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Abstract:

Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of
seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal
excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability
mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A
genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of
the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-
L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical
neuron model from a male donor. While microglia play an important role in the brain, these cells originate
from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture.
To study how microglia respond to diseased neurons and influence neuronal excitability, we established a
co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered
morphology with increased branch length and enhanced calcium signal when co-cultured with neurons
carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action
potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current
density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the
presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia
in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human

neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.
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Significance Statement:

Seizure studies in mouse models have highlighted the role of microglia in modulating neuronal activity,
particularly in the promotion or suppression of seizures. However, a gap persists in comprehending the
influence of human microglia on intrinsically hyperexcitable neurons carrying epilepsy-associated
pathogenic mutations. This research addresses this gap by investigating human microglia and their impact
on neuronal functions. Our findings demonstrate that microglia exhibit dynamic morphological alterations
and calcium fluctuations in the presence of neurons carrying an epilepsy-associated SCN2A mutation.
Furthermore, microglia suppressed the excitability of diseased hyperexcitable neurons, suggesting a
potential beneficial role. This study underscores the role of microglia in the regulation of abnormal neuronal
activity, providing insights into therapeutic strategies for neurological conditions associated with

hyperexcitability.
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Introduction:

Epilepsy is a neurological disorder characterized by recurrent and spontaneous seizures
(Christensen et al., 2023); when left uncontrolled, it can lead to neuronal damage (Sun et al., 2022),
cognitive deficits (Chai et al., 2023), and even sudden unexpected death (SUDEP) (Whitney et al., 2023).
A prominent feature of epileptic seizures is hyperexcitability and excessive abnormal neural activity, which
in some cases could be attributed to genetic changes in ion channels (Oyrer et al., 2018). The SCN2A
gene encodes the pore-forming voltage-gated sodium channel alpha subunit 2, an ion channel protein that
mediates neuronal action potential firing. SCN2A pathogenic heterozygous mutations are monogenic
causes of epilepsies (Wolff et al., 2017; Yokoi et al., 2018; Epifanio et al., 2021; Yang et al., 2022; Zeng
et al., 2022). In fact, a recent study positions SCN2A as the third most prevalent gene harboring epilepsy-
related mutations (Knowles et al., 2022). Among many SCNZ2A disease-causing mutations, the de novo
heterozygous missense mutation L1342P is a recurrent mutation associated with developmental and

epileptic encephalopathy in multiple patients worldwide (Wolff et al., 2017; Crawford et al., 2021).

Previously, we developed an in vitro disease model of seizures with monolayer (2D) cortical
neurons derived from human induced pluripotent stem cells (hiPSCs) carrying the epilepsy-associated
Nav1.2-L1342P mutation. Our investigation revealed intrinsic and network neuronal hyperexcitability in the
hiPSC-derived cortical neurons carrying this Nav1.2-L1342P mutation (Que et al., 2021). While neuronal
hyperexcitability appears to be an intrinsic property of diseased neurons, emerging evidence suggests that
non-neuronal cell types can influence neuronal excitability and thus can contribute to disease severity or
progression (Chen et al., 2023). Microglia are brain-resident macrophages that originate from the yolk sac
and migrate into the brain during development (Speicher et al., 2019). Mounting evidence suggests that
microglia play a key role in regulating brain homeostasis and maintaining neural circuit integrity (Olson and
Miller, 2004; Paolicelli et al., 2011; Schafer et al., 2012; McQuade et al., 2018; Weinhard et al., 2018). The
impact of microglia on neuronal excitability has been extensively studied in rodents and found to be
multifaceted. For instance, in certain cases, activated microglia release pro-inflammatory mediators that
enhance neuronal activity, thereby promoting epileptogenesis (Henning et al., 2023). However, in other

studies, microglia exert a regulatory role in limiting excessive neuronal activity, as observed in rodent
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models of chemically induced seizures (Eyo et al., 2014; Badimon et al., 2020; Merlini et al., 2021). While
these published studies are vital for us to understand microglia-neuron interactions, these studies rely on
rodent models in which seizures and neuronal hyperexcitability are triggered by external chemicals (Eyo
et al., 2014; Liu et al., 2020). No studies, however, have yet reported how human microglia respond to and
regulate the excitability of intrinsically hyperexcitable human neurons carrying epilepsy-causing genetic

mutations, hindering our understanding of microglia in human disease conditions.

In the current study, we used a co-culture system of hiPSC-derived microglia and hiPSCs-derived
cortical neurons carrying the epilepsy-associated Nav1.2-L1342P mutation to study microglia-neuron
interactions. We found an increase in the length of microglial branches (processes) when co-cultured in
the presence of the mutant Nav1.2-L1342P neurons. This effect paralleled an increase in calcium signaling
within microglial processes. In addition, we demonstrated that hiPSC-derived microglia reduced
hyperexcitability and sodium current density in neurons carrying the Nav1.2-L1342P genetic mutation.
Taken together, our study illustrates the vital role of microglia in human epilepsy pathophysiology. Our
study also suggests a complex microglial-neuronal interaction with both cell types influencing each other’s

phenotypes.
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Materials and Methods:
Generation of hiPSC-derived cortical neurons.

Previously described human induced pluripotent stem cells (hiPSCs) from a male donor expressing
wild-type (Control) and CRISPR/Cas9-engineered Nav1.2-L1342P mutant channels (Que et al., 2021)
were used in this study. Experiments were performed with four human iPSC lines (WT: KOLF2.1 and A03;
L1342P: A12 and E09). Feeder-free hiPSCs colonies were grown on Matrigel (Corning, Catalog No.
354230) and maintained in StemFlex (ThermoFisher, Catalog No. A3349401) with daily media changes.
Quality controls were performed for all lines, including Sanger sequencing, karyotyping, and
immunocytochemistry. Undifferentiated hiPSC colonies displayed normal and homogenous morphology
with defined edges and low levels of spontaneous differentiation. In addition, they consistently expressed
standard pluripotency markers, including SOX2, TRA-1-80, OCT4, TRA-1-60, NANOG, and SSEA1 (data
not shown).

A dual-SMAD inhibition method utilizing embryoid bodies (EBs) was used to generate cortical
neurons based on our established protocol (Que et al., 2021). To generate embryoid bodies (EBs), hiPSC
colonies were dissociated into single cells with Accutase (Innovative Cell Technologies, Catalog No.AT104)
and seeded with 10 mM rock inhibitor (RevitaCell Supplement, Invitrogen, Catalog No. A2644501) for the
initial 24 hours on ultra-low attachment 96-well plates (Corning, Catalog No. CLS3474-24EA) with a cell
density of ~12,000 cells per microwell in an EB formation medium containing neural induction medium
(StemCell Technologies, Catalog No. 05835) supplemented with 100 nM of LDN-193189 (Sigma, Catalog
No. SML0559) and 10 uM SB431542 (Tocris, Catalog No. 1614) to begin DUAL SMADI neural induction.
After seven days, EBs were collected and seeded on Matrigel until the appearance of neural rosettes. A
neural rosette selection reagent (StemCell Technologies, Catalog No. 05832) was used to lift the rosette
monolayer clusters, which were dissociated and seeded onto Matrigel-coated plates until the appearance
of neural progenitor cells (NPCs). Stocks of NPC were frozen and stored for later differentiations.

To begin neural differentiation, neural progenitors were plated on poly-L-ornithine (PLO)-laminin-
coated vessels at a density of ~2.5x10* cells/cm? and differentiated for about three weeks in a media

containing Neurobasal Plus medium (Invitrogen, Catalog No. A3582901), 1X Non-Essential Amino Acids
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solution (NEAA; Invitrogen, Catalog No. 11140050), 1X GlutaMAX (Invitrogen, Catalog No. 3505006),
PenStrep (10,000 U/mL; Gibco, Catalog No. 15-140-163), 1X B27 plus supplement (Gibco, Catalog No.
A3582801), 1X N2 Supplement (Gibco, Catalog No.17-502-048), 100 um dibutyryl cAMP (dcAMP; Santa
Cruz Biotechnology, Catalog No. sc-201567A), 200 um ascorbic acid (Wako Chemicals; Catalog No. 323-
44822), 20 ng/mL brain-derived neurotrophic factor (BDNF; ProspecBio, Catalog No. CYT-207), 20 ng/mL
glial cell-derived neurotrophic factor (GDNF; ProspecBio, Catalog No. CYT-305) with media replacement
every 2-3 days. After 20 days, cells were replated at 1.5x10* cells/cm? on glass coverslips using a
complete maturation media formulation containing Neurobasal Plus (Gibco, Catalog No. A3582901). After
a week, the basal media was changed into Brainphys (StemCell Technologies, Catalog No. 05790),
PenStrep, 1X N2 supplement, 1X B27 plus supplemented with BDNF, GDNF, and cAMP in the same

concentration previously described.

Generation of hiPSC-derived microglia.

To produce hiPSC-derived microglia, we used two different control (WT) human iPSC lines,
KOLF2.1 and GCaMP6f-H04. The KOLF2.1 cell line-derived microglia were co-cultured with neurons for
electrophysiology experiments. The GCaMP6f-H04 line has the GCaMP6f calcium indicator (Chen et al.,
2013) engineered into the AAVS1 safe harbor locus of the reference Kolf2.1 iPSCs line using
CRISPR/Cas9 mediated knock-in and was used for the microglial calcium imaging. Specifically, a
commercially available plasmid (pAAVS1-PC-GCaMP6f, plasmid #73503) containing the GCaMP6f knock-
in construct was used to generate the GCaMP6f-H04 line from KOLF2.1 reference iPSCs line. For each

experiment, at least two differentiations (biological replicates) were performed for each cell line.

To begin microglia differentiation, we largely followed a commercially available kit based on well-
established, previously published protocols (Abud et al., 2017; McQuade et al., 2018; McQuade and
Blurton-Jones, 2021). Briefly, feeder-free hiPSCs were guided towards a mesodermal, hematopoietic
lineage to obtain hematopoietic progenitor cells (HPCs) using the STEMdiff Hematopoietic Kit (StemCell

Technologies, Catalog No. 05310). Next, HPCs were converted into homeostatic microglia with a
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differentiation medium composed of DMEM/F12 basal media (Gibco, Catalog No. 11-320-033), 2X 100X
Insulin-Transferrin-Selenium (ITS-G)(Gibco, Catalog No. 41400045), 2X B27, 0.5X N2, 1X GlutaMAX
(Gibco, Catalog No. 35050061), 1X non-essential amino acids (Gibco, Catalog No. 11140050), 400 pM
monothioglycerol (Sigma, Catalog No. M6145-25ML), 5 pg/mL insulin (Sigma, Catalog No. 12643-25MG).
Before use, this media was supplemented with 25 ng/mL cytokine M-CSF (Macrophage colony-stimulating
factor 1) (Sigma, Catalog No. 300-25), 100 ng/mL IL-34 (Interleukin-34) (Peprotech, Catalog No. 200-34),
and 50 ng/mL TGFB-1 (Transforming growth factor beta 1) (Peprotech, Catalog No. 100-21) until day 24.
Then, cells were cultured in a maturation medium with the same composition as the differentiation medium,
with the addition of 100 ng/mL of CD200 (Cluster of Differentiation 200/0OX-2 membrane glycoprotein)
(ACROBiosystems, Catalog No. 50-101-8369) and 100 ng/mL of CX3CL1 (Fractalkine/ chemokine (C-X3-

C moitif) ligand 1) (Peprotech, Catalog No. 300-31) for up to 12 days.

Co-culture of hiPSC-derived microglia and hiPSC-derived cortical neurons

As microglia developmentally come from the yolk sac and thus do not naturally exist in hiPSCs-
derived neuronal culture, a co-culture model must be established. To achieve this, hiPSC-derived microglia
were generated and seeded on cortical neuron monolayers, which had been differentiated for a minimum
of 38 days. The co-cultures were set up in a 96-well clear-bottom plate at a density of 10,000 cells per well,
maintaining a 1:1 ratio between microglia and neurons. The co-cultures were incubated for up to seven
days to allow for the formation of interactions between the two cell types. For medium exchange, a mixture
of half-complete neurobasal medium and half microglia maturation medium was used, with media

exchanges performed every two days.

Immunocytochemistry

hiPSC-derived microglia cells were cultured on glass coverslips (Neuvitro, Catalog No. GG-12-Pre)
or 24-well glass-bottom plates with #1.5 cover glass (Celvis, Catalog No. P24-1.5H-N) previously coated

with a 1:5 mixture of poly-L-ornithine (PLO) and phosphate-buffered saline (PBS)-Laminin. Before the
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experiment, the samples were briefly washed in PBS (Corning, Catalog No. 21-040-CMX12) and then fixed
in 4% paraformaldehyde in PBS at room temperature (RT) for 15 minutes. Following fixation, the samples
were rinsed three times with PBS (5 minutes per rinse) and permeabilized with 0.3% Triton X-100 (pH 7.4)

surfactant for 20 minutes.

The samples were treated with 5% bovine serum albumin (BSA; Sigma Catalog No. 9048) to block
nonspecific binding for one hour at RT. Subsequently, the samples were incubated overnight at 4°C in a
humidified chamber with primary antibodies diluted in 1% BSA. The primary antibodies used included
rabbit anti-P2RY12 (Purinergic Receptor P2Y12; Sigma Prestige Antibodies, Catalog No. HPA014515),
rabbit anti-TMEM119 (Transmembrane Protein 119; Sigma Prestige Antibodies, Catalog No. HPA051870),
and rabbit anti-IBA1 (lonized calcium-binding adaptor molecule 1; Abcam, Catalog No. 178846). The
following day, the samples were rinsed three times with PBS and then incubated with fluorescent-dye-
conjugated secondary antibodies, which were diluted in 1% BSA for 2 hours at room temperature (RT) in
the dark. After the incubation, the secondary antibody solution was removed, and the coverslips were
washed three times with PBS (5 minutes per wash) in the dark. The secondary antibodies used for hiPSC-
derived neurons and microglia were as follows: anti-rabbit or anti-mouse antibodies conjugated with Alexa
Fluor 488 (Invitrogen, 1:1000), anti-rabbit or anti-mouse antibodies conjugated with Alexa Fluor 555
(Invitrogen, 1:1000), anti-guinea pig antibodies conjugated with Alexa Fluor 488 (Invitrogen, Catalog No.
A11073, 1:1000), and anti-rat antibodies conjugated with Alexa Fluor 647 (Invitrogen, Catalog No. A21247,
1:1000). For DAPI counterstaining, either VECTASHIELD antifade mounting medium with DAPI (Vector
Laboratories, Catalog No. H-1200) or a PBS-DAPI solution (ThermoFisher, Catalog No. 62238, 1:10,000)
was used. For staining hiPSC-derived neurons, primary antibodies for mouse anti-MAP2 (microtubule-
associated protein 2; Invitrogen, Catalog No. 13-1500, 1:1000) and guinea pig anti-synapsin1/2 (Synaptic
Systems, Catalog No. 106044, 1:1000) were used. Microglial images were acquired with a Nikon Ti2
Eclipse fluorescence microscope, while images of the microglia-neuron co-culture were captured using a

ZEISS LSM 900 Airy Scan microscope.
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Incucyte SX5 Live-Cell phagocytotic assay

To assess the phagocytic activity of microglia derived from hiPSCs, we used pHrodo-Myelin, a pH-
sensitive dye combined with a myelin fragment (Hendrickx, Schuurman, van Draanen, Hamann, & Huitinga,
2014), graciously provided by Dr. Shaoyou Chu from Indiana University (Mason, Soni, & Chu, 2023). First,
we prepared a Corning #1.5 glass-bottom 96-well by coating it with a 5X diluted solution of Poly-D-Lysine
(PDL) in 1x PBS, letting it incubate at 37°C overnight. Subsequently, the wells were washed three times
with 1x PBS. Approximately 15,000 matured hiPSC-derived microglia cells, suspended in 100 uL of
microglia maturation media, were placed delicately onto the coated wells. The plate was then left in an
incubator at 37°C overnight. The following day, we prepared a stock of pHrodo-myelin at 5 ug/mL in the
microglia maturation media. 50 uL of the media was extracted from each well, and 50 uL of the pHrodo-
myelin stock was added, resulting in a final concentration of 2.5 pg/mL of phrodo-myelin. To monitor the
uptake of the pHrodo-myelin dye for 48 hours, we employed an Incucyte SX5 imaging system with an
Orange Filter and Brightfield using a 20X objective. The exposure time was maintained at 300 ms. To
quantify the phagocytic activity, we calculated the normalized integrated intensity of pHrodo-myelin by
dividing the total integrated intensity of pHrodo-myelin corresponding to each well over the area occupied

by the microglial cells, as identified by the brightfield channel.

Morphological Characterization of hiPSC-derived IBA1+ Microglia

To assess alterations in microglia morphology following co-culture with control (WT) and Nav1.2-
L1342P cortical neurons, we conducted immunocytochemistry staining for microglia-specific marker IBA1.
The Imaged Analyze Skeleton plugin (available at https://imagej.net/plugins/analyze-skeleton/) was
employed to generate a skeletonized representation of microglial morphology, which was used to
determine the unique average length of the microglial processes per field of view (Jairaman et al., 2022).
To obtain area, circularity, and perimeter measurements, we manually selected clearly defined microglial
morphologies using the NIS-elements ROI editor and used the automatic measurement results to obtain

values. We measured between 7-35 microglia per field of view.
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Live-cell calcium imaging of hiPSC-derived microglia expressing GCaMP6f

Live cell calcium imaging was conducted using an inverted widefield Nikon Eclipse Ti2 microscope.
Time-lapse recordings were acquired at a frequency of 1 Hz for 200 seconds. Microglial somata and
processes were manually defined using the FIJI's Imaged (Version 2.3.0/1.53f) (Schindelin et al., 2012)
software's ROI (Region of Interest) editor. Time measurements were performed to detect the spontaneous
calcium transient fluctuations. The signal intensity was normalized as AF/F, where AF represents the
difference between an individual ROI's fluorescence intensity (F) and its minimum intensity value (Fmin).
The normalized data was then transferred to OriginPro (Origin2021b version 9.8.5.201) for peak detection
and quantifications. We used the Nikon Imaging Software Elements (NIS Elements Version 5.02) for

representative image processing.

Electrophysiology of hiPSC-derived neurons co-cultured with hiPSC-derived microglia

The experiment involved performing whole-cell patch-clamp recordings using an EPC10 amplifier
and Patchmaster v2X90.3 software (HEKA Elektronik) paired to an inverted microscope configuration
(NikonTi-2 Eclipse). For experiments under the voltage clamp configuration, we used our previously
reported patch solution and protocol (Que et al., 2021). Thick-wall borosilicate glass pipettes (BF150-86-
10) were pulled to reach the resistances of 2—4 MQ. Briefly, the activation curve from the voltage-gated
sodium channel was achieved by 10 ms steps from -70 to +50 mV in a 5 mV increment, with a holding
potential of =100 mV. The currents from both groups were recorded at 5 min after obtaining the whole-cell
configuration. P/N leak subtraction procedure was applied during the protocol. The current density value
was obtained using the current under each voltage command divided by the capacitance of the neuron.
For the current-clamp recording, the external solution contained the following: 140 mM NaCl, 5 mM KCI, 2
mM CacClz, 2 mM MgCl,, 10 mM HEPES, and 10 mm dextrose, titrated with NaOH to pH 7.3. The internal
solution contained the following: 128 mM K-gluconate, 5 mM KCI, 5 mM NaCl, 1 mM MgCI2, 3 mM Mg-
ATP, 1 mM EGTA, 10 mM HEPES, and 10 mM dextrose, titrated with KOH to pH 7.2. The osmolarity was

brought to 320 and 310 mOsm by adding dextrose for the extracellular and internal solutions, respectively.
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The glass pipettes (BF150-86-10) were used and pulled to reach the resistances of 4-8 MQ. We measured
the repetitive action potential (AP) firings at increased current injections using a prolonged 800-ms present
stimulus ranging from 0 to 125 pA in 5-pA increments. Neurons were transduced with the AAV-CamKII-
GFP virus (Addgene 50469-AAV9), and neurons with GFP-positive signals were selected for patch clamp

experiments.

Statistical analysis.

GraphPad Prism (version 9.5.1) and OriginPro 2021b (version 9.8.5.201) were used for statistical
analysis. The number of experimental samples (n) in each group was indicated in the figure legend. Results
are presented as mean = standard error of the mean (s.e.m). Values are shown in figures as *p < 0.05, **p
<0.01, *™*p < 0.001, ****p < 0.0001, and n.s. (not significant) as p =2 0.05. The detailed statistical methods

were outlined in the figure legends.
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Results:
hiPSC-derived microglia express relevant markers and display phagocytotic capacity.

While microglia play an indispensable role in the brain, they developmentally originate from the yolk
sac and thus do not naturally appear in hiPSC-derived neuronal culture (Lukens and Eyo, 2022); therefore,
a co-culture model of neurons and microglia needs to be established to study the interaction between these
cells. To this end, neurons and microglia were differentiated using distinct protocols and cultured together.
To generate glutamatergic cortical neurons, we differentiated hiPSCs using our published protocol (Que
et al., 2021) (Figure 1A), which can yield electrically active matured neurons in 45 days in vitro (post-
neural progenitor cell stage). These neurons express synaptic and neuron-specific markers such as
Synapsin1/2 (SYN1/2) and Microtubule-associated protein-2 (MAP2) (Figure 1B). Since Nav1.2 is
minimally expressed in microglia from mice and human iPSC-derived microglia (Black et al., 2009; Black
and Waxman, 2012, 2013; Abud et al., 2017; Grubman et al., 2020; Drager et al., 2022), we intentionally
used microglia derived from control reference (Wild-type/WT) hiPSC lines to simplify the research design.
Control (Wild-type/WT) mature microglia were generated after 24 days of differentiation (Figure 1C) and
were characterized via staining and quantification of microglia-specific markers, including IBA1, TMEM119,
and P2RY12 (Figure 1D). We revealed a high percentage of microglial cells after differentiation (98.43 +
0.44% TMEM119 labeling, n=18 fields of view, two differentiations; 97.18 £ 1.44% IBA1 labeling, n=13
fields of view; two differentiations; and 93.59+ 0.45 % of P2RY12 labeling, n=19 fields of view, two
differentiations). Our results thus indicate that hiPSC-derived microglia can be successfully obtained in a
relatively homogeneous population. Next, we investigated the phagocytic function of the differentiated
microglia. As immune and professional phagocyte cells, microglia can engulf substrates like synaptic and
myelin debris. To evaluate the phagocytic capacity of the mature microglia, we exposed them to pHrodo-
labeled myelin particles. Over 36 hours, we observed the continuous internalization of myelin by the
microglia, an ability that was also demonstrated in primary human microglia (Hendrickx et al., 2014),

indicating their robust phagocytic ability (Figure 1E).
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Microglia co-cultured with Nav1.2-L1342P cortical neurons display morphological alterations.

In rodent models, microglia extend and retract their extended processes to survey the brain and
regulate network hyperexcitability (Merlini et al., 2021). However, how human microglia respond to human
neurons carrying seizure-related genetic mutations is not known. Thus, we sought to investigate whether
hiPSC-derived microglia would exhibit morphological changes when co-cultured with hiPSC-derived
hyperexcitable neurons carrying a Nav1.2-L1342P mutation (Que et al., 2021). To achieve this, we
conducted a co-culture experiment by seeding the microglia on top of neuronal monolayers and
maintaining them for at least seven days, as illustrated in Figure 2A. We confirmed the presence of
microglia and neurons in the co-cultures with IBA1 (microglia; red) and MAP2 (neurons, green) via

immunocytochemistry (Figure 2B).

We traced the IBA1-positive microglial processes in co-culture with hiPSC-derived cortical neurons
(Figure 2C-D). Our results revealed that microglia exhibited a significant increase in process length per
cell when co-cultured with L1342P mutant neurons versus when co-cultured with control (WT) neurons
(WT+M: 42.08 £ 1.89 um, n=43 fields of view, L1342P+M: 70.40 £ 4.27 ym, n=49 fields of view, three
differentiations, two clones per condition, **p<0.01, Nested t-test, Figure 2E). In terms of total microglial
area (soma and processes), we found no significant alterations in either co-culture states, indicating there
were no changes in microglial cell size (WT+M: 575.30 + 15.30 uym?, n=43 fields of view, L1342P+M:
621.50 + 17.21 um?, n=49 fields of view, three differentiations, two clones per condition, non-significant,
Nested t-test, Figure 2F). However, the microglia perimeter was increased in microglia co-cultured with
the Nav1.2-L1342P cortical neurons. Considering microglia size did not change, this data could be
interpreted as microglial processes, such as extensions and branches being altered (WT+M: 138.50 + 3.56
Mm, n=43 fields of view, L1342P+M: 166.00 + 4.67 um, n=49 fields of view, three differentiations, two
clones per condition, ****p<0.0001, Nested t-test, Figure 2G). Microglia circularity was also calculated
(circularity index is a number between 0-1, and 1 represents a perfect round shape). We found that the
microglia circularity index was also decreased when co-cultured with the Nav1.2-L1342P neurons (WT+M:
0.3924 £ 0.01 ym, n=43 fields of view, L1342P+M: 0.30 £ 0.01 ym, n=49 fields of view, three differentiations,

two clones per condition; ****p<0.0001, Nested t-test, Figure 2H). Taken together, our data showed that


https://doi.org/10.1101/2023.10.26.563426
http://creativecommons.org/licenses/by-nc-nd/4.0/

386
387

388

389

390
391
392
393
394
395
396
397
398
399

400

401
402
403
404
405
406
407
408
409
410
411

412

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.26.563426; this version posted October 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

microglia co-cultured with mutant Nav1.2-L1342P neurons display altered morphological changes
compared to microglia co-cultured with control (WT) neurons, revealing that hyperexcitable neurons

influence the morphology of microglia.
Calcium signaling in hiPSC-derived microglia is enhanced when co-culture with L1342P neurons.

Previous work using in vivo mouse models indicated that microglial calcium signals could respond
to chemically triggered neuronal activity changes (Umpierre et al., 2020). However, how human microglia
sense and respond to intrinsically hyperexcitable human neurons carrying an epilepsy mutation remains
to be elucidated. Thus, we carried out experiments to address this gap. To study the calcium dynamics of
our hiPSC-derived microglia, we established a hiPSC line in which the endogenous AAVS1 safe harbor
site was engineered with a GCaMP6f gene using CRISPR/Cas9. We differentiated the GCaMP6f-iPSC
lines into microglia and co-culture them with hiPSC-derived cortical neurons. Our results demonstrated
that GCaMP6f hiPSC-derived microglia in co-culture with either WT neurons or neurons carrying Nav1.2-
L1342P mutation can display spontaneous Ca?* activity, reflected in continuously changing GCaMP6f
calcium signal fluctuations (Figure 3A-B). This assay thus allows us to determine how calcium dynamics

in microglia respond to neurons with different excitability.

Microglia are made up of microdomains (soma and extended processes) that could have different
calcium signaling patterns (Umpierre et al., 2020). Therefore, we divided calcium fluctuation
measurements into three categories: 1) entire (global) microglial calcium activity and compartmentalized
activity within 2) soma, and 3) processes. We first analyzed the calcium activity patterns from the entire
microglia compartment. We found that the spikes generated from microglia in co-culture with Nav1.2-
L1342P neurons had a larger amplitude than those found in microglia co-cultured with control (WT)
neurons when the measurement was done for the entire microglial area. Specifically, we observed an
elevated calcium signal area under the curve (AUC) in microglia co-cultured with Nav1.2-L1342P neurons,
almost twice higher than than that observed in microglia co-cultured with WT neurons (WT+M: 0.652 +
0.045, n=209 cells and L1342P+M: 1.125 £ 0.086, n=168 cells, ****p<0.0001, Mann-Whitney U test, Figure
3C). Similar to the increased AUC, we observed that the average microglial spike amplitude increased

more than two fold when the microglia were co-cultured with Nav1.2-L1342P neurons (WT+M: 0.069 +
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0.004, n=204 cells and L1342P+M: 0.168 +0.012, n=168 cells, ****p<0.0001, Mann-Whitney U test, Figure

3D).

When analyzing the calcium dynamics of separate microglial sub-compartments, we found no
significant difference in the average calcium signal AUC for the soma (WT+M: 1.238 + 0.066, n=100 cells,
L1342P+M: 1.494 £ 0.175, n=92 cells, ns p = 0.987, Mann-Whitney U test, Figure 3E). There was also no
significant difference in the average microglial spike amplitude per soma between microglia co-cultured
with either WT neurons or Nav1.2-L1342P neurons (WT+M: 0.211 £0.011, n=100 cells, L1342P+M: 0.221
1 0.023, n=92 cells, ns p= 0.281, Mann-Whitney U test, Figure 3F). On the other hand, we found that the
average calcium signal AUC for the processes was significantly higher in microglia co-cultured with
Nav1.2-L1342P neurons compared to these in microglia co-cultured with control (WT) neurons (WT+M:
0.595 £ 0.047, n=250 cells, L1342P+M: 0.786 + 0.067, n=183 cells, ****p<0.0001, Mann-Whitney U test,
Figure 3G). Moreover, the average microglial spike amplitude per process was enhanced in microglia co-
cultured with Nav1.2-L1342P neurons as well (WT+M: 0.087 + 0.005, n=250 cells, L1342P+M: 0.121 *
0.009, n=183 cells, ****p<0.0001, Mann-Whitney U test, Figure 3H). Our human cell results suggest that
diseased hyperexcitable neurons would trigger an increase in calcium signaling within the microglial
processes but were insufficient to alter calcium activity in the microglial soma, surprisingly similar to the

phenomena previously described in mice (Umpierre et al., 2020).

The repetitive firing of hiPSC-derived neurons carrying the Nav1.2-L1342P is reduced with

microglia co-culture.

Altered microglia morphology and calcium signaling indicated that microglia could respond to
intrinsically hyperexcitable neurons carrying the disease-causing Nav1.2-L1342P genetic mutations. Thus,
we questioned whether human microglia would in turn affect the excitability of these neurons. To this end,
we performed a whole-cell current clamp to study the repetitive firing of WT and Nav1.2-L1342P cortical
neurons with or without microglia in the culture. To visualize the excitatory neuronal populations, we

transduced the neurons with pAAV-CaMKIlla-eGFP, enabling fluorescent detection of excitatory neurons
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for patch-clamp recording. Subsequently, we seeded microglia on top of the neurons, creating a co-culture
system. The co-culture was maintained for seven days, allowing for the establishment of proper
interactions between microglia and neurons (Figure 4A). Representative action potential firing traces show
that WT neurons alone (Figure 4B, left panel) and in co-culture with microglia (Figure 4B, right panel)
exhibited no significant change in their action potential (AP) firing trends. Quantitatively, the AP firing of
control (WT) neurons co-cultured with microglia did not significantly differ from control (WT) neurons alone
(F(1,28) = 0.5326, n.s p = 0.4716, WT: n = 12 neurons, two differentiations; WT+M: n = 18 neurons, two
differentiations, Repeated Measures Two-Way ANOVA, Figure 4D). Additionally, control (WT) neurons
cultured with microglia had no difference in the maximum number of action potential firings compared to
control (WT) neurons alone (WT: 8.250 + 0.922, n=12 neurons, two differentiations; WT + M: 9.500 +

0.5192, n=18 neurons, two differentiations; n.s p=0.2139, Unpaired student's t-test, Figure 4E).

However, a distinct finding emerged when using the Nav1.2-L1342P neurons. In isolation, the
Nav1.2-L1342P neurons (Figure 4C, left panel) displayed extensive action potential firing at higher current
injections, consistent with our previous work (Que et al., 2021). Notably, when co-cultured with microglia,
the Nav1.2-L1342P neurons exhibited reduced firing (Figure 4C, right panel), indicating that microglia
could modulate the neuronal activity of hyperexcitable Nav1.2-L1342P neurons. Quantitatively, the
Nav1.2-L1342P neurons co-cultured with microglia fired significantly fewer action potentials than Nav1.2-
L1342P neurons alone (F(1,37) = 6.421, *p=0.0156, L1342P:n=14 neurons, two differentiations;
L1342P+M: n = 25 neurons, two differentiations, Repeated Measures Two-Way ANOVA, Figure 4F).
Moreover, we observed a decrease in the maximum number of AP firings triggered by increasing current
injections in the L1342P neuron co-cultured with microglia, showing a 21% decrease versus Navi.2-
L1342P neurons alone (L1342P: 13.860 + 1.037, n =14 neurons, L1342P+M: 10.680 = 0.812, n=25
neurons; *p=0.023, Unpaired student'’s t-test, Figure 4G). Our data suggest that hiPSC-derived human
microglia decreased repetitive firings in hiPSC-derived diseased neurons carrying the seizure-related

Navi.2-L1342P mutation.
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The presence of hiPSC-derived microglia reduces the maximum sodium current density in hiPSC-

derived neurons carrying the Nav1.2-L1342P mutation.

It is known that sodium channel density may affect the firing properties of neurons (Motipally et al.,
2019). Moreover, studies have suggested that adding microglia to neurons may alter gene expression
patterns (Baxter et al., 2021). Thus, the presence of microglia may lead to alternations of genes/protein
levels involved in neuronal electrical activity, such as those that encode ion channels. Therefore, we
performed experiments to study the sodium channel activation and maximum sodium current density in
neurons cultured in the absence or presence of microglia (Figure 5A-B). We obtained the sodium channel
activation curve over varying voltage for Nav1.2-L1342P neurons in isolation or co-culture with microglia
(Figure 5C left). This allowed us to measure the maximum voltage-gated sodium channel current density
in Nav1.2-L1342P hiPSC-derived neurons under both conditions. Interestingly, we observed a decrease
in the maximum sodium current density in Nav1.2-L1342P neurons co-cultured with microglia compared
to L1342P neurons alone (L1342P: -130.848.6 pF/pA, n=31 neurons; L1342P+M: -101.4+6.9 pF/pA, n=28
neurons; *p=0.0107, Unpaired Student's t-test, Figure 5C, right). This reduced maximum sodium channel
current density in Nav1.2-L13242P neuron co-culture with microglia may serve as a possible mechanism
underlying decreased intrinsic excitability of neurons carrying the Nav1.2-L1342P mutation when co-

cultured with microglia.
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Discussion

In this current study, we developed a co-culture model combining hiPSC-derived microglia and cortical
neurons. To our knowledge, our study is the first to investigate how human microglia responds to and
influence hyperexcitable neurons carrying a disease-causing mutation identified in patients with genetic
epilepsy. Our findings demonstrated that microglia can sense and respond to hyperexcitable neurons by
increasing branch length and calcium signaling. Interestingly, we observed that microglia significantly
dampened the repetitive action potential firings of neurons carrying the epilepsy-associated Nav1.2-
L1342P mutation while having minimal impact on wild-type (WT) neurons. We further showed that hiPSC-
derived cortical neurons carrying the epilepsy-associated Nav1.2-L1342P mutation have reduced sodium
current density when co-cultured with human microglia, which might suggest a potential mechanism by
which microglia alleviate neuronal hyperexcitability. These results underscore the significance of neuron-

microglia interactions in understanding disease manifestation.

Previous studies have shown that microglia can experience dynamic morphological changes in
response to neuronal activity (Nebeling et al., 2023). Using a kainic acid (KA)-triggered seizure model,
studies demonstrated changes in microglia morphology manifesting as an extended cell process length
and increased number of microglial branch processes (Eyo et al., 2014). Surprisingly similar to previous
findings, our study revealed that human iPSC-derived microglia also exhibit morphological changes in
response to neuronal hyperexcitability due to genetic mutations, depicted as increased process length and
microglial perimeter. These findings together suggest that microglial morphology alterations in the
presence of neuronal hyperactivity are not limited to rodents and can be observed in human model system

as well.

Microglial calcium signaling can undergo dynamic changes in response to their environment, including
in response to the excitability of the neurons of awake mice (Umpierre et al., 2020). It was found that in
response to electrical stimulation, a population of microglia endogenously expressing the Ca?* indicator
GCaMP6m exhibited noticeable Ca?* elevations in neonatal mice (Logiacco et al., 2021). Furthermore,
microglia have been observed to experience calcium fluctuations in response to changes in neuronal

activity induced through pharmacological and chemogenetic methods. For example, increased neuronal
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activity provoked by KA-induced status epilepticus and genetic manipulations using CaMKlla-driven Gg-
DREADD activation can trigger the elevation of calcium signal amplitude and AUC in microglia (Umpierre
et al., 2020). Interestingly, reduced neuronal activity through isoflurane anesthesia or CaMKlla-driven Gi-
DREADD inhibition have also been associated with increased microglial calcium activity (Umpierre et al.,
2020). These observations highlight the dynamic nature of microglial responses to bimodal alterations in
neuronal excitability. Notably, these calcium responses were mainly localized to microglial processes
rather than the soma (Umpierre et al., 2020). To further provide insights into microglial responses to
neuronal activity in a more pathophysiological-relevant context, we use an intrinsically hyperexcitable
human neuronal model that does not require external stimuli to heighten neuronal activity. Although there
are considerable species differences between human and rodent microglia, our study revealed a consistent
finding that the microglial calcium signal was increased in the presence of hyperexcitable neurons and
mainly localized in the microglial processes. While potential mechanisms and pathways (e.g., microglia
sensing of excessive ATP, UDP, etc) underlying the increase in Ca?* signal need to be further elucidated
in follow-up studies, our current work extends the earlier observations described in rodent models to a
human cell context. Together, these results indicate a potential cross-species conserved mechanism of

microglial responses to neuronal excitability.

While our study found that human microglia can mitigate the excitability of hyperexcitable neurons
carrying the epilepsy-associated Nav1.2-L1432P mutation, the influences of microglia on neuronal
excitability and seizure phenotypes are quite complex and probably context-dependent. Microglial
activation, triggered by neuroinflammation derived from trauma, stroke, febrile seizures, status epilepticus,
infections, and genetic mutations, can be pivotal in epileptogenesis (Vezzani et al., 2013). In rodent models
of seizures, activated microglia exerted pro-convulsive effects by releasing pro-inflammatory mediator
cytokines, which can contribute to severe status epilepticus (SE) (De Simoni et al., 2000; Libbey et al.,
2011; Wu et al., 2020; Henning et al., 2023). Similar findings can also be observed in cases of human
temporal lobe epilepsy, further highlighting the role of inflammation in seizure formation (Kan et al., 2012).
These studies together suggest a possible detrimental role of microglia as a seizure trigger. In other cases,

however, microglia seem to play a beneficial role in limiting seizures and preventing pathological
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phenotypes. This notion is supported by experiments where the targeted removal of microglia using
pharmacological (CSF1R inhibitor, PLX3397) and through genetic approaches resulted in increased
neuronal activity and seizures (Szalay et al., 2016), while their repopulation conferred seizure protection
(Wu et al., 2020; Gibbs-Shelton et al., 2023). In addition, in a P2RY12 Knockout (KO) mouse model
subjected to KA-induced seizures, the lack of microglial process extensions worsened seizure outcomes,
suggesting that microglial process extensions can be neuroprotective (Eyo et al., 2014). Moreover, the
presence of microglia is believed to limit excessive neuronal activity triggered by chemoconvulsant agents
in mice (Badimon et al., 2020). In our human cell-based model, we observed that the presence of microglia
could reduce the excitability of the hyperexcitable Nav1.2-L1342P neurons, suggesting a presumably
beneficial role of microglia in dampening neuronal hyperexcitability in this specific context. Our findings
underscore the crucial role of human microglia in regulating the activity of neuronal carrying epilepsy-
causing genetic mutation, highlighting the potential beneficial role of microglia in maintaining neural
homeostasis. Further studies with diverse models are necessary to elucidate the precise role of microglia

in different types of seizure models and to resolve the discrepancies among different studies.

While our results are revealing, they have limitations and open up additional questions. First, this is an
in vitro study, and it is uncertain to what extent the findings could be translated into an in vivo context. This
limitation may be addressed with human-mouse chimeric brain models we are currently establishing, in
which the human iPSC-derived neurons are implanted into the brain of immunosuppressed mice for study.
Moreover, as an in vitro study, it is also worth noting that microglia morphology in our model cannot be
directly compared with microgel morphology in vivo (Wyatt-Johnson et al., 2017). Second, this study did
not comprehensively examine the whole array of microglia functions. For example, while we identified a
presumably beneficial role of microglia in our disease model, we did not assess the microglial cytokine
release in our study, given that cytokine release has been shown to exacerbate neuronal hyperexcitability.
Moreover, as the influence of microglia on neuronal excitability is complex, it is possible that our findings
may not be generalized to other types of epilepsies (e.g., other genetic epilepsies caused by
Nav1.1/Nav1.6 mutations), as microglial effects may vary depending on the content. Furthermore, our

study intentionally did not utilize microglia derived from hiPSCs carrying the Nav1.2-L1342P mutation, as
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clear evidence suggests that Nav1.2 expression is minimal in microglia (Black et al., 2009; Black and
Waxman, 2012, 2013; Abud et al., 2017; Grubman et al., 2020; Drager et al., 2022). However, while highly
unlikely, we cannot rule out that human microglia carrying the Nav1.2-L1342P might unexpectedly act
differently than control (WT) microglia. Lastly, although we observed an effect of microglia on neuronal
excitability and sodium current density, the molecular mechanisms underlying these findings are unclear.
It remains an open question why microglia mainly affect the excitability of hyperexcitable neurons but have
minimal effect on WT neurons. How microglia could modulate sodium channel density is also intriguing,
with possible explanations including changes in ion channel expression, phosphorylation states, or
trafficking of ion channels. While the exact mechanism is unknown, other studies have shown that co-
culturing microglia with neurons in an assembloid model could influence synapse remodeling-related gene
expression (Sabate-Soler et al., 2022). Future studies are needed to further dissect the mechanism
underlying microglial-mediated gene/protein expression changes in neurons, furthering our understanding

of microglia-neuron interactions.

In summary, our study revealed that hiPSC-derived microglia displayed altered morphology and
enhanced calcium signals when co-cultured with diseased human neurons. Importantly, we found, for the
first time, that microglia exerted a specific effect on the excitability of the hyperexcitable hiPSC-derived
cortical neurons carrying the SCNZ2A epilepsy-related mutation Nav1.2-L1342P but had minimal impact on
control (WT) neurons. Our findings underscore the significance of neuron-microglia interactions and
highlight the importance of incorporating hiPSC-derived microglia in neuron-based disease models. This
co-culture platform may offer a more comprehensive system for testing therapeutic interventions utilizing

hiPSC-derived neurons and microglia platforms.
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Figure and Figure legends.
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Figure 1. Characterization of hiPSC-derived cortical neurons and microglia. (A) Schematic illustrating
the protocol for generating hiPSC-derived cortical neurons. (B) Representative Fluorescent image of
hiPSC-derived neurons stained for somatodendritic marker MAP2 (magenta), synaptic vesicle proteins
SYN1/2 (green), and DAPI (blue). (C) Schematic illustrating the protocol for generating hiPSC-derived
microglia. Human iPSCs are differentiated into hematopoietic progenitor cells for 12 days and cultured in
microglia differentiation media for 24 days. The microglia maturation process is then carried out for up to
12 days. (D) Representative images of hiPSC-differentiated microglia expressing microglial-specific
markers: IBA1 (D, top panel, green, n=13 fields of view, two differentiations), TMEM119 (D, middle panel,
yellow, n=18 fields of view, two differentiations), P2RY12 (D, lower panel red, n=19 fields of view, two
differentiations). DAPI was used to stain nuclei. Data is presented as mean +s.e.m. Scale bar=100 pym.
(E) Phagocytosis of pHrodo-myelin by wild-type (control) hiPSC-derived microglia. Data was obtained from
one differentiation of three wells (48 images per well). Representative images at 0 hours and 24 hours after
the addition of pHrodo-myelin. Human iPSC-derived microglia phagocytosed the pHrodo-labeled
bioparticles, showing a gradually increasing red fluorescent signal over time. Scale bar=25 ym. hiPSC,
human induced pluripotent stem cells; EB, Embryoid body; NP, Neural Progenitors; MAP2, microtubule-
associated protein-2; SYN1/2, Synapsin1/2; IBA1, lonized calcium-binding adaptor molecule 1; TMEM119,
transmembrane protein 119; P2RY12, Purinergic Receptor P2Y12.
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Figure 2.
A Experimental Design B Co-culture of hiPSC-derived Neurons and Microglia
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Figure 2. Human microglia in co-culture with L1342P neurons display morphological changes. (A)
The hiPSC-derived neurons and microglia were matured separately, and then microglia were seeded on
top of neurons for seven days before imaging. (B) Representative images of co-cultured neurons stained
for neuron-specific marker MAP2 (green), microglia stained for IBA1 (red), and DAPI (blue) as a nuclear
stain. (C-D) Human iPSC-derived microglia in co-culture with control (WT) neurons (WT+M, C) and Nav1.2-
L1342P neurons (L1342P+M, D). IBA1+ microglia co-cultured with the hyperexcitable Nav1.2-L1342P
neurons displayed an extended ramified process compared to co-culture with control (WT) neurons.
Images are pseudo-colored in a rainbow gradient to facilitate identification, and the skeletonized view was
included to detail branches. (E) The microglial average branch length increases in co-culture with Nav1.2-
L1342P cortical neurons (WT+M: n=43 fields of view and L1342+M: n = 49 fields of view, three
differentiations, two clones per condition). (F) The total microglial area did not change in co-culture with
Nav1.2-L1342P neurons (WT+M: n=43 fields of view and L1342+M: n=49 fields of view, three
differentiations, two clones per condition). (G) Microglial perimeter is enhanced in co-culture with Nav1.2-
L1234P neurons, indicating extended processes (WT+M: n=43 fields of view and L1342+M: n=49 fields of
view, three differentiations, two clones per condition). (H) Microglial circularity is decreased in co-culture
with Nav1.2-L1342P neurons, indicating that they are less ameboid-like (WT+M: n=43 fields of view, and
L1342+M: n=49 fields of view, three differentiations, two clones per condition). Each dot represents the
mean value of a parameter per field of view. Data are presented as mean £ s.e.m. Scale bar=50 ym. Data
was pooled from three differentiations. Data was analyzed by nested t-test; **p < 0.01 and ****p < 0.0001.
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Figure 3.
A B Representative Traces of Global Microglial Calcium Events
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Figure 3. GCaMP6f calcium signal is enhanced in human microglia processes when co-
culturedwith hyperexcitable hiPSC-derived L1342P neurons. (A) Fluorescent images of hiPSC-
derived microglia expressing GCaMP6f co-cultured with WT (top) and mutant Nav1.2-L1342P (bottom)
hiPSC-derived neurons. The GCaMP6f calcium signal is pseudocolored, with dark green indicating low
signal and yellow hues depicting high signal. (B) Representative AF/F traces of GCaMP6f global calcium
activity of microglia in co-culture with control (WT) neurons (top, black) or Nav1.2-L1342P neurons (bottom,
red). Three representative cells per condition are shown. (C) The global average microglia calcium signal
area increases in co-culture with Nav1.2-L1342P neurons. (D) The global average microglial calcium spike
amplitude increases in co-culture with Nav1.2-L1342P neurons. (E) The average microglial signal area in
the soma microdomain is not statistically different in the two co-culture conditions. (F) The average
microglial spike amplitude in the soma microdomain is not statistically different in the two co-culture
conditions. (G) The average microglial calcium signal area of the processes microdomain is increased in
co-culture with Nav1.2-L1342P neurons. (H) The processes' average microglial calcium spike amplitude
increases in co-culture with L1342P neurons. Data was collected from two independent differentiations per
genotype. Data in C, D, E, F, G, and H were analyzed with Mann-Whitney’s U test. ****p < 0.0001, and n.s
(not significant).
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Figure 4.
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Figure 4. The repetitive firing of hiPSC-derived neurons carrying the Nav1.2- L1342P mutation is
reduced in co-culture with microglia. (A) hiPSC-derived cortical neurons were transduced with an AAV-
CaMKIlla-EGFP to allow the detection of excitatory neuronal populations for patch-clamp electrophysiology.
Neurons and microglia were co-cultured for seven days before patch clamp measurements. (B)
Representative action potential (AP) firings from hiPSC-derived control (WT) cortical neurons alone (left)
and with microglia (right). (C) Representative AP firings from hiPSC-derived Nav1.2-L1342P cortical
neurons alone (left) and with microglia (right). (D) The number of action potentials presented no statistical
difference between WT neurons alone and with microglia co-culture (WT:n=12 neurons, two
differentiations; WT+M: n = 18 neurons, two differentiations). (E) The maximum number of APs triggered
from each neuron under the 0 to 125-pA current injections range presented no statistical difference
between WT neurons with and without microglia co-culture (WT: n=12 neurons, two differentiations; WT+M:
n = 18 neurons, two differentiations). (F) The action potential number of Nav1.2-L1342P neurons in co-
culture with microglia consistently fired fewer APs than Nav1.2-L1342P neurons alone (L1342P:n = 14
neurons, two differentiations; L1342P+M: n = 25 neurons, two differentiations). (G) The maximum number
of APs triggered from each neuron between the 0 to 125 pA current injections range was reduced for
Nav1.2-L1342P neurons in co-culture with microglia compared to Navi1.2-L1342P neurons alone
(L1342P: n=14 neurons, two differentiations; L1342P+M: n=25 neurons, two differentiations). Nav1.2-
L1342P neurons co-cultured with microglia display a reduction in the maximum number of action potentials
compared to Nav1.2-L1342P neurons alone. Data are presented as mean +s.e.m. Unpaired Student’s t-
test analyzed data in E and G. Each dot corresponds to one neuron. Data in D and F were analyzed by
Repeated Measures of Two-Way ANOVA, with data pooled from at least two differentiations per condition.
*p < 0.05, and n.s. (not significant).
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Figure 5. hiPSC-derived Nav1.2-L1342P neurons display reduced sodium current when co-cultured
with human microglia. (A) Representative sodium current trace of Nav1.2-L1342P cortical neurons. (B)
Representative sodium current trace of Nav1.2-L1342P cortical neurons in co-culture with hiPSC-derived
microglia. In both A and B, the outward current was blocked using the tetraethylammonium chloride in the
bath solution. (C) Sodium channel activation curve over varying voltage for Nav1.2-L1342P neurons in
isolation or co-culture with microglia was plotted (left). The average maximum current density was
significantly decreased in L1342P+M neurons compared with L1342P neuron alone (right) (L1342P: n=31
neurons, three differentiations: L1342P+M: n=28 neurons from two differentiations). Data are presented
as mean = s.e.m. Data in C right were analyzed by Student’s t-test. Each dot represents one neuron (right
panel). Data were collected from at least two independent differentiations per genotype. *p < 0.05.


https://doi.org/10.1101/2023.10.26.563426
http://creativecommons.org/licenses/by-nc-nd/4.0/

