

1 **Title:** A pooled-sample draft genome assembly provides insights into host plant-specific transcriptional
2 responses of a Solanaceae-specializing pest, *Tupiocoris notatus* (Hemiptera: Miridae)

3 **Authors:** Jay K Goldberg^{1,2*}, Carson W. Allan³, Dario Copetti^{4,5}, Luciano M. Matzkin^{1,3,5}, Judith
4 Bronstein^{1,3,5}

5 ***Author for correspondence:** jaykgold@arizona.edu or jay.goldberg@jic.ac.uk

6 **Running Title:** Pooled sample mirid genome

7 **Author affiliations:** ¹Department of Ecology and Evolutionary Biology, University of Arizona, Tucson AZ,
8 USA; ²Department of Cellular and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK

9 ³Department of Entomology, University of Arizona, Tucson AZ, USA; ⁴Arizona Genomics Institute,
10 University of Arizona, Tucson AZ, USA; ⁵BIO5 Institute, University of Arizona, Tucson AZ, USA

11 **Abstract:** The assembly of genomes from pooled samples of genetically heterogenous samples of
12 conspecifics remains challenging. In this study we show that high-quality genome assemblies can be
13 produced from samples of multiple wild-caught individuals. We sequenced DNA extracted from a pooled
14 sample of conspecific herbivorous insects (Hemiptera: Miridae: *Tupiocoris notatus*) acquired from a
15 greenhouse infestation in Tucson, Arizona (in the range of 30-100 individuals; 0.5 mL tissue by volume)
16 using PacBio highly accurate long reads (HiFi). The initial assembly contained multiple haplotigs (>85%
17 BUSCOs duplicated), but duplicate contigs could be easily purged to reveal a highly complete assembly
18 (95.6% BUSCO, 4.4% duplicated) that is highly contiguous by short-read assembly standards (N50 = 675
19 kb; Largest contig = 4.3 Mb). We then used our assembly as the basis for a genome-guided differential
20 expression study of host-plant specific transcriptional responses. We found thousands of genes (N =
21 4982) to be differentially expressed between our new data from individuals feeding on *Datura wrightii*
22 (Solanaceae) and existing RNA-seq data from *Nicotiana attenuata* (Solanaceae) fed individuals. We
23 identified many of these genes as previously documented detoxification genes such as glutathione-S-
24 transferases, cytochrome P450s, UDP-glucosyltransferases. Together our results show that long-read
25 sequencing of pooled samples can provide a cost-effective genome assembly option for small insects
26 and provide insights into the genetic mechanisms underlying interactions between plants and
27 herbivorous pests.

28

29

30 **Introduction**

31 Despite being highly toxic due to numerous noxious defensive chemicals, plants in the nightshade
32 family (Solanaceae) have a handful of specialized herbivores. One of these insects is the tobacco suckfly
33 (Hemiptera: Miridae: *Tupiocoris notatus*), which is known to feed on tobaccos (*Nicotiana* sp.; Halitschke
34 et al. 2011) and sacred Datura (*Datura wrightii*; van Dam and Hare 1998), two genera known for their
35 alkaloid defenses. *Tupiocoris notatus* has been an important part of research on the ecological roles of
36 plant defense induction in wild tobacco (*Nicotiana attenuata*; Heidel and Baldwin 2004). Of note is *T.*
37 *notatus*' ability to 'vaccinate' plants against a more dangerous herbivore, the tobacco hornworm
38 (*Manduca sexta* [Lepidoptera: Sphingidae]), a single individual of which can completely defoliate plants
39 (Kessler and Baldwin 2004). It has also been implicated in the maintenance of a natural trichome
40 dimorphism, by selecting against a glandular trichome producing morph when it becomes locally
41 common (Goldberg et al. 2020). Furthermore, its transcriptome has previously been studied and
42 putative plant-defense response genes have been identified (Crava et al. 2016). More recently, this
43 species has been shown to manipulate plant defense and metabolism through cytokinins contained in its
44 saliva (Brütting et al. 2018). Further insights into this insect and its ability to manipulate plant physiology
45 for its own benefit would be vastly enabled with genomic resources that allow for deeper insights into
46 the mechanistic underpinnings of its interactions with host plants. However, its small size presents
47 difficulties for the generation of sequencing data with which to assemble a reference genome as it is not
48 possible to extract enough DNA from a single individual for long-read sequencing platforms.

49 More generally, the assembly of genomes for small species of insect remains challenging due to
50 problems associated with using pooled samples of individuals to generate sequencing reads. Past
51 generations of DNA sequencing data (i.e. short reads and low-accuracy long reads) and assembly
52 algorithms produce a single consensus sequence rather than phased haplotypes, and high
53 heterozygosity can introduce errors to this process (Li et al. 2012). Newer sequencing data (i.e. PacBio
54 HiFi reads and Oxford Nanopore Q20+ chemistry) and assembly algorithms are haplotype aware and
55 designed to produce assemblies of separate haplotypes for single diploid organisms (Cheng et al. 2021).
56 The presence of more than two haplotypes due to polyploidy or to the pooling of multiple individuals
57 leads to the parallel assembly of multiple contigs (haplotigs) representing the same genomic region.
58 Some species, such as many aphids, do not exhibit this problem due to the presence of an asexual stage
59 in the life cycle, which produces a generation of genetically homogenous colonies in which multiple
60 individuals can be pooled together without the risk of excess variation causing assembly errors (Davis
61 2012). Recently, bioinformatic solutions have been developed that allow for the removal of duplicated
62 haplotigs from heterozygous genomes (Guan et al. 2020). However, their efficacy for removing
63 duplicated contigs from pooled-sample assemblies has not yet been assessed.

64 In this study, we set out to produce a *T. notatus* draft genome assembly using sequencing data from
65 a pooled sample of individuals. Using the purge_dups algorithm allowed us to generate a highly
66 complete haploid genome assembly with most of the gene content represented, but with few allelic
67 duplication errors. We further use this assembly as the basis for differential expression analyses to
68 investigate its host-plant specific transcriptional responses.

69 **Methods**

70 *Sample origins*

71 In the fall of 2021, while growing *D. wrightii* for other studies, our greenhouse in Tucson,
72 Arizona became infested with thousands of *T. notatus*. This small hemipteran herbivore specializes on
73 plants with glandular trichomes, especially those in the Solanaceae (van Dam and Hare 1998). An
74 originally small population likely entered the greenhouse without our knowledge sometime during the
75 summer rainy season when insects are active in Southern Arizona and reached sufficient density to be
76 noticed in the fall. Samples were collected via aspirator directly from *D. wrightii* plants in the
77 greenhouse in December 2021 and January 2022. *Tupiocoris notatus* often co-occurs with a similar-
78 looking predatory stiltbug (Hemiptera: Berytidae; Jay Goldberg *personal observations*), which we were
79 careful to exclude during collections. All collections were immediately flash frozen with liquid nitrogen
80 and stored at -80C.

81 *Nucleic acid extraction and sequencing*

82 High molecular weight DNA was extracted from a single pooled sample of insects (0.5 mL, ~50
83 individuals) using a previously established chloroform:isoamyl phase separation protocol (Jaworski et al.
84 2020). HMW DNA was size checked on by Femto Pulse System (Agilent) and 10 µg of DNA were sheared
85 to appropriate size range (15-20 kb) using Megaruptor 3 (Diagenode). The sheared DNA was
86 concentrated by bead purification using PB Beads (PacBio). The sequencing library was constructed
87 following manufacturers protocols using SMRTbell Express Template Prep kit 2.0. The final library was
88 size selected on a Pippin HT (Sage Science) using S1 marker with a 10-25 kb size selection. The recovered
89 final library was quantified with Qubit HS kit (Invitrogen) and sized on Femto Pulse System (Agilent). The
90 sequencing library was sequenced with PacBio Sequel II Sequencing kit 2.0, loaded to one 8M SMRT cell,
91 and sequenced in CCS mode for 30 hours. RNA was extracted from similar pooled-samples (N = 3) using
92 the ZYMO (Irvine, CA, USA) direct-zol miniprep kit (Cat. # R2050) and sequenced using NovaSeq
93 (Illumina, San Diego, CA, USA) paired-end (150 bp) sequencing performed by Novogene (Sacramento,
94 CA, USA).

95 *Genome assembly and annotation*

96 CCS output (i.e.: HiFi reads; 3,583,689 reads; 17.69 Gb at mean Q35 score; mean length = 13,847
97 bp) were assembled using hifiasm-0.16.0 (Cheng et al. 2021). The initial assembly had numerous
98 duplicated allelic contigs (Table 1, Figure 1) and was subjected to two rounds of the standalone
99 purge_dups algorithm (v1.2.6; Guan et al. 2020). Assemblies were visualized using Bandage v0.8.1 (Wick
100 et al. 2015), which also provided contiguity statistics. Contigs assembled from contaminant reads were
101 identified and filtered from our assembly using the blobtools v1.1 pipeline (Laetsch and Blaxter 2017).
102 Jellyfish v2.2.10 (Marcais and Kingford 2012) was used for k-mer counting before using the
103 GenomeScope2.0 web portal (Ranallo-Benavidez et al. 2020) to estimate genome size (Figure S1).
104 Filtered assembly quality and polishing was carried out using Inspector v1.0.2 (Chen et al. 2021). Gene
105 content completeness was assessed via BUSCO v5.4.7 (Seppey et al. 2019) using the hemipteran odb10
106 dataset (Figure 1, Table 2). Repeat content of the final (twice purged, contaminant filtered, and
107 polished) assembly was assessed using RepeatMasker v4.1.3 (Tarailo-Graovac and Chen 2009; Table S2)
108 before structurally annotating gene content with the Helixer v0.3.1 algorithm pipeline (Stiehler et al.
109 2020; Holst et al. 2023) using the pre-made invertebrate training dataset. Functional annotation was
110 done using InterProScan v5.45-80.0 (Jones et al. 2014) and blastp (using blast v2.13.0; Camacho et al.
111 2009) comparisons to the UniProt-Swissprot database (Boutet et al. 2007). Functional annotation

112 outputs were combined into a single gff using the manage_functional_annotation.pl script in the AGAT v
113 1.2.0 toolkit (Dainat 2023).

114 *Differential expression analysis*

115 RNA-seq reads were aligned to our genome assembly and counted using STAR (Dobin et al.
116 2013) using default settings after being trimmed with trimmomatic v0.39 (Bolger et al. 2014). Read
117 counts were then analyzed using the DESeq2 package in R (Love et al. 2014; R Core Team 2021). We re-
118 analyzed the existing dataset of tobacco-fed *T. notatus* transcriptomes (Crava et al. 2016; BioProject:
119 PRJNA343704) and used all samples from their study as the baseline/control group (N = 6) for
120 comparison to our *Datura wrightii*-fed dataset (N = 3). The ClusterProfiler v4.0 package was used for
121 gene set enrichment analysis (GSEA; Wu et al. 2021) of differentially expressed genes. GSEA was
122 performed on the total set of genes for which InterProScan obtained GO-terms. Each GO ontology
123 (biological processes, molecular functions, and cellular component) was analyzed separately. We further
124 separated each ontology into separate up- and down-regulated gene lists as prior studies have found
125 this approach to be more robust than grouping all differentially expressed genes (DEGs) together (Hong
126 et al. 2014). We used a significance cutoff of Padj=0.05 for all gene-wise analyses without any fold-
127 change cutoff for differential expression.

128 **Results**

129 *Genome assembly and annotation*

130 The initial assembly was over 1 Gb in length (Table 1), making it highly duplicated (Fig 1) and far
131 greater than the predicted size of 247 Mb. The first round of supplemental purging reduced this to 405
132 Mb (Table 1, Fig 1B), but left over 30% duplicated single-copy orthologues (Fig 1B). A second round of
133 purge_dups reduced this to a reasonable level (Table 1, 2). The size of the twice purged assembly (296
134 Mb, Table 1) was closer to the predicted size (247 Mb, Fig S1). Structural annotation identified 16,067
135 genes and the protein dataset had 95.1% of BUSCO genes complete when compared to the
136 hemiptera_odb10 reference dataset (Fig 1B; Table 2). Taxonomic identification via comparison to the nt
137 database (Camacho et al. 2009) in blobtools found 22 low-coverage contigs likely to originate from
138 contaminant reads (Figure S2; Table 1). These were filtered out of our assembly before beginning
139 downstream analyses. Quality assessment with Inspector yielded an initial QV-score of 19.7, roughly
140 1500 structural errors, and a small-scale error rate of 4132.5 errors per Mb. After polishing the QV-score
141 increased to 21.7 and the small-scale error-rate was reduced to 116 per Mb. Structural errors were
142 largely unchanged by the polishing process and slightly increased from 1513 to 1542. Nearly all raw
143 reads (99%) of raw reads mapped back to the polished assembly for an average read depth of 60.1.
144 Detailed output of Inspector analyses pre- and post- polishing are in Table S1. RepeatMasker found
145 34.98% of the final assembly to be composed of repetitive elements (6.35% retroelements, 1.09% DNA
146 transposons, 2.09% rolling-circle transposons, 24.27% unclassified; detailed output in Table S2). Helixer
147 annotated 16062 genes in our final assembly, ranging in size from 108 bp to 379 kb (mean = 11.9 kb).
148 13875 of these genes were functionally annotated, including 8824 for which GO-terms could be
149 assigned. Detailed annotation statistics are found in Table S3. Overall, these results show that the
150 quality of our assembly lags behind that of recent chromosome-scale assemblies produced using
151 combined long-read sequencing and chromatin conformation capture technologies (e.g. Hi-C; Wang et
152 al. 2023) in terms of accuracy and contiguity.

153 *Differential expression analysis*

154 Alignment of RNA-seq reads was consistent across samples. An average of 94.8% of raw reads
155 were mapped to our assembly (min = 92.1%, max = 96.1%). Most reads (mean = 77.7%) mapped
156 uniquely, but many (mean = 17.1%) mapped to multiple loci. Few reads (mean = 0.6%) were thrown out
157 due to excessive multi-mapping. Most reads that were unused were too short for mapping (mean =
158 4.53%). No reads were found to have too many mismatches to be used. Full read-mapping statistics can
159 be found in Table S4. Only a small proportion of our annotated genes (N = 509) did not have any
160 mapped reads.

161 The dataset used by Crava et al. (2016) used a de novo transcriptome approach to look at
162 differentially expressed genes in *T. notatus* feeding on a transgenic line of wild tobacco (*Nicotiana*
163 *attenuata*). The ability to produce jasmonic acid and induce defense production is compromised via
164 RNAi silencing of the biosynthetic gene allene oxide cyclase (irAOC, N = 3; vs empty vector controls, EV;
165 N = 3). We reanalyzed their dataset using a genome-guided approach enabled by our draft assembly
166 (Figure 2, Table S5). Our principal component analysis (PCA) found that iAOC and EV fed insects formed
167 separate clusters (Figure 2A) indicating different patterns of gene expression in each sample set;
168 however, when we examined these patterns gene-by-gene, we only found 11 significantly differentially
169 expressed loci (8 down-regulated, 3 up-regulated; Figure 2B). None of these genes showed substantial
170 levels of expression changes ($\text{Log}_2\text{fold-change} < 1$). Six of these genes were functionally annotated
171 (Table S5), but none belonged to the detoxification gene families (cytochrome P450s, glutathione-S-
172 transferases, UDP-glucuronosyltransferases) identified in their study (Crava et al. 2016). One down-
173 regulated gene was associated with digestion of plant-compounds and annotated as polygalacturonase
174 (PGN1). The difference between our results could be due to the presence of split or non-coding genes
175 due to Trinity assembly errors (Grabherr et al. 2011; Freedman et al. 2020) in their de novo
176 transcriptome dataset, which contained 42610 putative genes; a far larger number that was annotated
177 within our assembly. It is also possible that the difference is an artifact of reference-derived biases, as
178 our genome was assembled from individuals originating in the Tucson (Arizona) area and their RNA-seq
179 data was collected from a population in Utah. The genetic variation of this species is not known and it is
180 possible that presence-absence variation in gene content exists – should there be substantial population
181 structuring – as it does in other herbivorous insects (Mongue and Kawahara 2022). This is likely to only
182 be the case if there is geographic variation in expression levels, as we did not observe substantial
183 differences in mapping rates between the two datasets (*N. attenuata*, Mean = 95.15%; *D. wrightii*, Mean
184 = 94.24%).

185 We found that the expression profiles of *Datura*- and *Nicotiana*-fed insects were distinct (Fig
186 3A). This difference was driven by many significantly up- or down-regulated genes ($N_{\text{total}} = 4982$; $N_{\text{down}} =$
187 2121; $N_{\text{up}} = 2861$; Fig 3B, Table S2). The most drastic differences in expression had over 10-fold changes
188 in either direction (272 genes with $|\text{Log}_2\text{FC}| > 3.01$). Six differentially expressed genes (DEGs) were
189 functionally annotated as glutathione-S-transferases, all of which were found to be up-regulated in
190 *Datura wrightii*-fed samples. Another seven DEGs were annotated as UDP-glycosyltransferases, four of
191 which were down-regulated and the other three up-regulated in *Datura*-fed insects. 45 cytochrome
192 P450s were identified as DEG and most of them (N = 29) were up-regulated. Out of 22 differentially
193 expressed serine proteases, 17 were found to be upregulated in our *Datura*-fed samples. The full list of
194 significantly differentially expressed genes, including fold-change and adjusted p-values, is in Table S6.
195 Our findings are consistent with previous studies of transcriptomic responses of herbivores to host-plant

196 chemistry (Castañeda et al. 2009, Bock et al. 2016, Lin et al. 2021) and confirm the role of the
197 aforementioned gene families in digestion/detoxification of plant-derived compounds by *T. notatus*.

198 To explore the transcriptional changes associated with host-plant species beyond our handful of
199 target genes, we used a gene set enrichment analysis to identify common themes in our set of DEGs. We
200 found a total of 24 GO terms to be significantly enriched within our results (Figure 4, Table S7) and that
201 these are associated with gene/protein expression, nutrient catabolism, and chemosensory functions.
202 Digestive functions were predominantly up-regulated, with the notable exception of aspartic-type
203 endopeptidases. Another notable finding is that gustatory perception is enriched in both up- and down-
204 regulated pathways, suggesting the presence of complex host-plant associated changes to
205 chemosensory pathways. Olfaction was found to only be enriched within up-regulated pathways.

206 Discussion

207 Producing high-quality reference genome assemblies for small insects remains challenging. In
208 this study we were able to produce a high-quality draft assembly using PacBio HiFi reads from a pooled-
209 sample of genetically variable individuals. It is important to note that our assembly is not chromosome-
210 scale or error-free, and should be not used as a reference in analyses such as studies of chromosomal
211 rearrangements or other structural variants. However, the unique protein-coding regions are well-
212 represented, indicating that our assembly is of sufficient quality for studies focused specifically on low-
213 copy gene content and function. Moreover, our assembly was far more contiguous and complete than
214 genome assemblies produced using short-read technologies. Repetitive element and gene content of
215 our assembly is comparable to that of another mirid (*Cyrtorhinus lividipennis*) which was previously
216 found to have a 345.75 Mb genome containing 14,644 protein-coding genes and 31.1% repeat content
217 (Bai et al. 2021). In its current state, it is a suitable reference for the gene content of this species. We
218 were able to use this genome as the basis for multiple differential expression analyses and preliminary
219 assessments of functional gene content. It will likely also serve as a suitable reference assembly for
220 population genomic analyses and other read-mapping based pipelines. This demonstrates the utility of
221 pooled-sample genome assemblies when working with small insects that present difficulties for
222 extracting sufficient quantities of DNA from a single individual.

223 The first of our differential expression studies was a re-analysis of a previously published dataset
224 comparing wild tobacco plants (*N. attenuata*) with functional (empty vector control; EV) and
225 compromised (via RNAi silencing of allene oxide synthase expression; irAOC) defense induction
226 pathways. We found that few insect genes were differentially expressed between colonies fed on these
227 two lines, and that none of the significant genes were strongly up- or down-regulated. This indicates
228 that jasmonate-induced plant defenses may not play a role in interactions between plants and *T.*
229 *notatus*; a stark contrast to interactions between *N. attenuata* and other herbivores, such as *M. sexta*,
230 against which induced defenses have been shown to play a critical role (van Dam et al. 2000). This
231 finding is also different from the study that generated these RNA-seq data, which found dozens of
232 significantly differentially expressed genes (Crava et al. 2016) and is likely due to the more conservative
233 nature of our genome-guided approach compared to the de novo transcriptome assembly used as a
234 mapping reference in their analysis.

235 In addition to our reanalysis of Crava et al (2016)'s dataset, we also compared newly generated
236 RNA-Seq data from our *D. wrightii*-fed greenhouse population to their *N. attenuata*-fed data. Our
237 pooled samples were collected and prepared in a similar fashion to theirs, although differences may be

238 present due to the geography of the sampled populations as little is known about population structure
239 in this species. Their data originated from a captive colony (maintained in Jena, Germany) started from
240 individuals collected from a field site in Southwest Utah. Our samples were collected from a greenhouse
241 infestation in Tucson, Arizona roughly 615 km away from their field site. Nonetheless we identified
242 many detoxification, digestion, and chemosensory genes in our list of differentially expressed genes.
243 This finding suggests that a substantial amount of the gene expression differences between our samples
244 and Crava et al. (2016)'s is due to host-plant specific responses. We consider our list of genes a suitable
245 starting point for future studies into the genetic basis of interactions between this species and its toxic
246 Solanaceous hosts. Future studies might examine expression differences in response to more controlled
247 manipulation of specific plant defensive compounds, or tissue-specific gene expression by *T. notatus*, to
248 differentiate between genes involved with plant-metabolism manipulation – which are likely to be
249 expressed in salivary glands (Boulain et al. 2019) – from those involved with digestion/detoxification.
250 Overall, our results suggest the presence of physiological differences between *T. notatus* feeding on
251 *Datura* and *Nicotiana*. Many of these differences are related to perception, digestion, and detoxification
252 of host-plant derived compounds, but others could also be derived from population (Arizona vs. Utah)
253 differences or responses to other factors (e.g. greenhouse conditions). Our findings nonetheless provide
254 a valuable starting point for future targeted studies of differentially expressed genes with specific roles
255 mediating host-plant interactions.

256 In conclusion, we have demonstrated that by using a standard haplotig purging algorithm, high-
257 quality pooled-sample genome assemblies of a single haplotype can be produced. We have
258 demonstrated the utility of our assembly for RNA-Seq read-mapping based pipelines by conducting two
259 genome-guided differential expression studies. We identified differentially expressed genes associated
260 with specific host-plant interactions and provide an initial functional assessment of them, many of which
261 belong to well-known families of detoxification and digestion genes. Together, these findings show that
262 pooled samples may be a viable option for researchers unable to sequence single individuals of their
263 species of interest due to small size or other factors and provide a valuable starting point for future
264 research into the interactions between specialist herbivores (Hemiptera: Miridae) and their host plants.

265 **Data Availability**

266 Sequencing data, including raw reads and the final genome assembly, are deposited on NCBI
267 under BioProject PRJNA971612 (reviewer link:
268 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA971612?reviewer=vb457840npkmq59gac1dm9k4b6>).
269 No new code or analyses were generated for this project, but shell and R scripts used to run existing
270 programs/packages are located at <https://github.com/caterpillar-coevolution/Tupiocoris-notatus-genome-project>. Additional datasets not included as supplemental materials, such as the genome
271 annotation files, can be found in the GitHub repository as well. Published data from Crava et al. (2016)
272 are available under BioProject: PRJNA343704.

274 **Acknowledgements**

275 Computational analyses were conducted on the UArizona HPC and we would like to thank the
276 staff for maintaining and providing access to this resource. We would like to thank Alex Karnish and
277 Beth-Ann Hansen for taking care of greenhouse plants and allowing the collection of insects before
278 eliminating the *T. notatus* infestation.

279 **Author Contributions**

280 The project was conceived of, and analyses conducted by JKG with substantial input and
281 assistance from CWA, DC, LMM, and JB. JKG drafted the manuscript and all authors reviewed and
282 contributed to the final version of the manuscript.

283 **References**

284 Bai, Y., Shi, Z., Zhou, W., Wang, G., Shi, X., He, K., Li, F., Zhu, Z.-R., 2022. Chromosome-level genome
285 assembly of the mirid predator *Cyrtorhinus lividipennis* Reuter (Hemiptera: Miridae), an important
286 natural enemy in the rice ecosystem. *Molecular Ecology Resources* 22, 1086–1099.
287 <https://doi.org/10.1111/1755-0998.13516>

288 Bock, K.W., 2016. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and
289 plants: Animal • plant arms-race and co-evolution. *Biochemical Pharmacology* 99, 11–17.
290 <https://doi.org/10.1016/j.bcp.2015.10.001>

291 Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
292 *Bioinformatics* 30, 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>

293 Boulain, H., Legeai, F., Jaquiéry, J., Guy, E., Morlière, S., Simon, J.-C., Sugio, A., 2019. Differential
294 Expression of Candidate Salivary Effector Genes in Pea Aphid Biotypes With Distinct Host Plant
295 Specificity. *Front Plant Sci* 10, 1301. <https://doi.org/10.3389/fpls.2019.01301>

296 Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bairoch, A., 2007. UniProtKB/Swiss-Prot. *Methods*
297 *Mol Biol* 406, 89–112. https://doi.org/10.1007/978-1-59745-535-0_4

298 Brütting, C., Crava, C.M., Schäfer, M., Schuman, M.C., Meldau, S., Adam, N., Baldwin, I.T., 2018.
299 Cytokinin transfer by a free-living mirid to *Nicotiana attenuata* recapitulates a strategy of endophytic
300 insects. *eLife* 7, e36268. <https://doi.org/10.7554/eLife.36268>

301 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009.
302 BLAST+: architecture and applications. *BMC Bioinformatics* 10, 1–9. <https://doi.org/10.1186/1471-2105-10-421>

304 Castañeda, L.E., Figueroa, C.C., Fuentes-Contreras, E., Niemeyer, H.M., Nespolo, R.F., 2009. Energetic
305 costs of detoxification systems in herbivores feeding on chemically defended host plants: a correlational
306 study in the grain aphid, *Sitobion avenae*. *Journal of Experimental Biology* 212, 1185–1190.
307 <https://doi.org/10.1242/jeb.020990>

308 Chen, Y., Zhang, Y., Wang, A.Y., Gao, M., Chong, Z., 2021. Accurate long-read de novo assembly
309 evaluation with Inspector. *Genome Biol* 22, 1–21. <https://doi.org/10.1186/s13059-021-02527-4>

310 Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li, H., 2021. Haplotype-resolved de novo assembly using
311 phased assembly graphs with hifiasm. *Nat Methods* 18, 170–175. <https://doi.org/10.1038/s41592-020-01056-5>

313 Crava, C.M., Brütting, C., Baldwin, I.T., 2016. Transcriptome profiling reveals differential gene expression
314 of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced
315 *Nicotiana attenuata* plants. *BMC Genomics* 17, 1005. <https://doi.org/10.1186/s12864-016-3348-0>

316 Dainat, J., Hereñú, D., Murray, D.K.D., Davis, E., Crouch, K., LucileSol, Agostinho, N., pascal-git, Zollman,
317 Z., tayyrov, 2023. NBISweden/AGAT: AGAT-v1.2.0. <https://doi.org/10.5281/zenodo.8178877>

318 Davis, G.K., 2012. Cyclical Parthenogenesis and Viviparity in Aphids as Evolutionary Novelties. *Journal of*
319 *Experimental Zoology Part B: Molecular and Developmental Evolution* 318, 448–459.
320 <https://doi.org/10.1002/jez.b.22441>

321 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras,
322 T.R., 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21.
323 <https://doi.org/10.1093/bioinformatics/bts635>

324 Freedman, A.H., Clamp, M., Sackton, T.B., 2021. Error, noise and bias in de novo transcriptome
325 assemblies. *Molecular Ecology Resources* 21, 18–29. <https://doi.org/10.1111/1755-0998.13156>

326 Goldberg, J.K., Lively, C.M., Sternlieb, S.R., Pintel, G., Hare, J.D., Morrissey, M.B., Delph, L.F., 2020.
327 Herbivore-mediated negative frequency-dependent selection underlies a trichome dimorphism in
328 nature. *Evolution Letters* 4, 83–90. <https://doi.org/10.1002/evl3.157>

329 Guan, D., McCarthy, S.A., Wood, J., Howe, K., Wang, Y., Durbin, R., 2020. Identifying and removing
330 haplotypic duplication in primary genome assemblies. *Bioinformatics* 36, 2896–2898.
331 <https://doi.org/10.1093/bioinformatics/btaa025>

332 Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L.,
333 Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren,
334 B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly
335 from RNA-Seq data without a reference genome. *Nat Biotechnol* 29, 644–652.
336 <https://doi.org/10.1038/nbt.1883>

337 Halitschke, R., Hamilton, J.G., Kessler, A., 2011. Herbivore-specific elicitation of photosynthesis by mirid
338 bug salivary secretions in the wild tobacco *Nicotiana attenuata*. *New Phytologist* 191, 528–535.
339 <https://doi.org/10.1111/j.1469-8137.2011.03701.x>

340 Heidel, A.J., Baldwin, I.T., 2004. Microarray analysis of salicylic acid- and jasmonic acid-signalling in
341 responses of *Nicotiana attenuata* to attack by insects from multiple feeding guilds. *Plant, Cell &*
342 *Environment* 27, 1362–1373. <https://doi.org/10.1111/j.1365-3040.2004.01228.x>

343 Holst, F., Bolger, A., Günther, C., Maß, J., Triesch, S., Kindel, F., Kiel, N., Saadat, N., Ebenhöh, O., Usadel,
344 B., Schwacke, R., Bolger, M., Weber, A.P.M., Denton, A.K., 2023. Helixer— de novo Prediction of Primary
345 Eukaryotic Gene Models Combining Deep Learning and a Hidden Markov Model (preprint).
346 *Bioinformatics*. <https://doi.org/10.1101/2023.02.06.527280>

347 Hong, G., Zhang, W., Li, H., Shen, X., Guo, Z., 2014. Separate enrichment analysis of pathways for up- and
348 downregulated genes. *Journal of The Royal Society Interface* 11, 20130950.
349 <https://doi.org/10.1098/rsif.2013.0950>

350 Jaworski, C.C., Allan, C.W., Matzkin, L.M., 2020. Chromosome-level hybrid de novo genome assemblies
351 as an attainable option for nonmodel insects. *Mol Ecol Resour* 20, 1277–1293.
352 <https://doi.org/10.1111/1755-0998.13176>

353 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A.,
354 Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., Hunter,

355 S., 2014. InterProScan 5: genome-scale protein function classification. *Bioinformatics* 30, 1236–1240.
356 <https://doi.org/10.1093/bioinformatics/btu031>

357 Kessler, A., T. Baldwin, I., 2004. Herbivore-induced plant vaccination. Part I. The orchestration of plant
358 defenses in nature and their fitness consequences in the wild tobacco *Nicotiana attenuata*. *The Plant*
359 *Journal* 38, 639–649. <https://doi.org/10.1111/j.1365-313X.2004.02076.x>

360 Laetsch, D.R., Blaxter, M.L., 2017. BlobTools: Interrogation of genome assemblies.
361 <https://doi.org/10.12688/f1000research.12232.1>

362 Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B., Fan, W., 2012.
363 Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-
364 graph. *Briefings in Functional Genomics* 11, 25–37. <https://doi.org/10.1093/bfgp/elr035>

365 Lin, R., Yang, M., Yao, B., 2022. The phylogenetic and evolutionary analyses of detoxification gene
366 families in Aphidinae species. *PLOS ONE* 17, e0263462. <https://doi.org/10.1371/journal.pone.0263462>

367 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-
368 seq data with DESeq2. *Genome Biol* 15, 1–21. <https://doi.org/10.1186/s13059-014-0550-8>

369 Marcais, G., Kingsford, C., 2012. Jellyfish: A fast k-mer counter.

370 Mongue, A.J., Kawahara, A.Y., 2022. Population differentiation and structural variation in the *Manduca*
371 *sexta* genome across the United States. *G3 Genes | Genomes | Genetics* 12, jkac047.
372 <https://doi.org/10.1093/g3journal/jkac047>

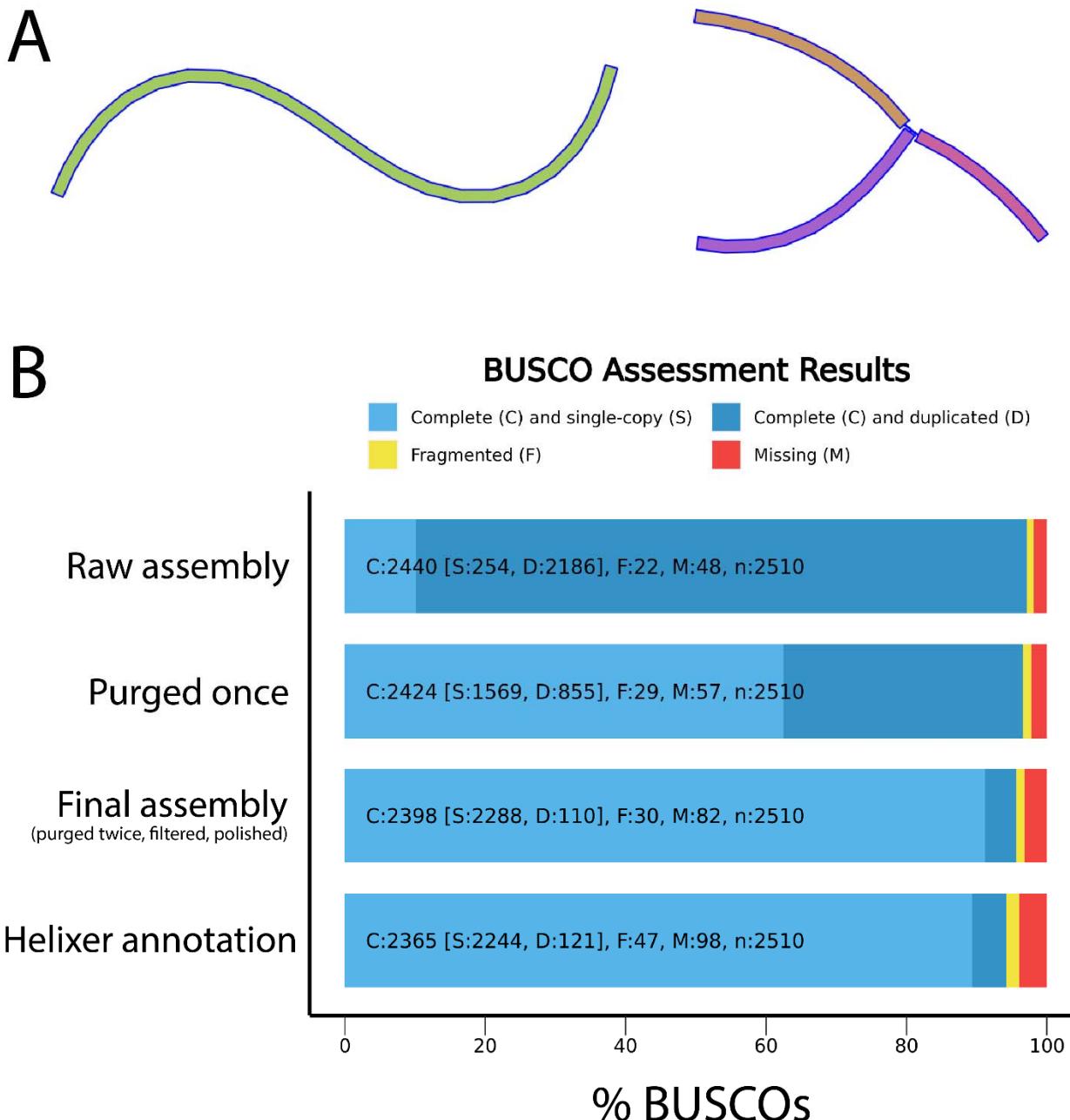
373 Ranallo-Benavidez, T.R., Jaron, K.S., Schatz, M.C., 2020. GenomeScope 2.0 and Smudgeplot for
374 reference-free profiling of polyploid genomes. *Nat Commun* 11, 1432. <https://doi.org/10.1038/s41467-020-14998-3>

376 Seppey, M., Manni, M., Zdobnov, E.M., 2019. BUSCO: Assessing Genome Assembly and Annotation
377 Completeness, in: Kollmar, M. (Ed.), *Gene Prediction: Methods and Protocols, Methods in Molecular*
378 *Biology*. Springer, New York, NY, pp. 227–245. https://doi.org/10.1007/978-1-4939-9173-0_14

379 Stiehler, F., Steinborn, M., Scholz, S., Dey, D., Weber, A.P.M., Denton, A.K., 2021. Helixer: cross-species
380 gene annotation of large eukaryotic genomes using deep learning. *Bioinformatics* 36, 5291–5298.
381 <https://doi.org/10.1093/bioinformatics/btaa1044>

382 Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to Identify Repetitive Elements in Genomic
383 Sequences. *Current Protocols in Bioinformatics* 25, 4.10.1-4.10.14.
384 <https://doi.org/10.1002/0471250953.bi0410s25>

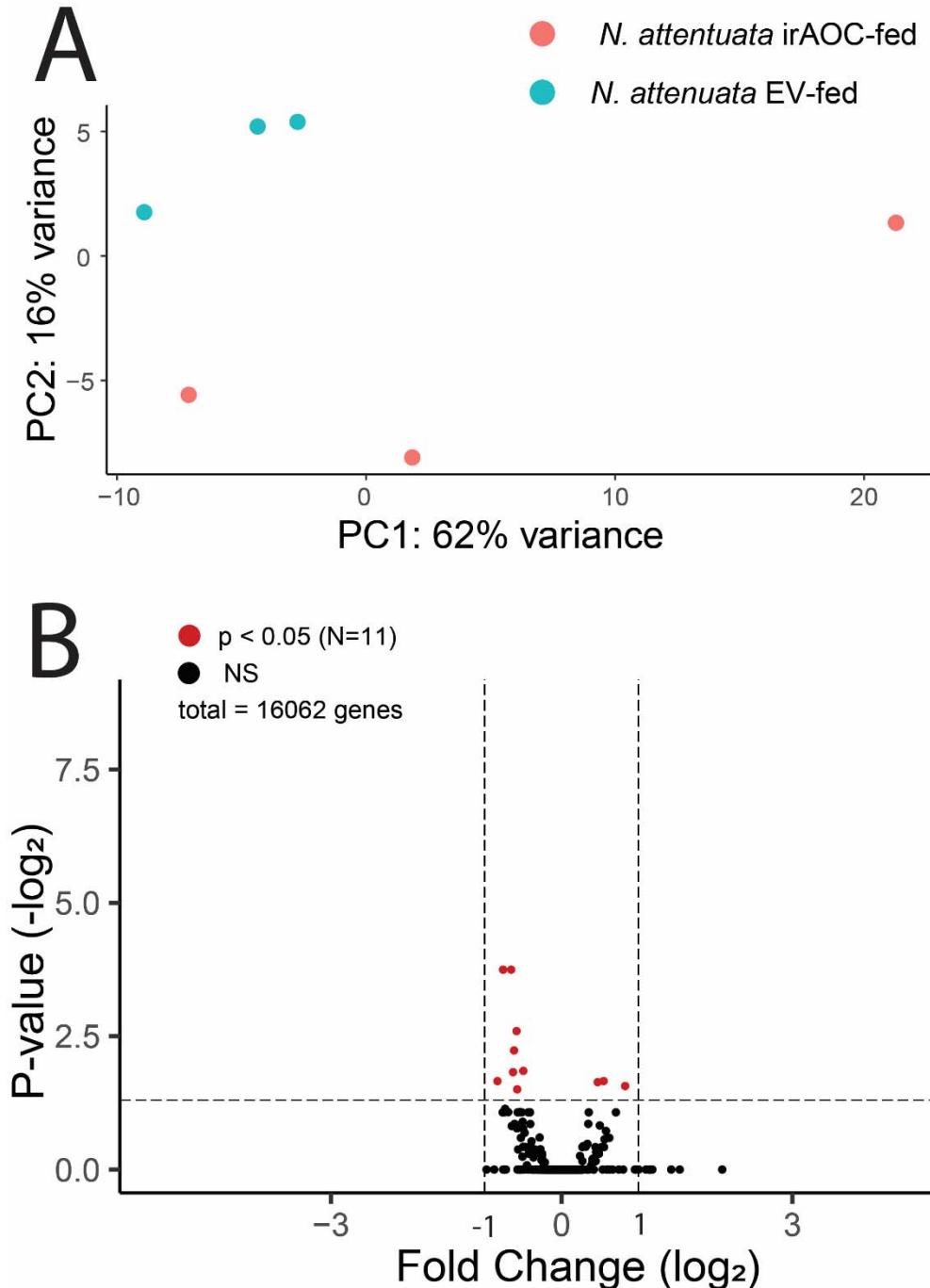
385 Van DAM, N.M., Hare, D.J., 1998. Differences in distribution and performance of two sap-sucking
386 herbivores on glandular and non-glandular *Datura wrightii*. *Ecological Entomology* 23, 22–32.
387 <https://doi.org/10.1046/j.1365-2311.1998.00110.x>


388 van Dam, N.M., Hadwich, K., Baldwin, I.T., 2000. Induced responses in *Nicotiana attenuata* affect
389 behavior and growth of the specialist herbivore *Manduca sexta*. *Oecologia* 122, 371–379.
390 <https://doi.org/10.1007/s004420050043>

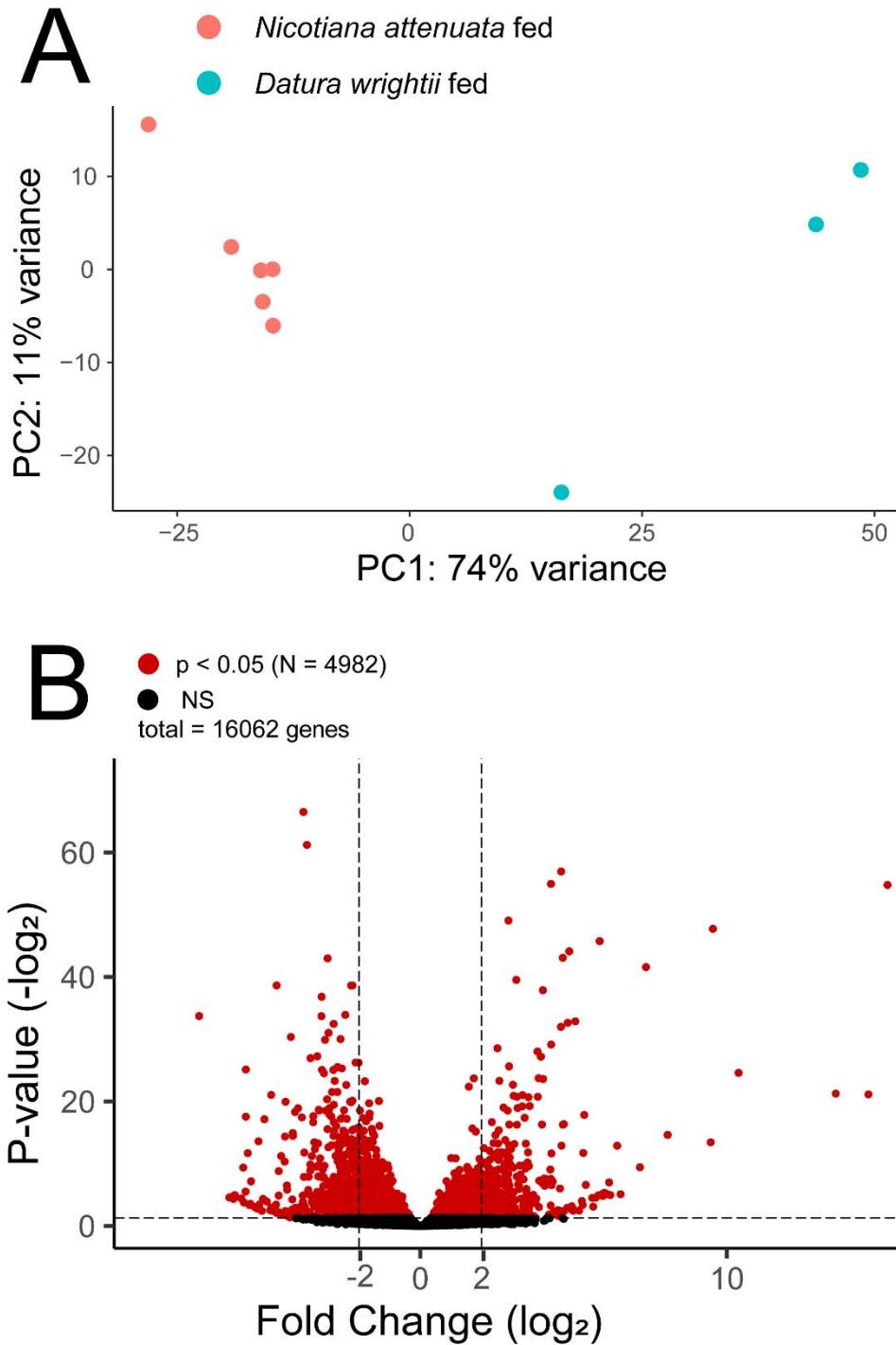
391 Wick, R.R., Schultz, M.B., Zobel, J., Holt, K.E., 2015. Bandage: interactive visualization of de novo genome
392 assemblies. *Bioinformatics* 31, 3350–3352. <https://doi.org/10.1093/bioinformatics/btv383>

393 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X.,
394 Yu, G., 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The Innovation*
395 2, 100141. <https://doi.org/10.1016/j.xinn.2021.100141>

396

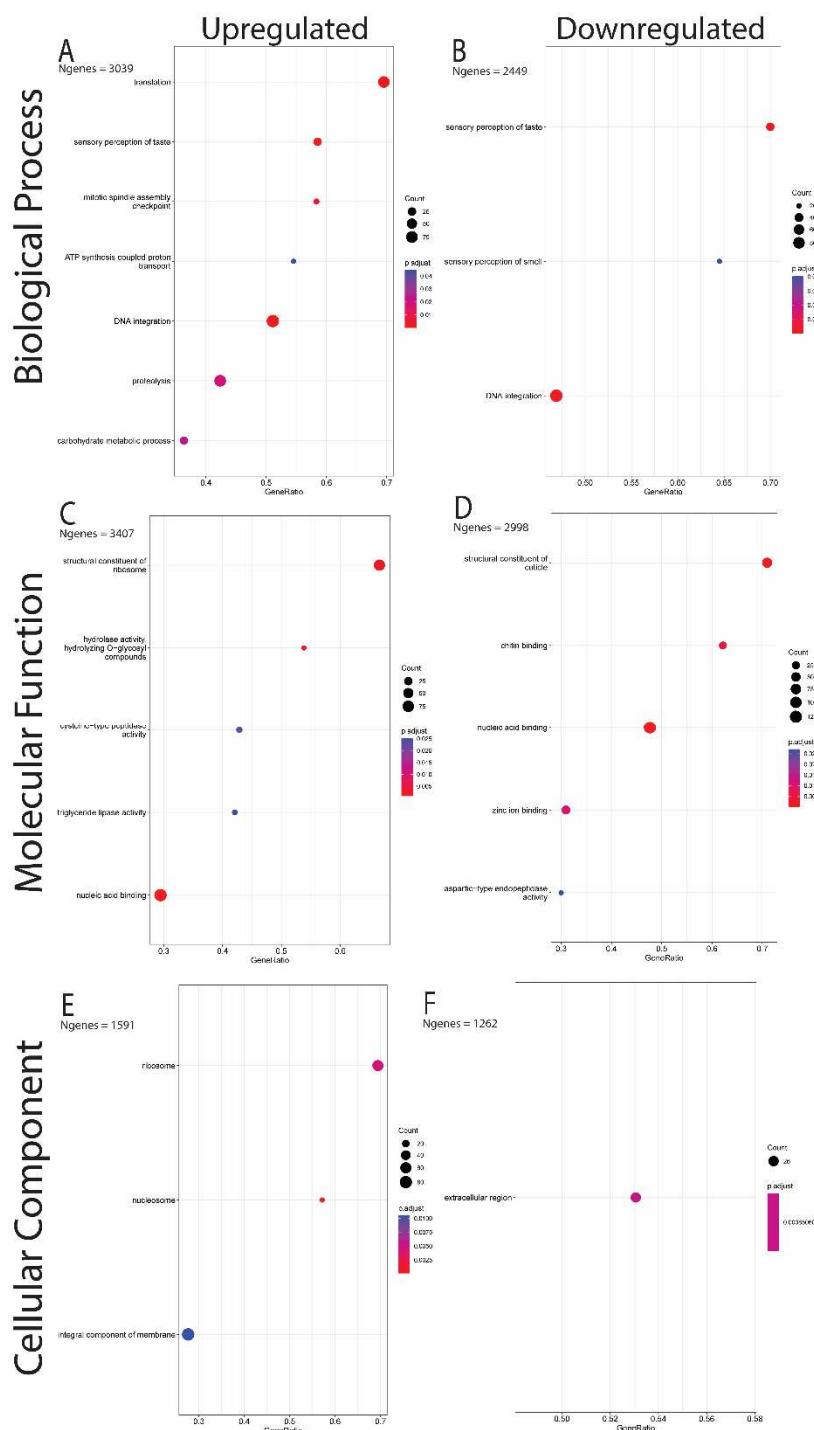

397 **Figure Legends and Main Tables**

398


399 **Figure 1.** (A) Example of a properly assembled contig (left) and a y-shaped contig – indicative of
400 unresolved repetitive elements – as found in the ‘raw’ assembly graphs (right). No y-shaped contigs
401 were present in the final assembly. (B) Bar graphs showing the results of odb10 Hemiptera BUSCO
402 analysis for the three of the genome assemblies we produced and our structural annotation of the final
403 assembly (bottom bar). Annotation assessment was conducted in proteome mode.

404

405


406 **Figure 2.** (A) Results of PCA analysis from differential expression study that included only *Nicotiana*-fed
407 insects from a previous study (Crava et al 2016). (A) PCA analysis shows that the two treatments do not
408 form distinct clusters and are not substantially different when gene expression is viewed globally. (B)
409 Volcano plot showing the p-value associated with the 'line' variable in differential expression analysis
410 and the fold change of that gene. Two-fold changes ($|\log_2| = 1$) in either direction are marked for
411 reference, but this was not used as a testing cutoff. Genes that satisfied our cutoff for significance ($P_{adj} <$
412 0.05) are shown in red (N = 50; Table S4), whereas NS genes are in black.

413

414 **Figure 3.** (A) Results of PCA analysis from differential expression study. *Nicotiana* and *Datura*-fed insects
415 form distinct clusters. (B) Volcano plot showing the p-value associated with the 'plant' variable in
416 differential expression analysis and the fold change of that gene. Four-fold changes in either direction
417 ($|\log_2| = 2$) are marked for reference, but this was not used as a testing cutoff. Genes that satisfied our
418 cutoff for significance ($P_{adj} < 0.05$) are shown in red ($N = 4982$; Table S3), whereas NS genes are in black.

419

420

421 **Figure 4.** Results of gene set enrichment analyses. 24 Go terms were found to be enriched in either up-
422 or down-regulated gene lists. X-axes show the ratio of enriched genes vs the total count of genes sharing
423 that GO term. Dot sizes represent the total number of genes sharing each GO term whereas dot colors
424 represent the p-value (adjusted for multiple tests) of each term.

425 **Table 1.** Summary statistics of assemblies before and after haplotig purging

Hifiasm Assembly Statistics				
	Total length (Mb)	Largest contig (Mb)	N50 (kb)	# of contigs
<i>Raw Assembly</i>	1067.5	4.308	179	10061
<i>Purged Once</i>	405.7	4.308	542	1310
<i>Purged Twice</i>	296.1	4.308	665	908
<i>Final Assembly</i>	291.8	4.308	675	886

426

427

428 **Table 2.** BUSCO scoring results of assemblies and final annotation produced by Helixer.

BUSCO Scores (odb10_hemiptera; 2510 total genes)						
	Complete - total	Single Copy	Duplicated (N ≥ 2)	Multi- duplicated (N ≥ 3)	Fragmented	Missing
<i>Raw Assembly</i>	2440 (97.2%)	254 (10.1%)	2186 (87.1%)	1658 (66.1%)	22 (0.9%)	48 (1.9%)
<i>Purged Once</i>	2424 (96.6%)	1569 (62.5%)	855 (34.1%)	112 (4.5%)	29 (1.2%)	57 (2.2%)
<i>Purged Twice</i>	2416 (96.3%)	2308 (92%)	108 (4.3%)	10 (0.44%)	32 (1.3%)	62 (2.4%)
<i>Final Assembly</i>	2398 (95.6%)	2288 (91.2%)	110 (4.4%)	11 (0.40%)	30 (1.2%)	82 (3.2%)
<i>Helixer Annotation</i>	2365 (94.2%)	2244 (89.4%)	121 (4.8%)	9 (0.36%)	47 (1.9%)	98 (3.9%)

429