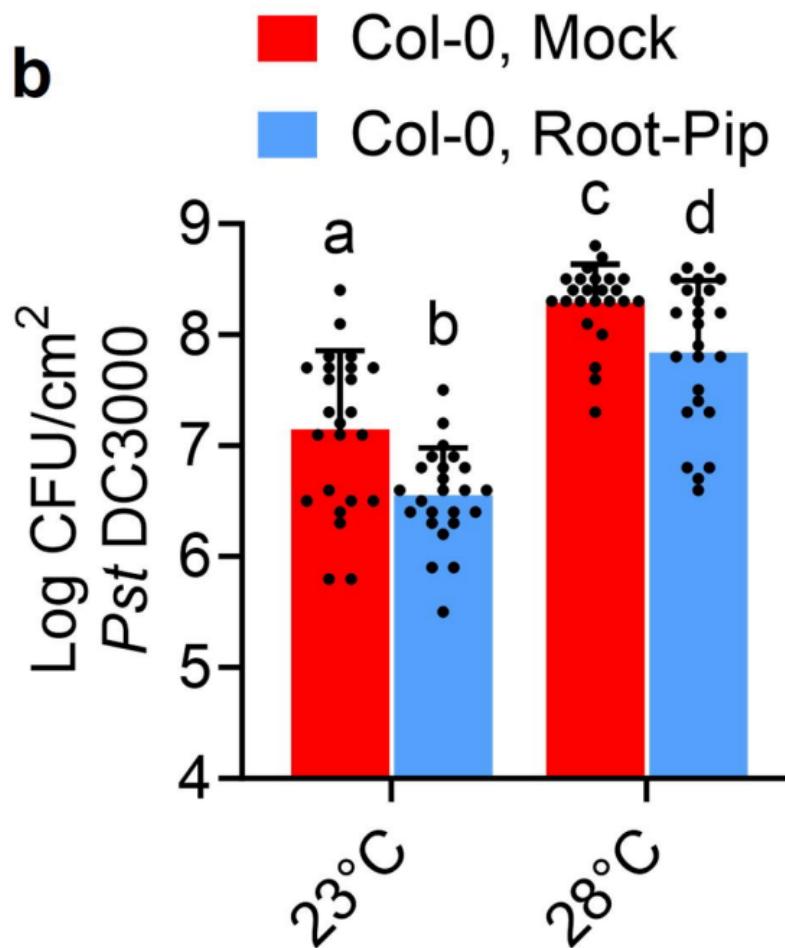
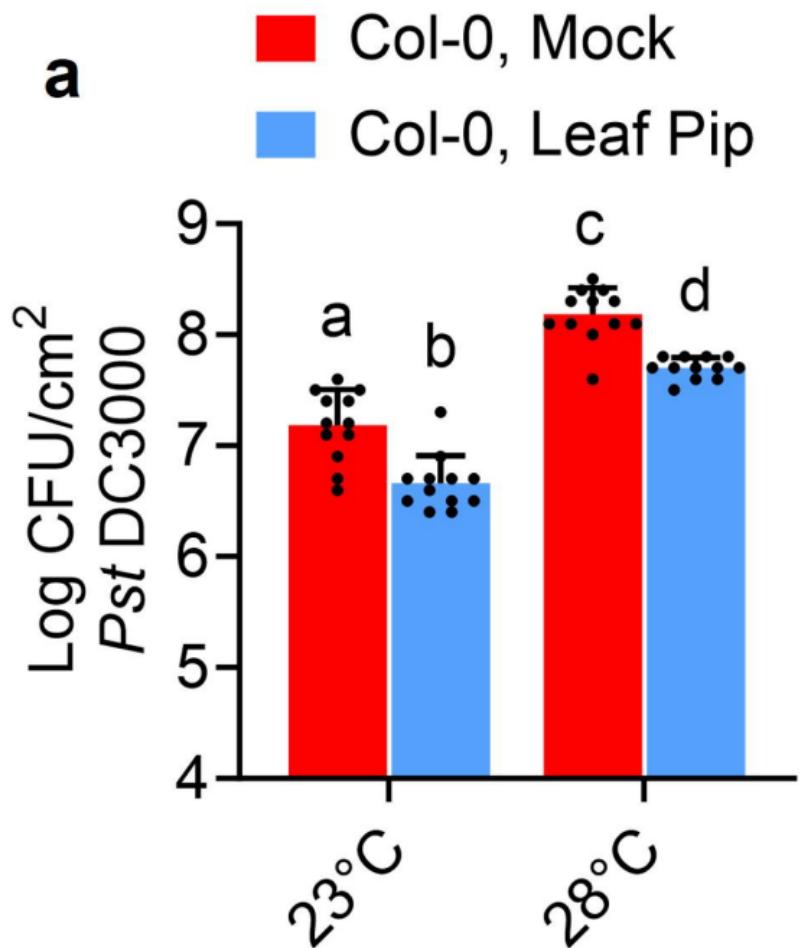
- Col-0, No SAR
- Col-0, DC3000-SAR

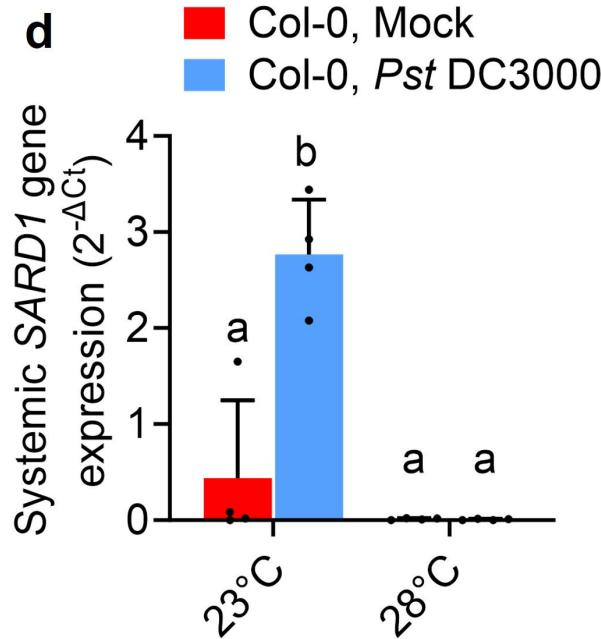
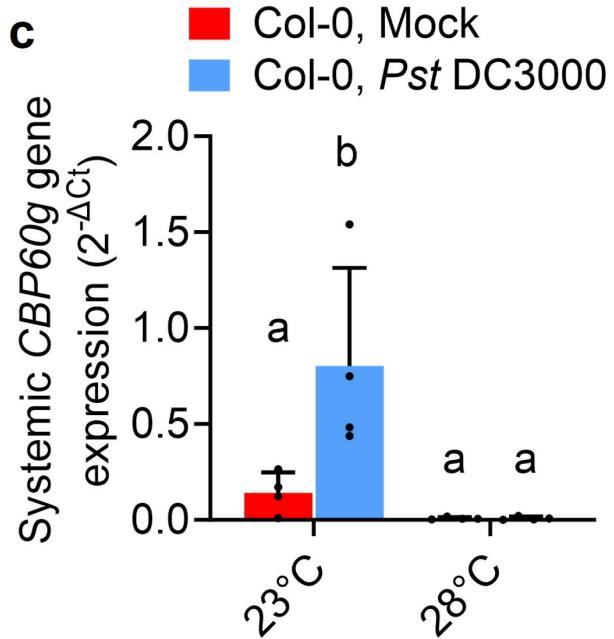
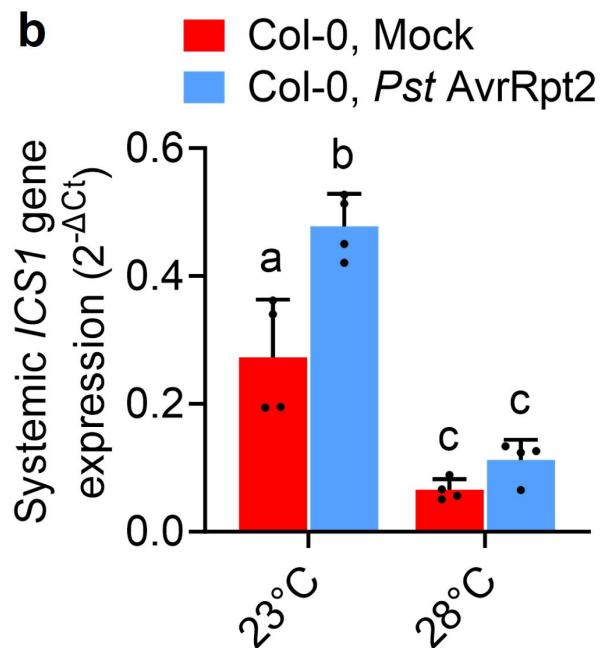
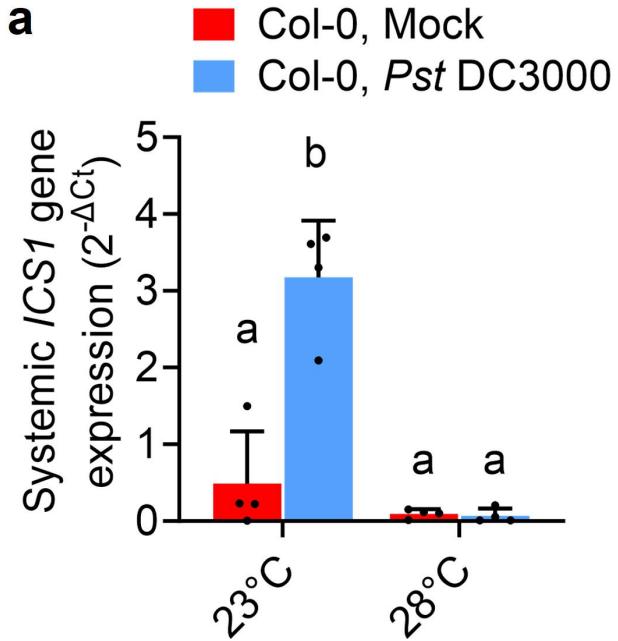


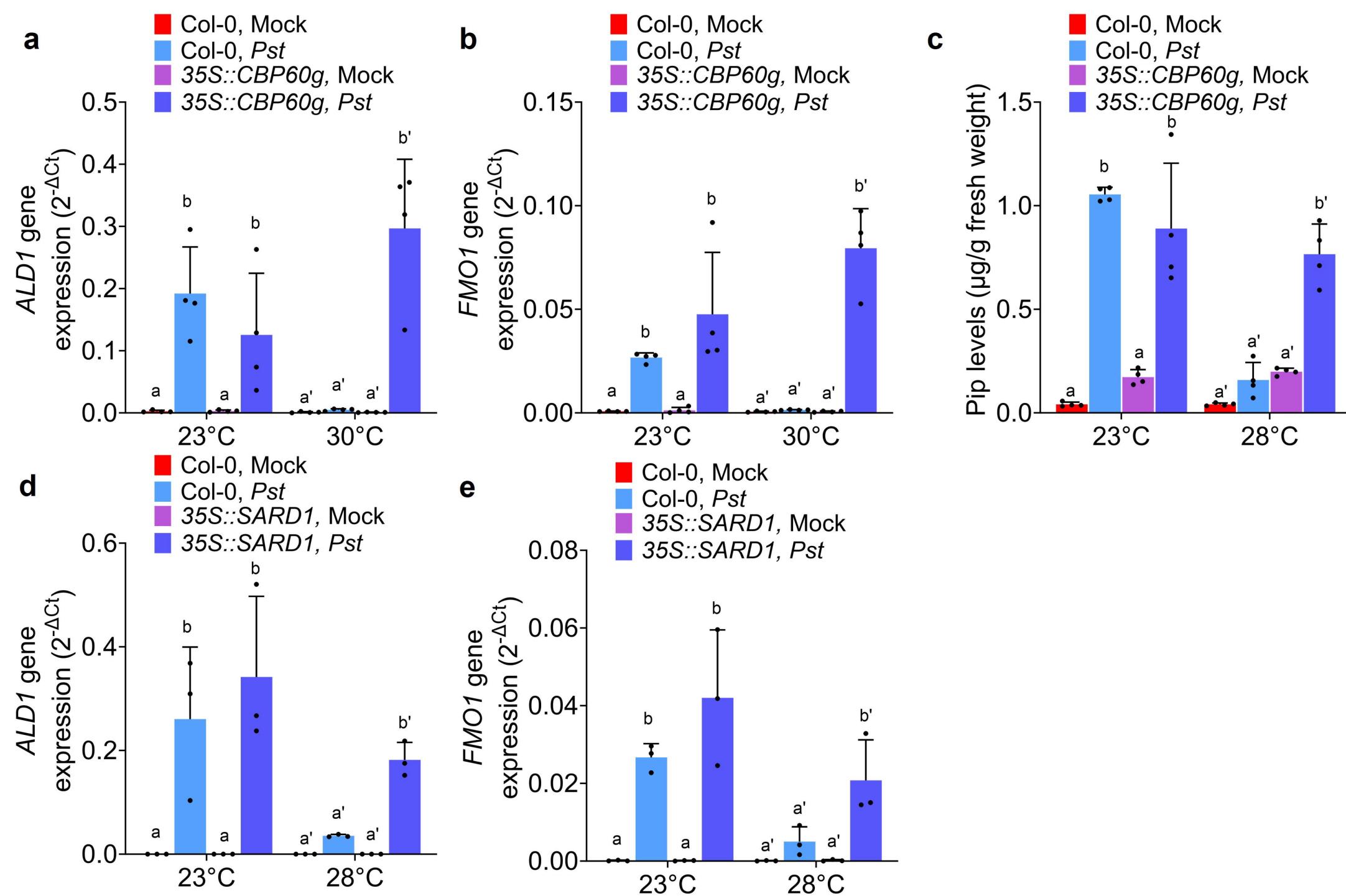
b




- Col-0, No SAR
- Col-0, AvrRpt2-SAR


c





Warm-downregulated SAR genes (1037)



Warm-upregulated SAR genes (150)

