

DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity

Hao Chen¹, Li Fan¹, Qi Guo², Man Ying Wong¹, Fangmin Yu¹, Nessa Foxe¹, Winston Wang³, Aviram Nessim⁴, Gillian Carling^{1,5}, Bangyan Liu^{1,5}, Chloe Lopez-Lee^{1,5}, Yige Huang^{1,5}, Sadaf Amin¹, Tark Patel⁶, Sue-Ann Mok⁶, Won-min Song⁷, Bin Zhang⁷, Qin Ma², Hongjun Fu⁸, Li Gan^{1,3*}, Wenjie Luo^{1*}

¹Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA

²Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA

³Millburn High School, New Jersey, NJ, USA

⁴The State University of New York at Stony Brook, Long Island, New York, USA

⁵Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA

⁶Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada

⁷Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA

⁸Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA

* Correspondence: wel2009@med.cornell.edu; lig2033@med.cornell.edu

1 **Abstract:**

2 Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing
3 aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12
4 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous
5 studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but
6 are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive.
7 Our current study uncovers a novel resilience mechanism via microglial interaction with
8 oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain
9 inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished
10 tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes
11 (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the
12 critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12
13 signaling as a promising target for enhancing resilience in AD.

14 **Introduction**

15 The accumulation of toxic tau in the brain correlates significantly with synapse loss, impaired
16 neuronal function, and cognitive decline in Alzheimer's disease (AD) and other heterogeneous
17 tauopathies. Unraveling the biological mechanisms that underlie tau-induced neurodegeneration
18 and brain toxicity is of paramount importance in the battle against these devastating diseases.
19 Microglia play a pivotal role in instigating tau-related neurodegeneration. In human genetic studies,
20 microglia has been shown to have high expression of numerous AD risk genes, and in recent
21 investigations using tau mouse models, depleting microglia effectively reduced tau seeding
22 activity^{1,2}, curbed neuroinflammation, and mitigated tau-related neurodegeneration^{3,4}. This
23 strongly supports the notion that microglia contribute to tau-driven neurodegeneration in AD.
24 However, the precise mechanisms through which microglia mediate tau toxicity remain largely
25 undefined.

26 DNAX-activation protein 12 (DAP12), also known as TYRO protein tyrosine kinase-binding
27 protein (TYROBP), is an adaptor protein containing an immunoreceptor tyrosine-based activation
28 motif (ITAM), variants of which have been linked to early-onset AD⁵. By binding with microglial
29 receptors such as Triggering Receptor Expressed on Myeloid cells 2 (TREM2), a major AD risk
30 factor, DAP12 triggers various cellular processes such as phagocytosis, proliferation, and the
31 regulation of inflammatory cytokines^{6,7,8}. Network analyses underscore DAP12's significance as a
32 key driver in sporadic late-onset AD, a form of AD with fewer genetic indicators, implying that
33 DAP12 may be an important cell-level regulator of tauopathy⁹. Critically, single-cell
34 transcriptomics studies reveal DAP12's essential role in transitioning microglia into a disease-
35 associated state, termed as disease-associated microglia (DAM)¹⁰. Deleting DAP12 in an amyloid
36 mouse model significantly impairs the formation of microglial barriers around plaques,
37 exacerbating dystrophic neurites bypassing plaques and increasing plaque-associated tau
38 pathology¹¹, while leaving amyloid burden unchanged¹². In a mouse model with tau inclusions,
39 DAP12 loss elevated tau pathology, promoting tau seeding and spreading¹³. These findings suggest
40 that DAP12 activity constrains amyloid plaque and tau pathology and loss of DAP12 should
41 worsen the disease. Paradoxically, inactivation of DAP12 normalizes aberrant microglial signaling
42 associated with AD pathologies, ameliorates abnormal electrophysiological activity and improves
43 learning deficits in both amyloid and tauopathy mouse models^{13,14,15}, indicating that removal of
44 DAP12 confers brain resilience in response to the toxicities of AD pathologies. However, the
45 underlying mechanism remains elusive.

46 In this study, we analyze the effect of DAP12 deletion on microglia and related cell types via
47 crossing homozygous P301S tau transgenic mice¹⁶ with Dap12-deficient mice¹⁷. Our results
48 support the previous work of Haure-Mirande et al¹³ that Dap12 deletion exacerbates tau pathology
49 while concurrently improving gliosis and synapse loss. We then investigated the mechanism

50 behind the resilient effects of DAP12 deletion on neurodegeneration using transcriptome analysis,
51 which unveiled a potent attenuation of tau-induced interferon signaling, related to
52 neuroinflammatory response, due to DAP12 deficiency. Utilizing single-nuclei RNAseq analysis
53 (SnRNAseq) on hippocampal tissues to isolate the effects on varied cell types, we uncovered that
54 DAP12 not only plays a role in driving the formation of disease-associated microglia, but also
55 significantly shapes the transcriptomic states of oligodendrocytes, leading to an intermediate state
56 concurrent with brain demyelination in tauopathy. Notably, this tau-related transcriptomic state of
57 oligodendrocytes is also found in human AD brains, highlighting the relevance of tau mouse model
58 findings for human AD. Our discoveries unveil a novel mechanistic link between DAP12 signaling
59 in microglia and tau-induced toxicity in oligodendrocytes, leading to demyelination in AD. This
60 finding strongly supports the notion of targeting DAP12 as a viable therapeutic strategy for AD.

61

62 **Results:**

63 **Loss of Dap12 elevates tau inclusions but ameliorates tau-induced gliosis**

64 Microglia process pathogenic tau via internalization and exocytosis^{1,18,19}. To investigate the
65 role of Dap12, we exposed primary microglia from *Dap12^{+/+}* or *Dap12^{-/-}* mice to tau fibrils for 2
66 hours and quantified tau phagocytosis. Dap12 deficiency did not affect tau internalization
67 (Supplementary Fig. 1A, B and supplementary table 1). To assess tau processing, we then remove
68 tau fibrils from the medium, and quantified the amount of internalized tau in microglia. *Dap12^{-/-}*
69 microglia contained more intracellular tau compared to *Dap12^{+/+}* counterparts, suggesting a
70 deficiency in tau processing (Fig. 1A, B and supplementary table 1).

71 Homozygous P301S tau transgenic mice develop substantial tau pathology in various brain
72 regions, including the entorhinal cortex and hippocampus, by the age of five to six months^{16,20}. We
73 examined the impact of Dap12 deletion on tau pathology *in vivo*. Using MC1 antibody, which
74 recognizes conformation-specific tau relevant to AD, and AT8 antibody for phosphorylated tau at
75 Ser202 and Thr205 epitopes, we observed a significant increase in MC1 staining within the
76 hippocampal region upon Dap12 deletion (Fig. 1C, D and supplementary table 1). Tau inclusions
77 detected with AT8 staining or ThioS were higher in the cortical area of *Dap12^{-/-}tau⁺* mice
78 compared to *Dap12^{+/+}tau⁺* mice (Fig. 1E-G and supplementary table 1). Tau-induced gliosis in
79 these tau transgenic mice typically initiates as early as 2 months and expands significantly by 5-6
80 months of age when tau pathology peaks^{16,20}. Despite elevating tau pathology, Dap12 deficiency
81 led to a notable reduction in gliosis, as evidenced by reduced Iba1 staining (Fig. 1H-L and
82 supplementary table 1) and GFAP staining (supplemental Fig. 1C, D and supplementary table 1).
83 Thus, DAP12 deficiency reduces gliosis in the presence of exacerbated tau pathology, consistent
84 with prior reports¹³.

85

86 **Dap12 mediates proinflammatory signaling in the tauopathy mouse brain**

87 We then profiled DAP12-related signaling pathways associated with inflammation using
88 multiplex immunoassays. Dap12 deletion reduced levels of p-AKT, p-ERK, p-JNK, p-P38, p-
89 NF κ B, and p-STAT3 in the tauopathy mouse brain (Fig. 2A-D and supplementary table 2),
90 indicating dampened inflammatory signaling.

91 To assess the effects of Dap12 deletion on brain homeostasis at transcriptome level, we
92 performed bulk RNA sequencing on frontal cortex tissue from *Dap12^{+/+ tau⁺}*, *Dap12^{-/- tau⁺}* mice
93 (Fig. 2E, supplementary 2A, B and supplementary table 2). Ingenuity pathway analysis (IPA) of
94 131 differentially expressed genes (DEGs) using canonical pathways revealed that Dap12 deletion
95 reversed tau pathology-induced cytokine storm signaling, TREM1 signaling, the complement
96 system, and interferon (IFN) signaling (Fig. 2E, supplementary Fig. 2C, D and supplementary table
97 2). Gene set enrichment analysis (GSEA) also revealed Dap12 deletion reversed 131 genes
98 enriched in tau pathology-induced interferon response and IL6-JAK-STAT3 signaling (Fig. 2F
99 and supplementary table 2). The transcriptional factors predicted by the Gene Transcriptional
100 Regulation Database to modulate the expression of these 131 genes include NF κ B1/REL, a pivotal
101 microglial transcriptional regulator associated with driving tau seeding and toxicity in tauopathy
102 (Fig. 2G and supplementary table 2)¹⁹. Furthermore, upstream regulator analysis pinpointed
103 cytokines IRF3, IFNG, and IRF7 as top transcriptional factors inhibited by Dap12 deletion (Fig.
104 2H and supplementary table 2). Mechanistic network analysis further confirmed a prominent role
105 of Dap12 deficiency in suppressing tau pathology-activated IFN signaling (Fig. 2I and
106 supplementary table 2).

107 To validate our transcriptomic findings, we extended our analysis to quantify the levels of brain
108 cytokines and chemokines associated with proinflammatory responses. Using multiplex ELISA,
109 we found that Dap12 deletion significantly reduced levels of CXCL10/IP-10 (Cxcl10), IL-6, MCP-
110 1 (Ccl2), and MIG (Cxcl9) (Fig. 2J and supplementary table 2). These cytokines and chemokines
111 are either directly or indirectly modulated by interferon signaling²¹⁻²³ or influenced by NF- κ B and
112 ERK signaling (supplementary Fig. 2E-G). Taken together, our results demonstrated that Dap12
113 deletion abolished proinflammatory signaling mediated by IFN and NF- κ B in the tauopathy mouse
114 brain.

115

116 **Dap12 drives the shift of homeostatic microglia to the disease-associated state in the**
117 **tauopathy mouse brain**

118 Our results so far demonstrated that the protective effects of Dap12 deficiency are associated
119 with the amelioration of inflammatory responses. To dissect cell type-specific mechanisms, we
120 next performed single nuclei RNA sequencing (snRNA-Seq) to assess the effects of Dap12
121 deletion in response to tauopathy. Rigorous quality control steps were taken to eliminate

122 sequencing reads derived from multiplets using DoubletFinder²⁴ as well as to exclude low-quality
123 nuclei based on thresholds for gene counts, UMI counts, and the percentage of mitochondrial genes
124 per nucleus (Supplementary Figure 3A). Subsequent unsupervised clustering yielded 71,716 high-
125 quality nuclei that were grouped into distinct transcriptional clusters, effectively representing the
126 brain's major cell types (Supplementary Figure 3B, C).

127 To investigate the impact of Dap12 deletion on microglial response to tauopathy, we
128 subclustered microglia expressing microglial hallmark genes Csf1r, P2ry12, and Siglech
129 (Supplementary Figure 3B) into four distinct subpopulations based on subcluster marker genes
130 (Fig. 3A, supplementary Fig. 4A and supplementary table 3). MG1, cells enriched with
131 homeostatic markers (supplementary Fig. 4A), is the predominant cluster in non-transgenic normal
132 brains, but significantly diminishes in *Dap12^{+/+} tau⁺* brains (Fig. 3A, B). In contrast, MG2 and
133 MG4, disease-associated cells induced by tauopathy (Fig. 3A, B), exhibit higher levels of
134 proinflammatory genes like Apoe, Spp1, Nfkb1, and Akt3, as well as STAT3, IL-8, NF-kB, and
135 JAK/STAT signaling (Fig. 3C-F and supplementary table 3). Markers of MG2 and MG4 are highly
136 correlated with DAMs signatures¹⁰ (Supplementary Figure 4B-D). Trajectory analyses were
137 performed to define the pseudotime trajectory from homeostatic MG1 to activated MG2 and MG4
138 states (Fig. 3G), as indicated by the decline of homeostatic microglial marker genes Cx3cr1 and
139 Hexb and increase of DAM marker genes Apoe and P2rx7 (Fig. 3G). Dap12 deletion completely
140 reversed the decline of the MG1 cell population and blocked the elevation of MG2 and MG4 cell
141 populations (Fig. 3A, B).

142 Pseudobulk analysis of microglia revealed that 54% of the differentially expressed genes (229
143 genes out of 419 genes) upregulated by tau exhibited downregulation to homeostatic levels due to
144 Dap12 deletion (Fig. 3H, and supplementary table 3). A pathway analysis of these 229 reversed
145 genes demonstrated their involvement in processes such as the complement cascade, lysosomal
146 vesicle biogenesis, MAPK cascade signaling, and AKT signaling (Fig. 3I). Of these 229 genes,
147 our findings indicated that DAP12 deletion abolished the expression of signature DAM genes for
148 both DAM1 and DAM2¹⁰ (Fig. 3J, supplementary Fig. 4E) while maintaining the expression of
149 homeostatic marker genes like Cx3cr1, Csf1r, or Tmem119 (supplementary Fig. 4E).

150 Using immunostaining, we confirmed that Dap12 deficiency restored expression of P2ry12, a
151 marker of homeostatic microglia (Figure 3K, L and supplementary table 3). Notably, the transition
152 of microglial states accompanied morphological changes, transitioning from a ramified
153 homeostatic state to a more hypertrophic activation state. Imaris analysis validated that Dap12
154 deficiency also halted the tau pathology-induced reduction in microglial branch length (Fig. 3M,
155 N and supplementary table 3), along with the decrease in branch points (supplementary Fig. 4F.
156 and supplementary table 3). Thus, Dap12 deficiency blocked the transition of microglial state from

157 homeostatic to DAM in tauopathy, consistent with a mechanistic understanding of DAP12
158 mediating microglial responses to tau pathology^{15,25,26}.
159

160 **Dap12 deletion reverses tau-induced gene expression alterations and reduces synapse loss in**
161 **excitatory neurons**

162 To investigate how Dap12 affects neuronal transcriptomes in tauopathy mice, we performed
163 pseudobulk analysis of excitatory neurons (EN) and inhibitory neurons (IN) across three genotypes.
164 Dap12 deletion significantly altered transcriptomes of EN (119 DEGs, Fig. 4A, B, and
165 supplementary table 4), with limited effects on IN transcriptomes (merely 75 DEGs). Specifically,
166 we identified 37 genes whose suppression by tau pathology was counteracted by Dap12 deletion.
167 These genes were predominantly associated with protein transportation (Fig. 4C, supplementary
168 table 4). Dap12 deletion downregulated 80 genes involved in neuronal activities (i.e. neurogenesis,
169 neurotransmitter secretion, and synaptic signaling) out of 404 genes induced by tau pathology.
170 (Fig. 4C, supplementary table 4).

171 To determine the effect of Dap12 on synapses, we measured tau-impaired excitatory synaptic
172 integrity using PSD95 immunostaining^{27,28}. Dap12 deletion partially rescued the tauopathy-
173 induced decline in PSD-95 immunoreactivity at the CA1 striatum radiatum, (Fig. 4D, E and
174 supplementary table 4), consistent with previously reported protective effects of DAP12 deletion¹³.
175

176 **Dap12 mediates tau pathology-induced transcriptomic changes in oligodendrocytes**

177 DAP12 signaling has been implicated in brain myelination²⁹. In humans, DAP12 deficiency
178 causes Nasu–Hakola disease (NHD), an early-onset dementia characterized by myelin loss³⁰⁻³². To
179 assess the effects of DAP12 deletion on oligodendrocyte cells, the brain cells responsible for
180 myelination, we subclustered OL into five distinct subpopulations based on their gene expression
181 profiles (Fig. 5A). High-dimensional Weighted Gene Correlation Network Analysis
182 (hdWGCNA)³³⁻³⁵ was performed across all subclusters, revealing four gene expression modules—
183 Turquoise, Yellow, Brown, and Blue (Fig. 5B and supplementary table 5). Each module was
184 characterized by a network of the top 10 hub genes, identified through harmonized module
185 eigengenes (kME) (Fig. 5C, and supplementary table 5). The turquoise module, which is typically
186 expanded in tau pathology, was diminished by Dap12 deletion (Fig. 5D, E). The turquoise module
187 is rich with genes associated with glia-neuronal interaction, such as Neuregulin-3 (*Nrg3*), Neurexin
188 1 or 3 (*Nrxn1* or 3), and synaptic activities including Glutamate Ionotropic Receptor NMDA Type
189 Subunit 2A (*Grin2a*). Gene ontology (GO) analysis of the marker genes associated with the
190 turquoise module revealed enrichment with membrane receptors or channels, synaptic
191 transmission and signaling, channel and receptor activity (supplementary Fig. 5E and

192 supplementary table 5). This cluster reduction suggests that Dap12 deletion dampens tau
193 pathology-enhanced oligodendrocytes signaling to and from other cell types.

194 In contrast, the blue module, characterized by Parkin RBR E3 Ubiquitin Protein Ligase (Prkn)
195 and Ubiquitin Conjugating Enzyme E2 B (Ube2b), was diminished by tau pathology (Fig. 5D and
196 supplementary table 5) and was restored by Dap12 deletion (Fig. 5E, supplementary table 5),
197 suggesting a vulnerability of this unique OL population to tau pathology in a Dap12-dependent
198 manner. On the other hand, the brown and yellow modules were minimally influenced by tau
199 pathology or Dap12 deletion (Fig. 5D, E). Thus, DAP12 deletion diminishes tau pathology-
200 induced oligodendrocyte responses, while preventing the loss of vulnerable oligodendrocytes.

201

202 **Dap12 promotes the intermediate oligodendrocyte state in the tauopathy mouse brain**

203 We next analyzed OL1-4, which express high levels of marker genes characteristic of mature
204 oligodendrocytes, Ptgds, Opalin, Il33, and Anln³⁶⁻³⁸ (see supplementary Fig. 6A), exhibiting only
205 limited expression of previously identified disease-associated oligodendrocyte genes, such as Pan
206 DA1/DA2 genes³⁸ or DOL genes³⁹ (supplementary Fig. 6B-F).

207 We observed that tauopathy greatly shranked OL1 and OL2 and significantly induced OL3 (Fig.
208 6A, B and supplementary table 6). Strikingly, OL3 exhibits a strong resemblance to intermediate
209 oligodendrocytes (iOli), identified in a published OL dataset obtained from the visual cortex of the
210 human brain⁴⁰ (Fig. 6C, D and supplementary table 6). This is evident through the expression of
211 marker genes such as NMDA receptors (Grin2a, Grin1), adhesion molecules (Nrnxn1, Nrnxn3, Nrg3,
212 Tenm2, Cntnap2), channels (Kcnip4, Dpp10), transcriptional factor (Mef2c), synaptic
213 transmission (Dlgap1, Syn1), and axon guidance (Epha6) (Fig. 6D). OL1 exhibits a closer
214 alignment with mature OL (Fig. 6C). Remarkably, the elimination of Dap12 completely impeded
215 the formation of OL3 and preserved the populations of OL1 and OL2 cells (Fig. 6A, B). To further
216 understand the effect of DAP12 deletion and tau pathology, we performed pseudobulk analysis.
217 The dot plots demonstrate the inducibility of these iOli marker genes by tauopathy, with their
218 upregulation fully suppressed by Dap12 deletion (Fig. 6E). The impact of tau pathology and Dap12
219 deletion on TEMM2 or NRG3 was further confirmed by Western blot analysis, illustrating
220 increased levels of TEMM2 and NRG3 proteins in the cortical tissue of tauopathy-afflicted brains,
221 which is mitigated in DAP12 loss (Fig. 6F-H and supplementary table 6).

222 The tau pathology-inducible OL3 was subjected to further analysis using IPA. Predominant
223 pathways that showed upregulation in OL3 include calcium signaling, RHOGDI signaling, and the
224 synaptogenesis signaling pathway (Supplementary Fig. 7C, and supplementary table 6). Notably,
225 the myelination signaling pathway was downregulated in OL3 (Supplementary Fig. 7C and
226 supplementary table 6). In an IPA upstream regulator analysis, two prominent upstream regulators
227 suppressed in OL3 includes: Transcription Factor 7 Like 2 (Tcf7l2) and SRY-Box transcription

228 factor 2 (Sox2) (Supplementary Fig. 7D and supplementary table 6). Both transcription factors
229 play indispensable roles in oligodendrocyte proliferation, differentiation, and neuron
230 myelination^{41,42}, implying a compromised myelination state within these cells. Dot plots at the
231 pseudobulk level encompassing the entire OL population highlighted a diminished expression of
232 other myelination-related genes, including Mbp, Mag, and Cnp (Fig. 6I), along with myelination-
233 associated transcription factors such as Myrf, Tcf7l2, and Olig2 (Fig. 6J), within the tauopathy-
234 afflicted mouse brain. However, this downregulation was no longer observed in the tauopathy
235 brain lacking Dap12 (Fig. 6I, J).

236 We observed that the number of OLIG2-positive cells in the hippocampal DG area was
237 significantly elevated in the absence of Dap12 (Fig. 6K-M and supplementary table 6). Staining
238 with an MBP antibody revealed the inactivation of Dap12 partially mitigated this myelin loss in
239 hippocampal CA1 area (Fig. 6K-M and supplementary table 6).

240 To study the trajectory states of OL clusters from OPC, we integrated oligodendrocytes (OL)
241 and oligodendrocyte precursor cells (OPC) and subclustered them into six subclusters
242 (Supplementary Fig. 5A). Feature plots showcased that OPC-OL clusters 1, 2, 3, and 6 expressed
243 OL marker genes Mbp and Plp1, whereas OPC-OL cluster 5 exhibited OPC marker genes Pdgfra
244 and Vcan. OPC-OL Cluster 4 contained both OPC and OL subpopulations (Supplementary Fig.
245 5A). Pseudotime analysis of the transcriptional states revealed a trajectory transition from OPC-
246 OL cluster 5 to cluster 2, followed by cluster 1, ultimately reaching cluster 3 (supplementary Fig.
247 5B and supplementary table 5). Tauopathy led to a notable decrease in OPC-OL cluster 1 and a
248 significant induction of cluster 2; however, both these effects of tau pathology were reversed by
249 Dap12 deletion (supplementary Fig. 5C, D and supplementary table 5). Thus, Dap12 deletion
250 reversed the tau pathology-induced alterations in the transcriptome state of oligodendrocyte
251 lineage. Correlation analysis of OL3 and OPC-OL Cluster 2 revealed a high similarity between
252 these two clusters (supplementary Fig 5F), confirming a transitional trajectory state of OL3 from
253 OPC to OL (supplementary Fig. 5B).

254

255 **Presence of Tau pathology-associated intermediate oligodendrocyte state in human AD brain.**

256 To establish the relevance of the mouse model tau pathology-inducible intermediate
257 oligodendrocyte (iOli)-like state in relation to human AD, we conducted a re-analysis of
258 oligodendrocyte clusters within our previously published single-nucleus RNA sequencing
259 (snRNAseq) dataset encompassing both AD and non-AD control samples (n=8), with matched age,
260 tau burden and clinical dementia ratings⁴³. Following data integration, five distinct transcriptional
261 clusters of human oligodendrocytes (hOL) were identified (Fig. 7A, supplementary table 7).
262 Notably, hOL3 and hOL4 exhibited heightened cell ratio in AD brains (Fig. 7B).

263 A dot plot across the five hOL clusters revealed elevated expression of iOli marker genes
264 within hOL3 (Fig. 7C, D and supplementary table 7). The remarkable overlap of marker genes
265 between hOL3 and mouse OL3 was highly overlapped as indicated by Gene Set Enrichment
266 Analysis (GSEA) (Fig. 7E and supplementary table 7). Correlation analysis demonstrated a
267 significant similarity between OL3 in the tauopathy mouse brain and hOL3 (Fig. 7F and
268 supplementary table 7), indicating that the intermediate oligodendrocyte transcriptomic state
269 induced by tau in the mouse brain is conserved in the context of the human AD brain.

270 We next probed the spatial relationship of tau pathology in human AD brains, leveraging a
271 published 10x Visium spatially resolved transcriptomics (SRT) dataset⁴⁴. We focused spatial
272 transcriptomic analysis on the middle temporal gyrus regions of three AD cases stained with AT8
273 for pathological tau⁴⁴. By comparing AT8-positive spots with neighboring spots based on their
274 proximity to AT8-positive areas within AD cases (Fig. 7G), we observed a significant association
275 between the iOli gene module and AT8-positive tau pathology (Fig. 7G, H and supplementary
276 table 7).

277 Lastly, we investigated the levels of iOli marker genes within OL cells in human brain sections.
278 Considering its nuclei location, we performed double staining of MEF2C, one of the iOli markers,
279 and of OLIG2. Quantitative analysis of MEF2C and OLIG2 staining revealed a significant increase
280 in MEF2C-expressing OLIG2-positive cells within the grey matter of AD brains compared to non-
281 AD brains (Fig. 7I, J and supplementary table 7). Collectively, these findings reinforce the notion
282 that the iOli-like state identified in mouse tauopathy brain is indeed conserved within the human
283 AD brain.

284

285 **Discussion:**

286 These findings collectively emphasize the pivotal role of microglial DAP12 signaling in
287 modulating the complex interplay between tau pathology, oligodendrocyte integrity, and
288 neuroinflammation within the context of tauopathy. The absence of DAP12 signaling in microglia
289 heightens resilience to brain inflammation, demyelination, and synapse loss despite increasing tau
290 burden. Our study uncovers a novel role of DAP12 in mediating tau pathology-induced toxicity
291 towards oligodendrocytes, precipitating an abnormal intermediate or immature state in the OL
292 transcriptome, which is further associated with myelin loss (Fig. 8).

293 The progression of AD is often accompanied by white matter abnormalities, characterized by
294 a partial loss of myelin, axons, and oligodendrocytes⁴⁵⁻⁴⁸. Oligodendrocytes, being the primary cell
295 type within white matter, play an indispensable role in forming the myelin sheath. Aberrations in
296 oligodendrocytes have been previously reported in both AD animal models and the human brain⁴⁹⁻
297 ⁵⁴. Recent advancements in human brain imaging techniques have revealed compromised myelin
298 integrity in AD brains⁵⁵⁻⁵⁸ yet the underlying mechanisms remaining elusive. Recent single-cell

299 transcriptomic studies have unveiled the high heterogeneity within oligodendrocyte populations in
300 normal brain or pathological brain, such as AD or multiple sclerosis (MS)^{38,39,59-62}. To date, several
301 disease-associated oligodendrocyte subtypes with unique molecular signatures have been
302 identified in response to amyloid or tau pathology in brains of human AD and AD animal models
303 ^{38,39,61,63-68}. However, the driving factors for the formation of these states or their functional
304 implications remain to be identified.

305 Our study uncovered a novel oligodendrocyte subpopulation responsive to brain tau pathology
306 in brains of tauopathy mouse and human AD. Strikingly, this subpopulation possesses a distinct
307 gene signature that sets it apart from previously reported disease-associated oligodendrocyte
308 clusters^{38,39,61,63-68}. It closely resembles the intermediate oligodendrocyte (iOli) previously
309 identified in the visual cortex of the human brain ⁴⁰. Importantly, our findings strongly suggest a
310 functional linkage between this tau pathology-induced intermediate transcriptomic state and the
311 loss of brain myelin.

312 In our current study, homozygous tau transgenic mice develop hippocampal tau pathology at
313 a younger age compared to other models^{16,28,38}. Memory and spine density problems start at 2.5
314 months when MC1+ tau and pTau tau are present, but there's no neuronal loss, suggesting an early
315 disease stage with synaptic connectivity issues causing memory deficits²⁷. The tau pathology-
316 inducible iOli-like oligodendrocytes identified in our study could represent an initial response of
317 oligodendrocytes to tau toxicity, and it's unclear if this state is temporary. Moreover, our
318 snRNAseq data shows minimal DAP12 mRNA in oligodendrocytes, indicating that the effects of
319 DAP12 deletion on oligodendrocytes are probably non-cell-autonomous, contrasting prior reports
320 ²⁹. Future studies are needed to explore its formation and fate in later disease stages, as well as the
321 functional implications and molecular mechanisms of these emerging cells.

322 Human DAP12 loss-of-function variants cause Nasu-Hakola disease (NHD), which features
323 cerebral atrophy, myelin loss, and gliosis^{30-32,69}. However, mice lacking DAP12 signaling exhibit
324 milder phenotypes, not fully resembling human NHD⁷⁰. This divergence suggests that DAP12-
325 deficient mice may not be ideal for comprehensive NHD brain phenotype studies, emphasizing the
326 need for specific insults to reveal DAP12 deficiency effects. Crossbreeding with a tauopathy model
327 shows that DAP12 signaling is crucial for microglial responses to tauopathy, driving homeostatic
328 microglia and oligodendrocytes into disease-associated states. This also suggests distinct
329 mechanisms may underlie the pathogenesis of AD and NHD.

330 DAP12, containing an ITAM motif, can have variable effects, either positively or negatively
331 regulating responses based on the specific receptor, ligand, or cell type involved⁷¹. For instance,
332 in mice, DAP12 deletion enhances bacterial infection control^{72,73} and prevents axotomy-induced
333 motor neuron death with reduced pro-inflammatory responses⁷⁴. DAP12-deficient mice also
334 exhibit heightened immune cell responsiveness, leading to increased cytokine production against

335 infections by dendritic cells, macrophages, and NK cells⁷⁵. In the central nervous system, Dap12
336 deficiency in mice provides protection in an autoimmune encephalomyelitis (EAE) mouse model
337 immunized with myelin oligodendrocyte glycoprotein (MOG) peptide, linked to reduced IFN γ
338 production by myelin-reactive CD4+ T cells in vivo¹⁷. These findings suggest that DAP12 engages
339 with various receptors, influencing diverse signaling networks that can either dampen or enhance
340 immune responses to different challenges.

341 We speculate that TREM2 may act as a receptor partnering with DAP12 in regulating tau
342 pathology and toxicity, leading to the positive effects of DAP12 deletion observed in our tau
343 pathology mouse model. Studies indicate that complete loss or haploinsufficiency of microglial
344 TREM2 worsens tau pathology, promoting tau seeding and spreading in mouse models^{2,76-80}.
345 Conversely, TREM2 deletion has a protective effect against tauopathy, reducing microglial
346 activation and neurodegeneration^{76,79}. The impact of TREM2 risk alleles like R47H on DAP12's
347 role in mediating tau toxicity in oligodendrocytes and myelination remains an open question, as
348 does the exploration of other receptors interacting with DAP12 in these processes.

349 Earlier studies have highlighted intricate communications between oligodendrocytes and
350 microglia^{81,82}. Genetic elimination of microglia triggers demyelination, underscoring the crucial
351 role of microglia in myelin integrity in healthy brains⁸³. In diseased brains, activated microglia can
352 exert detrimental effects on myelin-producing oligodendrocytes by releasing pro-inflammatory
353 mediators, including chemokines and cytokines⁸². This correlation between microglial activation
354 and oligodendrocyte impairment has been observed in the context of multiple sclerosis⁸⁴. The
355 release of tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β) by microglia is
356 associated with myelin damage⁸⁵, while IFN γ is implicated in triggering oligodendrocyte apoptosis
357 and hindering central nervous system remyelination⁸⁶. Our results showed that DAP12 deletion
358 robustly curtails the activation of interferon signaling induced by tauopathy in AD. Additionally,
359 this deletion leads to a reduction in IP-10, as well as several cytokines and chemokines inducible
360 by IFN γ , which are known to instigate oligodendrocyte apoptosis⁸⁷. Collectively, these
361 observations strongly suggest that IFN γ could be one of the downstream effectors affecting
362 oligodendrocytes due to increased DAP12 signaling in microglia, a notion warranting further
363 investigation.

364 Tau pathology is a main contributing factor in AD whose precise mechanisms remain unclear.
365 Our study unveils a novel mechanism whereby toxic tau released by neurons activates DAP12 in
366 microglia, which in turn triggers oligodendrocyte toxicity (Fig. 8). This sequence of events may
367 contribute to white matter abnormalities and cognitive decline in AD. Our research identifies a
368 novel tau-induced transcriptomic state in oligodendrocytes, an understudied cell-type in AD
369 pathogenesis. This state is closely connected to microglial DAP12 signaling and is linked to myelin
370 loss. Overall, our findings deepen our understanding of the complex interactions between neurons,

371 microglia, and oligodendrocytes in tauopathy and suggest novel targets for therapeutic treatments
372 to mitigate AD's impact.

373

374

375 **Author information:**

376 Authors and Affiliations

377 **Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and**
378 **Mind Research Institute, Weill Cornell Medicine, New York, NY, USA**

379 Hao Chen, Li Fan, Man Ying Wong, Chloe Lopez, Bangyan Liu, Gloria Huang, Gillian Carling,
380 Fangmin Yu, Nessa Foxe, Li Gan, Wenjie Luo

381 **Department of Biomedical Informatics, College of Medicine, Ohio State University,**
382 **Columbus, OH 43210 USA**

383 Qi Guo, Qin Ma

384 **Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH**
385 **43210 USA**

386 Hongjun Fu

387 **Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative**
388 **Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA**

389 Won-min Sung, Bin Zhang

390 **Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta,**
391 **Edmonton, AB Canada**

392 Tark Patel, Sue-Ann Mok

393 **Millburn High School, Millburn, New Jersey, USA**

394 Winston Wang

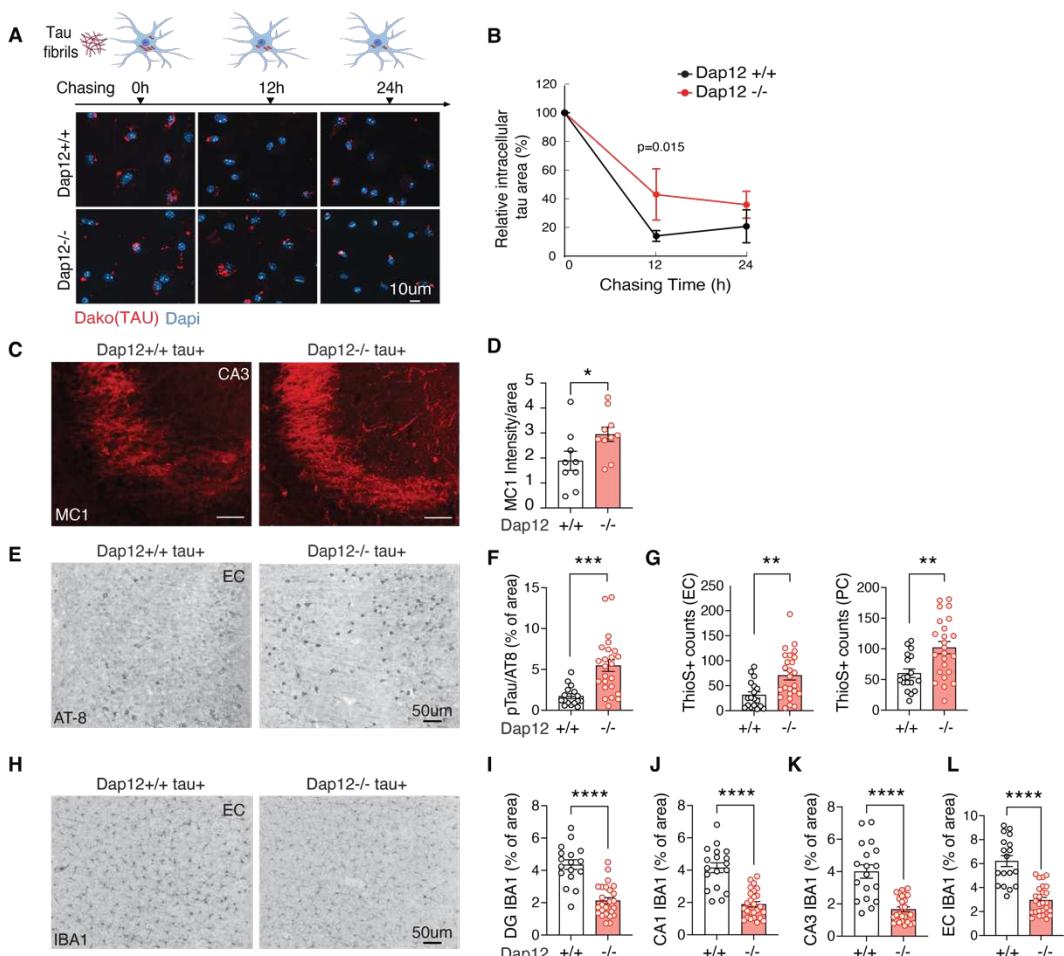
395 **The State University of New York at Stony Brook, Long Island, New York, USA**

396 Aviram Nessim

397

398

399 **Contributions:**


400 W.L, X.H. and L.G. conceived the project. W.L., L.G., and H.C. designed experiments. H.C., L.F.,
401 M.Y.W., Q.G., W.W., F.Y., N.F., A.N. H.F. performed experiments and/or analyses. H.C., C.L.,
402 B.L., G.H., Q.G., W.S., B.Z., Q.M., H.F. developed analytic protocols and tools. S.A., T.P., S.M.
403 provided or prepared reagents. H.C., L.G. and W.L. wrote the manuscript. All authors read and
404 approved the paper.

405

406 **Acknowledgements:**

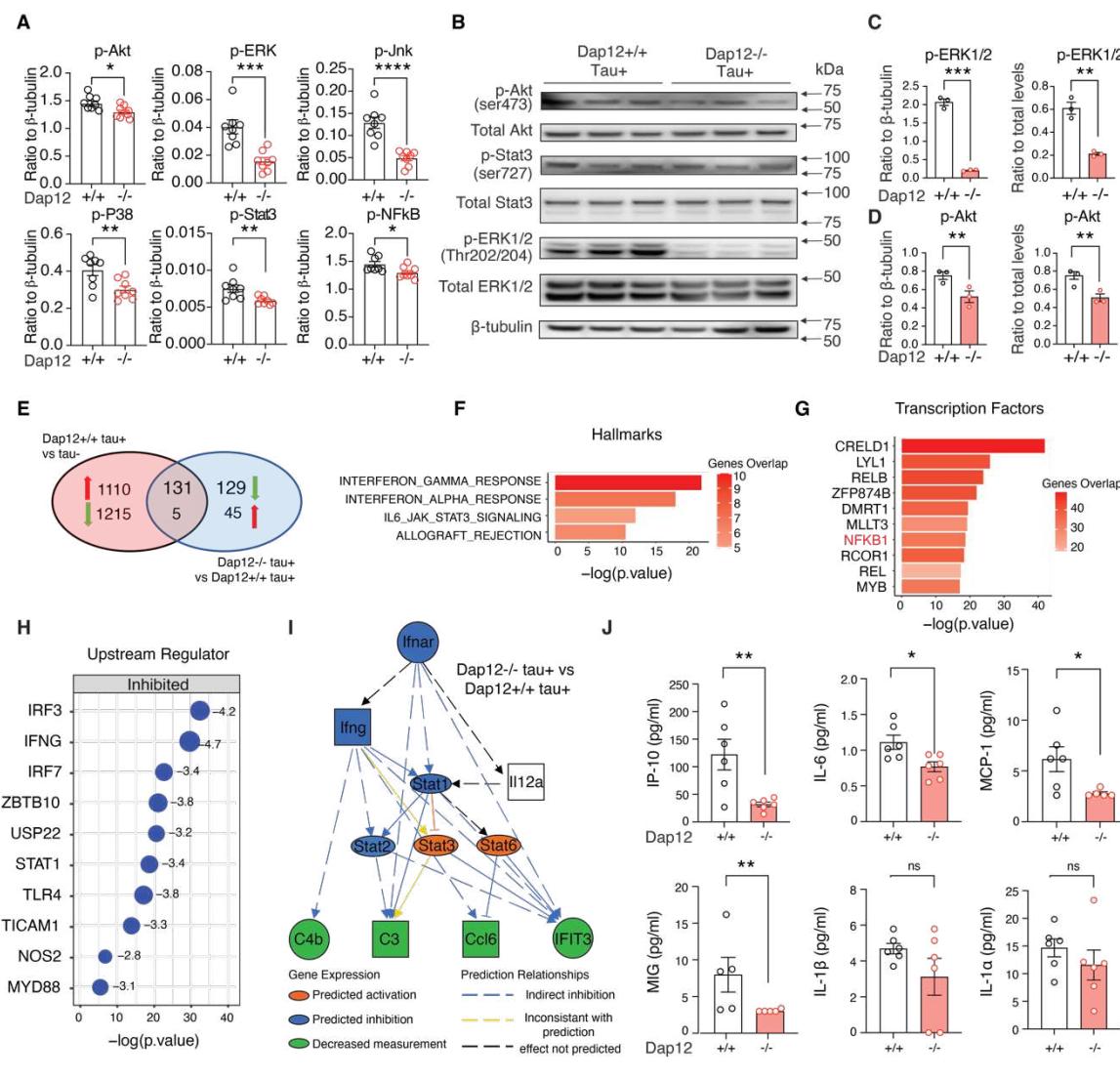
407 This work was supported by the NIH R01AG064239 to W.L. and CART (Coins For Alzheimer's
408 Disease Trust Fund) to W.L., the NIH U54NS100717, R01AG072758, R01AG074541 (to L.G.),
409 Tau Consortium (to L.G.), JPB Foundation (to L.G.), R01 AG075092 (H.F.). We thank Dr. Xiaoyu
410 Hu for scientific discussion and providing Dap12 knockout mice (kindly offered by Dr. Lewis L.
411 Lanier) and Dr. Flint Beal and Dr. Michel Goedert for providing homozygous P301S tau transgenic
412 mice. We thank Dr. Adriene Y. Tan and Dr. Jenny Xiang at the Weill Cornell medicine genomics
413 core for performing RNA sequencing. We also thank Shuo Chen at The Ohio State University for
414 the pilot analysis of Visium datasets and the discussion. We thank Claire Hu for editing the
415 manuscript.

Figure 1

Figure 1: Dap12 deficiency elevates tau burden but reduces gliosis and partially rescues synapse loss in tauopathy mouse brains.

A) The processing of tau fibril internalized by microglia. Tau fibrils were incubated with microglia for 2 h followed with 12 or 24 h chase in tau-free medium.

B) Quantification of A. Unpaired student t-test, *p<0.05. n = 3 independent experiments.


C-D) Representative images and quantification of immunohistochemical staining of MC1 in the hippocampal CA3 region of homozygous tauopathy mice. Unpaired student t-test, *p<0.05. n = 9 for *Dap12*+/+ *tau*+, n = 10 for *Dap12*-/- *tau*+ mice.

E-F) Representative images and quantification of immunohistochemical staining of AT-8 in the entorhinal cortex (EC) of homozygous tauopathy mice. Unpaired student t-test, ***p<0.001. n = 16 for *Dap12*+/+ *tau*+, n = 24 for *Dap12*-/- *tau*+ mice.

G) Quantification of Thios+ neurons in the EC or piriform cortex (PC) of homozygous tauopathy mice. Scale bar: 50 μ m. Unpaired student's t-test; **p<0.01. n = 18 *Dap12*+/+ *Tau*+, n = 24 (EC) or 25 (PC) *Dap12*-/- *Tau*+ mice.

H-L) Representative images of IBA1 staining and quantification of IBA1⁺ area in the hippocampal areas (CA1, CA3, dentate gyrus/DG), and entorhinal cortex (EC). Scale bar; 50 μ m. Unpaired student's t-test: ****p<0.0001. n = 18 *Dap12*+/+ *tau*+, n = 26 *Dap12*-/- *tau*+

Figure 2

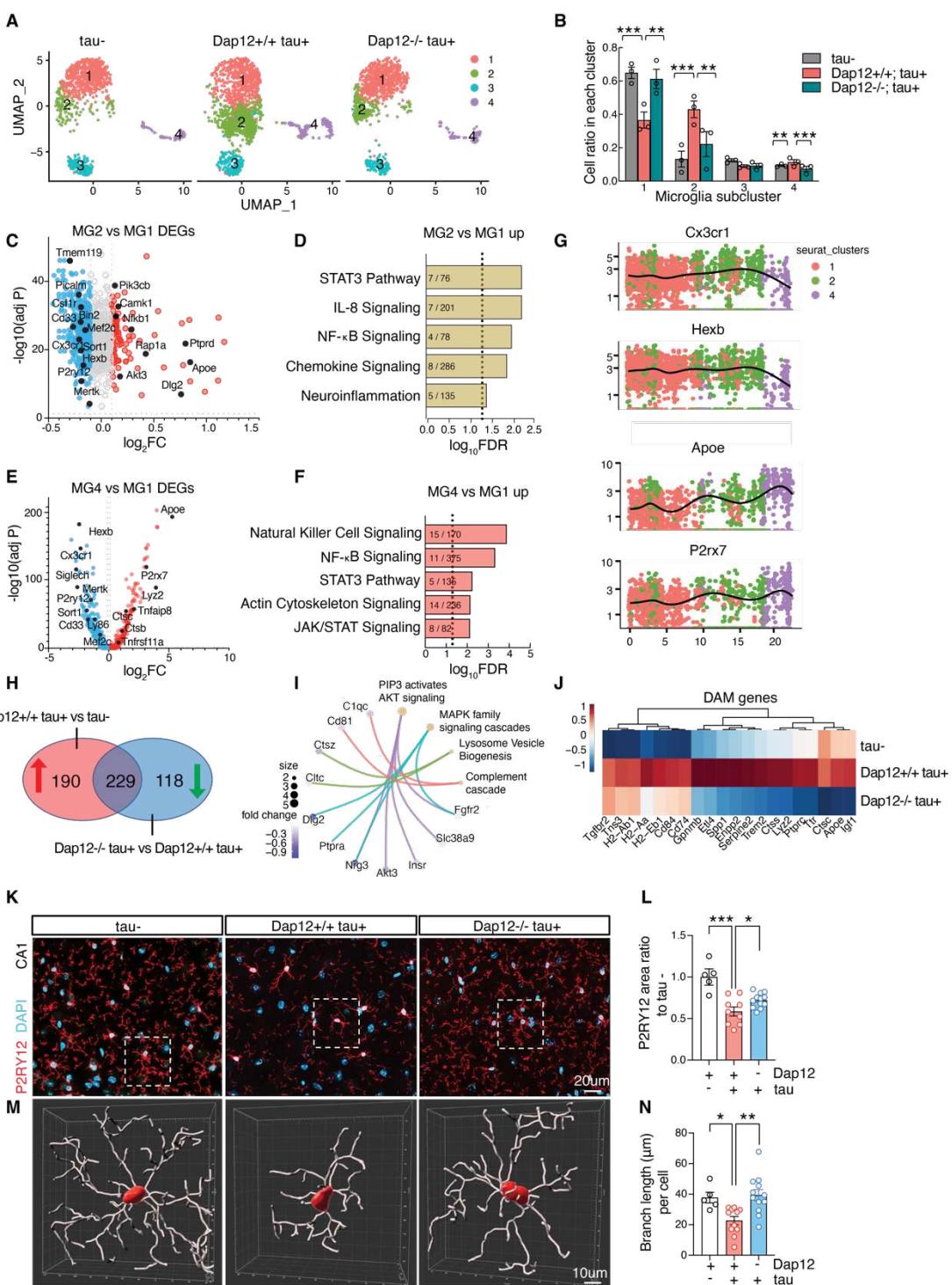
Figure 2. Loss of Dap12 suppresses brain-wide inflammation in mice with tauopathy revealed by transcriptomics and immune signaling analysis.

A) Phosphorylation of AKT, ERK, NF-κB, JNK, P38, and STAT3 measured by cell signaling multiplex immunoassay. n = 8/genotype.

B) Western blot of the phosphorylated and total AKT, STAT3, and ERK. Unpaired student's t-test: ***p<0.001, **p<0.01, *p<0.05. n = 3/genotype.

C-D) Quantification of (B).

E) Venn diagram showing the overlapped DEGs from comparisons of frontal cortex transcriptomes between *Dap12*+/+ *tau*+ vs *tau*- and *Dap12*-/- *tau*+ vs *Dap12*+/+ *tau*+ mice. n = 4/genotype. Log₂FC > 0.1 or < -0.1, adjust p-value < 0.05.


F-G) Hallmark pathways (F) and hallmark pathways Transcription factors (TFs) (G) predicted by GSEA for 136 DEGs (131+5) reversed by Dap12 deletion in (E).

H) Upstream regulators predicted by IPA for 260 DEGs (131+129) downregulated by Dap12 deletion in tauopathy mice as in (E).

I) Diagram of the interferon activation network predicted by IPA upstream regulator analysis in (H).

J) The levels of IP-10, IL-6, MCP-1, MIG, IL1A, and IL1B measured by multiplex cytokine/chemokine assay. n = 6/genotype (n=5 for MCP-1 Dap12 -/-, MIG Dap12 +/+ and -/-) Unpaired student's t-test: **p<0.01, *p<0.05, ns: not significant.

Figure 3

Figure 3. Dap12 deletion prevents loss of homeostatic microglia and blocks disease-associated microglia.

A-B) UMAP (A) and cell ratios (B) of microglial subclusters (MG1-4) crossing three genotypes. One-Way ANOVA followed by Tukey test, ***p < 0.001, **p < 0.01, *p < 0.05. n = 3 per genotype.

C) Volcano plot of DEGs (adjust p-value < 0.05, Log₂FC > 0.1 or < -0.1) comparing MG2 to MG1.

D) Selected IPA pathways identified for upregulated DEGs in MG2 shown in (C).

E) Volcano plot of DEGs (adjust p-value < 0.05, Log₂FC > 0.1 or < -0.1) comparing MG4 to MG1.

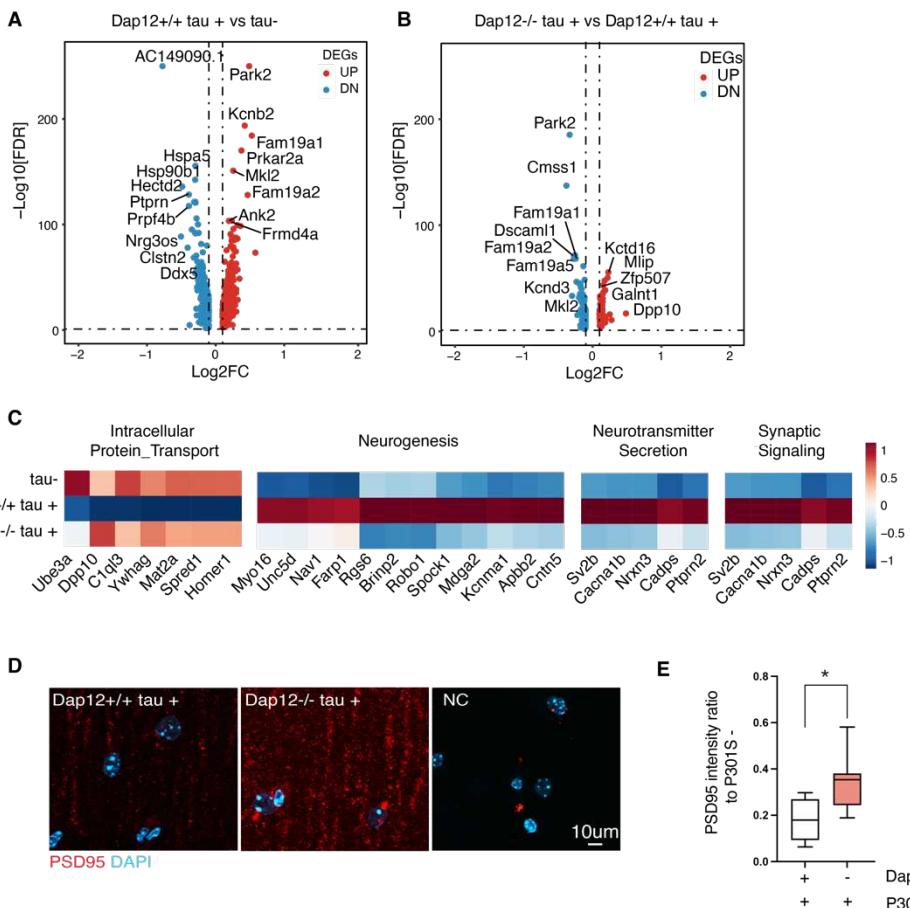
F) Selected IPA pathways identified for upregulated DEGs in MG4 shown in (E).

G) Expression of Cx3cr1, Hexb, Apoe, or P2ry7 in pseudotime in related to clusters in (A).

H) Venn diagram of upregulated DEGs of *Dap12*^{+/+} *tau*⁺ vs *tau*⁻, and downregulated DEGs of *Dap12*^{-/-} *tau*⁺ vs *Dap12*^{+/+} *tau*⁺.

I) Selected pathways with associated genes within 229 DEGs identified in (H).

J) Heatmap of DAM genes within 229 DEGs identified in (H).


K) Representative images of P2RY12 staining. Scale bar: 20 μ m.

L) Quantification of P2RY12⁺ area in K across three genotypes. ***p < 0.001, *p < 0.05. n = 5 *tau*⁻, n = 11 *Dap12*^{+/+} *tau*⁺, n = 12 *Dap12*^{-/-} *tau*⁺ mice.

M) 3D reconstructions of P2RY12 positive microglia using Imaris. Scale bar: 10 μ m.

N) Microglial branch length crossing three genotypes. One-Way ANOVA followed by Tukey test in L and N. **p < 0.01, *p < 0.05. n = 5 *tau*⁻, n = 11 *Dap12*^{+/+} *tau*⁺, n = 12 *Dap12*^{-/-} *tau*⁺ mice.

Figure 4

Figure 4. Dap12 deletion affects tau-induced excitatory neurons alterations and protects excitatory synapses

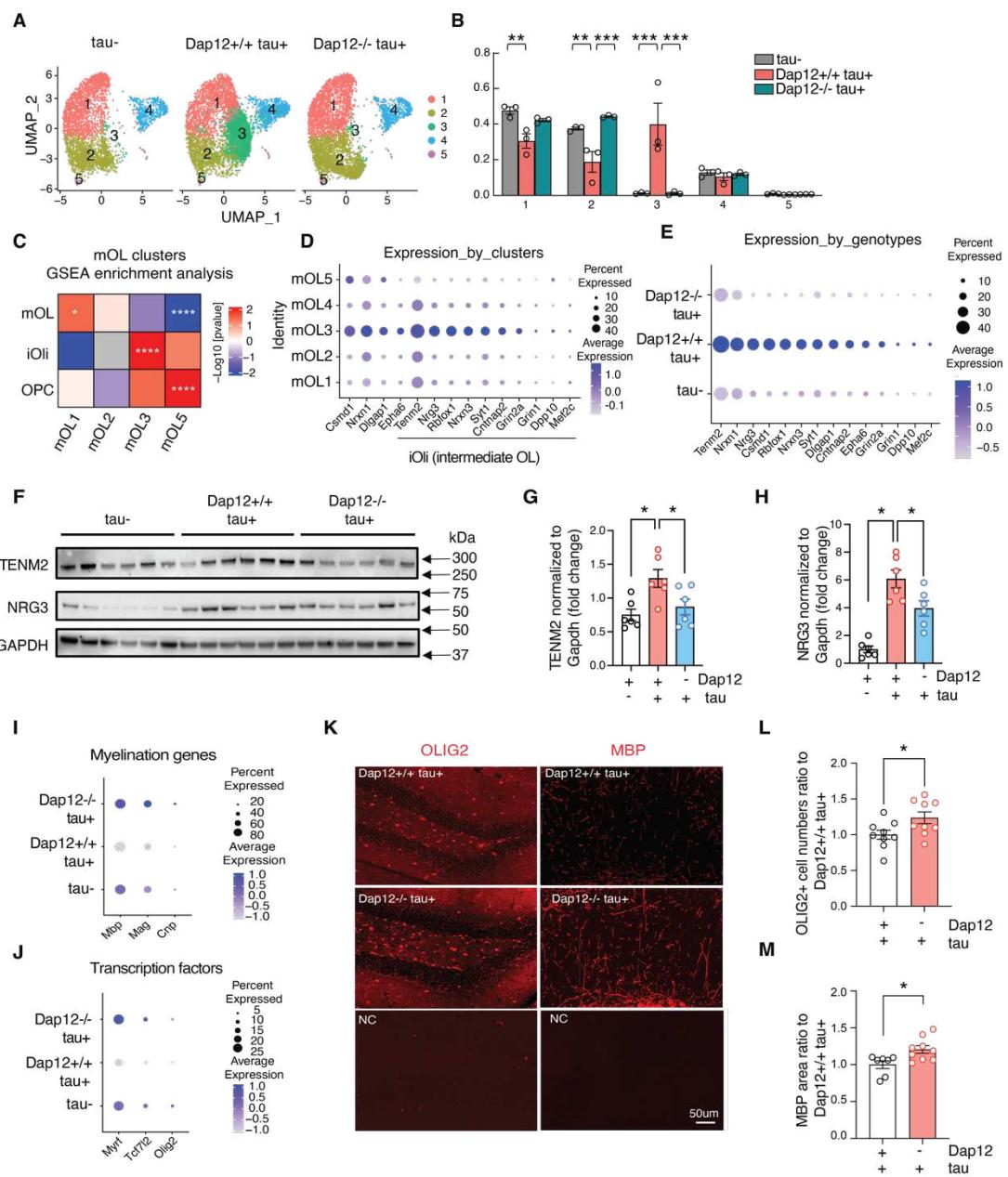
A) Volcano plot of pseudo bulk DEGs (adjust p-value < 0.05, LogFC > 0.1 or < -0.1) in comparison between *Dap12*+/+ *Tau*+ and *Tau*- mice.

B) Volcano plot of pseudo bulk DEGs (adjust p-value < 0.05, LogFC > 0.1 or < -0.1) in comparison between *Dap12*-/- *Tau*+ and *Dap12*+/+ *Tau*+ mice.

C) Heatmap showing pathways induced by tau and reversed by Dap12 deletion.

D-E) Representative images of PSD95 staining (D) and quantification (E) in the CA1 stratum radiatum region. Scale bar: 10 μm. Mix-model Brown-Forsythe and Welch ANOVA tests. **p<0.01, *p<0.05. n = 7 *Dap12*+/+ *tau*+, n = 8 *Dap12*-/- *tau*+

Figure 5. Dap12 regulates tau-induced changes of co-expression module in oligodendrocytes.


A) UMAP plots of all oligodendrocytes single nuclei and subclusters.

B) Feature plots showing harmonized module eigengenes (hMEs) of each co-expression module.

C) Signature gene networks of each module, each node represents a gene, and each edge represents the co-expression relationship between two genes in the network. The top 10 hub genes by (eigengene-based connectivity) kME are placed in the center of the plot, while the remaining 15 genes are placed in the outer circle.

D-E) Lollipop showing the fold-change for each module in comparison between *Dap12^{+/+} tau+* and *tau-* (D) or *Dap12^{-/-} tau+* and *Dap12^{+/+} tau+* (E). The size of each dot corresponds to the number of genes in that module. *p<0.05 and “X” stands for not significant. Number of genes in different modules: Turquoise (449), Brown (150), Yellow (74), Blue (151).

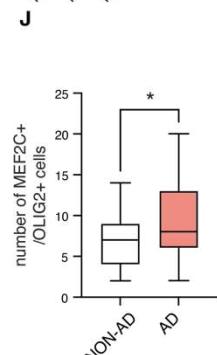
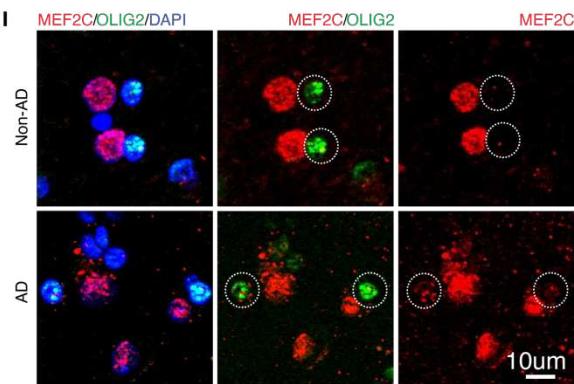
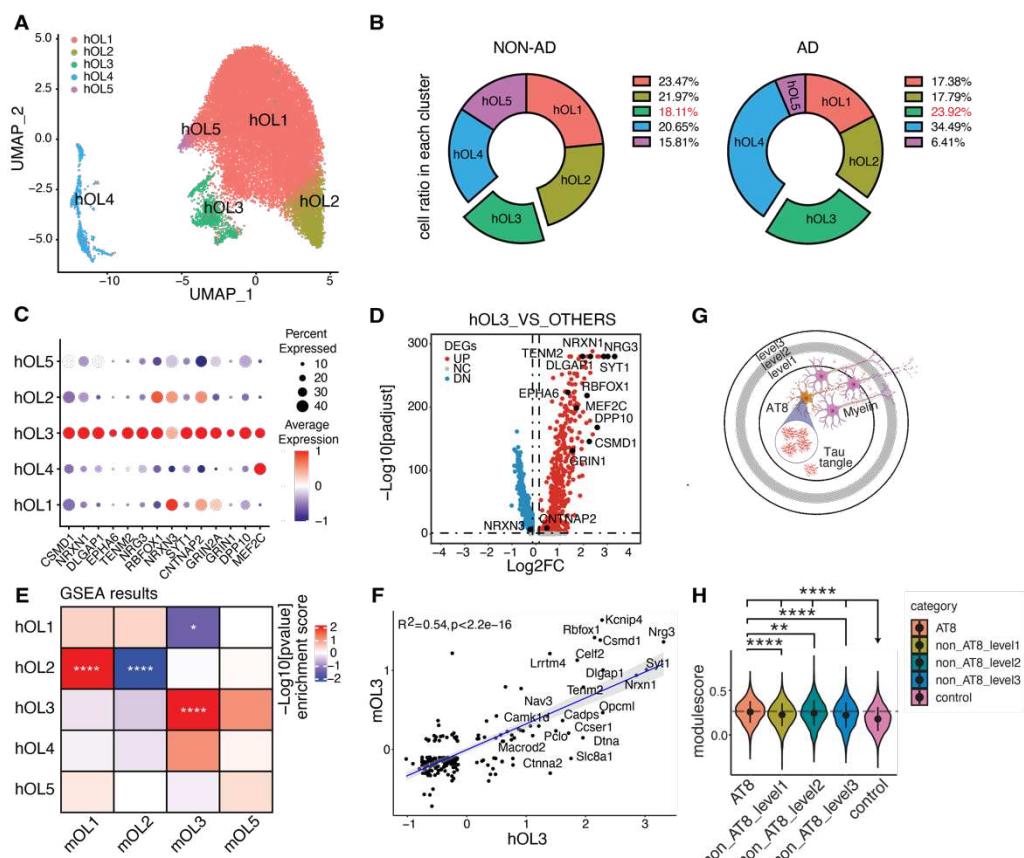
Figure 6

Figure 6. Dap12 mediates tau-induced transcriptomic changes in OPCs and oligodendrocyte

A-B) UMAP (A) and cell ratios (B) of oligodendrocyte subclusters (OL1-5) crossing three genotypes. One-Way ANOVA in B: ***p<0.001, **p<0.01, *p<0.05.

C) Comparisons of the mouse oligodendrocyte clusters with iOli (intermediate or immature oligodendrocytes), mOL (mature oligodendrocytes), and OPC (oligodendrocyte precursor cells) by GSEA. Colors denote positive enrichment (+1, red) or negative enrichment (-1, blue) multiplied by the $-\log_{10}P$.

D) Dot plot showing the expression of intermediate oligodendrocyte (iOli) marker genes across three genotypes.




E) Dot plot showing the expression of intermediate oligodendrocyte (iOli) marker genes across three genotypes.

F-H) Western blotting and quantification of Tenm2 or Nrg3. One-Way ANOVA, *p<0.05. n = 6/genotype.

I-J) Dot plots of genes for myelination and transcription factors across three genotypes.

K-M) Olig2 (L) and MBP (M) staining and quantification of positive cell numbers in dentate gyrus. One- Way ANOVA, ***p<0.0001, ***p<0.001, *p<0.05. n = 5-9/genotype.

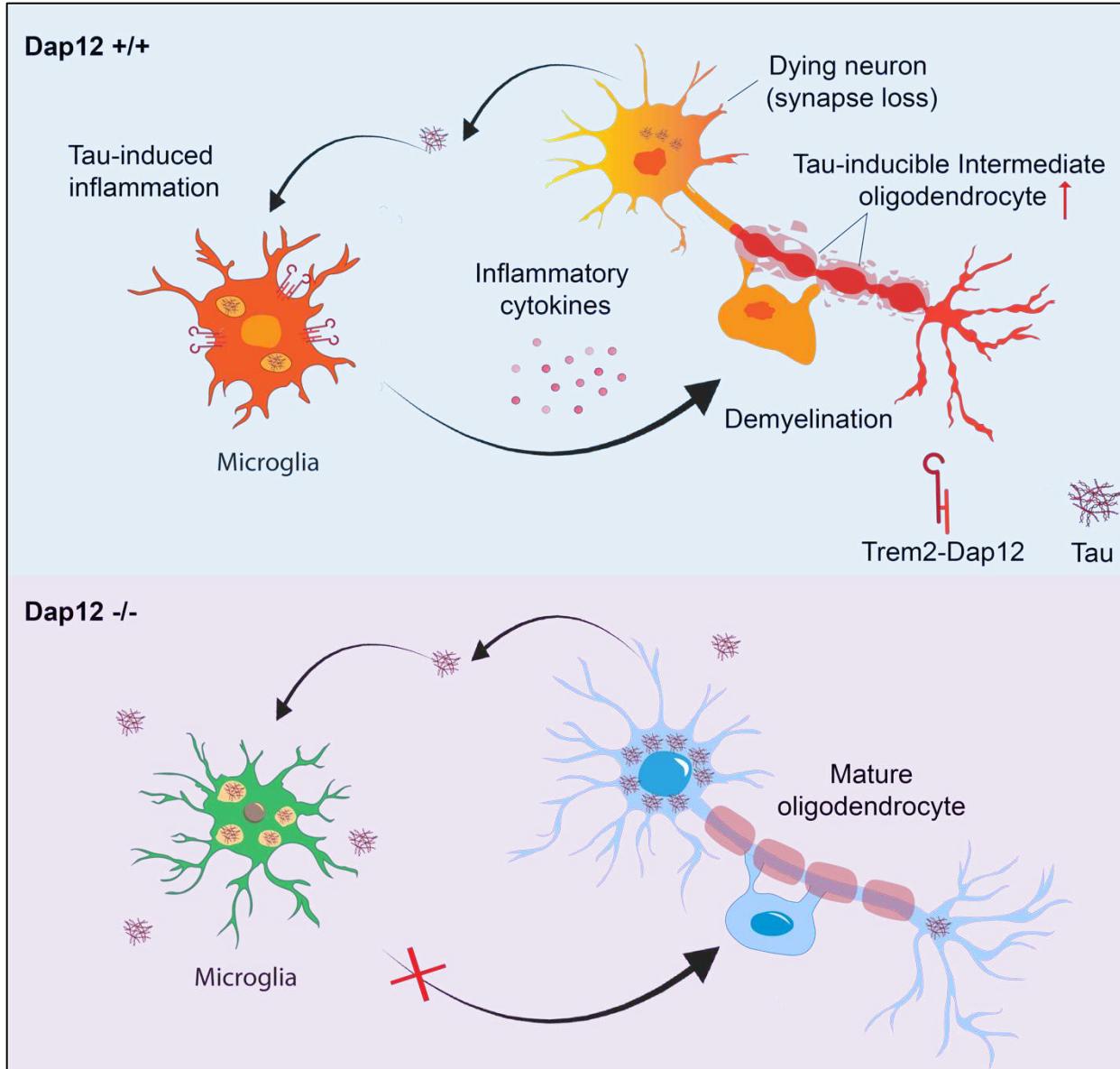
Figure 7

Figure 7. Tau-induced intermediate oligodendrocyte state in human patient.

A-B) UMAP and Cell ratios of human oligodendrocyte subclusters (hOL1-5) crossing three genotypes.

C) Dot plot showing the expression of iOli marker genes in human oligodendrocyte subclusters.

D) Volcano plots of iOli marker genes when comparing human oligodendrocyte cluster 3 (hOL3) versus other clusters.


E) Comparisons of the mouse oligodendrocyte clusters with human oligodendrocyte cluster by GSEA. Colors denote positive enrichment (+1, red) or negative enrichment (-1, blue) multiplied by the -log10P.

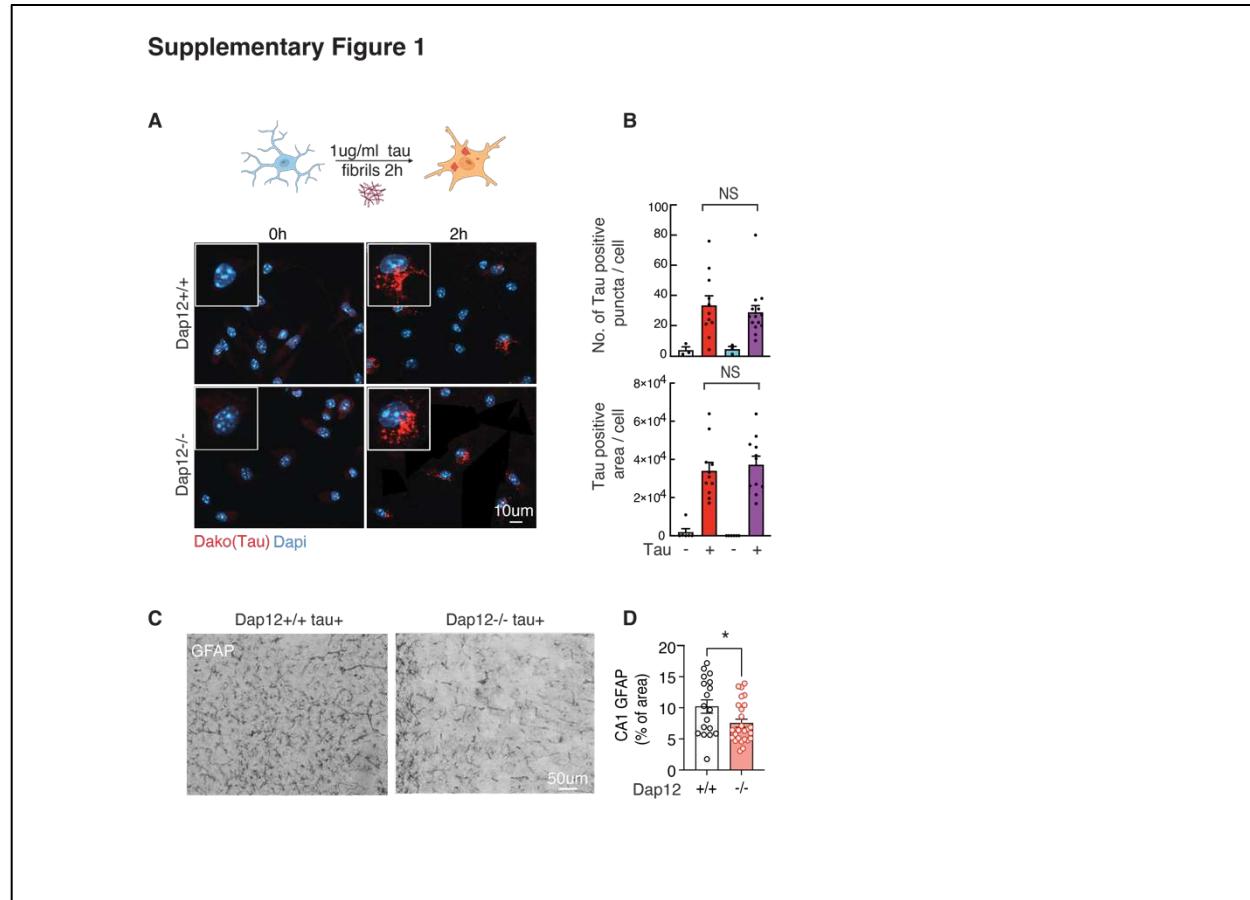
F) Correlation scatterplot of marker genes comparing mOL3 versus hOL3.

G) Diagram showing AT8+ spots and neighboring areas level1-3 based on the distance from AT8+ spots for human spatial transcriptome analysis in H.

H) Violin plot showing the distribution of module scores for the iOli gene set in B across five spot groups. One-way ANOVA was used to compare mean of module scores among five groups and Wilcoxon rank sum test was used to compare mean of module scores between each pair of the five groups. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

I-J) MEF2C,OLIG2 staining, and quantification of MEF2C+/OLIG2+ cells in grey matter region of human brain. *p<0.05.

Figure 8: Our research identifies a novel intermediate transcriptomic state in oligodendrocytes dependent on microglial DAP12 signaling and linked to myelin loss in tauopathy mouse brains. Our findings suggest a novel mechanism whereby toxic tau released by neurons activates DAP12 in microglia, which in turn triggers oligodendrocyte toxicity. This sequence of events may contribute to white matter abnormalities and cognitive decline in AD.

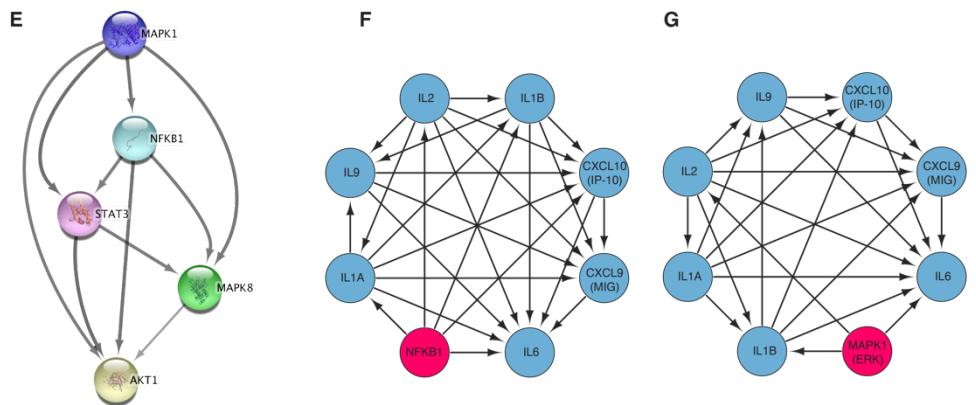
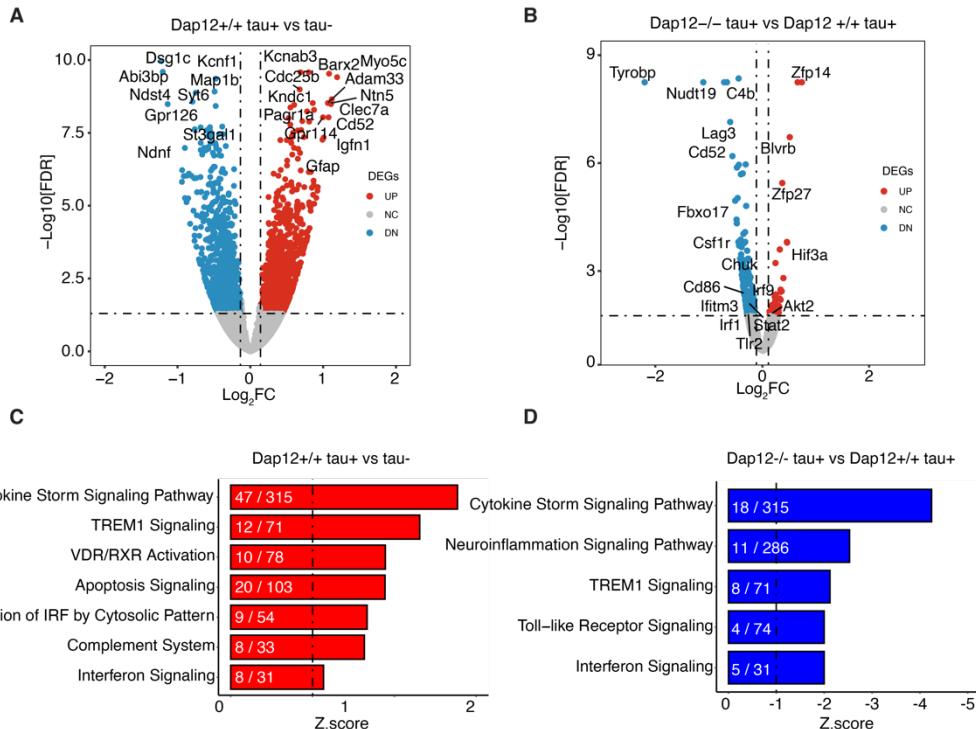

416 **Supplementary Information:**

417

418 **DAP12 deficiency alters microglia-oligodendrocytes communication and enhances**
419 **resilience against tau toxicity**

420

421 Hao Chen¹, Li Fan¹, Qi Guo², Man Ying Wong¹, Fangmin Yu¹, Nessa Foxe¹, Winston Wang³,
422 Aviram Nessim⁴, Gillian Carling^{1,5}, Bangyan Liu^{1,5}, Chloe Lopez-Lee^{1,5}, Yige Huang^{1,11}, Sadaf
423 Amin¹, Sue-Ann Mok⁶, Won-min Song⁷, Bin Zhang⁷, Flint Beal⁸, Qin Ma², Hongjun Fu⁹, Li
424 Gan^{1,3*}, Wenjie Luo^{1*}

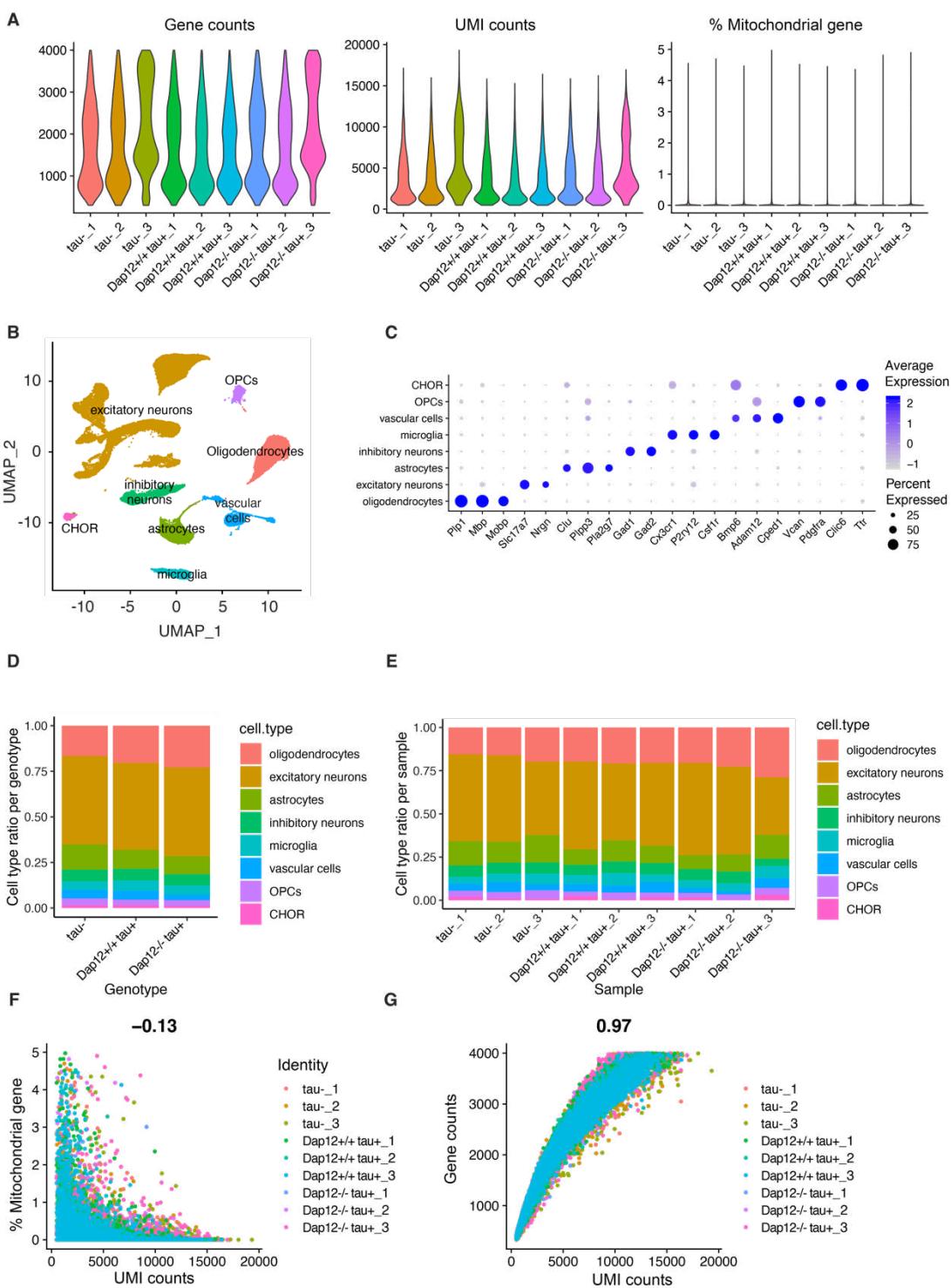
Supplementary Figure 1: Characterization of tauopathy mouse brain with Dap12 deficiency and the effect of Dap12 deletion on microglia tau phagocytosis, related to Figure 1

A-B) Representative images (A) and quantification (B) of Tau positive puncta numbers and area in primary cultured microglia. Scale bar: 10 μ m. Two-Way ANOVA with post hoc test, NS: Not significant. $n = 11-14$ from 3 independent experiments.

C-D) Representative immunohistochemical staining (C) and quantification (D) of GFAP+ area in the CA1 of *Dap12^{+/+} Tau+*, and *Dap12^{-/-} Tau+* mice. Scale bar: 50 μ m. Unpaired student's t-test: * $p < 0.05$. $n = 18$ *Dap12^{+/+} Tau+*, $n = 26$ *Dap12^{-/-} Tau+* mice.

Supplementary Figure 2

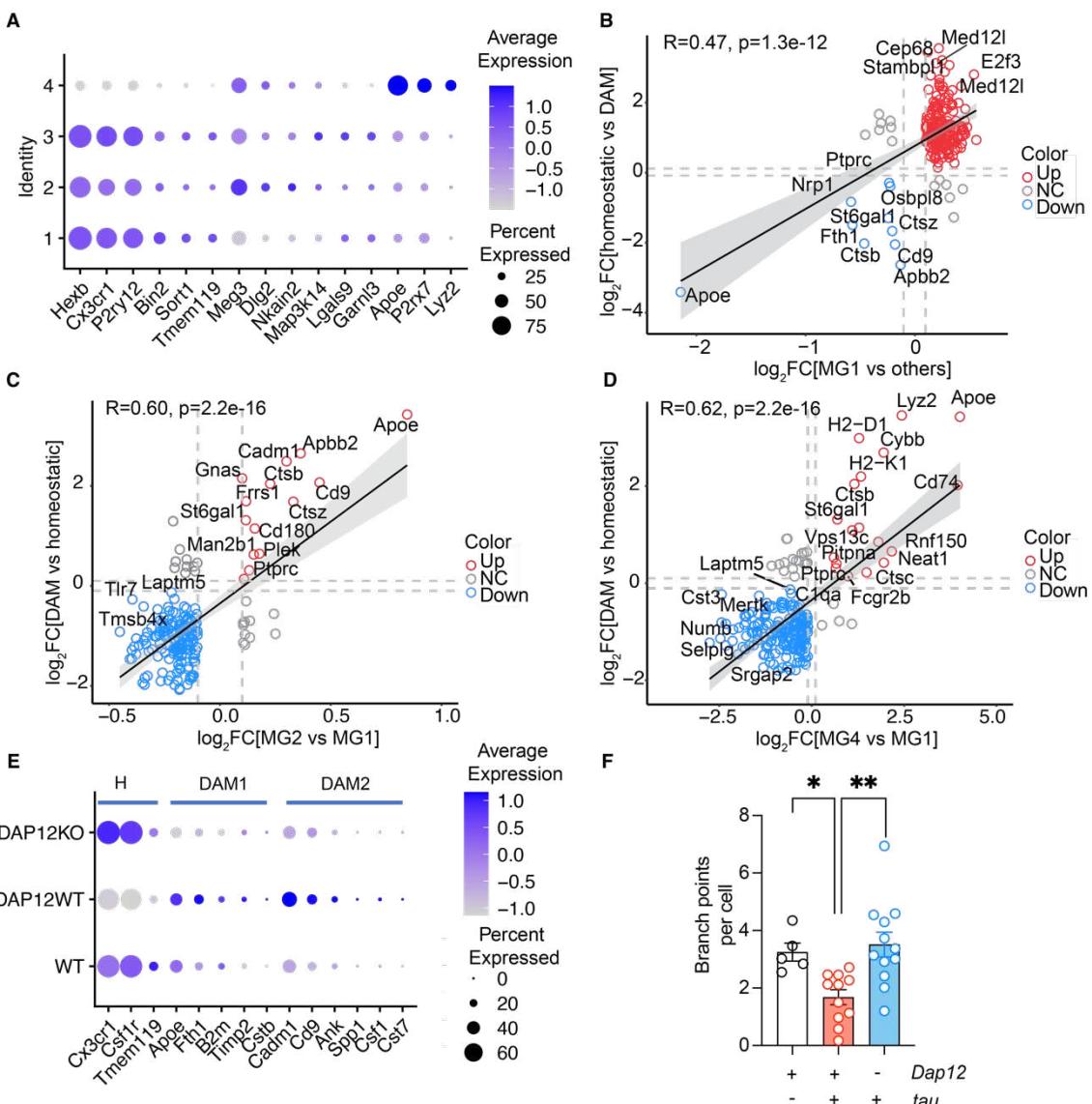
Supplementary Figure 2: Deletion of Dap12 suppressed inflammatory signaling in tauopathy mouse brain


A-B) Volcano plot of DEGs (adjust p-value < 0.05, Log₂FC > 0.1 or < -0.1) comparing *Dap12^{+/+} Tau+* versus *Tau-* mice (A) and *Dap12^{-/-} Tau+* mice versus *Dap12^{+/+} Tau+* mice.

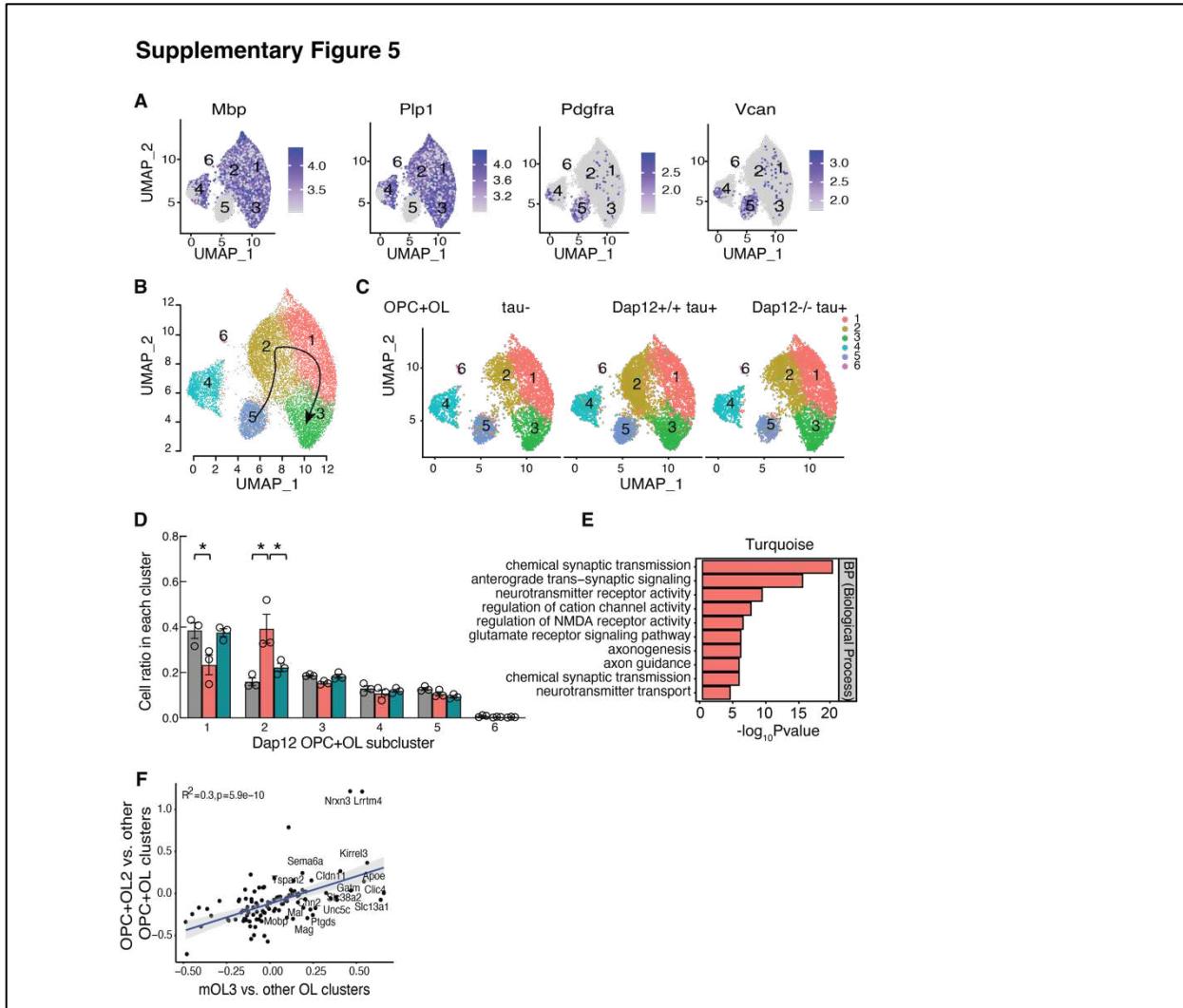
C-D) Selected top IPA canonical pathways identified from the DEGs of *Dap12^{+/+} Tau+* vs *Tau-* mice (C) or *Dap12^{-/-} Tau+* vs *Dap12^{+/+} Tau+* mice (D). IPA canonical pathways contain z score and -log10(p-value). No log2FC or adjust p-value.

E) String gene network analysis showing relationships between immune regulators identified in Figure 2K.

F-G) String gene network analysis showing cytokines regulated by NF-κB (F) or ERK (G).

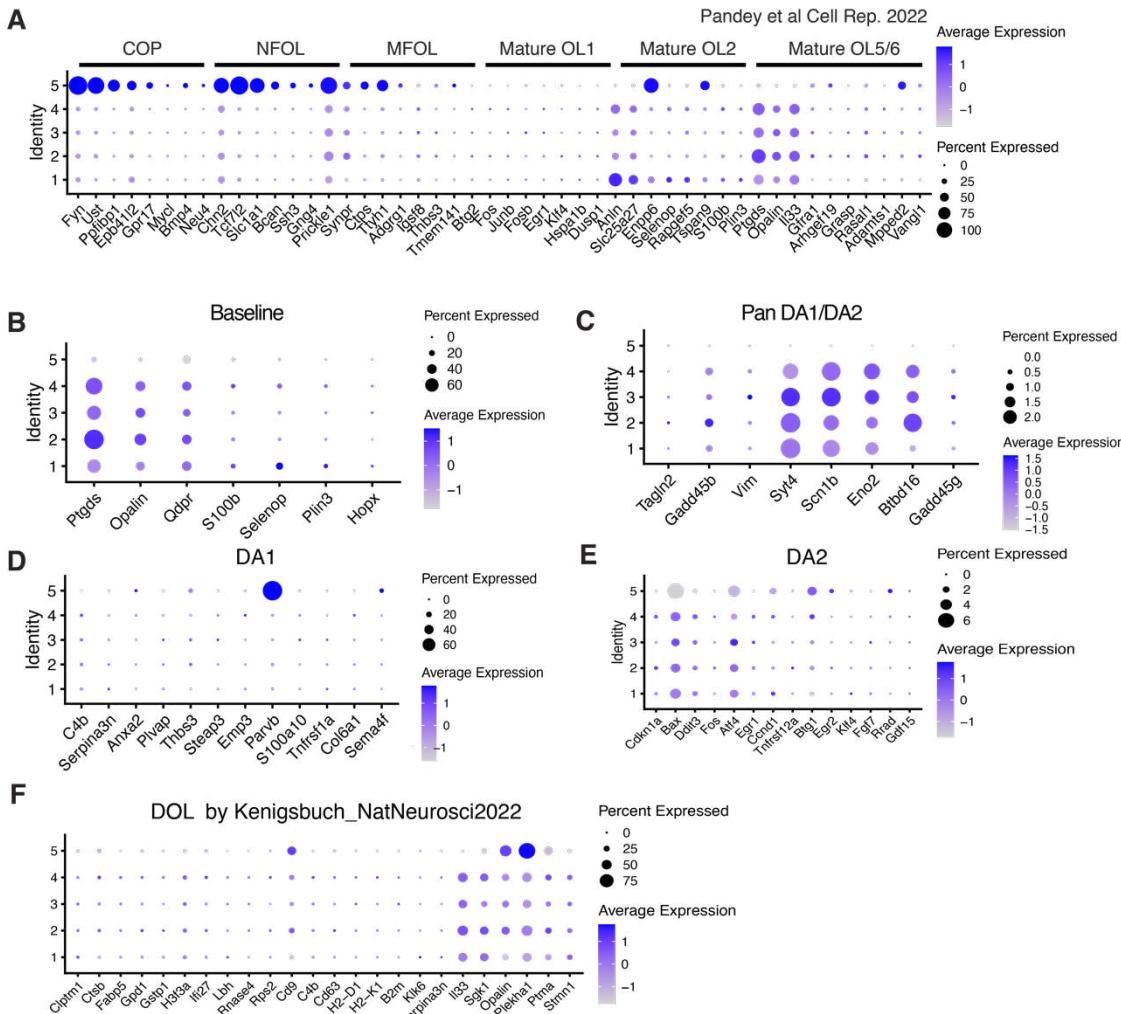

Supplementary Figure 3

Supplementary Figure 3: Quality control assessment of Single-Nuclei RNA-seq (related to Fig. 3-6)


- A) Quality control plots showing equivalent amounts of total number of genes, total number of molecules and percent mitochondrial RNA in nuclei used for downstream analyses.
- B) UMAP dimensional plot showing nuclei colored according to transcriptionally distinct cell clusters identified using Seurat package.
- C) Summary of genes used for cluster classification into different cell types.
- D) Proportion of each cell type detected across the different genotypes.
- E) Proportion of each cell type detected across the different samples.
- F-G) Correlation between UMI counts and percentage of mitochondrial genes per nuclei (F) and total genes detected (G) for all samples.

Supplementary Figure 4

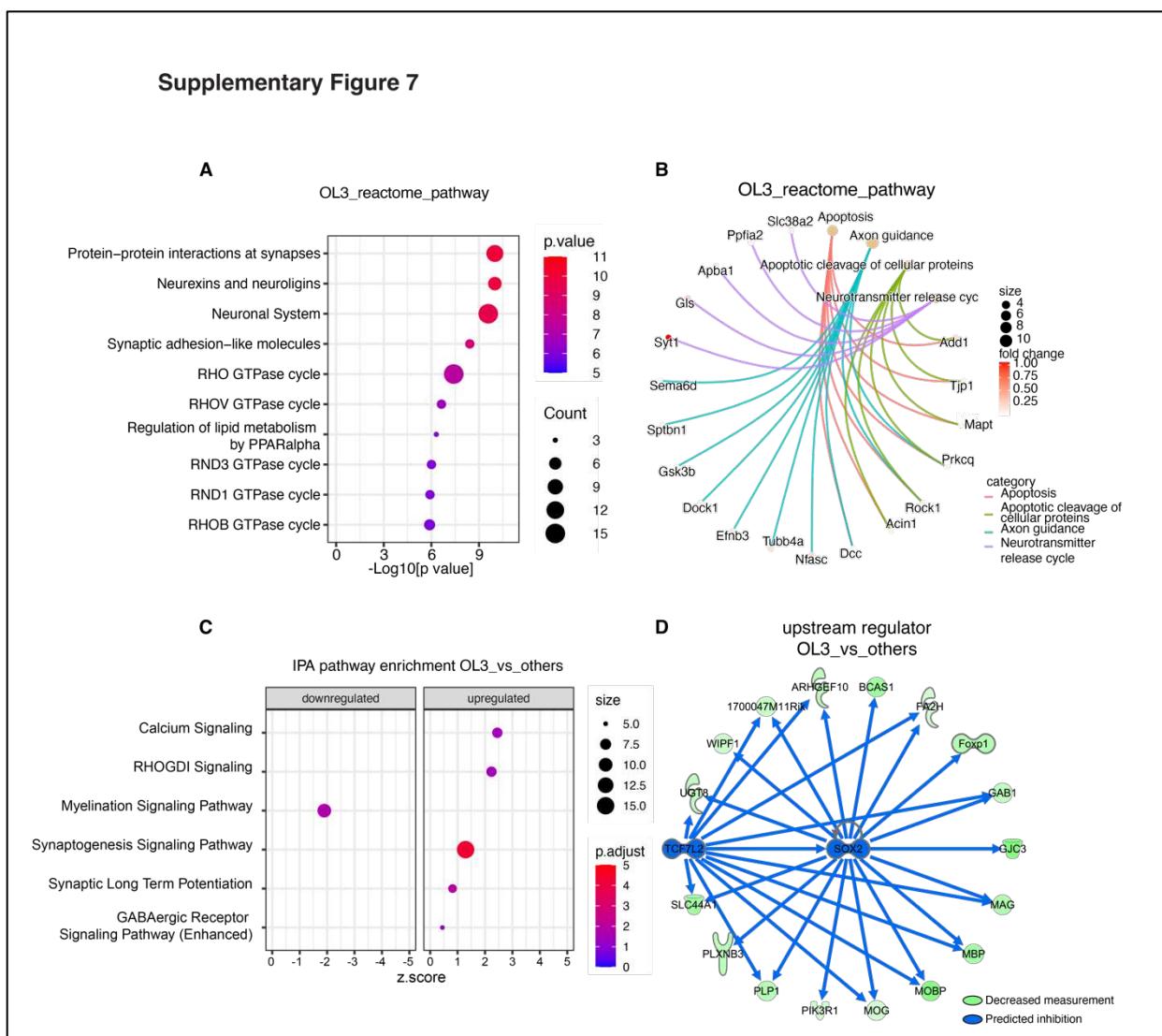
Supplementary Figure 4: Characterization of microglia clusters (Related to Figure 3).


- A) Dot plot of marker genes crossing different MG clusters.
- B) Correlation scatterplot of marker genes comparing MG1 cluster versus other clusters.
- C) Correlation scatterplot of marker genes comparing MG2 versus MG1 cluster.
- D) Correlation scatterplot of marker genes for MG4 versus MG1 cluster.
- E) Dot plot of homeostatic and DAM marker genes in crossing different genotypes.
- F) Quantification of microglial branch points crossing three genotypes. $n = 5$ τ -, $n = 11$ $Dap12^{+/+}$ τ +, $n = 12$ $Dap12^{-/-}$ τ + mice.

Supplementary Figure 5. Dap12 is essential for tau-induced transcriptomic changes in oligodendrocyte lineage cells *in vivo*

- A) Feature plots of marker genes for OPC (Pdgfra and Vcan) and OL (Mbp and Plp1) subclusters.
- B) Slingshot showing transition between OL lineage cell subclusters.
- C) UMAP of integrated OL lineage clusters with integrated OPC and OL.
- D) Cell ratios of OPC+OL subclusters (1,2,3,4,5 and 6) crossing three genotypes. One-Way ANOVA followed by turkey test, ***p<0.001, **p<0.01, *p<0.05. n = 3 per genotype.
- E) Bar chart of the enriched pathways for the signature gene sets of the Turquoise module identified by Gene Ontology (GO) pathways.
- F) Correlation scatterplot of DEGs between integrated OPC+OL2 and mouse oligodendrocyte cluster 3 (mOL3)

Supplementary Figure 6


Supplementary Figure 6: Characterization of oligodendrocyte clusters.

A) Dot plot of marker genes of previous identified oligodendrocyte clusters.

B-E) Dot plot of marker genes for baseline (B), pan disease associated oligodendrocyte marker genes (C), disease associated stage 1 oligodendrocyte (D), and disease associated stage 2 oligodendrocyte(E).

F) Dot plot of marker genes of disease associated oligodendrocyte identified in previous report.

Supplementary Figure 7

Supplementary Figure 7: Characterization of oligodendrocyte clusters

A-B) Reactome pathways enriched in DEGs identified in OL3 (A) and selected top reactome pathways with associated genes (B).

C) Selected IPA canonical pathways identified for DEGs of OL3.

D) Tcf7l2 and Sox2 predicted by IPA as upstream regulators of a subset of DEGs downregulated in OL3.

425 **References: (80)**

426 1 Asai, H. *et al.* Depletion of microglia and inhibition of exosome synthesis halt tau
427 propagation. *Nat Neurosci* **18**, 1584-1593 (2015). <https://doi.org/10.1038/nn.4132>

428 2 Gratuze, M. *et al.* Activated microglia mitigate Abeta-associated tau seeding and
429 spreading. *J Exp Med* **218** (2021). <https://doi.org/10.1084/jem.20210542>

430 3 Mancuso, R. *et al.* CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and
431 neurodegeneration in P301S mice. *Brain* **142**, 3243-3264 (2019).
<https://doi.org/10.1093/brain/awz241>

432 4 Shi, Y. *et al.* Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse
433 model. *J Exp Med* **216**, 2546-2561 (2019). <https://doi.org/10.1084/jem.20190980>

434 5 Pottier, C. *et al.* TYROBP genetic variants in early-onset Alzheimer's disease. *Neurobiol
435 Aging* **48**, 222 e229-222 e215 (2016).
<https://doi.org/10.1016/j.neurobiolaging.2016.07.028>

436 6 Ivashkiv, L. B. Cross-regulation of signaling by ITAM-associated receptors. *Nat Immunol*
437 **10**, 340-347 (2009). <https://doi.org/10.1038/ni.1706>

438 7 Painter, M. M. *et al.* TREM2 in CNS homeostasis and neurodegenerative disease. *Mol
439 Neurodegener* **10**, 43 (2015). <https://doi.org/10.1186/s13024-015-0040-9>

440 8 Turnbull, I. R. & Colonna, M. Activating and inhibitory functions of DAP12. *Nat Rev
441 Immunol* **7**, 155-161 (2007). <https://doi.org/10.1038/nri2014>

442 9 Zhang, B. *et al.* Integrated systems approach identifies genetic nodes and networks in
443 late-onset Alzheimer's disease. *Cell* **153**, 707-720 (2013).
<https://doi.org/10.1016/j.cell.2013.03.030>

444 10 Deczkowska, A. *et al.* Disease-Associated Microglia: A Universal Immune Sensor of
445 Neurodegeneration. *Cell* **173**, 1073-1081 (2018).
<https://doi.org/10.1016/j.cell.2018.05.003>

446 11 Yuan, P. *et al.* TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier
447 Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy.
448 *Neuron* **90**, 724-739 (2016). <https://doi.org/10.1016/j.neuron.2016.05.003>

449 12 Haure-Mirande, J. V. *et al.* Integrative approach to sporadic Alzheimer's disease:
450 deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype
451 and complement subnetwork molecular pathology without reducing Abeta burden. *Mol
452 Psychiatry* **24**, 431-446 (2019). <https://doi.org/10.1038/s41380-018-0255-6>

453 13 Audrain, M. *et al.* Integrative approach to sporadic Alzheimer's disease: deficiency of
454 TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype
455 while increasing spread and state of phosphorylation of tau. *Mol Psychiatry* **24**, 1383-1397
456 (2019). <https://doi.org/10.1038/s41380-018-0258-3>

461 14 Haure-Mirande, J. V. *et al.* Deficiency of TYROBP, an adapter protein for TREM2 and CR3
462 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. *Acta
463 Neuropathol* **134**, 769-788 (2017). <https://doi.org/10.1007/s00401-017-1737-3>

464 15 Haure-Mirande, J. V., Audrain, M., Ehrlich, M. E. & Gandy, S. Microglial TYROBP/DAP12 in
465 Alzheimer's disease: Transduction of physiological and pathological signals across TREM2.
466 *Mol Neurodegener* **17**, 55 (2022). <https://doi.org/10.1186/s13024-022-00552-w>

467 16 Allen, B. *et al.* Abundant tau filaments and nonapoptotic neurodegeneration in transgenic
468 mice expressing human P301S tau protein. *J Neurosci* **22**, 9340-9351 (2002).
<https://doi.org/10.1523/JNEUROSCI.22-21-09340.2002>

469 17 Bakker, A. B. *et al.* DAP12-deficient mice fail to develop autoimmunity due to impaired
470 antigen priming. *Immunity* **13**, 345-353 (2000). [https://doi.org/10.1016/s1074-7613\(00\)00034-0](https://doi.org/10.1016/s1074-7613(00)00034-0)

471 18 Luo, W. *et al.* Microglial internalization and degradation of pathological tau is enhanced
472 by an anti-tau monoclonal antibody. *Sci Rep* **5**, 11161 (2015).
<https://doi.org/10.1038/srep11161>

473 19 Wang, C. *et al.* Microglial NF-kappaB drives tau spreading and toxicity in a mouse model
474 of tauopathy. *Nat Commun* **13**, 1969 (2022). <https://doi.org/10.1038/s41467-022-29552-6>

475 20 Hampton, D. W. *et al.* Cell-mediated neuroprotection in a mouse model of human
476 tauopathy. *J Neurosci* **30**, 9973-9983 (2010). <https://doi.org/10.1523/JNEUROSCI.0834-10.2010>

477 21 Fujisawa, H., Wang, B., Sauder, D. N. & Kondo, S. Effects of interferons on the production
478 of interleukin-6 and interleukin-8 in human keratinocytes. *J Interferon Cytokine Res* **17**,
479 347-353 (1997). <https://doi.org/10.1089/jir.1997.17.347>

480 22 Groom, J. R. & Luster, A. D. CXCR3 ligands: redundant, collaborative and antagonistic
481 functions. *Immunol Cell Biol* **89**, 207-215 (2011). <https://doi.org/10.1038/icb.2010.158>

482 23 Lehmann, M. H. *et al.* CCL2 expression is mediated by type I IFN receptor and recruits NK
483 and T cells to the lung during MVA infection. *J Leukoc Biol* **99**, 1057-1064 (2016).
<https://doi.org/10.1189/jlb.4MA0815-376RR>

484 24 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-
485 Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-337 e324
486 (2019). <https://doi.org/10.1016/j.cels.2019.03.003>

487 25 Keren-Shaul, H. *et al.* A Unique Microglia Type Associated with Restricting Development
488 of Alzheimer's Disease. *Cell* **169**, 1276-1290 e1217 (2017).
<https://doi.org/10.1016/j.cell.2017.05.018>

496 26 Audrain, M. *et al.* Reactive or transgenic increase in microglial TYROBP reveals a TREM2-
497 independent TYROBP-APOE link in wild-type and Alzheimer's-related mice. *Alzheimers*
498 *Dement* **17**, 149-163 (2021). <https://doi.org/10.1002/alz.12256>

499 27 Xu, H. *et al.* Memory deficits correlate with tau and spine pathology in P301S MAPT
500 transgenic mice. *Neuropathol Appl Neurobiol* **40**, 833-843 (2014).
501 <https://doi.org/10.1111/nan.12160>

502 28 Yoshiyama, Y. *et al.* Synapse loss and microglial activation precede tangles in a P301S
503 tauopathy mouse model. *Neuron* **53**, 337-351 (2007).
504 <https://doi.org/10.1016/j.neuron.2007.01.010>

505 29 Kaifu, T. *et al.* Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in
506 DAP12-deficient mice. *J Clin Invest* **111**, 323-332 (2003).
507 <https://doi.org/10.1172/JCI16923>

508 30 Paloneva, J. *et al.* Mutations in two genes encoding different subunits of a receptor
509 signaling complex result in an identical disease phenotype. *Am J Hum Genet* **71**, 656-662
510 (2002). <https://doi.org/10.1086/342259>

511 31 Paloneva, J. *et al.* CNS manifestations of Nasu-Hakola disease: a frontal dementia with
512 bone cysts. *Neurology* **56**, 1552-1558 (2001). <https://doi.org/10.1212/wnl.56.11.1552>

513 32 Sasaki, A. *et al.* Variable expression of microglial DAP12 and TREM2 genes in Nasu-Hakola
514 disease. *Neurogenetics* **16**, 265-276 (2015). <https://doi.org/10.1007/s10048-015-0451-3>

515 33 Morabito, S. *et al.* Single-nucleus chromatin accessibility and transcriptomic
516 characterization of Alzheimer's disease. *Nat Genet* **53**, 1143-1155 (2021).
517 <https://doi.org/10.1038/s41588-021-00894-z>

518 34 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
519 analysis. *BMC Bioinformatics* **9**, 559 (2008). <https://doi.org/10.1186/1471-2105-9-559>

520 35 Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-
521 expression networks in high-dimensional transcriptomics data. *Cell Rep Methods* **3**,
522 100498 (2023). <https://doi.org/10.1016/j.crmeth.2023.100498>

523 36 Marques, S. *et al.* Transcriptional Convergence of Oligodendrocyte Lineage Progenitors
524 during Development. *Dev Cell* **46**, 504-517 e507 (2018).
525 <https://doi.org/10.1016/j.devcel.2018.07.005>

526 37 Marques, S. *et al.* Oligodendrocyte heterogeneity in the mouse juvenile and adult central
527 nervous system. *Science* **352**, 1326-1329 (2016). <https://doi.org/10.1126/science.aaf6463>

528 38 Pandey, S. *et al.* Disease-associated oligodendrocyte responses across neurodegenerative
529 diseases. *Cell Rep* **40**, 111189 (2022). <https://doi.org/10.1016/j.celrep.2022.111189>

530 39 Kenigsbuch, M. *et al.* A shared disease-associated oligodendrocyte signature among
531 multiple CNS pathologies. *Nat Neurosci* **25**, 876-886 (2022).
<https://doi.org/10.1038/s41593-022-01104-7>

533 40 Lake, B. B. *et al.* Integrative single-cell analysis of transcriptional and epigenetic states in
534 the human adult brain. *Nat Biotechnol* **36**, 70-80 (2018).
<https://doi.org/10.1038/nbt.4038>

536 41 Zhang, S. *et al.* The Wnt Effector TCF7L2 Promotes Oligodendroglial Differentiation by
537 Repressing Autocrine BMP4-Mediated Signaling. *J Neurosci* **41**, 1650-1664 (2021).
<https://doi.org/10.1523/JNEUROSCI.2386-20.2021>

539 42 Zhang, S. *et al.* Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation
540 during Postnatal Brain Myelination and CNS Remyelination. *J Neurosci* **38**, 1802-1820
541 (2018). <https://doi.org/10.1523/JNEUROSCI.1291-17.2018>

542 43 Sayed, F. A. *et al.* AD-linked R47H-TREM2 mutation induces disease-enhancing microglial
543 states via AKT hyperactivation. *Sci Transl Med* **13**, eabe3947 (2021).
<https://doi.org/10.1126/scitranslmed.abe3947>

545 44 Chen, S. *et al.* Spatially resolved transcriptomics reveals genes associated with the
546 vulnerability of middle temporal gyrus in Alzheimer's disease. *Acta Neuropathol Commun*
547 **10**, 188 (2022). <https://doi.org/10.1186/s40478-022-01494-6>

548 45 Raghavan, S. *et al.* White matter damage due to vascular, tau, and TDP-43 pathologies
549 and its relevance to cognition. *Acta Neuropathol Commun* **10**, 16 (2022).
<https://doi.org/10.1186/s40478-022-01319-6>

551 46 Pichet Binette, A. *et al.* Bundle-specific associations between white matter microstructure
552 and Abeta and tau pathology in preclinical Alzheimer's disease. *eLife* **10** (2021).
<https://doi.org/10.7554/eLife.62929>

554 47 Wen, Q. *et al.* Tau-related white-matter alterations along spatially selective pathways.
555 *Neuroimage* **226**, 117560 (2021). <https://doi.org/10.1016/j.neuroimage.2020.117560>

556 48 Strain, J. F. *et al.* Loss of white matter integrity reflects tau accumulation in Alzheimer
557 disease defined regions. *Neurology* **91**, e313-e318 (2018).
<https://doi.org/10.1212/WNL.0000000000005864>

559 49 Gagyi, E. *et al.* Decreased oligodendrocyte nuclear diameter in Alzheimer's disease and
560 Lewy body dementia. *Brain Pathol* **22**, 803-810 (2012). <https://doi.org/10.1111/j.1750-3639.2012.00595.x>

562 50 Behrendt, G. *et al.* Dynamic changes in myelin aberrations and oligodendrocyte
563 generation in chronic amyloidosis in mice and men. *Glia* **61**, 273-286 (2013).
<https://doi.org/10.1002/glia.22432>

565 51 Pak, K., Chan, S. L. & Mattson, M. P. Presenilin-1 mutation sensitizes oligodendrocytes to
566 glutamate and amyloid toxicities, and exacerbates white matter damage and memory
567 impairment in mice. *Neuromolecular Med* **3**, 53-64 (2003).
<https://doi.org:10.1385/NMM:3:1:53>

568

569 52 Desai, M. K. *et al.* Triple-transgenic Alzheimer's disease mice exhibit region-specific
570 abnormalities in brain myelination patterns prior to appearance of amyloid and tau
571 pathology. *Glia* **57**, 54-65 (2009). <https://doi.org:10.1002/glia.20734>

572 53 Desai, M. K. *et al.* Early oligodendrocyte/myelin pathology in Alzheimer's disease mice
573 constitutes a novel therapeutic target. *Am J Pathol* **177**, 1422-1435 (2010).
<https://doi.org:10.2353/ajpath.2010.100087>

574

575 54 Simpson, J. E. *et al.* White matter lesions in an unselected cohort of the elderly: astrocytic,
576 microglial and oligodendrocyte precursor cell responses. *Neuropathol Appl Neurobiol* **33**,
577 410-419 (2007). <https://doi.org:10.1111/j.1365-2990.2007.00828.x>

578 55 Araque Caballero, M. A. *et al.* White matter diffusion alterations precede symptom onset
579 in autosomal dominant Alzheimer's disease. *Brain* **141**, 3065-3080 (2018).
<https://doi.org:10.1093/brain/awy229>

580

581 56 Dean, D. C., 3rd *et al.* Association of Amyloid Pathology With Myelin Alteration in
582 Preclinical Alzheimer Disease. *JAMA Neurol* **74**, 41-49 (2017).
<https://doi.org:10.1001/jamaneurol.2016.3232>

583

584 57 Ringman, J. M. *et al.* Diffusion tensor imaging in preclinical and presymptomatic carriers
585 of familial Alzheimer's disease mutations. *Brain* **130**, 1767-1776 (2007).
<https://doi.org:10.1093/brain/awm102>

586

587 58 Wang, Q. *et al.* Quantification of white matter cellularity and damage in preclinical and
588 early symptomatic Alzheimer's disease. *Neuroimage Clin* **22**, 101767 (2019).
<https://doi.org:10.1016/j.nicl.2019.101767>

589

590 59 Grubman, A. *et al.* A single-cell atlas of entorhinal cortex from individuals with Alzheimer's
591 disease reveals cell-type-specific gene expression regulation. *Nat Neurosci* **22**, 2087-2097
592 (2019). <https://doi.org:10.1038/s41593-019-0539-4>

593 60 Lau, S. F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals
594 dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's
595 disease. *Proc Natl Acad Sci U S A* **117**, 25800-25809 (2020).
<https://doi.org:10.1073/pnas.2008762117>

596

597 61 Mathys, H. *et al.* Single-cell transcriptomic analysis of Alzheimer's disease. *Nature* **570**,
598 332-337 (2019). <https://doi.org:10.1038/s41586-019-1195-2>

599 62 Zhou, Y. *et al.* Human and mouse single-nucleus transcriptomics reveal TREM2-dependent
600 and TREM2-independent cellular responses in Alzheimer's disease. *Nat Med* **26**, 131-142
601 (2020). <https://doi.org/10.1038/s41591-019-0695-9>

602 63 Blanchard, J. W. *et al.* APOE4 impairs myelination via cholesterol dysregulation in
603 oligodendrocytes. *Nature* **611**, 769-779 (2022). <https://doi.org/10.1038/s41586-022-05439-w>

605 64 Falcao, A. M. *et al.* Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis.
606 *Nat Med* **24**, 1837-1844 (2018). <https://doi.org/10.1038/s41591-018-0236-y>

607 65 Floriddia, E. M. *et al.* Distinct oligodendrocyte populations have spatial preference and
608 different responses to spinal cord injury. *Nat Commun* **11**, 5860 (2020).
<https://doi.org/10.1038/s41467-020-19453-x>

610 66 Lee, S. H. *et al.* TREM2-independent oligodendrocyte, astrocyte, and T cell responses to
611 tau and amyloid pathology in mouse models of Alzheimer disease. *Cell Rep* **37**, 110158
612 (2021). <https://doi.org/10.1016/j.celrep.2021.110158>

613 67 Park, H. *et al.* Single-cell RNA-sequencing identifies disease-associated oligodendrocytes
614 in male APP NL-G-F and 5XFAD mice. *Nat Commun* **14**, 802 (2023).
<https://doi.org/10.1038/s41467-023-36519-8>

616 68 Shen, K. *et al.* Multiple sclerosis risk gene Mertk is required for microglial activation and
617 subsequent remyelination. *Cell Rep* **34**, 108835 (2021).
<https://doi.org/10.1016/j.celrep.2021.108835>

619 69 Paloneva, J. *et al.* Loss-of-function mutations in TYROBP (DAP12) result in a presenile
620 dementia with bone cysts. *Nat Genet* **25**, 357-361 (2000). <https://doi.org/10.1038/77153>

621 70 Zhou, Y. *et al.* Human early-onset dementia caused by DAP12 deficiency reveals a unique
622 signature of dysregulated microglia. *Nat Immunol* **24**, 545-557 (2023).
<https://doi.org/10.1038/s41590-022-01403-y>

624 71 Lanier, L. L. DAP10- and DAP12-associated receptors in innate immunity. *Immunol Rev*
625 **227**, 150-160 (2009). <https://doi.org/10.1111/j.1600-065X.2008.00720.x>

626 72 Hamerman, J. A., Tchao, N. K., Lowell, C. A. & Lanier, L. L. Enhanced Toll-like receptor
627 responses in the absence of signaling adaptor DAP12. *Nat Immunol* **6**, 579-586 (2005).
<https://doi.org/10.1038/ni1204>

629 73 Sjolin, H. *et al.* DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and
630 down-modulates their function during viral infection. *J Immunol* **177**, 2908-2916 (2006).
<https://doi.org/10.4049/jimmunol.177.5.2908>

632 74 Kobayashi, M., Konishi, H., Takai, T. & Kiyama, H. A DAP12-dependent signal promotes
633 pro-inflammatory polarization in microglia following nerve injury and exacerbates

634 degeneration of injured neurons. *Glia* **63**, 1073-1082 (2015).
<https://doi.org/10.1002/glia.22802>

635 75 Divangahi, M. *et al.* Critical negative regulation of type 1 T cell immunity and
636 immunopathology by signaling adaptor DAP12 during intracellular infection. *J Immunol*
637 **179**, 4015-4026 (2007). <https://doi.org/10.4049/jimmunol.179.6.4015>

638 76 Bemiller, S. M. *et al.* TREM2 deficiency exacerbates tau pathology through dysregulated
639 kinase signaling in a mouse model of tauopathy. *Mol Neurodegener* **12**, 74 (2017).
640 <https://doi.org/10.1186/s13024-017-0216-6>

641 77 Lee, S. H. *et al.* Trem2 restrains the enhancement of tau accumulation and
642 neurodegeneration by beta-amyloid pathology. *Neuron* **109**, 1283-1301 e1286 (2021).
643 <https://doi.org/10.1016/j.neuron.2021.02.010>

644 78 Leyns, C. E. G. *et al.* TREM2 function impedes tau seeding in neuritic plaques. *Nat Neurosci*
645 **22**, 1217-1222 (2019). <https://doi.org/10.1038/s41593-019-0433-0>

646 79 Sayed, F. A. *et al.* Differential effects of partial and complete loss of TREM2 on microglial
647 injury response and tauopathy. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 10172-10177 (2018).
648 <https://doi.org/10.1073/pnas.1811411115>

649 80 Zhu, B. *et al.* Trem2 deletion enhances tau dispersion and pathology through microglia
650 exosomes. *Mol Neurodegener* **17**, 58 (2022). <https://doi.org/10.1186/s13024-022-00562-8>

651 81 Kalafatakis, I. & Karagogeos, D. Oligodendrocytes and Microglia: Key Players in Myelin
652 Development, Damage and Repair. *Biomolecules* **11** (2021).
653 <https://doi.org/10.3390/biom11071058>

654 82 Peferoen, L., Kipp, M., van der Valk, P., van Noort, J. M. & Amor, S. Oligodendrocyte-
655 microglia cross-talk in the central nervous system. *Immunology* **141**, 302-313 (2014).
656 <https://doi.org/10.1111/imm.12163>

657 83 McNamara, N. B. *et al.* Microglia regulate central nervous system myelin growth and
658 integrity. *Nature* **613**, 120-129 (2023). <https://doi.org/10.1038/s41586-022-05534-y>

659 84 Benveniste, E. N. Role of macrophages/microglia in multiple sclerosis and experimental
660 allergic encephalomyelitis. *J Mol Med (Berl)* **75**, 165-173 (1997).
661 <https://doi.org/10.1007/s001090050101>

662 85 Kaur, C., Rathnasamy, G. & Ling, E. A. Roles of activated microglia in hypoxia induced
663 neuroinflammation in the developing brain and the retina. *J Neuroimmune Pharmacol* **8**,
664 66-78 (2013). <https://doi.org/10.1007/s11481-012-9347-2>

665 86 McDonough, A., Lee, R. V. & Weinstein, J. R. Microglial Interferon Signaling and White
666 Matter. *Neurochem Res* **42**, 2625-2638 (2017). <https://doi.org/10.1007/s11064-017-2307-8>

667 669

670 87 Tirotta, E., Ransohoff, R. M. & Lane, T. E. CXCR2 signaling protects oligodendrocyte
671 progenitor cells from IFN-gamma/CXCL10-mediated apoptosis. *Glia* **59**, 1518-1528 (2011).
672 <https://doi.org/10.1002/glia.21195>

673 **DAP12 deficiency alters microglia-oligodendrocytes communication and enhances**
674 **resilience against tau toxicity**

675

676

677 Hao Chen¹, Li Fan¹, Qi Guo², Man Ying Wong¹, Fangmin Yu¹, Nessa Foxe¹, Winston Wang³,
678 Aviram Nessim⁴, Gillian Carling^{1,5}, Bangyan Liu^{1,5}, Chloe Lopez-Lee^{1,5}, Yige Huang^{1,11}, Sadaf
679 Amin¹, Sue-Ann Mok⁶, Won-min Song⁷, Bin Zhang⁷, Flint Beal⁸, Qin Ma², Hongjun Fu⁹, Li
680 Gan^{1,3*}, Wenjie Luo^{1*}

681

682

683 **Online Methods:**

684 **Animals:**

685 Mice were housed in groups of no more than five per cage, with access to food and water ad libitum.
686 They were kept in a pathogen-free barrier facility under controlled conditions at a temperature of
687 21–23 °C, humidity ranging from 30% to 70%, and a 12-hour light/12-hour dark cycle.
688 Homozygous human *Tau P301S* transgenic mice, obtained from Dr. Michel Goedert at the MRC
689 Laboratory of Molecular Biology, Cambridge, UK, were crossed with *Dap12*^{-/-} mice, provided
690 by Dr. Lewis Lanier at the University of California, San Francisco. This crossbreeding resulted in
691 the generation of *P301S Dap12*^{+/−} mice. Subsequent crossings of F1 litters led to the production
692 of both *Dap12*^{+/+} and *Dap12*^{-/-} mice, along with their corresponding *P301S* transgenic littermates.
693 For all analyses, female mice exhibiting accelerated tau pathology were utilized at the age of 6
694 months. All experimental procedures involving mice were conducted in accordance with ethical
695 guidelines and were approved by the Institutional Animal Care and Use Committee of Weill
696 Cornell Medicine.

697 **Human brain samples:**

698 The tissues used for this study were the mid-frontal cortices from brains of age-matched patients
699 with AD and non-dementia controls. Samples were obtained from the University of Pennsylvania
700 brain bank and Mount Sinai Hospital. All brains were donated after consent from the next-of-kin
701 or an individual with legal authority to grant such permission. Brain tissues of University of
702 Pennsylvania brain bank and Mount Sinai Hospital used in this study are not considered identified
703 “human subjects” and are not subject to IRB oversight. The institutional review board has
704 determined that clinicopathologic studies on de-identified postmortem tissue samples are exempt
705 from human subject research according to Exemption 45 CFR 46.104(d)(2). Additional
706 information about the donors can be found in the supplementary table 8.

707 **Primary microglial culture:**

708 Following established protocol¹, primary microglia were isolated from the hippocampi and
709 cortices of 0-3-day-old mouse pups. The isolated brain tissues were rinsed with Dulbecco's
710 Phosphate-Buffered Saline (DPBS), and the meninges were carefully removed. Subsequently, the
711 brain tissues were minced, followed by treatment with 0.05% trypsin at 37 °C for 20 minutes. The
712 trypsinization process was halted by adding 20% FBS/DMEM media, after which the digested
713 tissues were gently triturated to generate a cell suspension. This suspension was then subjected to
714 centrifugation at 200 x g for 15 minutes, and the pellet was resuspended in 10% FBS/DMEM. The
715 resuspended cells were plated onto T-75 flasks coated with poly-D-lysine (PDL), facilitating the
716 formation of mixed glial cultures. These cultures were maintained in 10% FBS/DMEM
717 supplemented with 5ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF). By the
718 twelfth day, when the cultures had reached confluence, microglia were isolated from the glial layer
719 by subjecting the flasks to gentle shaking at 200 rpm for a duration of 3 hours. The microglia that
720 floated were subsequently seeded onto plates coated with PDL at a density of 75,000 cells/cm².
721 They were then cultured in 10% FBS/DMEM devoid of GM-CSF for a 24-hour period before
722 being employed in assays involving the phagocytosis and processing of tau fibrils.

723 **Tau fibril uptake and clearance by cultured microglia:**

724 Microglia were seeded into eight-well chamber slides at a density of 1×10^5 cells per well.
725 Subsequently, they were exposed to 1 µg/ml of AD-tau fibrils prepared as described previously²
726 and incubated for a duration of 2 hours in 10% FBS/DMEM. Following the incubation period, the
727 cells were subjected to a wash with PBS and then fixed using 4% paraformaldehyde (PFA). For
728 the tau chasing assay, primary cultured microglia were initially exposed to AD-tau fibrils for 2
729 hours. Post-exposure, the medium containing tau fibrils was replaced with fresh 10% FBS/DMEM.
730 At time intervals of 12 and 24 hours, the microglia were washed with PBS followed with fixation
731 with 4% PFA. Immunostaining was conducted using rabbit anti-human tau antibodies (Dako,
732 A0024, 1:500), followed by Alexa Fluor 568 conjugated goat IgG targeting rabbit (Invitrogen, A-
733 11004, 1:200). To visualize the nuclei, DAPI staining (blue) was performed. Representative
734 images were acquired using a ZEISS microscope at a magnification of 63×.

735 **Bulk RNA sequencing:**

736 Freshly perfused mouse brains were dissected to isolate the cortices. The cortices were flash-frozen
737 and then stored at -80 °C. For RNA extraction, the cortices were thawed on ice for a duration of
738 30 minutes and then RNA isolation from the cortex tissue was carried out following the
739 manufacturer's protocol (PureLink™ RNA Mini Kit, Thermo Fisher). The isolated RNA samples
740 were then sent to the Weill Cornell Medicine Genomics Core for assessment of RNA quality and
741 integrity. Following successful quality control, RNA-seq libraries were prepared for sequencing
742 using the NovaSeq platform.

743 **Isolation of nuclei from frozen mouse brain tissue:**

744 The protocol for isolating nuclei from frozen mouse brain tissue was adapted from previous studies
745 with modifications^{3,4}. All procedures were done on ice or at 4 °C. In brief, mouse brain tissue was
746 placed in 1,500 µl of nuclei PURE lysis buffer (Sigma, NUC201-1KT) and homogenized with a
747 Dounce tissue grinder (Sigma, D8938-1SET) with 15 strokes with pestle A and 15 strokes with
748 pestle B. The homogenized tissue was filtered through a 35 µm cell strainer and was centrifuged
749 at 600 × g for 5 min at 4 °C and washed three times with 1 ml of PBS containing 1% BSA, 20 mM
750 DTT, and 0.2 U µl⁻¹ recombinant RNase inhibitor. Then the nuclei were centrifuged at 600 × g for
751 5 min at 4 °C and resuspended in 500 µl of PBS containing 0.04% BSA and 1× DAPI, followed
752 by FACS sorting to remove cell debris. The FACS-sorted suspension of DAPI-stained nuclei was
753 counted and diluted to a concentration of 1,000 nuclei per microliter in PBS containing 0.04%
754 BSA.

755 **Droplet-based single-nuclei RNA-seq and data analysis:**

756 For droplet-based snRNA-seq, libraries were prepared with Chromium Single Cell 3' Reagent Kits
757 v3 (10× Genomics, PN-1000075) according to the manufacturer's protocol. cDNA and library
758 fragment analysis were performed using the Agilent Fragment Analyzer systems. The snRNA-seq
759 libraries were sequenced on the NovaSeq 6000 sequencer (Illumina) with 100 cycles. Gene counts
760 were obtained by aligning reads to the mouse genome (mm10) with Cell Ranger software (v.3.1.0)
761 (10× Genomics). To account for unspliced nuclear transcripts, reads mapping to pre-mRNA were
762 counted. Cell Ranger 3.1.0 default parameters were used to call cell barcodes. We further removed
763 genes expressed in no more than three cells, cells with a unique gene count over 4,000 or less than
764 300, and cells with a high fraction of mitochondrial reads (>5%). Potential doublet cells were
765 predicted and removed using DoubletFinder⁵ for each sample. Normalization and clustering were
766 done with the Seurat package v4.0.0. In brief, counts for all nuclei were scaled by the total library
767 size multiplied by a scale factor (10,000), and transformed to log space. A set of 2,000 highly
768 variable genes were identified with FindVariableFeatures function based on a variance stabilizing
769 transformation (vst). Principal component analysis (PCA) was done on all genes, and t-SNE was
770 run on the top 15 PCs. Cell clusters were identified with the Seurat functions FindNeighbors (using
771 the top 15 PCs) and FindClusters (resolution = 0.1). For each cluster, we assigned a cell-type label
772 using statistical enrichment for sets of marker genes and manual evaluation of gene expression for
773 small sets of known marker genes. The subset() function from Seurat was used to subset each cell
774 types. Differential gene expression analysis was done using the FindMarkers function and MAST
775⁶. For pseudobulk analyses, we aggregated the expression values from all nuclei from the same
776 cell type for genotype dependent differential expression.

777 **Gene network and functional enrichment analysis:**

778 Gene network and functional enrichment analysis were performed by QIAGEN's Ingenuity®
779 Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity, Version 01-22-

780 01) or by GSEA with molecular signatures database (MSigDB) ^{7,8}. Significant DEGs and their
781 log₂fold change expression values and FDR were inputted into IPA for identifying canonical
782 pathways, biological functions, and upstream regulators. Upregulated or downregulated significant
783 DEGs were inputted into GSEA (<http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp>) to
784 identify hallmark and gene ontology terms. The p-value, calculated with the Fischer's exact test
785 with a statistical threshold of 0.05, reflects the likelihood that the association between a set of
786 genes in the dataset and a related biological function is significant. A positive or negative
787 regulation z-score value indicates that a function is predicted to be activated or inhibited. Weighted
788 gene correlation network analysis (WGCNA) was performed to identify co-expression of genes
789 within the different oligodendrocyte clusters using weighted gene correlation network ⁹⁻¹¹.

790 **Cell trajectory using Monocle3¹²:**

791 For oligodendrocyte trajectory analysis, the oligodendrocyte population was first isolated from the
792 other cell types like previous report ². A separate Seurat object was created for oligodendrocyte,
793 followed by normalization with a scale factor of 10,000. FindVariableFeatures function was run
794 again to identify the most variable gene-specific for oligodendrocyte. The oligodendrocyte Seurat
795 object was then converted into a Monocle3 object with as.cell_data_set function. Size factor
796 estimation of the new CDS (cell dataset) was performed using estimate_size_factors function with
797 default parameters. Further processing of the CDS was carried out using preprocess_cds function
798 with the num_dim parameter set to 9. UMAP was then performed to reduce the dimensionality of
799 the data. Cell clusters were then visualized with cluster_cells function with the parameter K equals
800 to 9. learn_graph function was used to determine the trajectory and the cluster 1 oligodendrocyte
801 was selected as the origin of the trajectory and the gene expression along with pseudotime was
802 generated by using plot_gene_expression function.

803 **Immunohistochemistry:**

804 Dulbecco's phosphate-buffered saline (DPBS) was used for immunohistochemistry. Four brain
805 sections per mouse that contain a series of anterior to posterior hippocampus were washed to
806 remove cryoprotectant and then permeabilized by 0.5% Triton X-100. After blocking in 5% normal
807 goat serum (NGS) for 1 h, brain sections were incubated with primary antibodies in the same
808 blocking buffer overnight at 4 °C. Sections were then washed by DPBS containing 0.1% Tween-
809 20 and incubated with Alexa-conjugated secondary antibodies for 1 h at room temperature in
810 blocking buffer. After washing, sections were mounted on glass slides with ProLong Gold
811 Antifade Mounting media. The primary antibodies used for immunohistochemistry were as
812 follows: anti-IBA1 (1:500, 019-19741, Fujifilm Wako), anti-MC1 (1:500, a kind gift from P.
813 Davies), anti-OLIG2 (1:500, ZMS1019, sigma), anti-MBP (1:800, sigma, MAB386), anti-MEF2C
814 (1:600, abcam, ab211493), anti-GFAP (1:800, abcam, ab7260), anti-phospho-Tau (Ser202,Thr205)
815 (AT8)(1:1000, ThermoFisher Scientific, MN1020), and anti-P2RY12 (1:600, 848002, Biolegend).

816 The secondary antibodies used for immunohistochemistry were as follows: Goat anti-rabbit 568
817 (1:600, A11036, invitrogen), Goat anti-mouse 568 (1:600, A11031, invitrogen), Goat anti-rat 568
818 (1:600, A11077, invitrogen). Images for MC1 and IBA1 quantification were acquired on Zeiss
819 microscope using 20x objective and analyzed with ImageJ (NIH). All images were first set the
820 threshold manually, then the auto-measurements were performed by using the macros program in
821 ImageJ. Regions of interest including the hippocampus and cortex were hand-traced. MC1+ areas
822 were measured by ImageJ, whereas OLIG2+ cell numbers were counted with the Analyze Particles
823 function. 3D structure of microglia was reconstructed using the Imaris software as described before
824 ¹³. Experimenters performing imaging and quantification were blinded.

825 **Western blotting:**

826 Total brain cortex lysates were prepared in radioimmunoprecipitation assay buffer (RIPA) [1%
827 NP-40, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl (lauryl) sulfate]. Protein (20 mg)
828 was separated by a 12% SDS-PAGE gel, then transferred to a polyvinylidene difluoride (PVDF)
829 membrane. After blocking in TBS buffer (20 mM Tris-HCl, 150 mM sodium chloride) containing
830 5% (wt/vol) nonfat dry milk for 1 h at room temperature, the membranes were then probed with
831 proper primary and secondary antibodies, which was followed by developing with Super Signal
832 West Pico chemiluminescent substrate (34577; Thermo Scientific, Rockford, IL). Data analysis
833 was performed by Image lab 6.1 (Bio-Rad, Hercules, CA). The following primary antibodies were
834 used: rabbit anti-phospho-AKT (Ser473) (Cell Signaling, 4060, 1:1000), rabbit anti-total-AKT
835 (Cell Signaling, 4691, 1:2,000), rabbit anti-phospho-STAT3 (Ser727) (Cell Signaling, 9134,
836 1:1,000), mouse anti-total-STAT3 (Cell Signaling, 9139, 1:3,000), rabbit anti-phospho-ERK1/2
837 (Thr202/204) (Cell Signaling, 4370, 1:1,000), rabbit anti-total-ERK1/2 (Cell Signaling, 9102,
838 1:3,000), sheep anti-TENM2 (Thermo Fisher Scientific, PA5-47638, 1:1,000), rabbit anti-NRG3
839 (Thermo Fisher Scientific, MA5-36144, 1:1,000), rabbit anti-GAPDH (GeneTex, GTX100118,
840 1:10,000), mouse anti-PSD95 (Abcam, ab2723, 1:1,000), rabbit anti-GAPDH (Cell Signaling,
841 2118, 1:5,000), and rabbit anti-Beta3-Tubulin (Cell Signaling, 55685, 1:5,000). The following
842 secondary antibodies were used: HRP-goat anti-Mouse IgG (Jackson, 115-035-146, 1:2,000),
843 HRP-goat anti-Rabbit IgG (Jackson, 111-035-144, 1:2,000).

844 **Multiplex bead-based immunoassay:**

845 The frontal cortex lysates were prepared by RIPA buffer with sonication at 2 °C for 5 mins at 30%
846 amplitude with 5 secs and 2 secs pulse. Then the samples were centrifuged at 20,000 x g for 15
847 mins, and the resulting supernatant was collected for analysis using the MILLIPLEX MAP Mouse
848 phosphor and total multi-pathway 9-plex Magnetic Bead Kit (Millipore, Cat.# 48-680MAG) on a
849 MagPix System. For measuring cytokines and chemokines, the frontal cortex was homogenized in
850 Reassembly Buffer (RAB), followed by centrifugation for 20 minutes at 50,000 x g at 4°C. The
851 supernatant was then collected and mixed with an equal amount of RIPA buffer, followed by

852 another centrifugation step for 20 minutes at 50,000 x g at 4°C. The resulting supernatant was used
853 for analysis using the MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead kit
854 (Millipore, MCYTMAg-70K-PX32) on a MagPix System.

855 **Spatial transcriptomic analysis of intermediate OL gene set using public Visium datasets:**

856 To further validate the correlation between the expression of selected iOli gene set (CSMD1,
857 NRXN1, DLGAP1, EPHA6, NRG3, DPP10, MEF2C, RBFOX1, TENM2, SYT1, CNTNAP2,
858 GRIN2A, GRIN1, NRXN3, PLP1, MBP, MOBP) and AD pathological regions, we visualized
859 the expression distribution of the gene set in six publicly available 10x Visium spatially resolved
860 transcriptomics (SRT) datasets ¹⁴. These datasets included adjacent sections with pathological tau
861 stained by AT8, consisting of three control cases and three AD cases. First, we preprocessed and
862 integrated the six Visium datasets following the steps outlined in ¹⁴. After excluding noise spots
863 as previously described ¹⁴, all spots were divided into five groups, including AT8+ spots group
864 and neighboring levels 1-3 spots groups by the distance from AT8+ spots in AD cases and one
865 control spot group in control cases. The gene module scores of the gene set were calculated using
866 the function “AddModuleScore” by default parameters to indicate relative average expressions of
867 gene sets in five spot groups using Seurat (v4.1.1). The module scores of the gene set can be
868 referred to as the gene set activity. They are calculated by subtracting the aggregated expression
869 of control feature sets from the average expression of the gene set at the single-spot level. Next,
870 gene module scores of the gene set were visualized using the function “geom_violin” by R package
871 ggplot2 (v3.3.5). The mean of module scores among five groups was compared using one-way
872 analysis of variance (ANOVA) and the mean of module scores between each pair of the five groups
873 was compared using Wilcoxon rank sum test, both performed with the function “compare_means”
874 in R package ggpunr (v0.4.0).

875 To study the spatial relationship, representative spatial maps were created using a representative
876 SRT 10x Visium dataset from an AD sample at Braak stage-IV ¹⁴. Two types of spatial maps were
877 generated via the Loupe Browser (v6.4.1). First, the layer-labeled spatial map of this AD brain
878 section showcases the layer information of each spot manually labeled as previously described ¹⁴.
879 WM: white matter; noise: spots with folded tissue was excluded from gene expression analysis.
880 Second, the log2 average expression of gene set 3 in each Visium spot of the same AD sample was
881 computed and visualized via Loupe Browser. The colors of the spots were scaled based on the
882 average expression of gene set 3, ranging from 1.5 to 4. This color scaling was applied to highlight
883 spots with high expression levels of gene set.

884 **Data Availability:**

885 Six SRT 10x Visium datasets were downloaded from Gene Expression Omnibus (GEO:
886 GSE220442). The AT8+ spot annotations and the loupe files for 10x Visium datasets can be
887 found at: <https://bmls.bmi.osumc.edu/scread/stofad-2>.

888 **Statistics**

889 The sample size for each experiment was determined based on previous publications^{2,15}. All in
890 vitro experiments were performed with a minimum of three biological replicates. Mean values
891 from at least three independent experiments were used for computing statistical differences. All *in*
892 *vivo* experiments were performed with a minimum of four mice per genotype. All *in vivo* data were
893 averaged to either individual mouse (microglia number counts), individual section (MC1, AT8
894 tau), or individual microglia (Imaris morphology analysis), and mean values were used for
895 computing statistical differences. Data visualization was done with Graphpad and R package
896 ggplot2. Statistical analyses were performed with Graphpad prism 9.0 (t-test, one-way and two-
897 way ANOVA) (Graphpad, San Diego, California). Values are reported as mean \pm standard error
898 of the mean (SEM) or standard deviation (SD). Mann–Whitney test was used when the normality
899 test is not passed. One-way ANOVA was used to compare data with more than two groups. Two-
900 way ANOVA was used for groups with different genotypes and/or time as factors. Tukey’s and
901 Sidak’s post-test multiple comparisons were used to compare the statistical difference between
902 designated groups. All P-values of enrichment analysis are calculated by right-tailed Fisher’s exact
903 test. P < 0.05 was considered statistically significant.

904

905 1 Luo, W. *et al.* Microglial internalization and degradation of pathological tau is enhanced
906 by an anti-tau monoclonal antibody. *Sci Rep* **5**, 11161 (2015).
<https://doi.org/10.1038/srep11161>

907 2 Wang, C. *et al.* Microglial NF-kappaB drives tau spreading and toxicity in a mouse model
908 of tauopathy. *Nat Commun* **13**, 1969 (2022). <https://doi.org/10.1038/s41467-022-29552-6>

909 3 Grubman, A. *et al.* A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s
910 disease reveals cell-type-specific gene expression regulation. *Nat Neurosci* **22**, 2087-2097
911 (2019). <https://doi.org/10.1038/s41593-019-0539-4>

912 4 Habib, N. *et al.* Massively parallel single-nucleus RNA-seq with DroNc-seq. *Nat Methods*
913 **14**, 955-958 (2017). <https://doi.org/10.1038/nmeth.4407>

914 5 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-
915 Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-337 e324
916 (2019). <https://doi.org/10.1016/j.cels.2019.03.003>

917 6 Finak, G. *et al.* MAST: a flexible statistical framework for assessing transcriptional changes
918 and characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol* **16**, 278
919 (2015). <https://doi.org/10.1186/s13059-015-0844-5>

922 7 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
923 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545-
924 15550 (2005). <https://doi.org/10.1073/pnas.0506580102>

925 8 Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**, 1739-
926 1740 (2011). <https://doi.org/10.1093/bioinformatics/btr260>

927 9 Morabito, S. *et al.* Single-nucleus chromatin accessibility and transcriptomic
928 characterization of Alzheimer's disease. *Nat Genet* **53**, 1143-1155 (2021).
929 <https://doi.org/10.1038/s41588-021-00894-z>

930 10 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
931 analysis. *BMC Bioinformatics* **9**, 559 (2008). <https://doi.org/10.1186/1471-2105-9-559>

932 11 Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-
933 expression networks in high-dimensional transcriptomics data. *Cell Rep Methods* **3**,
934 100498 (2023). <https://doi.org/10.1016/j.crmeth.2023.100498>

935 12 Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed by
936 pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-386 (2014).
937 <https://doi.org/10.1038/nbt.2859>

938 13 Zhan, L. *et al.* Proximal recolonization by self-renewing microglia re-establishes microglial
939 homeostasis in the adult mouse brain. *PLoS Biol* **17**, e3000134 (2019).
940 <https://doi.org/10.1371/journal.pbio.3000134>

941 14 Chen, S. *et al.* Spatially resolved transcriptomics reveals genes associated with the
942 vulnerability of middle temporal gyrus in Alzheimer's disease. *Acta Neuropathol Commun*
943 **10**, 188 (2022). <https://doi.org/10.1186/s40478-022-01494-6>

944 15 Sayed, F. A. *et al.* AD-linked R47H-TREM2 mutation induces disease-enhancing microglial
945 states via AKT hyperactivation. *Sci Transl Med* **13**, eabe3947 (2021).
946 <https://doi.org/10.1126/scitranslmed.abe3947>