
SecDATA: Secure Data Access and de novo Transcript

Assembly protocol - To meet the challenge of reliable

NGS data analysis

Sudip Mondala, Namrata Bhattacharyab, Troyee Dasc, Zhumur Ghoshc,
Sunirmal Khatuaa

aDepartment of Computer Science and Engineering, University of
Calcutta, Kokata, West Bengal, India

bAustralian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of
Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland

University of Technology, Brisbane, Australia
cDivision of Bioinformatics, Bose Institute, Kokata, West Bengal, India

Abstract

Recent developments in sequencing technologies have created new opportuni-
ties to generate high-throughput biological data at an affordable price. Such
high-throughput data needs immense computational resources for perform-
ing transcript assembly. Further, a high-end storage facility is needed to
store the analyzed data and raw data. Here comes the need for centralized
repositories to store such mountains of raw and analyzed data. Hence, it
is of utmost importance to ensure data privacy for storing the data while
performing transcript assembly. In this paper, we have developed a proto-
col named SecDATA which performs de novo transcript assembly ensuring
data security. It consists of two modules. The first module deals with a
framework for secured access and storage of data. The novelty of the first
module lies in the employment of distributed ledger technology for data stor-
age that ensures the privacy of the data. The second module deals with
the development of an optimized graph-based method for de novo transcript
assembly. We have compared our results with the state-of-art method de
Bruijn graph and the popular pipeline Trinity, for transcript reconstruction,
and our protocol outperforms them.

Keywords: RNA-seq data, de novo transcript assembly, data privacy,
distributed ledger technology, big data.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

NGS technology has facilitated transcriptomic studies through RNA-seq
data analysis [1]. To get the complete picture of a biological system, it is
important to analyze such high-throughput data efficiently. Such a process
includes assembling short reads which helps in the reconstruction of the full-
length transcripts. It helps in detecting novel transcripts and identifying
alternatively spliced genes as well. Various transcript assembly algorithms
[2] have facilitated such analysis, to recreate the entire transcriptome even
without a reference genome. Nevertheless, the presence of sequencing er-
rors, polymorphism, sequence repeats, etc makes the task of the transcript
assembly process often more challenging. Further, identifying the full set
of transcripts which includes novel transcripts corresponding to unannotated
genes, splicing isoforms, and gene-fusion transcripts [3] makes it more critical.

A significant amount of work has been done regarding the development
of various reference-based and de novo transcriptome assemblers [4]. The
reference-based method involves transcriptome analysis, primarily by map-
ping onto a reference genome [5]. On the other hand, the de novo assembly
method is primarily used because many non-model species lack a reference
genome for transcriptome analysis [6]. Examples of widely used de novo as-
semblers are SOAPdenovo-Trans, rnaSPAdes, BinPacker, Bridger, Trinity,
IDBA-Tran, ABySS, and Oases [7]. De novo transcriptome reconstruction
from short reads remains an open problem, due to the lack of comprehensive
knowledge needed to reconstruct the transcriptome as completely as possible.
It gets even more complicated as the transcriptome varies with variations in
cell type, environmental conditions, etc. Ideally, a transcriptome assembler
should be capable of detecting full-length transcripts even for lowly expressed
transcripts. Two basic algorithms that are generally used for short read de
novo assemblers are overlap graphs and de Bruijn graphs [8]. Mira, Phusion,
and Newbler are a few of the widely used overlap graph-based assemblers
[9]. Overlap graphs compute the overlaps between each pair of reads mak-
ing this algorithm computationally more intensive than de Bruijn graphs
[10]. Hence, most of the de novo assemblers for RNAseq data analysis use de
Bruijn graphs generated [11] from the overlap between k-mer decompositions
of the reads in the RNAseq data and not between the actual reads. ABySS,
Velvet, Oases, and Trinity are popular de Bruijn graph-based assemblers [8].

In the de Bruijn graph [12], a node is represented by a sequence of k
nucleotides of a specific length (’k-mer,’ with k significantly shorter than the

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

read length) and nodes are linked by edges if they overlap perfectly with k-1
nucleotides. This representation enables all possible solutions to be enumer-
ated which comprises linear sequences with k-1 overlap. Each path in the
graph represents a potential transcript for the transcript assembly process.
The representation of the de Bruijn graph in memory is a computational
bottleneck for many assemblers [12, 13]. One of the present-day challenges
that remain is the use of de Bruijn graphs for the de novo assembly process.
This is because a massive computational resource is needed for implementing
such a procedure for de novo assembly (i) by creating a graph from the raw
sequence data and (ii) subsequent generation of millions of possible paths
from these graphs. Along with transcript assembly, secure data handling is
an important area of concern for RNAseq data analysis. It is essential to
ensure data security before (securing raw data) and after (securing analyzed
data) transcript assembly step in NGS data analysis. Hence, the initial in-
put data should remain unchanged and should not be modified by others
without permission. Blockchain technology has achieved notable attention
for maintaining data security from the business and corporate sector to the
healthcare industry and genomic research [14]. The Blockchain system, also
known as distributed ledger technology (DLT) [15] as well as distributed or
shared ledger, is a consensus of replicated, shared, and synchronized digital
data, geographically scattered over multiple places [16]. The main advantage
of DLT lies in the fact that it can be used without requiring a central admin-
istrator and also centralized data storage. It is like a distributed database on
a peer-to-peer network, that is spread across several nodes (devices) where
each node replicates and saves an identical copy of the ledger and updates
itself [17]. Cryptographic keys and signatures are used for the security of
the nodes [18]. DLT handles and shares information across a network of
verified users. To support a wide range of decentralized applications, Hy-
perledger and Ethereum focus on extended processing capability for building
distributed ledger networks [19, 20]. However, DLT was not designed to
handle large omics-sized data sets [21].

In this paper, we have designed an optimized pipeline SecDATA for de
novo transcript assembly that adopts a Blockchain-based strategy. The major
focus here lies towards implementing (a) a pipeline that accesses secured
data with the help of DLT and (b) performs de novo transcript sequence
reconstruction from RNA-seq data.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

2. Materials and Methods

We have two major focuses in this paper: (i) data security and (ii) de novo
Transcript assembly. The computational framework of SecDATA is shown in
figure 1.

Figure 1: Computational framework for SecDATA

2.1. Input dataset and it’s pre-processing

Real and Simulated Datasets: To compare the performance of our tran-
script assembly protocol, SecDATA we have used simulated datasets and pub-
licly available RNA-Seq datasets (dataset provided in Table 1) with different
read lengths, number of reads, and depth of coverage. The publicly avail-
able data is downloaded from the NCBI (https://www.ncbi.nlm.nih.gov/)
SRA database using the streaming technique, ParStream-Seq [22]. We have
used Trimmomatic [23] and FastQC [24] for adapter trimming and filter-
ing poor-quality reads and poor-quality bases respectively from the down-
loaded datasets. We have used a simulation method [25] to generate sim-
ulated Illumina reads from a reference genome (human(hg19) chromosome
1 and 2 (Gencode version 18) as reference). The simulated datasets were
assembled without any additional preprocessing. Our dataset read length
is 100 bp and insert lengths range between 200bp to 350 bp to simulate se-
quencing reads. The simulated dataset is available at https://github.com/
sudipmondalcse/SecDATA

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/
 https://github.com/sudipmondalcse/SecDATA
 https://github.com/sudipmondalcse/SecDATA
https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Organism Accession ID Run ID Number of Reads Read length
Simulated Simu 50000 50000 100 bp

Homo sapiens Simulated Simu 100000 100000 100 bp
Simulated Simu 150000 150000 100 bp
SRX8325063 SRR11771595 148301 ∼50 bp

Mus musculus SRX8325065 SRR11771597 188174 ∼50 bp
SRX8325067 SRR11771599 213180 ∼51 bp

Table 1: Input dataset

3. Computational architecture of SecDATA

3.1. Proposed Model for data security

In this paper, we have used public blockchain technology for secure data
storage. A public blockchain is a type of blockchain that is designed to be
fully decentralized [26]. Once a record has been added to the chain it is
very difficult to change it without permission [27, 28]. Unlike traditional
databases, the data stored using this technology is not centralized at one
location; instead, the record of the ledger is shared across a network of com-
puters or computing nodes. The network uses an encrypted code to perform
constant checking to ensure that all the copies of the database are properly
duplicated in all nodes and ensure the privacy of their data [29]. A consen-
sus algorithm [30] achieves data reliability in the Blockchain network and
establishes trust between unknown peers by allowing them to reach a mu-
tual agreement about the current state of the distributed ledger. Through a
consensus mechanism, all active network nodes ensure that modifications in
the database in the form of digital records, follow a set of rules, making the
DLT tamper-proof. Many forms of DLTs are available, such as Blockchain
like Bitcoin, Ethereum, etc. [16] Here, we have used one of the most popular
consensus algorithms - Proof of Work (PoW) [31]. This ensures the security
of the network in the form of block mining and the validity of the newly
mined block [32]. In our experiment, each block in the network consists of a
block header of key parameters, including block creation time, data from the
input fasta file, associated header information, and reference to the previous
block. Every time we want to create a new block in a network there is a need
to check the level of difficulties measured by the PoW algorithm. It uses a
block reference which must not exceed a certain threshold for the block to be
considered valid. The computational power (or hash power) on the network

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

is defined such that all possible variables in the block header are repeatedly
iterated to find the value of B satisfying

hash(B) fM/D (1)

where D ∈ [1, M] is the target difficulty. All possible variables in the block
header are repeatedly iterated to find the value of B satisfying equation 1.
The value of D is directly proportional to the number of iterations needed to
find a valid block. The expected number of operations is exactly D [33].

3.2. Implementing Blockchain Model

Here we have proposed a general workflow diagram (figure 2) for imple-
menting the Block Chain Model while accessing data for NGS data analysis.
It encompasses blocks or nodes, which are connected through a network. The
nodes communicate through a secure channel and use the hash value as a
key. In this figure, Block 1 serves as the online resource for the sequencing
data needed for further analysis. Block 2 and 3 access reads from fasta files
stored in block 1. As the fasta file contains sequence ID and sequences, we
need to collect all the sequence reads only from the fasta file, which is done
by these two blocks. Block 4 is responsible for assembling and storing the
final set of transcripts in HDFS. Here, the transcripts are assembled from
reads coming from blocks 2 and 3 (i.e. building the transcripts from the
reads coming from blocks 2 and 3 and storing the output in HDFS). We have
used Ethereum techniques [34] for building blockchain networks. Ethereum
is a global, public, and blockchain-based open-source platform for decentral-
ized applications [35]. A block in an Ethereum blockchain is identified by
a hash value of its content and references to the hash of the parent block.
Hashes of blocks are created using cryptographic hash functions, which are
mathematical algorithms that map data of arbitrary size to a bit string of
a fixed size (called hash or digest). We have used R package digest [36, 37]
for creating block and hash functions. Hash alone is not enough to prevent
tampering. Here PoW algorithm has been used to solve this problem. It
prevents denial of service attacks (DDoS) on a network and maintains pri-
vacy. We have assigned a hash value to each data packet (downloaded from
NCBI) using the above-mentioned technique to maintain its privacy in the
network. Subsequently, each data packet has been used further for transcript
assembly.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.3. De novo transcript assembly

It consists of several steps including kmer generation, construction of
graphs, and then assembly. These steps are described below and shown in
figure 2.

Figure 2: Workflow diagram for de novo transcript assembly

3.3.1. Creating k-mers and Construction of transcripts using de Bruijn graph

Most of the de novo assembly algorithms for short-read RNA sequences
rely on the concept of the de Bruijn graph. In this paper, we have imple-
mented de Bruijn graphs in two steps. In the first step, we have generated k-
mers and in the second step, we have constructed the graph. The generation
of all possible k-mers from the input sequences requires huge computation
which makes it very time-consuming. Several existing software is available
which generate k-mer but very few are distributed in nature. Here, we have
used a Hadoop-based k-mer algorithm [38], developed in our lab, to reduce
the execution time as it runs parallel on a distributed platform. We have
further reduced the time using Apache Spark which allows in-memory com-
putation. In algorithm 1, we have discussed the steps to generate a list of
large amounts of k-mers and store it in HDFS or disk. In algorithm 1 step 2,
we have also discussed the steps to construct the graph using all k-mer’s i.e.
list of all k-mer stored or generated from step 1 and also generate all possible
maximal simple paths.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1: Creating k-mers and Construction of transcripts

Input: S: Read sequences i.e Σ = {A,C,G, T} and K: length of K-mer.
Output: Kmer list, the list of k-mer and frequency.
Step 1: // constraction of kmer

begin

(i) ctx← new SparkContext() // create a Spark context

(ii) seqRDD ← ctx.parallelize(S) // create RDD of given

sequences

(iii) mapKmer ← seqRDD.map(.sliding(K), 1) // generate

K-mers using mapper function

(iv) countKmer ← mapKmer.reduceByKey((x, y) g x +
y) // combine & reduce frequent kmers using reducer

function

(v) Kmer list← countKmer.collect() // collect & store

kmer into a list

end

Step 2: // constraction of de Bruijn graph

begin
Given the list of kmers obtained from step 1, we construct a de Bruijn
graph as follows:

(i) Create a vertex for each k-mer

(ii) Find all possible paths from that vertex by adding edges from one vertex
to the other vertices if their overlap has length k-1

(iii) Continue this step until we find overlapping kmers

end

In algorithm 1, we have taken the Fasta sequence file that contains reads
and the length of k-mer i.e. K as an input. We have used Apache Spark and
created SparkContext [39] as a master Spark application. The sparkContext
object allows the application to access the cluster for creating a resilient
distributed dataset (RDD) using the parallelize() function. Each dataset
(i.e. reads) in RDD is divided into many logical parts and it is computed
on different nodes of the cluster. The flatMap() function is used to extract
information from RDD. It operates on each row and returns multiple new

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

rows for a given row. It parses the sequences from RDD to generate k-mer
using a sliding function with fixed window-size K and sliding interval 1. It
will create subsequences that overlap in k-1 positions. After processing, the
mapper emits a <key,value> pair to the reducer where the key is a k-mer
and the value is 1. The reduceByKey function collects each key and merges
all the values emitted against the same key, i.e., <key, list(value)> pairs
emitted by flatmap() function. In this function, (x, y) g (x + y) initializes
the x variable with default integer value 0 and adds up an element for each
key. It combines the value of each identical k-mer and returns the final RDD
with total counts paired with the key. i.e. if two keys are the same k-mer
string then the value will be added until the list is empty. The reducer emits
a final <key,value> pair where the key is a unique k-mer and the value is its
frequency. The collect function is used to return the elements of the RDD
generated by the reducer back to the driver program.

3.3.2. Construction and optimization of transcripts length by SecDATA

Here, we have determined the optimal length of each transcript. The
“Optimized length” represents the minimum number of nodes traversed for
building all transcripts i.e. minimum path length for transcript construction.
To do so, we have developed a directed acyclic graph (DAG) (described in
algorithm 2) based method - GTraversal (described in algorithm 3).

In this paper, we have used DAG for de novo transcript reconstruction
and quantification. We have used overlaps in k-mers to determine which
k-mer pairs are adjacent in the read sequences. For example, if two k-mers
TAGCAT and AGCATA overlap then they are adjacent nodes in the
graph and there is a directed edge from TAGCAT to AGCATA. One k-
mer may overlap over multiple other k-mers. Here we require computationally
(N-1)(N)/2 steps for traversing the edges in the graph to find the possible
directed paths (i.e. transcripts). A naive approach is to calculate the longest
path from every node using the Depth First Search (DFS) algorithm. In
our algorithm, we have used an adaptive DFS to traverse the DAG and also
optimized the parameters for edge selection and path construction.

In algorithm 2, we have generated the DAG using an Adjacency List
representation. This is a dictionary of <key,value> pairs, whose keys are
the nodes of the graph. For each key, the corresponding value is a list con-
taining the nodes that are adjacent to this key node. We have taken the
k-mer generated from the previous step (discuss section 3.3.1) as input and
stored it into a list called kmer list. Algorithm 2 returns a dictionary that

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

maps each k-mer in the kmer list onto the set of all other k-mers in the list
to which it overlaps with a minimal length min-overlap. Let kmer1 = xy
and kmer2 = yz be two k-mers and min-overlap = m where m ∈ integers,
then suffix = y with respect to kmer1 and prefix=y with respect to kmer2.
One <key,value> pair of the dictionary, <kmer1, kmer2>, thus represents
a directed edge that starts at a particular k-mer (here kmer1, used as the
key in the dictionary) and lead to all other k-mers (here kmer2, used as
the value in the dictionary) that overlap with it with of a minimal length
m i.e. |y| g m. By definition of DAG, a k-mer, say kmer1, never points
to itself, i,e. <key,value> ̸=<kmer1, kmer1>, even though the k-mer might
overlap itself and <kmer1, kmer2 > and <kmer2, kmer1> cannot co-exist in
the dictionary as the graph is acyclic.

In algorithm 3, we have traversed the graph obtained in algorithm 2 to
reassemble the kmers to build transcripts using adaptive depth-first search
(DFS). DFS can be used to find all possible combinations of paths from a
start vertex to all reachable vertices in the graph such that the ordering
respects reachability. That is, if a vertex u is reachable from v, then v must
be lower in the ordering, thus u must overlap on v.

We have used a recursive function, find transript(), to determine the path
from a source kmer. It returns a list of nodes comprising the path that
satisfies a minimum path length minlen. It takes the graph, start vertex,
and path as arguments. Initially, the path is an empty list i.e. no nodes have
been traversed yet. If the graph has the start vertex then we store it in the
path. We recursively call find transcript() with the next node along with the
current path that has already been traversed till it encounters untraversed
reachable nodes. The same node will not occur more than once on the path
returned i.e. it won’t contain cycles. We repeat this step for each kmer from
the kmer-list.

In our experiment, we have considered the different combinations of over-
lap and minlength in algorithm 1 and algorithm 2 respectively. For ex-
ample, let us consider five kmers generated from input reads (i.e. fasta
file) (k1: TCGGA), (k2: GATTA), (k3: TTACA), (k4: ACAGA) and (k5:
GGAAT). If we consider overlap = 2 and minlen = 2, the possible Adja-
cency list is {k1 → [k2, k5], k2 → [k3], k3 → [k4], k4 → [k2]} the path is
[k1 − k2 − k3 − k4] and the transcript is “TCGGATTACAGA”. But
if we consider overlap = 3 and minlen = 2, the possible Adjacency list is
{k1 → [k5], k2 → [k3], k3 → [k4]} and the path is [k2 − k3 − k4] and the
transcript is “GATTACAGA”.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2: CreateDAG()

Input : kmer list : List of unique K-mers (k1, k2, k3....kn) each of length
K and min-overlap : length of minimum overlap between two
K-mer sequence where overlap← len(ki ∩ kj)

Output: graph(V,E) : Adjacency List where V ∈ kmer list and
E ∈ {e|len(ki ∩ kj) g min-overlap} where e represents an edge
between two overlapping K-mers.

begin

n← count(kmer list) // count total number of K-mers in

kmer list

for each ki ∈ kmer list do
kmer arry[i]← (i, ki), where i ∈ (1, 2, 3...n) // store index

along with K-mer in an array kmer

end

graph = {} // create Adjacency List for overlapping K-mers

for each kp ∈ kmer arry do

index, kmer ← (p, kp) // store the pth index and pth kmer in

index and kmer

for all kq ∈ kmer arry do

next index, next kmer ← (q, kq) // store the qth index and

qth kmer in next index and next kmer

K ← len(kmer)
for all m ∈ kmer list do

suffix← kmer.substring(K −m,K)
// substring(pos1,pos2) returns a sliced string from

pos1 to pos2.

prefix← next kmer.substring(1,m)
if (prefix == suffix) and (index /∈ graph[next index])
then

// second condition imply no cycle is formed

graph[index]← next index
end

end

end

end

return graph
end

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 3: GTraversal()

Input : graph(V,E) : Adjacency List where V ∈ kmer list and
E ∈ {e|len(ki ∩ kj) g min-overlap} where e represents an edge
between two overlapping K-mers and
minlen : minimum path length

Output: transcript T{t1, t2, ...tn} : List of transcripts where ti ∈ T is
obtained by joining overlapping K-mers in the path i.e.
k1 ∩ k2 ∩ ... ∩ kr by using merge() function.

begin

for each key ∈ kmer list do
path← null
transcript← find transript(graph, key, path) { // function

find transript() returns transcript.

if key ∈ graph then
path← key
for each node in graph[key] do

if node /∈ path then

if node ∈ graph then
find transript(graph, node, path)

end

else
newpath← path+ node

end

end

end

end

if len(newpath) > minlen then
return newpath

end

}
end

for each tr ∈ transcript do
transcript list = merge(tr)

end

return transcript list
end

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

We have summarized the final optimized length of each input dataset
including simulated reads. Figure 3 summarizes the optimized length thus
obtained, where the y-axis represents the total number of reads in input
files, the x-axis represents the input files, and the final optimized transcript
lengths for each input file are demarcated in the figure.

Figure 3: Computational framework for SecDATA

4. Results and Discussion

In this experiment, we have taken both simulated (discussed in section
2.1) and real online human datasets (as shown in Table 1) for our analysis.
We have evaluated the performance on machines with an i7 processor CPU
3.6 GHz x 8 with 8GB of RAM.

4.1. Mining difficulty

The difficulty[40] indicates how difficult it is to find the hash of a new
block. We have ensured the security of the accessed sequence data by mea-
suring the difficulty level of creating a new block (discussed in section 3.2).
Here, the ‘difficulty’ level explains, how hard it is to add a fake block to the
blockchain network involving some attempts for a particular period. Fig-
ure 4 shows the difficulty level along the X-axis concerning the number of

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

iterations, along the Y-axis using the Pow algorithm. Iterated Logarithm
or Log*(n), representing the number of attempts to add a new block, is
the number of times the logarithm function must be iteratively applied till
the result f 1. A high difficulty indicates that mining the same number of
blocks will need more computational power, making the network more secure
against threats. Figure 4 shows that increasing the difficulty level causes the
iteration to rise on a specific part before converging.

Figure 4: The difficulty level of creating new block with respect to iteration using Pow
algorithm

4.2. Creating k-mers using different computational platforms

As discussed in section 3.3.1, k-mer is an important but time-consuming
process for de novo transcript assembly. Further, this is the initial step
for transcript assembly. Hence, we have compared the execution time for

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

generating k-mer in different computational platforms including stand-alone
and distributed framework (which includes Spark and Hadoop). In the case
of Hadoop, we observed the requirement of much less execution time for
generating k-mers(as shown in figure 5). To reduce the time further, we have
used the Spark-based method and have compared this result with that from
Hadoop shown in figure 5.

Figure 5: Time comparison of generating kmer using standalone, Hadoop, and spark
framework

Here, the x-axis represents the size of the data, and the y-axis repre-
sents the execution time in minutes. Three differently sized datasets have
been used as input for checking the execution time in various computational
platforms. We have considered the kmer length of 21 i.e. k=21 for all the
experiments in this work. In comparison to standalone and Hadoop, Apache
Spark outperforms with respect to execution time.

4.3. Evaluating the performance of SecDATA

Transcript Assembly: To evaluate the performance of SecDATA, we have
compared its efficiency with that of Debruijn and Trinity. The efficiency has
been calculated (in terms of alignment percentage) based on the difference
between expected and actual output. To generate the expected output for
all these protocols, we have performed the following:

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) BWA alignment applied on SRA datasets

(b) BWA alignment applied on simulated datasets

Figure 6: BWA alignment percentage obtained on outputs from de Bruijn, Trinity, and
SecDATA

4.3.1. Sequence Alignment using BWA

We aligned the resultant transcripts from Debruijn, Trinity, and Sec-
DATA using the local alignment tool BWA [41] with human (hg18) and
mouse (mm18) reference genome. Here we have performed a comparison
of the alignment score for both sets of input (table 1). In the case of all
the simulated datasets, we observed (in figure 6b) the maximum alignment
score for the transcripts obtained by using SecDATA and Trinity. On the

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

contrary, for transcripts obtained by using de Bruijn, the alignment percent-
age is 21.22%, 17.13%, and 16.7% respectively for simu 50000, simu 100000,
and simu 150000. Figure 6a reveals a similar take-home message from the
alignment results obtained by applying the 3 protocols on SRA datasets viz.
SRR11771595, SRR11771595, SRR11771595 (figure 6a).

4.3.2. Sequence Alignment using Blat

To check the efficiency of these three protocols for the number of true pos-
itive outputs, we have compared our results with the output of the reference-
based transcript assembly tool using the Blat similarity search tool [42]. In
short, we have obtained Human hg38 and Mouse mm10 reference genome and
annotation (GTF) files from Gencode (www.gencodegenes.org). This was
followed by genome alignment and transcript assembly of the corresponding
Human and Mouse SRA and simulated files with Hisat2[43] and Stringtie[43]
tools respectively. Considering these detected transcript sequences as a refer-
ence, BLAT was run with the output of de novo assembled sequences. Figure
7 shows the Blat results (expressed in terms of alignment percentage based
on the difference between expected and actual output) obtained on outputs
from de Bruijn, Trinity and SecDATA applied on both the SRA (Figure 7a)
and simulated datasets (Figure 7b). We have considered no gap here i.e.
each transcript matches without any gap to the reference transcript file. At
this stage, a significant difference is observed in the alignment percentage
obtained on outputs from all the 3 protocols. SecDATA outperforms both
Trinity and de Bruijn.

Conclusion

In this paper, we presented a novel protocol SecDATA for de novo tran-
script assembly from RNA-seq data. The novelty of this work relies on (i)
secured input data access and storage of the output and (ii) efficient de
novo transcript assembly using optimized DAG. Here, we have introduced
a blockchain-based secure data access and storage technique that mitigates
the reliability issue of the input dataset to be used for transcript assembly.
For data security, we have used a POW algorithm to verify the creation of
a false block in a network. For de novo transcript assembly, we generated
the k-mers using spark and then created as well as traversed the DAG to
build the transcripts. Here, we have used an adaptive DFS to traverse the
DAG. Further, we have determined the optimal length of each transcript.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

www.gencodegenes.org
https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Blat alignment applied on SRA datasets

(b) Blat alignment applied on simulated datasets

Figure 7: Blat alignment result obtained on outputs of de Bruijn, Trinity, and SecDATA

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Our protocol outperforms other state-of-the-art transcript assembly proto-
cols -Trinity and de Bruijn in terms of the output i.e. number of true positive
transcripts. We plan to implement SecDATA in a cloud environment so that
it can be accessed as a service in the future.

SecDATA is available at https://github.com/sudipmondalcse/SecDATA.

Conflicts of Interest

The authors declare that they have no conflicts to disclose.

References

[1] K.-O. Mutz, A. Heilkenbrinker, M. Lönne, J.-G. Walter, F. Stahl, Tran-
scriptome analysis using next-generation sequencing, Current opinion in
biotechnology 24 (1) (2013) 22–30.

[2] M. Geniza, P. Jaiswal, Tools for building de novo transcriptome assem-
bly, Current Plant Biology 11 (2017) 41–45.

[3] M.-X. Chen, F.-Y. Zhu, B. Gao, K.-L. Ma, Y. Zhang, A. R. Fernie,
X. Chen, L. Dai, N.-H. Ye, X. Zhang, et al., Full-length transcript-based
proteogenomics of rice improves its genome and proteome annotation,
Plant Physiology 182 (3) (2020) 1510–1526.

[4] E. Bushmanova, D. Antipov, A. Lapidus, A. D. Prjibelski, rnaspades:
a de novo transcriptome assembler and its application to rna-seq data,
GigaScience 8 (9) (2019) giz100.

[5] J. A. Martin, Z. Wang, Next-generation transcriptome assembly, Nature
Reviews Genetics 12 (10) (2011) 671–682.

[6] Y. Peng, H. C. Leung, S.-M. Yiu, M.-J. Lv, X.-G. Zhu, F. Y. Chin,
Idba-tran: a more robust de novo de bruijn graph assembler for tran-
scriptomes with uneven expression levels, Bioinformatics 29 (13) (2013)
i326–i334.

[7] M. Hölzer, M. Marz, De novo transcriptome assembly: A comprehensive
cross-species comparison of short-read rna-seq assemblers, Gigascience
8 (5) (2019) giz039.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

 https://github.com/sudipmondalcse/SecDATA
https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

[8] Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li,
X. Hu, B. Liu, et al., Comparison of the two major classes of assembly
algorithms: overlap–layout–consensus and de-bruijn-graph, Briefings in
functional genomics 11 (1) (2012) 25–37.

[9] K. Clarke, Y. Yang, R. Marsh, L. Xie, et al., Comparative analysis of de
novo transcriptome assembly, Science China Life Sciences 56 (2) (2013)
156–162.

[10] R. Rizzi, S. Beretta, M. Patterson, Y. Pirola, M. Previtali, G. Della Ve-
dova, P. Bonizzoni, Overlap graphs and de bruijn graphs: data struc-
tures for de novo genome assembly in the big data era, Quantitative
Biology 7 (4) (2019) 278–292.

[11] P. E. Compeau, P. A. Pevzner, G. Tesler, How to apply de bruijn graphs
to genome assembly, Nature biotechnology 29 (11) (2011) 987–991.

[12] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, P. Medvedev, On
the representation of de bruijn graphs, in: International conference on
Research in computational molecular biology, Springer, 2014, pp. 35–55.

[13] A. Bowe, T. Onodera, K. Sadakane, T. Shibuya, Succinct de bruijn
graphs, in: International workshop on algorithms in bioinformatics,
Springer, 2012, pp. 225–235.

[14] H. I. Ozercan, A. M. Ileri, E. Ayday, C. Alkan, Realizing the potential
of blockchain technologies in genomics, Genome research 28 (9) (2018)
1255–1263.

[15] H. Natarajan, S. Krause, H. Gradstein, Distributed ledger technology
and blockchain (2017).

[16] A. Sunyaev, Distributed ledger technology, in: Internet Computing,
Springer, 2020, pp. 265–299.

[17] G. Fiorentino, C. Occhipinti, A. Corsi, E. Moro, J. Davies, A. Duke,
Blockchain: Enabling trust on the internet of things, The Internet of
Things: From Data to Insight (2020) 141–157.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

[18] B. Farahani, F. Firouzi, M. Luecking, The convergence of iot and dis-
tributed ledger technologies (dlt): Opportunities, challenges, and so-
lutions, Journal of Network and Computer Applications 177 (2021)
102936.

[19] K. Jyothilakshmi, V. Robins, A. Mahesh, A comparative analysis be-
tween hyperledger fabric and ethereum in medical sector: A systematic
review, Sustainable Communication Networks and Application (2022)
67–86.

[20] M. Valenta, P. Sandner, Comparison of ethereum, hyperledger fabric
and corda, Frankfurt School Blockchain Center 8 (2017) 1–8.

[21] S. Thiebes, M. Schlesner, B. Brors, A. Sunyaev, Distributed ledger tech-
nology in genomics: a call for europe, European Journal of Human Ge-
netics 28 (2) (2020) 139–140.

[22] S. Mondal, R. K. Maji, Z. Ghosh, S. Khatua, Parstream-seq: An im-
proved method of handling next generation sequence data, Genomics
111 (6) (2019) 1641–1650.

[23] A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer
for illumina sequence data, Bioinformatics 30 (15) (2014) 2114–2120.

[24] J. Brown, M. Pirrung, L. A. McCue, Fqc dashboard: integrates fastqc
results into a web-based, interactive, and extensible fastq quality control
tool, Bioinformatics 33 (19) (2017) 3137–3139.

[25] H. Gourlé, O. Karlsson-Lindsjö, J. Hayer, E. Bongcam-Rudloff, Simu-
lating illumina metagenomic data with insilicoseq, Bioinformatics 35 (3)
(2019) 521–522.

[26] N. Z. Benisi, M. Aminian, B. Javadi, Blockchain-based decentralized
storage networks: A survey, Journal of Network and Computer Appli-
cations 162 (2020) 102656.

[27] K. Wüst, A. Gervais, Do you need a blockchain?, in: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), IEEE, 2018, pp. 45–
54.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

[28] K. Sultan, U. Ruhi, R. Lakhani, Conceptualizing blockchains: Charac-
teristics & applications, arXiv preprint arXiv:1806.03693 (2018).

[29] T. M. Fernández-Caramés, P. Fraga-Lamas, Advances in the conver-
gence of blockchain and artificial intelligence (2022).

[30] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, C. Qijun, A review on
consensus algorithm of blockchain, in: 2017 IEEE international confer-
ence on systems, man, and cybernetics (SMC), IEEE, 2017, pp. 2567–
2572.

[31] L. M. Bach, B. Mihaljevic, M. Zagar, Comparative analysis of blockchain
consensus algorithms, in: 2018 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelectron-
ics (MIPRO), Ieee, 2018, pp. 1545–1550.

[32] T. Xue, Y. Yuan, Z. Ahmed, K. Moniz, G. Cao, C. Wang, Proof of
contribution: A modification of proof of work to increase mining effi-
ciency, in: 2018 IEEE 42nd annual computer software and applications
conference (COMPSAC), Vol. 1, IEEE, 2018, pp. 636–644.

[33] G. BitFury, Proof of stake versus proof of work, White paper, Sep (2015).

[34] A. E. Gencer, S. Basu, I. Eyal, R. v. Renesse, E. G. Sirer, Decentraliza-
tion in bitcoin and ethereum networks, in: International Conference on
Financial Cryptography and Data Security, Springer, 2018, pp. 439–457.

[35] C. BouSaba, E. Anderson, Degree validation application using solidity
and ethereum blockchain, in: 2019 SoutheastCon, IEEE, 2019, pp. 1–5.

[36] http://dirk.eddelbuettel.com/code/digest.html (2020).

[37] D. Eddelbuettel, A. Lucas, J. Tuszynski, H. Bengtsson, S. Urbanek,
M. Frasca, B. Lewis, M. Stokely, H. Muehleisen, D. Murdoch, et al.,
Package ‘digest’ (2022).

[38] S. Mondal, S. Khatua, Finding simple sequence repeats (ssrs) within
human genome using mapreduce based k-mer algorithm, in: 2018 Fifth
International Conference on Parallel, Distributed and Grid Computing
(PDGC), IEEE, 2018, pp. 340–345.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

http://dirk.eddelbuettel.com/code/digest.html
https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

[39] S. Chellappan, D. Ganesan, Introduction to apache spark and spark
core, in: Practical Apache Spark, Springer, 2018, pp. 79–113.

[40] G. A. Pierro, H. Rocha, The influence factors on ethereum transaction
fees, in: 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), IEEE, 2019,
pp. 24–31.

[41] H. Li, R. Durbin, Fast and accurate long-read alignment with burrows–
wheeler transform, Bioinformatics 26 (5) (2010) 589–595.

[42] W. J. Kent, Blat—the blast-like alignment tool, Genome research 12 (4)
(2002) 656–664.

[43] M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, S. L. Salzberg, Transcript-
level expression analysis of rna-seq experiments with hisat, stringtie and
ballgown, Nature protocols 11 (9) (2016) 1650–1667.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564229doi: bioRxiv preprint

https://doi.org/10.1101/2023.10.26.564229
http://creativecommons.org/licenses/by-nc-nd/4.0/

	ㄵ㘠〠潢樊㰼 呩瑬攨﻿ㄵ㜠〠潢樊㰼 呩瑬攨﻿ㄵ㠠〠潢樊㰼 呩瑬攨﻿ㄵ㤠〠潢樊㰼 呩瑬攨﻿ㄶ〠〠潢樊㰼 呩瑬攨﻿ㄶㄠ〠潢樊㰼 呩瑬攨﻿ㄶ㈠〠潢樊㰼 呩瑬攨﻿ㄶ㌠〠潢樊㰼 呩瑬攨﻿ㄶ㐠〠潢樊㰼 呩瑬攨﻿ㄶ㔠〠潢樊㰼 呩瑬攨﻿ㄶ㘠〠潢樊㰼 呩瑬攨﻿ㄶ㜠〠潢樊㰼 呩瑬攨﻿ㄶ㠠〠潢樊㰼 呩瑬攨﻿ㄶ㤠〠潢樊㰼 呩瑬攨﻿ㄷ〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪਱㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†ㄷ〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㜲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊ㄷ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†ㄷ㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㔮㘷㌠㘱㔮㌹㈠ㄹ㌮㔱㤠㘲㔮〸㥝ਯ䑥獴⁛ㄴ‰⁒ 塙娠ㄱ㘮㜰㜰‴㤹⸳㈸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸱ㄠ㔴㌮ㄶ㌠ㄲ〮㤵㔠㔵㈮㠶崊⽄敳琠嬱㐠〠删⽘奚‱ㄶ⸷〷〠㐴㘮〲㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㔮㌠㐷〮㤳㐠㌸㌮ㄴ㘠㐸〮㘳ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠ㄱ㘮㜰㜰‴〷⸱㜳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔶⸸㤴‴㐲⸰㐲‴㘴⸷㐠㐵ㄮ㜳㥝ਯ䑥獴⁛ㄴ‰⁒ 塙娠ㄱ㘮㜰㜰″㌹⸴㈷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘷⸳㠸‴ㄳ⸱㔱′㜵⸲㌴‴㈲⸸㐸崊⽄敳琠嬱㐠〠删⽘奚‱ㄶ⸷〷〠㈸㘮ㄲ㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㈮㐶㠠㌸㐮㈵㤠㌰〮㌱㌠㌹㌮㤵㙝ਯ䑥獴⁛ㄴ‰⁒ 塙娠ㄱ㘮㜰㜰′㐷⸲㜳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠲⸰㐱″㔵⸳㘷′㠹⸸㠶″㘵⸰㘴崊⽄敳琠嬱㐠〠删⽘奚‱ㄶ⸷〷〠ㄷ㤮㔲㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㔮㘲㠠㈵㐮㈴㜠㐱㌮㐷㐠㈶㌮㤴㑝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ㘮㜰㜰‶㘸⸶㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸱ㄠ㈲㔮㌵㔠ㄲ〮㤵㔠㈳㔮〵㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ㘮㜰㜰‶〰⸹㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸱ㄠㄹ㘮㐶㌠ㄲ㘮㠰㠠㈰㘮ㄶ崊⽄敳琠嬱㔠〠删⽘奚‱㄰⸸㔴〠㔴㜮㘴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㠮㜲ㄠㄸ㈮〱㜠㈵㈮㐱㤠ㄹㄮ㜱㑝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ〮㠵㐰‴㜹⸹〰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠶⸰㐵‱㔳⸱㈶‴㤳⸸㤠ㄶ㈮㠲㍝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ㘮㜰㜰‶㘸⸶㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔷⸶㌷‱㌸⸶㠠㈷ㄮ㌳㔠ㄴ㠮㌷㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ〮㠵㐰‴㐱⸰㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪਱㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†ㄸ㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊ㄹ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†ㄸ㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㤱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷㤮㘷ㄠ㔸ㄮ〲ㄠ㈹㌮㌷‵㤰⸷ㄸ崊⽄敳琠嬱㔠〠删⽘奚‱㄰⸸㔴〠㐴ㄮ〴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㤮〷‵㠱⸰㈱″ㄲ⸷㘹‵㤰⸷ㄸ崊⽄敳琠嬱㔠〠删⽘奚‱㄰⸸㔴〠㌸㜮㜴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㤮㠶‴〷⸶㜱″㐳⸵㔸‴ㄷ⸳㘸崊⽄敳琠嬱㔠〠删⽘奚‱㄰⸸㔴〠㌳㐮㐴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㔮㔸㠠㌹㌮㈲㔠㌶㤮㈸㜠㐰㈮㤲㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ〮㠵㐰′㠱⸱㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㜱⸸㈴″㘴⸳㌴″㠵⸵㈳″㜴⸰㌱崊⽄敳琠嬱㔠〠删⽘奚‱㄰⸸㔴〠㈴㈮㈹㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄴ㈮㔸㈠㈹㈮㄰㔠ㄵ㘮㈸ㄠ㌰ㄮ㠰㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ〮㠵㐰′〳⸴㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘹⸱ㄴ′㜷⸶㔹‱㠲⸸ㄳ′㠷⸳㔶崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠㘶㠮㘹㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶ㄮ㔸㘠㈳㐮㌲ㄠ㈷㔮㈸㔠㈴㐮〱㡝ਯ䑥獴⁛㈰‰⁒ 塙娠ㄱ〮㠵㐰‶〰⸹㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠲⸰㤵′㌴⸳㈱′㤵⸷㤴′㐴⸰ㄸ崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠㔳㌮㈰〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹〮㈶′ㄹ⸸㜵″〳⸹㔹′㈹⸵㜲崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠㐹㐮㌴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′〱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈰㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ〴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′〳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈰㔠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣礊⽉⁴牵攊⽃匯䑥癩捥則䈾㹥湤潢樊㈰㘠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣礊⽉⁴牵放㹥湤潢樊㈰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐲⸳㜵‵㤸⸶㈲‱㔰⸲㈠㘱ㄮ㈴ㅝਯ䑥獴⁛㈠〠删⽘奚‱㄰⸸㔴〠㔹㈮㠹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐱㘮ㄴ㐠㈸㤮㔵㈠㐲㌮㤹″〳⸵崊⽄敳琠嬳‰⁒ 塙娠ㄱ〮㠵㐰‶㜳⸴㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳ㄵ⸴㐳′㘰⸶㘠㐹㔮㠴ㄠ㈷㐮㘰㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯睷眮湣扩⹮汭⹮楨⹧潶⼩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐳ㄮ㌵㤠㈴㤮㈰㌠㐴㔮〵㠠㈵㠮㥝ਯ䑥獴⁛㈰‰⁒ 塙娠ㄱ〮㠵㐰‴㐱⸰㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄶ⸱㈳′㌴⸷㔷′㈹⸸㈲′㐴⸴㔴崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠㌸㜮㜴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰㠮㠲㘠㈳㐮㜵㜠㌲㈮㔲㔠㈴㐮㐵㑝ਯ䑥獴⁛㈰‰⁒ 塙娠ㄱ〮㠵㐰″㐸⸸㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㤳⸸ㄴ′〵⸸㘶‴〷⸵ㄲ′ㄵ⸵㘳崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠㈹㔮㔹㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌸ㄮ㔱㐠ㄳ〮㤸‵〰⸳㤴‱㐳⸹㌱崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⠠桴瑰猺⼯杩瑨畢⹣潭⽳畤楰浯湤慬捳支卥捄䅔䄩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㄰㤮㠵㠠ㄱ㘮㔳㐠㈴㜮ㄹ㌠ㄲ㤮㐸㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨⁨瑴灳㨯⽧楴桵戮捯洯獵摩灭潮摡汣獥⽓散䑁呁⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲㄷ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈱㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄸ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈱㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈱㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㌮ㄷ㐠㐳㠮㤵㐠㈲㘮㠷㌠㐴㠮㘵ㅝਯ䑥獴⁛㈰‰⁒ 塙娠ㄱ〮㠵㐰′㐲⸲㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔸⸲㤷‴㈴⸵〸″㜱⸹㤵‴㌴⸲〵崊⽄敳琠嬲〠〠删⽘奚‱㄰⸸㔴〠ㄸ㠮㤹㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㠮㔷㤠㐲㐮㔰㠠㌹㈮㈷㠠㐳㐮㈰㕝ਯ䑥獴⁛㌶‰⁒ 塙娠ㄱ〮㠵㐰‶㘸⸶㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㈳⸷ㄹ″㔲⸲㜹‴㌷⸴ㄸ″㘱⸹㜶崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㘲㤮㠳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㠮㔳㘠㌳㜮㠳㌠㈰㈮㈳㔠㌴㜮㔳崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㔹〮㤸㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㠮㈵㐠㈵ㄮㄵ㠠㈷ㄮ㤵㌠㈶〮㠵㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄱ〮㠵㐰′㐲⸲㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐷⸴㌷′㌶⸷ㄲ″㘱⸱㌶′㐶⸴〹崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㔲㌮㈳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㠮㠶㠠㈰㜮㠲ㄠㄹ㈮㔶㘠㈱㜮㔱㡝ਯ䑥獴⁛㌶‰⁒ 塙娠ㄱ〮㠵㐰‴㔵⸴㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈲㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈳〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐸㤮㈹㘠㔷㈮㈲ㄠ㐹㜮ㄴ㈠㔸㐮㠴崊⽄敳琠嬴‰⁒ 塙娠㈶ㄮ㌷㜰‶㈵⸳㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘰⸶㜸‵㐵⸶㔴‴㜴⸳㜶‵㔵⸳㔱崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㌸㜮㜴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㈮㈷㜠㌲㠮㐶㠠㈶㔮㤷㘠㌳㠮ㄶ㕝ਯ䑥獴⁛㌶‰⁒ 塙娠ㄱ〮㠵㐰″㘳⸳㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〴⸱㜳′㤹⸵㜷′ㄷ⸸㜱″〹⸲㜴崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㌱〮〳㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㐮㈷㤠㈴ㄮ㜹㌠㐷㜮㤷㠠㈵ㄮ㐹崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㈷ㄮㄸ㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸㌮㐴㌠㈴ㄮ㜹㌠㐹㜮ㄴ㈠㈵ㄮ㐹崊⽄敳琠嬳㘠〠删⽘奚‱㄰⸸㔴〠㈴㘮㜷㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㌸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈴〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㐰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐲⸳㜵‶〴⸵㤹‱㔰⸲㈠㘱㜮㈱㥝ਯ䑥獴⁛㔠〠删⽘奚‱㄰⸸㔴〠㔹㠮㠷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㐮㘱㔠㈷㌮㘱㐠㌲㠮㌱㐠㈸㌮㌱ㅝਯ䑥獴⁛㌶‰⁒ 塙娠ㄱ〮㠵㐰‱㤳⸴㜴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㌳⸴㌵′㈷⸹㔲′㐱⸲㠱′㐰⸵㜱崊⽄敳琠嬴㜠〠删⽘奚‱㈸⸴ㄳ〠㘴㔮〱㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐵㔮㘲㠠㈱㌮㔰㘠㐶㌮㐷㐠㈲㘮ㄲ㕝ਯ䑥獴⁛㐷‰⁒ 塙娠ㄲ㠮㐱㌰‶㐵⸰ㄵ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈴㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈴㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄹ㐮㠵㘠㈲㤮㈷㌠㈰㈮㜰ㄠ㈴ㄮ㠹㉝ਯ䑥獴⁛㐷‰⁒ 塙娠ㄲ㠮㐱㌰‶㐵⸰ㄵ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈷⸸㘵′〲⸷〶′㐱⸵㘴′ㄲ⸴〳崊⽄敳琠嬵㠠〠删⽘奚‱㄰⸸㔴〠㘶㠮㘹㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㔲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㔴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤸⸶㠶‱㤰⸱㔴′〶⸵㌱′〲⸷㜳崊⽄敳琠嬶㈠〠删⽘奚‱㈸⸴ㄳ〠㘲㔮㘰〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㔷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㔹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲〳⸰〴‴㜷⸵㜶′ㄱ⸷㈲‴㤰⸱㤵崊⽄敳琠嬶㤠〠删⽘奚‱㈸⸴ㄳ〠㘱㤮ㄴ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㠮㐲ㄠ㐷㜮㔷㘠㐸㘮㈶㘠㐹〮ㄹ㕝ਯ䑥獴⁛㘲‰⁒ 塙娠ㄲ㠮㐱㌰‶㈵⸶〰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈶㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈶㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈶㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈶㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㘷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㘹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈷ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈷ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈷㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈷㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈹〮〶㠠㘳㘮㐸′㤷⸹ㄴ‶㐹⸰㤹崊⽄敳琠嬷‰⁒ 塙娠ㄱ〮㠵㐰‵㠷⸴ㄴ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〰⸵ㄲ‱㤵⸰㘸′ㄴ⸲ㄠ㈰㐮㜶㕝ਯ䑥獴⁛㔸‰⁒ 塙娠ㄱ〮㠵㐰‶㈹⸸㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㌰⸹㈱‱㈰⸵ㄴ‱㌸⸷㘷‱㌳⸱㌴崊⽄敳琠嬸‰⁒ 塙娠ㄱ〮㠵㐰‵㔸⸵㈲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㜹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈷㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈸ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈸〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈳〮㐸㈠㔷㠮㘹㜠㈳㠮㌲㜠㔹ㄮ㌱㙝ਯ䑥獴⁛㠠〠删⽘奚‱㄰⸸㔴〠㔵㠮㔲㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈸㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㠳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈸㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㠵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㌵⸱〸‵㜸⸶㤷′㐲⸹㔳‵㤱⸳ㄶ崊⽄敳琠嬹‰⁒ 塙娠ㄱ〮㠵㐰‵㜲⸹㘸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㈸㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈹ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈹〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵〮㠳ㄠㄷ㘮㠱㐠㌶㐮㔲㤠ㄸ㘮㔱ㅝਯ䑥獴⁛㔸‰⁒ 塙娠ㄱ〮㠵㐰‵㘲⸰㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㔱⸱㔴‱㌰⸴㠸″㔹‱㐴⸴㌵崊⽄敳琠嬱〠〠删⽘奚‱㄰⸸㔴〠㘷㌮㐲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㈹㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠′㤴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈹㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㤷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㤶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㐵⸱〳‶㈲⸰㌴′㔲⸹㐸‶㌴⸶㔳崊⽄敳琠嬱〠〠删⽘奚‱㄰⸸㔴〠㘷㌮㐲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌷㘮㠰㜠㔹㈮㐷㠠㌸㐮㘵㌠㘰㘮㐲㙝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄱ〮㠵㐰‶㜳⸴㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘳⸵ㄠ㔲㐮㜳㈠㐷㜮㈰㤠㔳㐮㐲㥝ਯ䑥獴⁛㔸‰⁒ 塙娠ㄱ〮㠵㐰‵㈳⸲㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳ㄴ⸲㤱‴㤲⸸㔲‴㌹⸳㈲‵〶⸷㤹崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡷睷⹧敮捯摥来湥献潲朩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㔮㘰㔠㐶㘮㤴㤠㐰㤮㌰㐠㐷㘮㘴㙝ਯ䑥獴⁛㔸‰⁒ 塙娠ㄱ〮㠵㐰‴㠴⸳㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠳⸴㐳‴㘶⸹㐹‴㤷⸱㐲‴㜶⸶㐶崊⽄敳琠嬵㠠〠删⽘奚‱㄰⸸㔴〠㐸㐮㌸㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㤮㠵㠠㐲〮㘲㌠ㄱ㜮㜰㐠㐳㐮㔷崊⽄敳琠嬱ㄳ‰⁒ 塙娠ㄱ〮㠵㐰‶㌷⸲㘰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ਼〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㌰㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌰㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㌱〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠″〹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼ㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″ㄱ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㐹⸸㤵‵㤲⸸ㄠ㔰㐮ㄱ㜠㘰㔮㜶㉝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨⁨瑴灳㨯⽧楴桵戮捯洯獵摩灭潮摡汣獥⽓散䑁呁⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ਼ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㌱㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄶ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌱㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄸ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㌱㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠″ㄸ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㈰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ਼㈳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㌲㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌲㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄳ㌮㤲′㔲⸷㔲‴ㄲ⸷㔠㈶㘮㝝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰㨯⽤楲欮敤摥汢略瑴敬⹣潭⽣潤支摩来獴⹨瑭氩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮㄰⸲㘮㔶㐲㈹⤾㹥湤潢樊㌲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌰⸰〴‷㜸′㠲⸷㠠㜸㡝ਯ䄠″㈷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㈹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱〮㈶⸵㘴㈲㤩㸾敮摯扪ਲ਼㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ〮〰㐠㜷㠠㈸㈮㜸‷㠸崊⽁†㌳ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌳㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌸‰⁯扪਼㰯呹灥⽍整慤慴愊⽓畢瑹灥⽘䵌⽌敮杴栠ㄵ㠸㸾獴牥慭਼㽸灡捫整⁢敧楮㴧뼧⁩搽❗㕍き灃敨楈穲敓穎呣穫挹搧㼾਼㽡摯扥⵸慰ⵦ楬瑥牳⁥獣㴢䍒䱆∿㸊㱸㩸浰浥瑡⁸浬湳㩸㴧慤潢攺湳㩭整愯✠砺硭灴欽❘䵐⁴潯汫楴′⸹⸱ⴱ㌬⁦牡浥睯牫‱⸶✾਼牤昺剄䘠硭汮猺牤昽❨瑴瀺⼯睷眮眳⹯牧⼱㤹㤯〲⼲㈭牤昭獹湴慸⵮猣✠硭汮猺楘㴧桴瑰㨯⽮献慤潢攮捯洯楘⼱⸰⼧㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺灤昽❨瑴瀺⼯湳⹡摯扥⹣潭⽰摦⼱⸳⼧㸼灤昺偲潤畣敲㹇偌⁇桯獴獣物灴‱〮〰⸰㰯灤昺偲潤畣敲㸊㱰摦㩋敹睯牤猾㰯灤昺䭥祷潲摳㸊㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸浰㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯✾㱸浰㩍潤楦祄慴放㈰㈳ⴱㄭ〱吰㈺㐹㨴㥚㰯硭瀺䵯摩晹䑡瑥㸊㱸浰㩃牥慴敄慴放㈰㈳ⴱㄭ〱吰㈺㐹㨴㥚㰯硭瀺䍲敡瑥䑡瑥㸊㱸浰㩃牥慴潲呯潬㹌慔敘⁷楴栠桹灥牲敦㰯硭瀺䍲敡瑯牔潯氾㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸慰䵍㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯浭⼧⁸慰䵍㩄潣畭敮瑉䐽❵畩携摦㡦㍣㈵ⵢ〷搭ㄱ昹ⴰ〰〭㈱㐹つ㐷戳戰✯㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺摣㴧桴瑰㨯⽰畲氮潲术摣⽥汥浥湴猯ㄮㄯ✠摣㩦潲浡琽❡灰汩捡瑩潮⽰摦✾㱤挺瑩瑬放㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾卥捄䅔䄺⁓散畲攠䑡瑡⁁捣敳猠慮搠摥⁮潶漠呲慮獣物灴☣㄰㭁獳敭扬礠灲潴潣潬‭⁔漠浥整⁴桥⁣桡汬敮来⁯映牥汩慢汥☣㄰㭎䝓⁤慴愠慮慬祳楳㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺瑩瑬放㱤挺捲敡瑯爾㱲摦㩓敱㸼牤昺汩㹓畤楰⁍潮摡氻⁎慭牡瑡⁂桡瑴慣桡特愻⁔牯祥攠䑡猻⁚桵浵爠䝨潳栻⁓畮楲浡氠䭨慴畡※‼⽲摦㩬椾㰯牤昺卥焾㰯摣㩣牥慴潲㸼摣㩤敳捲楰瑩潮㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㸼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩤敳捲楰瑩潮㸼⽲摦㩄敳捲楰瑩潮㸊㰯牤昺剄䘾਼⽸㩸浰浥瑡㸊††††††††††††††††††††††††††††††††††††ਠ††††††††††††††††††††††††††††††††††† 㰿硰慣步琠敮搽❷✿㸊敮摳瑲敡洊敮摯扪੸牥昊〠㌳㤊〰〰〰〰〰‶㔵㌵⁦ 〰〰〴〱㘴‰〰〰⁮ 〰〰〵㈴〱‰〰〰⁮ 〰〰ㄵ〸㌴‰〰〰⁮ 〰〰ㄵ㜰㔶‰〰〰⁮ 〰〰ㄶ㈷㠰‰〰〰⁮ 〰〰㈴㠴ㄳ‰〰〰⁮ 〰〰㈷㌵㤸‰〰〰⁮ 〰〰㈹㘹㜶‰〰〰⁮ 〰〰㌰㜹㤹‰〰〰⁮ 〰〰㌲㜲㌵‰〰〰⁮ 〰〰㌶〱㈲‰〰〰⁮ 〰〰〴〴㌷‰〰〰⁮ 〰〰〴㘲㠶‰〰〰⁮ 〰〰㌹〱㠲‰〰〰⁮ 〰〰㌹㐶㌰‰〰〰⁮ 〰〰〴㘳〷‰〰〰⁮ 〰〰〴㘳㘴‰〰〰⁮ 〰〰〴㘶ㄴ‰〰〰⁮ 〰〰〵㈳㈳‰〰〰⁮ 〰〰㌹㠹㠶‰〰〰⁮ 〰〰〵㈳㐴‰〰〰⁮ 〰〰〵㈶㠱‰〰〰⁮ 〰〰〵㘳〲‰〰〰⁮ 〰〰〵㘳㈳‰〰〰⁮ 〰〰〸㜰㔱‰〰〰⁮ 〰〰㐱〹㜲‰〰〰⁮ 〰〰㐱ㄴ㘹‰〰〰⁮ 〰〰ㄴ㜸㠳‰〰〰⁮ 〰〰ㄴ㠲㌳‰〰〰⁮ 〰〰ㄴ㠵㐹‰〰〰⁮ 〰〰ㄴ㠵㤳‰〰〰⁮ 〰〰ㄵ㄰㘷‰〰〰⁮ 〰〰ㄵ㘹㐲‰〰〰⁮ 〰〰㐱ㄸ㤵‰〰〰⁮ 〰〰㐱㈲㤴‰〰〰⁮ 〰〰㐰㌵ㄱ‰〰〰⁮ 〰〰ㄵ㘹㘳‰〰〰⁮ 〰〰ㄵ㜲㜳‰〰〰⁮ 〰〰ㄶ㈶㜸‰〰〰⁮ 〰〰㐱㈶㈳‰〰〰⁮ 〰〰㐱㈹㈹‰〰〰⁮ 〰〰ㄶ㈶㤹‰〰〰⁮ 〰〰ㄶ㌰㈰‰〰〰⁮ 〰〰ㄶ㘴㠴‰〰〰⁮ 〰〰ㄶ㘵〵‰〰〰⁮ 〰〰ㄹ㈵㘹‰〰〰⁮ 〰〰㈴㌳㤹‰〰〰⁮ 〰〰㈴㌲㠵‰〰〰⁮ 〰〰㈴㌳㌰‰〰〰⁮ 〰〰㈴㌵㠵‰〰〰⁮ 〰〰㈴㠲㘳‰〰〰⁮ 〰〰㐱㌲〵‰〰〰⁮ 〰〰㐱㌵㌷‰〰〰⁮ 〰〰㐱㌸ㄲ‰〰〰⁮ 〰〰㐱㐱㘴‰〰〰⁮ 〰〰㐱㐴㠷‰〰〰⁮ 〰〰㐱㐸㠹‰〰〰⁮ 〰〰㐰㠳㘱‰〰〰⁮ 〰〰㈴㠲㠴‰〰〰⁮ 〰〰㈴㠵㤰‰〰〰⁮ 〰〰㈵㐷ㄷ‰〰〰⁮ 〰〰㈶ㄶ㈷‰〰〰⁮ 〰〰㈵㐷㌸‰〰〰⁮ 〰〰㈵㐸㌱‰〰〰⁮ 〰〰㈵㔰ㄷ‰〰〰⁮ 〰〰㈶ㄵ〱‰〰〰⁮ 〰〰㐱㔲㜱‰〰〰⁮ 〰〰㐱㔴㌲‰〰〰⁮ 〰〰㈶㜲ㄸ‰〰〰⁮ 〰〰㈶ㄵ㈲‰〰〰⁮ 〰〰㈶ㄷ㤷‰〰〰⁮ 〰〰㈶㘱㐱‰〰〰⁮ 〰〰㐱㔶㔶‰〰〰⁮ 〰〰㐱㔸㐰‰〰〰⁮ 〰〰㈶㘱㘲‰〰〰⁮ 〰〰㈶㘳㐴‰〰〰⁮ 〰〰㈶㘵㘰‰〰〰⁮ 〰〰㈶㜳㠸‰〰〰⁮ 〰〰㈷㄰㌲‰〰〰⁮ 〰〰㈷㄰㔳‰〰〰⁮ 〰〰㈷ㄳ㤲‰〰〰⁮ 〰〰㈷ㄶ㤷‰〰〰⁮ 〰〰㈷㌸㌰‰〰〰⁮ 〰〰㈷㜰㤰‰〰〰⁮ 〰〰㈷㜱ㄱ‰〰〰⁮ 〰〰㈷㠴㜶‰〰〰⁮ 〰〰㈹㘸㔰‰〰〰⁮ 〰〰㈹㘸㤵‰〰〰⁮ 〰〰㈹㜲〴‰〰〰⁮ 〰〰㈹㤸㌸‰〰〰⁮ 〰〰㈹㤸㔹‰〰〰⁮ 〰〰㌰㈰㤶‰〰〰⁮ 〰〰㌰㜸㔲‰〰〰⁮ 〰〰㌰㜸㠵‰〰〰⁮ 〰〰㌰㜹ㄸ‰〰〰⁮ 〰〰㌰㠲〱‰〰〰⁮ 〰〰㌱ㄶ㜹‰〰〰⁮ 〰〰㌱ㄷ〰‰〰〰⁮ 〰〰㌲㜱㌲‰〰〰⁮ 〰〰㌲㜱㘵‰〰〰⁮ 〰〰㌲㜴㘳‰〰〰⁮ 〰〰㌲㤷㌴‰〰〰⁮ 〰〰㌲㤷㔶‰〰〰⁮ 〰〰㌳ㄴ㐵‰〰〰⁮ 〰〰㌴㔴㠴‰〰〰⁮ 〰〰㌴㜰㌲‰〰〰⁮ 〰〰㌵㤹㜸‰〰〰⁮ 〰〰㌶〰㔲‰〰〰⁮ 〰〰㌶〳㔰‰〰〰⁮ 〰〰㌶㔸㠷‰〰〰⁮ 〰〰㐱㘰㠱‰〰〰⁮ 〰〰㐱㘴㌵‰〰〰⁮ 〰〰㌶㔹㤲‰〰〰⁮ 〰〰㌶㔹〹‰〰〰⁮ 〰〰㌶㘲〵‰〰〰⁮ 〰〰㌶㜲㌷‰〰〰⁮ 〰〰㌶㜲㔸‰〰〰⁮ 〰〰㌶㠶〶‰〰〰⁮ 〰〰㌷㠸㌱‰〰〰⁮ 〰〰㌸〲㐲‰〰〰⁮ 〰〰㌹〰㔰‰〰〰⁮ 〰〰㌹〱㈴‰〰〰⁮ 〰〰㌹〳㘲‰〰〰⁮ 〰〰㌹㐵㈵‰〰〰⁮ 〰〰㌹㐵㐷‰〰〰⁮ 〰〰㌹㐸〲‰〰〰⁮ 〰〰㌹㠹ㄸ‰〰〰⁮ 〰〰㌹㠹㐰‰〰〰⁮ 〰〰㌹㤱㔸‰〰〰⁮ 〰〰㐰㌴㐳‰〰〰⁮ 〰〰㐰㌴㘵‰〰〰⁮ 〰〰㐰㌶㤱‰〰〰⁮ 〰〰㐰㠲㠰‰〰〰⁮ 〰〰㐰㠳〲‰〰〰⁮ 〰〰㐰㠵㌳‰〰〰⁮ 〰〰㐱〹〴‰〰〰⁮ 〰〰㐱〹㈶‰〰〰⁮ 〰〰㐱㘷㔴‰〰〰⁮ 〰〰㐱㠹㠷‰〰〰⁮ 〰〰㐲〰㈷‰〰〰⁮ 〰〰㈷ㄸ㘲‰〰〰⁮ 〰〰㐲㘱㌶‰〰〰⁮ 〰〰㐲㘶㐴‰〰〰⁮ 〰〰㈶㘷㈵‰〰〰⁮ 〰〰ㄴ㠶㠶‰〰〰⁮ 〰〰㐲㠷㤴‰〰〰⁮ 〰〰㐳㌸㜵‰〰〰⁮ 〰〰㐳㘳㌰‰〰〰⁮ 〰〰㐴〰㤶‰〰〰⁮ 〰〰㐴ㄳ㌴‰〰〰⁮ 〰〰㐴ㄴ㌴‰〰〰⁮ 〰〰㐴ㄵ㌸‰〰〰⁮ 〰〰㐴ㄶ㌵‰〰〰⁮ 〰〰㐴ㄹ㌸‰〰〰⁮ 〰〰㐴㈸㔴‰〰〰⁮ 〰〰㐴㈸㜶‰〰〰⁮ 〰〰㐴㈸㤸‰〰〰⁮ 〰〰㐴㈹㈰‰〰〰⁮ 〰〰㐴㈹㐲‰〰〰⁮ 〰〰㐴㈹㘴‰〰〰⁮ 〰〰㐴㈹㠶‰〰〰⁮ 〰〰㐴㌰〸‰〰〰⁮ 〰〰㐴㌰㌰‰〰〰⁮ 〰〰㐴㌰㔲‰〰〰⁮ 〰〰㐴㌰㜴‰〰〰⁮ 〰〰㐴㌰㤶‰〰〰⁮ 〰〰㐴㌱ㄸ‰〰〰⁮ 〰〰㐴㌱㐰‰〰〰⁮ 〰〰㐴㌱㘲‰〰〰⁮ 〰〰㐴㌱㠴‰〰〰⁮ 〰〰㐴㌲㔹‰〰〰⁮ 〰〰㐴㌳㘵‰〰〰⁮ 〰〰㐴㌴㐸‰〰〰⁮ 〰〰㐴㌵㔵‰〰〰⁮ 〰〰㐴㌷ㄶ‰〰〰⁮ 〰〰㐴㌸㜵‰〰〰⁮ 〰〰㐴㐰㌴‰〰〰⁮ 〰〰㐴㐱㤴‰〰〰⁮ 〰〰㐴㐳㔵‰〰〰⁮ 〰〰㐴㐵ㄶ‰〰〰⁮ 〰〰㐴㐶㜷‰〰〰⁮ 〰〰㐴㐸㌸‰〰〰⁮ 〰〰㐴㐹㤸‰〰〰⁮ 〰〰㐴㔱㔷‰〰〰⁮ 〰〰㐴㔳ㄸ‰〰〰⁮ 〰〰㐴㔴㜸‰〰〰⁮ 〰〰㐴㔶㌸‰〰〰⁮ 〰〰㐴㔷ㄳ‰〰〰⁮ 〰〰㐴㔸ㄹ‰〰〰⁮ 〰〰㐴㔹〲‰〰〰⁮ 〰〰㐴㘰〹‰〰〰⁮ 〰〰㐴㘱㘹‰〰〰⁮ 〰〰㐴㘳㈹‰〰〰⁮ 〰〰㐴㘴㠹‰〰〰⁮ 〰〰㐴㘶㔰‰〰〰⁮ 〰〰㐴㘸ㄱ‰〰〰⁮ 〰〰㐴㘹㜲‰〰〰⁮ 〰〰㐴㜱㌳‰〰〰⁮ 〰〰㐴㜲㤴‰〰〰⁮ 〰〰㐴㜴㔵‰〰〰⁮ 〰〰㐴㜶ㄵ‰〰〰⁮ 〰〰㐴㜶㤰‰〰〰⁮ 〰〰㐴㜷㤶‰〰〰⁮ 〰〰㐴㜸㜹‰〰〰⁮ 〰〰㐴㜹㠶‰〰〰⁮ 〰〰㐴㠰㔶‰〰〰⁮ 〰〰㐴㠱ㄲ‰〰〰⁮ 〰〰㐴㠲㜱‰〰〰⁮ 〰〰㐴㠴㈸‰〰〰⁮ 〰〰㐴㠶〷‰〰〰⁮ 〰〰㐴㠷㘶‰〰〰⁮ 〰〰㐴㠹㈷‰〰〰⁮ 〰〰㐴㤰㠸‰〰〰⁮ 〰〰㐴㤲㐹‰〰〰⁮ 〰〰㐴㤴㐱‰〰〰⁮ 〰〰㐴㤶㌴‰〰〰⁮ 〰〰㐴㤷〹‰〰〰⁮ 〰〰㐴㤸ㄵ‰〰〰⁮ 〰〰㐴㤸㤸‰〰〰⁮ 〰〰㐵〰〵‰〰〰⁮ 〰〰㐵〱㘶‰〰〰⁮ 〰〰㐵〳㈷‰〰〰⁮ 〰〰㐵〴㠸‰〰〰⁮ 〰〰㐵〶㐹‰〰〰⁮ 〰〰㐵〸〹‰〰〰⁮ 〰〰㐵〹㜰‰〰〰⁮ 〰〰㐵ㄱ㌱‰〰〰⁮ 〰〰㐵ㄲ㤲‰〰〰⁮ 〰〰㐵ㄳ㘷‰〰〰⁮ 〰〰㐵ㄴ㜳‰〰〰⁮ 〰〰㐵ㄵ㔶‰〰〰⁮ 〰〰㐵ㄶ㘳‰〰〰⁮ 〰〰㐵ㄸ㈲‰〰〰⁮ 〰〰㐵ㄹ㠳‰〰〰⁮ 〰〰㐵㈱㐴‰〰〰⁮ 〰〰㐵㈳〵‰〰〰⁮ 〰〰㐵㈴㘵‰〰〰⁮ 〰〰㐵㈶㈵‰〰〰⁮ 〰〰㐵㈷〰‰〰〰⁮ 〰〰㐵㈸〶‰〰〰⁮ 〰〰㐵㈸㠹‰〰〰⁮ 〰〰㐵㈹㤶‰〰〰⁮ 〰〰㐵㌱㔵‰〰〰⁮ 〰〰㐵㌳ㄶ‰〰〰⁮ 〰〰㐵㌴㜷‰〰〰⁮ 〰〰㐵㌶㌸‰〰〰⁮ 〰〰㐵㌷ㄳ‰〰〰⁮ 〰〰㐵㌸ㄹ‰〰〰⁮ 〰〰㐵㌹〲‰〰〰⁮ 〰〰㐵㐰〹‰〰〰⁮ 〰〰㐵㐱㜰‰〰〰⁮ 〰〰㐵㐳㌱‰〰〰⁮ 〰〰㐵㐴〶‰〰〰⁮ 〰〰㐵㐵ㄲ‰〰〰⁮ 〰〰㐵㐵㤵‰〰〰⁮ 〰〰㐵㐷〲‰〰〰⁮ 〰〰㐵㐸㘳‰〰〰⁮ 〰〰㐵㐹㌸‰〰〰⁮ 〰〰㐵㔰㐴‰〰〰⁮ 〰〰㐵㔱㈷‰〰〰⁮ 〰〰㐵㔲㌴‰〰〰⁮ 〰〰㐵㔳㤵‰〰〰⁮ 〰〰㐵㔵㔶‰〰〰⁮ 〰〰㐵㔶㌱‰〰〰⁮ 〰〰㐵㔷㌷‰〰〰⁮ 〰〰㐵㔸㈰‰〰〰⁮ 〰〰㐵㔹㈷‰〰〰⁮ 〰〰㐵㘰〲‰〰〰⁮ 〰〰㐵㘱〸‰〰〰⁮ 〰〰㐵㘱㤱‰〰〰⁮ 〰〰㐵㘲㤸‰〰〰⁮ 〰〰㐵㘳㜳‰〰〰⁮ 〰〰㐵㘴㜹‰〰〰⁮ 〰〰㐵㘵㘲‰〰〰⁮ 〰〰㐵㘶㘹‰〰〰⁮ 〰〰㐵㘸㈸‰〰〰⁮ 〰〰㐵㘹㠸‰〰〰⁮ 〰〰㐵㜱㐸‰〰〰⁮ 〰〰㐵㜲㈳‰〰〰⁮ 〰〰㐵㜳㈹‰〰〰⁮ 〰〰㐵㜴ㄲ‰〰〰⁮ 〰〰㐵㜵ㄹ‰〰〰⁮ 〰〰㐵㜶㜹‰〰〰⁮ 〰〰㐵㜷㔴‰〰〰⁮ 〰〰㐵㜸㘰‰〰〰⁮ 〰〰㐵㜹㐳‰〰〰⁮ 〰〰㐵㠰㔰‰〰〰⁮ 〰〰㐵㠲㄰‰〰〰⁮ 〰〰㐵㠲㠵‰〰〰⁮ 〰〰㐵㠳㤱‰〰〰⁮ 〰〰㐵㠴㜴‰〰〰⁮ 〰〰㐵㠵㠱‰〰〰⁮ 〰〰㐵㠷㐲‰〰〰⁮ 〰〰㐵㠸㤹‰〰〰⁮ 〰〰㐵㠹㜴‰〰〰⁮ 〰〰㐵㤰㠰‰〰〰⁮ 〰〰㐵㤱㘳‰〰〰⁮ 〰〰㐵㤲㜰‰〰〰⁮ 〰〰㐵㤴㌱‰〰〰⁮ 〰〰㐵㤵㤲‰〰〰⁮ 〰〰㐵㤷㔲‰〰〰⁮ 〰〰㐵㤹㈳‰〰〰⁮ 〰〰㐶〰㠴‰〰〰⁮ 〰〰㐶〲㐵‰〰〰⁮ 〰〰㐶〴〶‰〰〰⁮ 〰〰㐶〴㠱‰〰〰⁮ 〰〰㐶〵㠷‰〰〰⁮ 〰〰㐶〶㜰‰〰〰⁮ 〰〰㐶〷㜷‰〰〰⁮ 〰〰㐶〸㔲‰〰〰⁮ 〰〰㐶〹㔸‰〰〰⁮ 〰〰㐶㄰㐱‰〰〰⁮ 〰〰㐶ㄱ㐸‰〰〰⁮ 〰〰㐶ㄳ㐰‰〰〰⁮ 〰〰㐶ㄴㄵ‰〰〰⁮ 〰〰㐶ㄵ㈱‰〰〰⁮ 〰〰㐶ㄶ〴‰〰〰⁮ 〰〰㐶ㄷㄱ‰〰〰⁮ 〰〰㐶ㄷ㠶‰〰〰⁮ 〰〰㐶ㄸ㤲‰〰〰⁮ 〰〰㐶ㄹ㜵‰〰〰⁮ 〰〰㐶㈰㠲‰〰〰⁮ 〰〰㐶㈱㔷‰〰〰⁮ 〰〰㐶㈲㘳‰〰〰⁮ 〰〰㐶㈳㐶‰〰〰⁮ 〰〰㐶㈴㔳‰〰〰⁮ 〰〰㐶㈶㐵‰〰〰⁮ 〰〰㐶㈷㈰‰〰〰⁮ 〰〰㐶㈸㈶‰〰〰⁮ 〰〰㐶㈹〹‰〰〰⁮ 〰〰㐶㌰ㄶ‰〰〰⁮ 〰〰㐶㌰㤱‰〰〰⁮ 〰〰㐶㌱㤷‰〰〰⁮ 〰〰㐶㌲㠰‰〰〰⁮ 〰〰㐴㈱㘳‰〰〰⁮ 〰〰㐴㈵㘷‰〰〰⁮ 〰〰㐴㈷㜷‰〰〰⁮ 〰〰㐶㌳㠷‰〰〰⁮ 瑲慩汥爊㰼⽓楺攠㌳㤾㸊獴慲瑸牥昊㈲ㄊ┥䕏䘊

