

1 **Title: Replacement of tibialis cranialis tendon with polyester, silicone-coated artificial**
2 **tendon preserves biomechanical function in rabbits**

4 Running Head: Tibialis Cranialis Artificial Tendon Rabbits

6 Katrina L. Easton¹, Carter Hatch¹, Kaitlyn Stephens², Dylan Marler³, Obinna Fidelis¹, Xiaocun
7 Sun⁴, Kristin M. Bowers⁵, Caroline Billings⁶, Cheryl B. Greenacre⁵, David E. Anderson⁵, Dustin
8 L. Crouch^{1*}

10 ¹Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee,
11 Knoxville, TN

12 ²Biomedical Engineering, Duke University, Durham, NC

13 ³Alabama College of Osteopathic Medicine, Dothan, AL

14 ⁴Research Computing Support, University of Tennessee, Knoxville, TN

15 ⁵College of Veterinary Medicine, University of Tennessee, Knoxville, TN

16 ⁶MedVet Cincinnati, Veterinary Cardiology, Cincinnati, OH

18 *Corresponding author:

19 Department of Mechanical, Aerospace, and Biomedical Engineering
20 University of Tennessee - Knoxville
21 306D Dougherty Engineering Bldg.
22 1512 Middle Drive
23 Knoxville, TN 37996
24 Email: dustin.crouch@utk.edu
25 Phone: (865) 974-7656
26 Fax: (865) 974-5274

28 Author Contribution Statement: All authors made one or more of the following contributions to
29 this manuscript: [1] substantial contributions to research design, or the acquisition, analysis or
30 interpretation of data; [2] drafting the paper or revising it critically; [3] approval of the submitted
31 and final versions. All authors have read and approved the final submitted manuscript.

33 Keywords: gait, kinematics, kinetics, animal model, biomaterials

35 Word count: 3932

38 **Abstract**

39
40 Artificial tendons may be an effective alternative to autologous and allogenic tendon grafts for
41 repairing critically sized tendon defects. The goal of this study was to quantify the in vivo
42 hindlimb biomechanics (ground contact pressure and sagittal-plane motion) during hopping gait
43 of rabbits having a critically sized tendon defect of the tibialis cranialis and either with or
44 without repair using an artificial tendon. In five rabbits, the tibialis cranialis tendon of the left
45 hindlimb was surgically replaced with a polyester, silicone-coated artificial tendon (PET-SI);
46 five operated control rabbits underwent complete surgical excision of the biological tibialis
47 cranialis tendon in the left hindlimb with no replacement (TE). At 8 weeks post-surgery, peak
48 vertical ground contact force in the left hindlimb was statistically significantly less compared to
49 baseline for the TE group ($p=0.0215$). Statistical parametric mapping (SPM) analysis showed
50 that, compared to baseline, the knee was significantly more extended during stance at 2 weeks
51 post-surgery and during the swing phase of stride at 2 and 8 weeks post-surgery for the TE group
52 ($p<0.05$). Also, the ankle was significantly more plantarflexed during swing at 2 and 8 weeks
53 postoperative for the TE group ($p<0.05$). In contrast, there were no significant differences in the
54 SPM analysis among timepoints in the PET-SI group for the knee or ankle. These findings
55 suggest that the artificial tibialis cranialis tendon effectively replaced the biomechanical function
56 of the native tendon.

57 **Introduction**

58

59 Injuries to tendons and ligaments account for at least 4% of all musculoskeletal trauma cases¹.
60 Critically-sized tendon defects (i.e., those too large to heal spontaneously), or gaps, are
61 especially debilitating because tendons perform essential biomechanical functions during
62 movement, including storing elastic energy and transmitting forces between muscles and bones.
63 Such defects may form at the time of severe trauma^{2,3} or with chronic tendon ruptures for which
64 the ruptured ends cannot be approximated due to muscle retraction⁴. Autologous tendon grafts
65 represent the current gold-standard and are the most common clinical treatment⁵, although
66 allogenic grafts are also used⁶. Clinical use of autologous grafts is limited by donor site
67 morbidity⁷, while allografts present biosafety concerns and depend on a sufficient supply of
68 donor tendons. Functional outcomes with tendon grafts are modest, with less than half of patients
69 achieving “excellent” function based on standardized clinical assessments^{5,8,9}.

70

71 Artificial tendons that permanently replace part or all of a biological tendon may be an effective
72 alternative to tendon grafts for critically sized tendon defects. Many types of artificial tendons of
73 varying designs and materials have been tested¹⁰⁻¹³. One recent polyester, silicone-coated (PET-
74 SI) artificial tendon was tested in rabbits¹⁴ and goats¹⁵⁻¹⁷ for up to 180 days; the artificial tendon
75 integrated closely with the muscle fibers with no apparent scarring; the muscle-artificial tendon
76 interface was stronger than the muscle itself. Similar artificial tendons have been used in
77 humans^{18,19}. However, despite the critical biomechanical role of tendons during movement, the
78 effect of the artificial tendons on movement biomechanics has not been rigorously quantified.

79

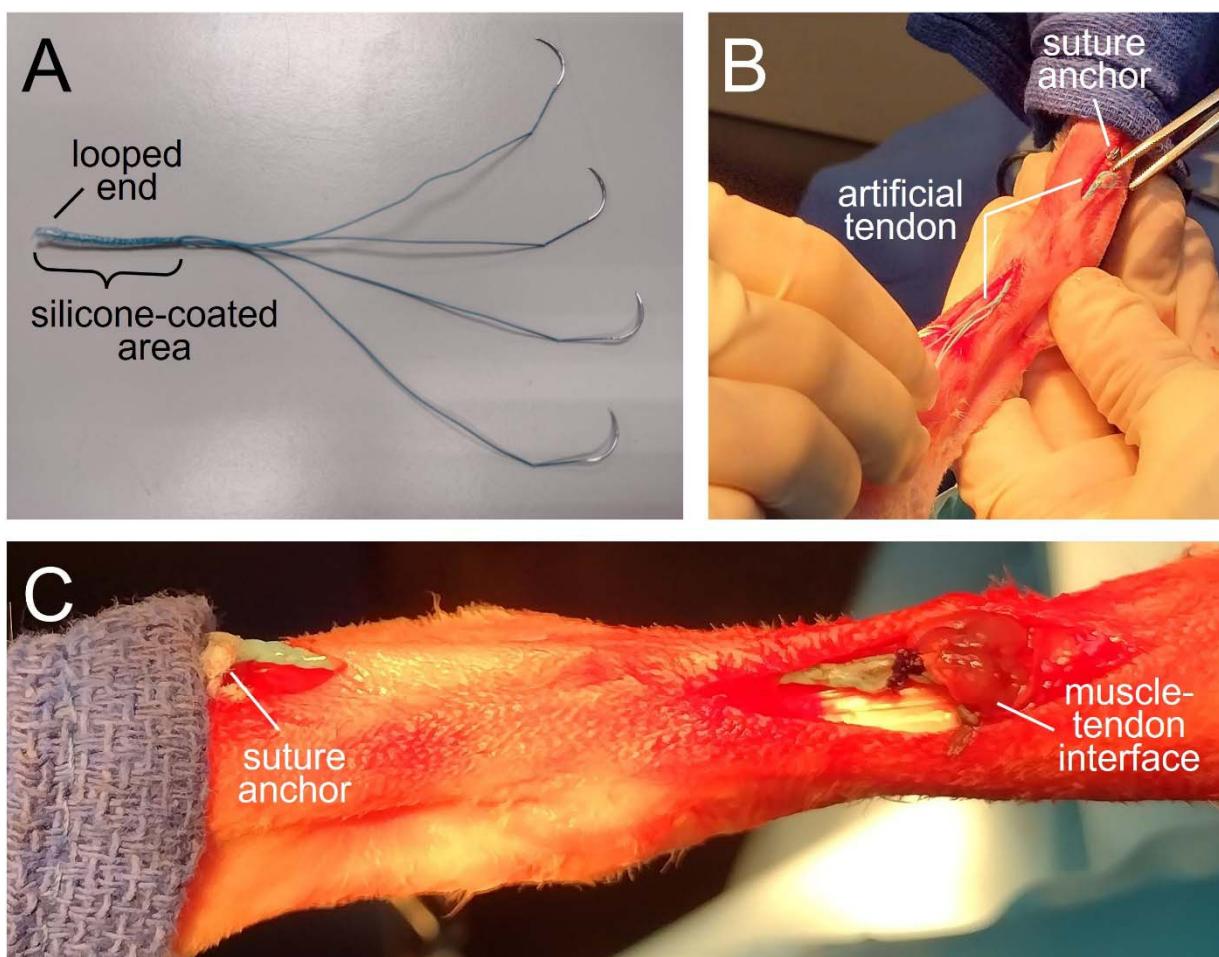
80 We recently reported the hindlimb biomechanics of rabbits with surgical replacement of either
81 the tibialis cranialis or Achilles biological tendon with a PET-SI artificial tendon²⁰. For both
82 groups, ankle kinematics and vertical ground contact forces during the stance phase of hopping
83 gait recovered from 2-6 weeks postoperative toward those measured pre-surgery. Three key
84 limitations of this previous study, which motivated the study presented herein, were small
85 treatment groups (n=2), measurements limited to hindlimb biomechanics during the stance phase
86 of hopping gait, and failure of the Achilles artificial tendon at the point of attachment of the
87 artificial tendon to the bone anchor prior to the study endpoint.

88

89 The present study was performed to focus on the effect of critically sized defects of the tibialis
90 cranialis tendon on functional mechanics of the hind limb. Our objective was to quantify
91 unilateral hindlimb biomechanics during the entire hopping gait cycle of rabbits having loss of
92 the tibialis cranialis tendon as compared with rabbits having the defect repaired with an artificial
93 tibialis cranialis tendon. Since the tibialis cranialis is an ankle dorsiflexor muscle, our *a priori*
94 hypotheses were that compared to rabbits with tibialis cranialis tendon excision, rabbits with the
95 artificial tendon would have greater (1) maximum ankle dorsiflexion angle and (2) ankle range of
96 motion during the swing phase of gait.

97

98 **Methods**


99 Artificial Tendon

100 The artificial tendon, adapted from a previously reported design¹⁴⁻¹⁷, consisted of two custom
101 double-armed strands of size 0 braided polyester suture (RK Manufacturing, Danbury, CT, USA)
102 (Figure 1). The strands were folded in half and braided for the desired length of the artificial

103 tendon; tendons of varying lengths were fabricated in 2 to 4 mm increments to accommodate
104 variation in lengths of the biological tendons they replaced. The folded distal end formed a loop
105 to facilitate attachment to bone with a suture anchor; the proximal end had swaged needles on
106 each strand for suturing the tendon to muscle. The braid was coated with biocompatible silicone
107 (LSR BIO M340, Elkem, Oslo, Norway) to discourage tissue adhesion.

108

109

110

111

112 **Figure 1:** Polyester, silicone-coated (PET-SI) artificial tendon. A) Artificial tendon prior to
113 implantation. The looped end was tied to a suture anchor, while the needle ends were sewn to the
114 distal end of the tibialis cranialis muscle. B) Intraoperative placement of the artificial tendon

115 using two separate skin incisions. C) Completed implantation of artificial tendon prior to closure
116 of incisions.

117

118 **Tendon Replacement Model**

119 All animal procedures were approved by the Institutional Animal Care and Use Committee at the
120 University of Tennessee-Knoxville (protocol #2726). All procedures were performed at the
121 University of Tennessee-Knoxville. The study included ten healthy female New Zealand White
122 rabbits (Robinson Services Inc, USA), ranging from 17 to19 weeks old weighing an average of
123 3.64 ± 0.31 kg (Table 1). Rabbits were housed individually, acclimatized for a minimum of 2
124 weeks prior to surgery, fed ad libitum (standard laboratory diet, Timothy hay, daily greens), and
125 given daily positive human interaction and enrichment. In addition, rabbits received playpen time
126 twice weekly for at least 10 minutes prior to surgery and starting 2 weeks post-surgery.

127

128 The rabbits were randomly assigned to either the excision only group (TE, n=5) or the group
129 with replacement of the tendon with a polyester, silicone-coated artificial tendon (PET-SI, n=5).
130 The randomization sequence was generated using a custom script in Matlab (MathWorks, Inc.,
131 Natick, MA, USA). To reduce the number of animals, no control group was used; values of
132 variables measured pre-surgery were considered reference or control values. An experimental
133 unit was defined as one rabbit. Potential confounders (e.g., time of surgery, housing location)
134 were not controlled.

135

136 The results reported herein are part of a larger overall study that also included measurement of
137 muscle properties (results forthcoming). Thus, the number of animals per group, n=5 (Fig. 5),

138 was computed *a priori* based on a power analysis that considered muscle property values
139 reported in the literature. Specifically, following surgical tenotomy, rabbit soleus muscle mass
140 decreased by 25% compared to intact muscle at four weeks post-tenotomy²¹. We conducted a
141 power analysis (G*Power 3.1, Heinrich-Heine-Universität Düsseldorf, DE) to compute the
142 sample size required to detect *recovery* of 20% over time in the PET group. For a between-
143 timepoint comparison using a two-tailed Student's t-test, a per-group sample size of n=4 is
144 needed to detect an effect size of 3.46 (i.e. 20% recovery) with power $\beta = 0.90$ and significance
145 $\alpha = 0.05$. We increased the per-group sample size to n=5 to conservatively account for
146 potentially higher within-group variation of muscle mass and other outcome measures.

147

148 Rabbits were given hydromorphone (0.1 mg/kg IM) as a preoperative analgesic, sedated with
149 midazolam (1 mg/kg IM), and induced into general anesthesia with isoflurane via face mask.
150 Rabbits were intubated and positioned in right lateral dorsal oblique recumbency. General
151 anesthesia was maintained with isoflurane gas vaporized in 100% oxygen. A loading dose of
152 lidocaine (2 mg/kg IV) was given, followed by a lidocaine CRI (50 mcg/kg/min IV) with
153 isotonic fluids at a rate of 30 ml/h IV throughout the procedure. The left hind limb was clipped,
154 suspended, and aseptically prepared for surgery. A second dose of hydromorphone (0.05 mg/kg
155 IM) was given just prior to the start of surgery.

156

157 In the TE group, □ 1 cm and 2 cm incisions were made over the point of insertion and
158 musculotendinous junction, respectively, of the tibialis cranialis muscle. The tendon was excised
159 from the enthesis to the musculotendinous junction.

160

161 In the PET-SI group, a □ 2 cm incision was made over the point of insertion of the tibialis
162 cranialis muscle. The tendon was released at its insertion. A guide hole was □ pre-drilled with
163 a □ 1.5 □ mm drill bit □ in the proximal metatarsus at the insertion point. A □ 2 mm x 6 mm □ bone
164 suture anchor (Jorgenson Laboratories, Loveland, CO, USA) was screwed into the hole until
165 finger tight. A 3 cm incision was made over the musculotendinous junction of the tibialis
166 cranialis muscle. From among the available artificial tendon lengths, we selected a length that
167 was approximately 85 - 95% of the length of each rabbit's biological tendon (Table 1) as
168 measured when the foot was in full plantarflexion; the shorter length was selected to offset the
169 length added by the bone suture anchor. The artificial tendon was passed underneath the skin
170 from the proximal incision to the distal incision. The distal loop of the artificial tendon was
171 sutured to the anchor using □ #2 □ Fiberwire □ suture with □ two □ passes □ through the anchor and
172 loop. The needle ends of the □ artificial tendon were sutured to the distal end of the
173 tibialis □ cranialis □ muscle using a single suture loop pattern for each strand. Adjacent suture
174 strands were tied together using □ six throws, and excess suture was cut and removed. The
175 tibialis □ cranialis □ tendon was □ sharply excised at the musculotendinous junction. □
176

177 In both groups, the incisions were closed with a double-layer closure. The subcutaneous layer
178 was closed with a simple continuous pattern with □ 3-0 PDS □ (synthetic absorbable
179 monofilament). The skin was closed □ with □ an intradermal pattern using □ 3-0 PDS. An
180 incisional block with 0.15 ml of lidocaine (2 mg/ml SC) was performed. The rabbits received
181 meloxicam (1 mg/kg SC) and enrofloxacin (5 mg/kg SC diluted in 6 ml of sterile saline)
182 immediately post-surgery. As part of a standard protocol for management of post-operative pain
183 and inflammation, all rabbits had laser therapy (MultiRadiance ACTIVet Pro, Solon, OH, USA;

184 1000 Hz for 1 min, 50 Hz for 1 min, and 1000-3000 Hz for 1 min) performed, once, immediately
185 post-surgery. Left lateral and craniocaudal radiographic views were acquired immediately post-
186 operatively and then every 2 weeks post-surgery.

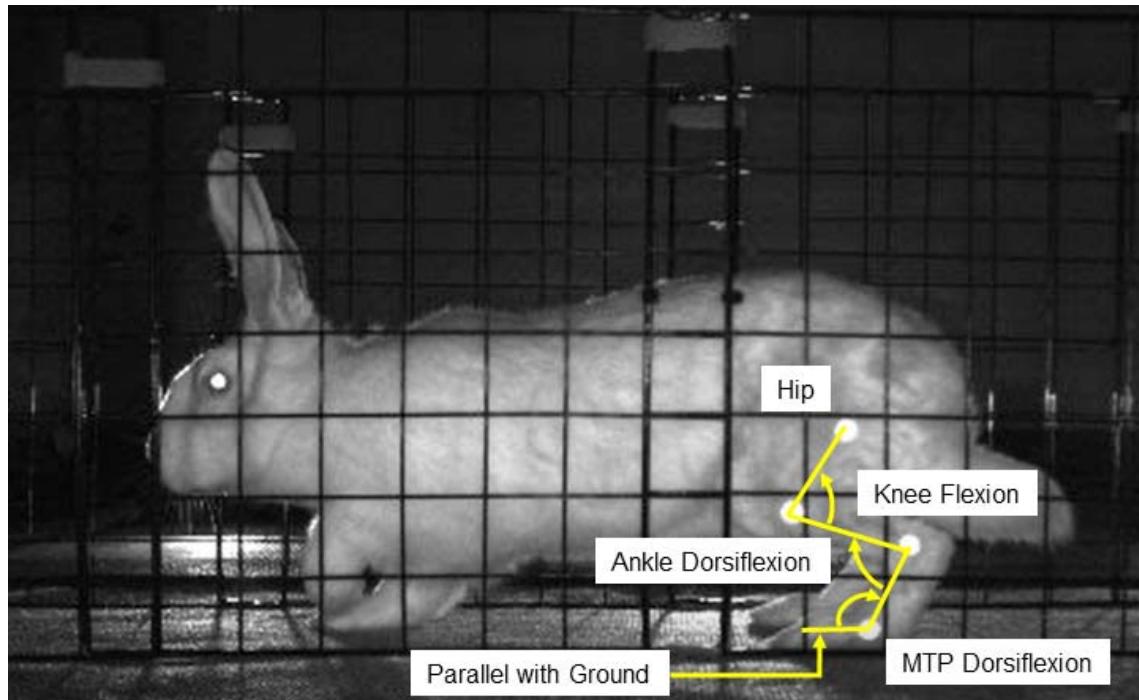
187

188 The operated limb was bandaged for three days post-surgery, and silver sulfadiazine topical
189 cream was applied to the incisions. Each rabbit received hydromorphone (1 mg/kg IM; q 6 h for
190 3 days), enrofloxacin (5 mg/kg PO; q 12 h for 7 days), and meloxicam (1 mg/kg PO; q 24 h for 7
191 days). Lactated ringer's solution (150 ml SC) was administered twice daily starting the day after
192 surgery and continuing for 5 doses. Rabbits were weighed at least twice per week for two weeks
193 post-surgery, then at least every other week for the remainder of the study. Our IACUC protocol
194 established *a priori* that a rabbit would be removed from the study by humane euthanasia if (1)
195 its body weight decreased by at least 20% from the pre-surgery and showed no signs of
196 improvement with intervention; (2) there was dehiscence, tissue breakdown, or infection that
197 could not be treated or repaired; or (3) other signs of distress were present that could not be
198 managed.

199

200 Prior to surgery and after recovery from surgery, biomechanics and imaging data were collected
201 every other week until the end of the study. During off weeks, in a single session, the rabbits
202 hopped along the walkway six times in each direction (see below). At 8 weeks post-surgery, the
203 rabbits were humanely euthanized by intravenous overdose of pentobarbital (390 mg/ml,
204 minimum 1 ml/10 lbs).

205


206

207 Biomechanics Testing

208 Prior to surgery, rabbits were trained to hop along a 2.6 m-long walkway with an active high-
209 resolution pressure sensing area of 1.3 m (2-Tile High-Resolution Strideway System, Tekscan,
210 Norwood, MA, USA). Reflective 7.5 mm flat circular markers were placed on the lateral aspect
211 of the left limb at the hip (greater trochanter), knee, ankle (lateral malleolus), and 5th
212 metatarsophalangeal (MTP) joint (Figure 2). Marker trajectories were recorded with three high-
213 speed cameras (Prime 13, OptiTrack, NaturalPoint, Inc, Corvallis, OR, USA) that were placed
214 equidistant from each other and parallel to one side of the walkway in order to capture sagittal
215 plane motion. Pressure and video data were recorded synchronously at 240 Hz. The researchers
216 were not blinded to rabbit group assignment during the biomechanics test sessions.

217

218 Pressure data were processed using pressure analysis software (Strideway 7.80, Tekscan,
219 Norwood, MA, USA) and custom written MATLAB scripts (MATLAB 2022a, MathWorks,
220 Natick, MA, USA). Videos were exported from the motion capture software (Motive:Tracker
221 1.9, OptiTrack, NaturalPoint, Inc. Corvallis, OR, USA) and marker position data was initially
222 obtained using DeepLabCut²². Custom written MATLAB scripts were used to manually verify
223 and adjust the marker positions, calculate sagittal plane joint angles for the knee, ankle, and MTP
224 joints, and combine the joint angle data from the 3 cameras into one time-series curve for the
225 entire length of the walkway. MTP angle during stance was calculated using the ankle marker
226 and a ground plane defined as a horizontal line on the video frames (Figure 2). The researchers
227 who processed the data were not involved in the surgery or data collection, and were blinded to
228 rabbit group assignment.

229
230 **Figure 2:** Image of a subject hopping in the walkway. Bright dots are the 7.5 mm flat circular
231 markers located at the hip, knee, ankle, and 5th metatarsophalangeal (MTP) joints. Arrows
232 indicate direction for flexion of a given joint.

233

234 Data Analysis

235 Statistical analysis software (SAS 9.4, SAS Institute, Cary, NC, USA) was used to perform a
236 two-factor (group, timepoint, and group*timepoint) analysis of variance (ANOVA) with repeated
237 measures (rabbit). A *p*-value < 0.05 was used to determine any significant differences. The factor
238 “group” included levels “TE” and “PET-SI”, and the factor “timepoint” included levels
239 “baseline” (pre-surgery), “2 weeks post-surgery”, and “8 weeks post-surgery”. Normality of data
240 was assessed using a Shapiro-Wilk test, and non-normal data were corrected using rank data
241 transformation if necessary. Gait velocity was included as a covariate in the model. Least
242 squared means with a Tukey-Kramer adjustment was used for post-hoc pairwise comparisons,
243 ten in total:

244 • Weeks Post-Surgery

245 ○ Baseline vs. 2 weeks post-surgery

246 ○ Baseline vs. 8 weeks post-surgery

247 ○ 2 weeks post-surgery vs. 8 weeks post-surgery

248 • Group x Weeks Post-Surgery

249 ○ TE baseline vs PET-SI baseline

250 ○ TE baseline vs. TE 2 weeks post-surgery

251 ○ TE baseline vs. TE 8 weeks post-surgery

252 ○ TE 2 weeks post-surgery vs. TE 8 weeks post-surgery

253 ○ PET-SI baseline vs. PET-SI 2 weeks post-surgery

254 ○ PET-SI baseline vs. PET-SI 8 weeks post-surgery

255 ○ PET-SI 2 weeks post-surgery vs. PET-SI 8 weeks post-surgery

256

257 Three trials for each timepoint for each rabbit were selected to include in the analysis (3 trials x 3 timepoints x 10 rabbits = 90 trials). In order to choose the three trials, each video initially was

258 assessed qualitatively; a video was excluded if the rabbit was hopping abnormally (i.e., play

259 hopping or flicking of feet while hopping) at any point during the trial. For the remaining videos,

260 the gait velocity was calculated for each rabbit and video and averaged across timepoints. At

261 each timepoint, the three trials that were closest to the average gait velocity for the rabbit were

262 selected for further analysis. Comparisons were made for the operated limb only. The

263 independent variables for pressure mat data were peak vertical force, vertical impulse, vertical

264 impulse distribution, and average ground contact area. The independent variables for kinematics

265 data were stance percent of stride, range of motion, and maximum, minimum, and average joint

266

267 angle for the knee and ankle during the stance and swing phase of gait and for the MTP during
268 stance phase of gait. Stance and swing phases of gait were determined using the pressure mat
269 data. Peak vertical force and vertical impulse were normalized by body weight.

270

271 Statistical parametric mapping (SPM)^{23,24} open-source MATLAB software²⁵ was used to
272 compare the kinematic curves for each group, joint, and gait phase. A two-factor (group,
273 timepoint, and group*timepoint) ANOVA with repeated measures (rabbit) was performed first.
274 Then, post-hoc tests were performed using a SPM two-tailed paired t-test to compare joint angles
275 between timepoints within each group. A Bonferroni correction was used to account for multiple
276 comparisons.

277

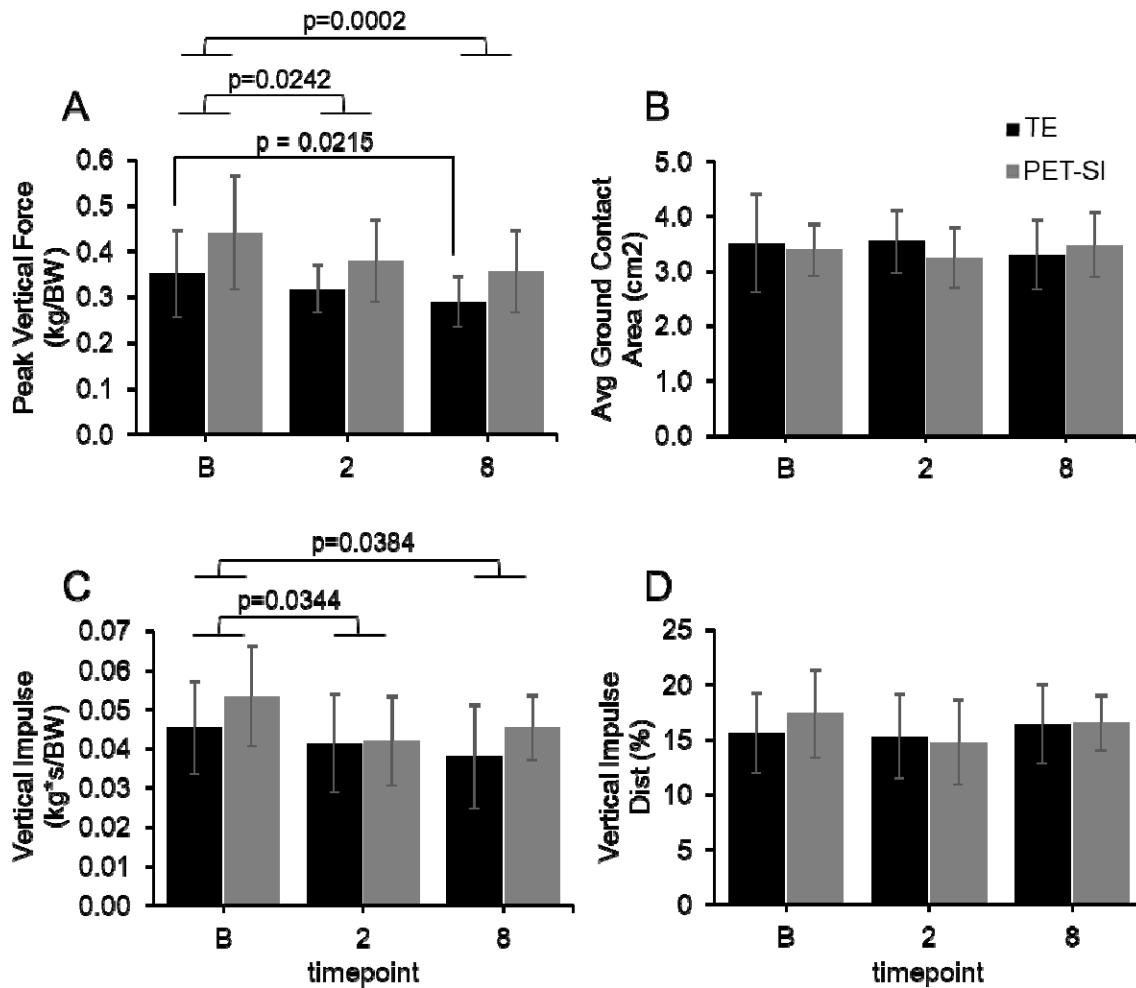
278 **Results**

279 No rabbit was excluded or removed prematurely from the study; all rabbits in each group (n=5
280 per group) were included in the data analysis. There were no significant differences in age or
281 weight at time of surgery, weight at euthanasia, or length of the biological tendon between the
282 two groups (Table 1). The length of the artificial tendons ranged from 84.9% to 92.7% (mean
283 $89.5 \pm 3.2\%$) of the length of the biological tendon (Table 1), which was within the targeted
284 range.

285 **Table 1:** Rabbit demographics and biological and artificial tendon lengths for the tendon
286 excision only and tendon excision with replacement groups.

	Age (wks)	Weight at surgery (kg)	Weight at euthanasia (kg)	Biological tendon length (mm)	Artificial tendon length (mm)	Percent Biological Tendon (%)
Tendon Excision Only Group						
TE1	17.4	3.08	3.9	62	NA	NA
TE2	17.4	3.62	4.63	60	NA	NA
TE3	17.4	3.74	4.74	58	NA	NA
TE4	19.4	4.02	4.87	43	NA	NA
TE5	19.4	3.85	4.61	51	NA	NA
Mean (std)	18.2 (1.1)	3.66 (0.36)	4.55 (0.38)	54.8 (7.8)		
Tendon Excision and Replacement Group						
PET-SI1	19.1	4	4.65	50	44	88.0
PET-SI2	17.4	3.69	4.36	50	45	90.0
PET-SI3	17.4	3.21	4.26	50	46	92.0
PET-SI4	19.4	3.75	4.56	55	51	92.7
PET-SI5	19.4	3.42	4.47	53	45	84.9
Mean (std)	18.6 (1.0)	3.6 (0.31)	4.5 (0.16)	51.6 (2.3)	46.2 (2.8)	89.5 (3.2)

287


288

289 Biomechanics: Pressure Data

290 Timepoint was significant for peak vertical force ($p=0.0002$) and vertical impulse ($p=0.0180$).

291 More specifically, across groups, both peak vertical force and vertical impulse were significantly
292 less at 2 and 8 weeks post-surgery compared to baseline (Figure 3A and C). In addition, peak
293 vertical force was significantly less at 8 weeks post-surgery compared to baseline for the TE
294 group ($p=0.0215$), but not the PET-SI group ($p=0.0621$). Faster gait velocity was significantly
295 associated with greater peak vertical force ($p=0.0028$) and vertical impulse ($p=0.0191$).

296

297
298 **Figure 3:** Mean values and standard deviation at baseline (pre-surgery), and 2 weeks, and 8
299 weeks post-surgery for the operated limb for the tendon excision only (TE) and tendon excision
300 and replacement (PET-SI) groups for A) Peak vertical force normalized by body weight
301 (kg/BW); B) Average ground contact area (cm²); C) Impulse normalized by body weight
302 (kg*s/BW); D) Vertical impulse distribution (%).

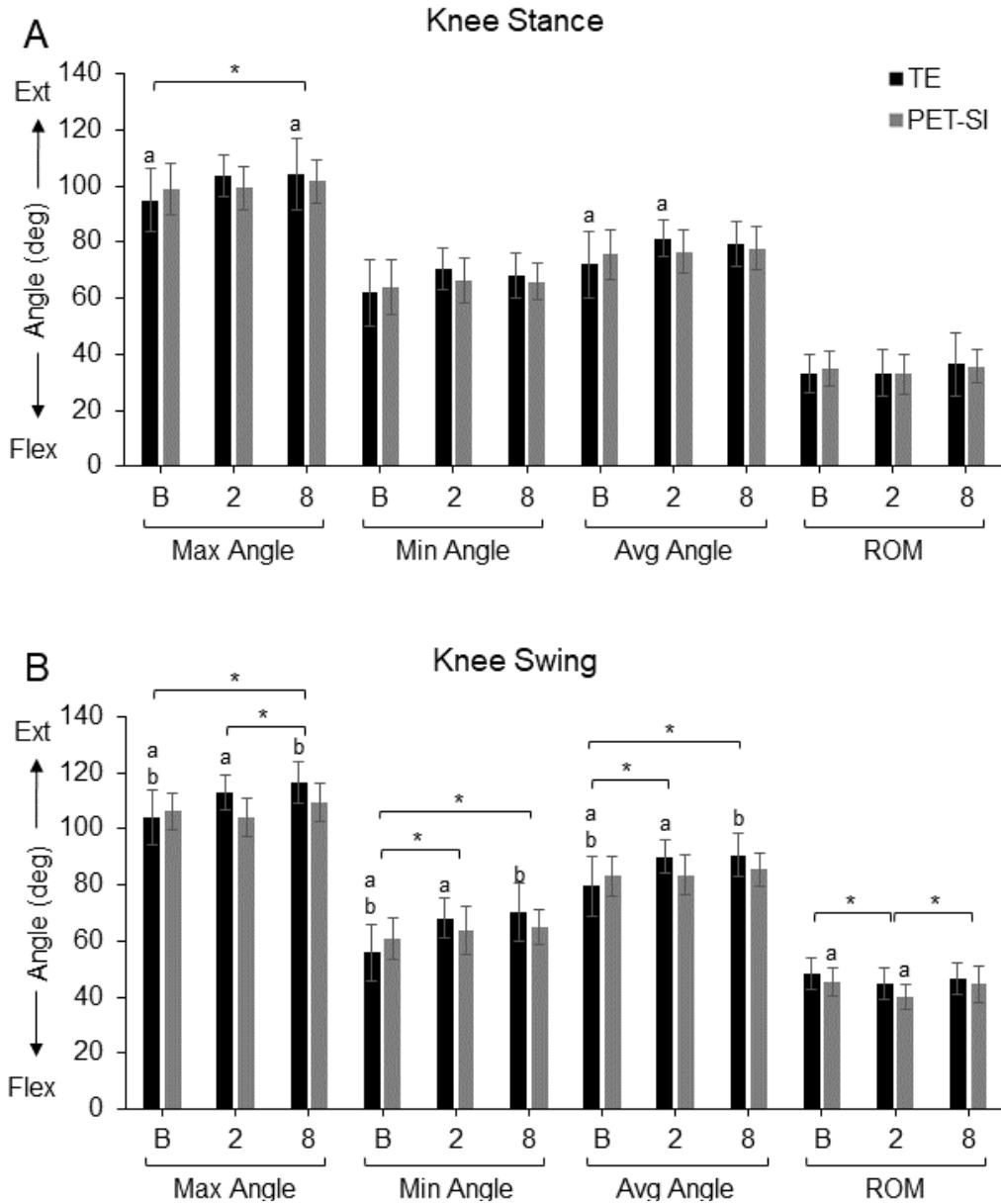
303

304 Biomechanics: Kinematics

305 Of the main factors, treatment group was not significant, but timepoint had a significant effect on
306 many of the kinematics variables for both groups (Figures 3 – 5, Table 2). The p-values for main
307 effects, their interaction, and the by-week comparisons are in Tables 2 and 3. Across groups,

308 there was an increase in ankle plantarflexion and knee extension and a decrease in ankle
309 dorsiflexion and knee flexion at 2 and 8 weeks post-surgery compared to baseline, especially
310 during swing phase. Across groups, the overall range of motion during swing phase was
311 significantly less for the knee at 2 weeks post-surgery and the ankle at 2 and 8 weeks post-
312 surgery compared to baseline. There was significant recovery of range of motion in the knee and
313 average angle of the MTP by 8 weeks post-surgery. There was no difference in stance percent of
314 stride across groups or timepoints (Table 4). However, gait velocity was significantly correlated
315 with the stance percent of stride ($p < 0.0001$; Table 2).

316


317 For the group-by-timepoint interactions, during stance (Figures 3a, 4a, and 5a, Table 3), the TE
318 group's knee extension significantly increased from baseline to 8 weeks post-surgery, and the
319 knee was significantly more extended overall at 2 weeks post-surgery compared to baseline. In
320 contrast, the PET-SI group had no significant differences among timepoints for the knee during
321 stance. However, the PET-SI group had significantly less ankle and MTP dorsiflexion at 2 weeks
322 post-surgery compared to baseline.

323

324 There were more between-factor differences in kinematics variables during the swing phase of
325 gait compared to the stance phase (Figures 3b, 4b, 5b, Table 3). At 2 and 8 weeks post-surgery
326 compared to baseline, the TE group maintained the knee and ankle in a significantly more
327 extended/plantarflexed position overall, with significantly greater knee extension, less knee
328 flexion, and less ankle dorsiflexion. For the PET-SI group, the knee range of motion was
329 significantly less at 2 weeks post-surgery compared to baseline, but partly recovered by 8 weeks
330 post-surgery. Similar to the TE group, there was a significant decrease in maximal ankle

331 dorsiflexion at 2 and 8 weeks post-surgery compared to baseline. However, the overall posture
332 (average angle) of the ankle was not significantly affected.

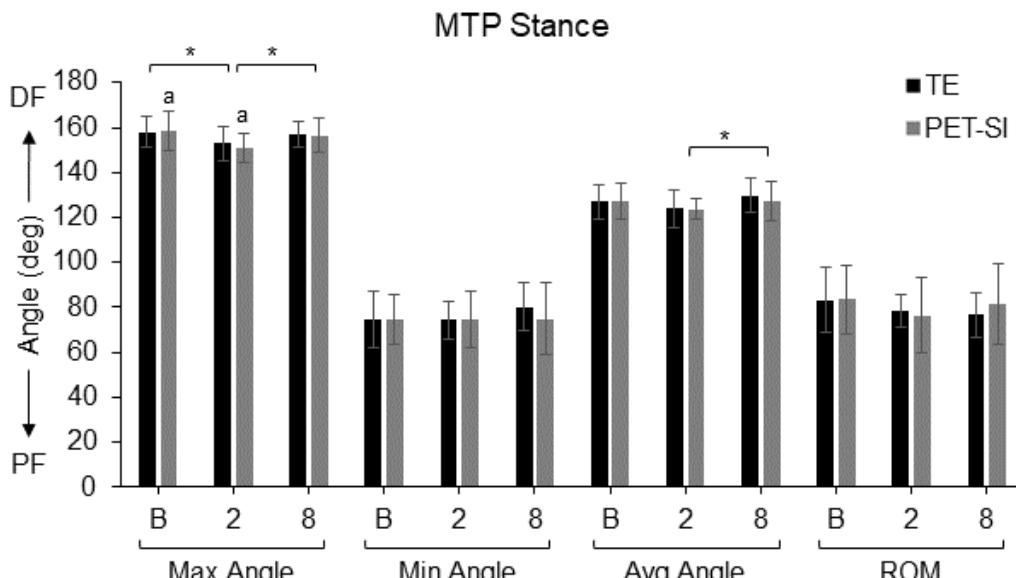
333
334

335
336 **Figure 4:** Maximum, minimum, and average knee joint angles and knee range of motion (ROM)
337 for the tendon excision (TE) only group and tendon excision and replacement (PET-SI) group at
338 baseline (B, pre-surgery), 2 weeks post-surgery, and 8 weeks post-surgery during A) stance
339 phase of gait, and B) swing phase of gait. Error bars represent one standard deviation. Ext –

340 Extension; Flex – Flexion. A larger angle indicates greater extension/less flexion. * indicates
341 significant ($p < 0.05$) differences between timepoints across groups. a, b indicate significant ($p <$
342 0.05) differences between timepoints within a group. Table 3 gives specific p -values for each
343 comparison.

344

345


346
347 **Figure 5:** Mean maximum, minimum, and average ankle joint angles and ankle range of motion

348 (ROM) and standard deviation for the tendon excision (TE) only group and tendon excision and

349 replacement (PET-SI) group at baseline (B, pre-surgery), 2 weeks post-surgery, and 8 weeks
350 post-surgery during A) stance phase of gait, and B) swing phase of gait. PF – Plantarflexion; DF
351 – Dorsiflexion. A larger angle indicates greater plantarflexion/less dorsiflexion. * indicates
352 significant ($p < 0.05$) differences between timepoints across groups. a, b indicate significant ($p <$
353 0.05) differences between timepoints within a group. Table 3 gives specific p -values for each
354 comparison.

355

356

357
358 **Figure 6:** Maximum, minimum, and average MTP joint angles and MTP range of motion

359 (ROM) for the tendon excision (TE) only group and tendon excision and replacement (PET-SI)
360 group at baseline (B, pre-surgery), 2 weeks post-surgery, and 8 weeks post-surgery during stance
361 phase of gait. Error bars represent one standard deviation. PF – Plantarflexion; DF –
362 Dorsiflexion. A larger angle indicates greater dorsiflexion/less plantarflexion. * indicates
363 significant ($p < 0.05$) differences between timepoints across groups. a indicates significant ($p <$
364 0.05) differences between timepoints within a group. Table 3 gives specific p -values for each
365 comparison.

366 **Table 2:** Statistical results (*p*-values) from the 2-factor ANOVA with repeated measures for each
 367 kinematic variable for knee, ankle, and MTP joints during stance and swing phase of gait. The
 368 normality column indicates whether the data needed to be transformed or not. Group was TE or
 369 PET-SI. Weeks post was baseline, 2 or 8-weeks post-surgery. GxW is the group by weeks post-
 370 surgery interaction term. Gait velocity was included as a covariate in the model. ROM – range of
 371 motion; NS – not significant. *p* < 0.05 were considered significant differences. *p* < 0.1 were also
 372 included.

Knee						
Variable	Gait Phase	Normality	Group	Weeks Post	GxW	Gait Velocity
Max Angle	Stance	NS	NS	0.027	NS	NS
	Swing	NS	NS	< 0.0001	0.0008	NS
Min Angle	Stance	Transformed	NS	0.0932	NS	NS
	Swing	NS	NS	< 0.0001	0.0108	NS
Avg Angle	Stance	Transformed	NS	0.0809	0.0497	NS
	Swing	Transformed	NS	0.0004	0.0066	NS
ROM	Stance	NS	NS	NS	NS	NS
	Swing	NS	NS	0.0017	NS	NS
Ankle						
Variable	Gait Phase	Normality	Group	Weeks Post	GxW	Gait Velocity
Max Angle	Stance	Transformed	NS	NS	NS	0.0575
	Swing	Transformed	NS	0.0145	NS	NS
Min Angle	Stance	NS	NS	0.0012	NS	NS
	Swing	Transformed	NS	< 0.0001	NS	NS
Avg Angle	Stance	Transformed	NS	0.0097	NS	NS
	Swing	Transformed	NS	< 0.0001	NS	NS
ROM	Stance	NS	NS	0.0825	NS	NS
	Swing	NS	NS	0.0055	NS	NS
MTP						
Variable	Gait Phase	Normality	Group	Weeks Post	GxW	Gait Velocity
Max Angle	Stance	NS	NS	0.0005	NS	NS
	Swing	Transformed	NS	< 0.0001	NS	NS
Min Angle	Stance	NS	NS	NS	NS	NS
	Swing	NS	NS	0.0588	NS	NS
Avg Angle	Stance	NS	NS	0.0398	NS	NS
	Swing	NS	NS	< 0.0001	NS	NS
ROM	Stance	NS	NS	0.08	NS	NS
	Swing	Transformed	NS	NS	NS	NS

373 **Table 3:** Statistical results (*p*-values) for the LS means with Tukey-Kramer multiple comparison
 374 adjustment for each kinematic variable for the knee, ankle, and MTP joints during stance and
 375 swing phase of gait for each timepoint. Group was combined (averaged over TE and PET-SI),
 376 TE or PET-SI. Timepoints were baseline (B), 2-, or 8-weeks post-surgery. ROM – range of
 377 motion; NS – not significant. *p* < 0.05 were considered significant differences. *p* < 0.1 were also
 378 included.

Group	Variable	Gait Phase	Knee			Ankle			MTP			
			B vs 2	B vs 8	2 vs 8	B vs 2	B vs 8	2 vs 8	B vs 2	B vs 8	2 vs 8	
Combined (averaged over TE and PET-SI)	Max Angle	Stance	NS	0.0262	<	NS	NS	NS	NS	0.0006	NS	0.0078
		Swing	0.0971	0.0001	0.0098	0.0111	NS	NS	0.0001	<	NS	0.0001
	Min Angle	Stance	0.0754	NS	NS	0.0013	NS	0.0167	NS	NS	NS	NS
		Swing	0.0002	0.0001	<	NS	<	<	NS	0.0759	NS	NS
	Avg Angle	Stance	0.0979	NS	NS	0.0085	NS	0.0871	NS	NS	0.034	
		Swing	0.0053	0.0005	NS	0.0001	0.0007	NS	0.0001	<	NS	0.0003
	ROM	Stance	NS	NS	NS	NS	NS	0.0795	0.0736	NS	NS	
		Swing	0.0014	NS	0.0367	0.0117	0.0161	NS	NS	NS	NS	
	Max Angle	Stance	0.0787	0.0494	NS							
		Swing	0.0012	0.0001	<	NS	NS	NS	NS	0.0101	NS	NS
	Min Angle	Stance	0.0527	NS								
		Swing	<	<	NS	0.0025	0.0038	NS	NS	NS	NS	NS
	Avg Angle	Stance	0.0196	NS								
		Swing	0.0004	0.0002	NS	0.0018	0.0216	NS	0.0149	NS	NS	NS
	ROM	Stance	NS									
		Swing	NS									
PET-SI	Max Angle	Stance	NS	NS	NS	NS	NS	NS	0.0317	NS	NS	
		Swing	NS	NS	NS	NS	NS	NS	0.0021	NS	0.0059	
	Min Angle	Stance	NS	NS	NS	0.0145	NS	NS	NS	NS	NS	
		Swing	NS	NS	NS	0.0051	0.046	NS	NS	NS	NS	
	Avg Angle	Stance	NS	NS	NS	0.07	NS	NS	NS	NS	NS	
		Swing	NS	NS	NS	0.0531	NS	NS	0.0222	NS	0.0141	
	ROM	Stance	NS									

		Swing	0.0251	NS							
--	--	--------------	--------	----	----	----	----	----	----	----	----

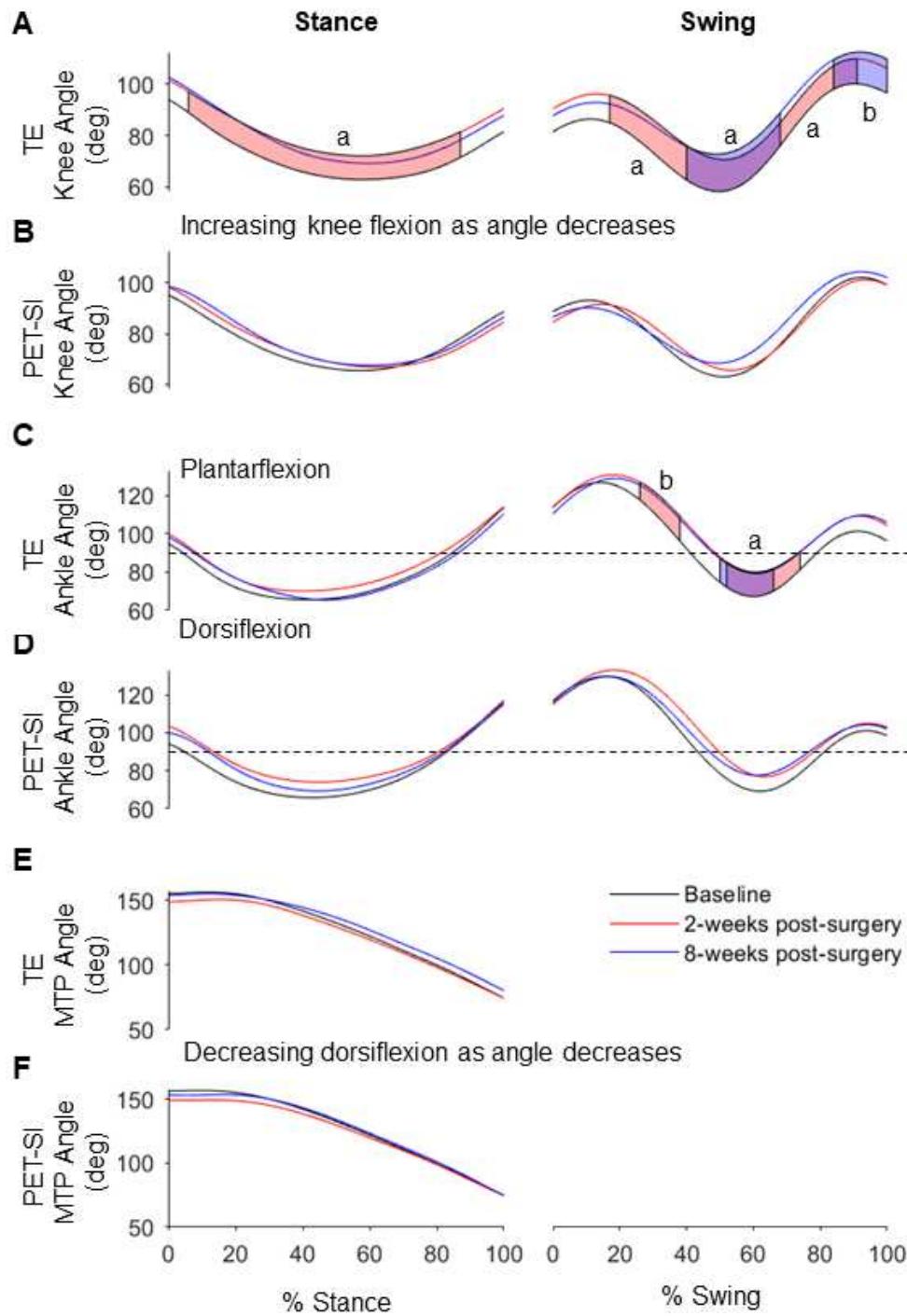
379

380

381 **Table 4:** The percentage of the gait cycle that was the stance phase for both groups over time.

382 There were no significant differences between groups or over time.

Weeks Post-Surgery/ Group	Stance Percent Stride (Std)		
	Baseline	2	8
TE	48.1 (6.0)	47.6 (4.7)	48.2 (4.9)
PET-SI	48.6 (3.5)	45.9 (6.9)	49.7 (5.0)


383

384

385 Statistical Parametric Mapping Analysis

386 There was a significant difference in joint angle among the three timepoints between ~44-58% of
387 the swing phase for the knee and ~38-80% of the swing phase for the ankle. Post-hoc paired t-
388 tests showed that knee flexion was significantly less during stance at 2 weeks post-surgery and
389 during swing at 2 and 8 weeks post-surgery for the TE group (Figure 7a). Ankle dorsiflexion was
390 also significantly less during swing at 2 and 8 weeks post-surgery for the TE group (Figure 7c).
391 There were no significant differences among timepoints in the PET-SI group for the knee or
392 ankle.

393

394

395

Figure 7: Mean joint angles for TE and PET-SI groups over the gait cycle for the A,B) knee, C,D) ankle, and E,F) MTP. The horizontal dashed line in C and D indicates 90° where the ankle is at neutral dorsi/plantar-flexion. Red shaded areas indicate significant differences between baseline and 2 weeks post-surgery. Blue shaded areas indicate significant differences between

399 baseline and 8 weeks post-surgery. Purple shaded areas are the overlap of red and blue shaded
400 areas. a: $p = 0.001$; b: $p = 0.002$.

401

402

403 **Discussion**

404

405 The results supported our hypotheses that compared to the TE group, the PET-SI group would
406 have greater peak ankle dorsiflexion angle and ankle range of motion during the swing phase of
407 gait. Additionally, compared to the TE group, the hindlimb kinematics of the PET-SI group were
408 more similar to baseline kinematics measured pre-surgery. Our results were consistent with those
409 of our previous preliminary study²⁰ and suggest that the artificial tendons effectively performed
410 the biomechanical function of the native tendons they replaced.

411

412 Non-intuitively, peak vertical force at 8 weeks post-surgery was significantly less than at pre-
413 surgery for the TE group and nearly so for the PET-SI group. This was unexpected since the
414 tibialis cranialis muscle, based on its moment arm, does not generate torque that is expected to
415 contribute to vertical ground contact force. A possible explanation for the difference is that the
416 rabbits could have shifted biomechanical loads from the operated limb to the sound limb and
417 spend less time on the operated limb, potentially due to discomfort or perceived functional
418 impairment of the operated limb; further analysis of bilateral pressure data is needed to confirm
419 this. In addition, a longer study duration would help determine if peak vertical force normalizes
420 with additional recovery time.

421

422 An important anatomical feature that allows biological tendons to slide relative to surrounding
423 tissues is the tendon sheath. In the PET-SI group, it appeared that a sheath formed around the
424 artificial tendon; immediately post-mortem, we observed the artificial tendon sliding relative to
425 surrounding tissues during passive ankle motion (supplementary video). Thus, the silicone
426 coating performed the intended function of preventing tissues from adhering to the surface of the
427 artificial tendon. These findings are qualitative, visual inspections of the tissues; the extent to
428 which the structure and function of the tissues surrounding the artificial tendons mimic the native
429 epitendon or tendon sheath surrounding the biological tendons is unknown. Future studies will
430 evaluate histology samples to assess the cellular structure of the tissues ensheathing the artificial
431 tendons. Functionally, it would also be useful to quantify the effective mechanical friction and
432 damping coefficients at the tendon-sheath interface.

433
434 Though we observed statistically significant differences between the PET-SI and TE groups, the
435 TE group still appeared to have substantial ankle dorsiflexion function. Notably, the TE group
436 had an average maximum dorsiflexion angle during swing phase of gait of 75.4° , which was only
437 3.1° less than that of the PET-SI group. One possible explanation is that, in the TE group, other
438 muscles crossing the ankle, such as extensor digitorum longus and the peroneus muscle group
439 (longus, brevis, tertius)²⁶, may have compensated substantially for the lost contribution of the
440 tibialis cranialis muscle to ankle dorsiflexion torque and movement. The extensor digitorum
441 longus muscle also crosses the knee and ankle²⁷ and, thus, may generate an ankle dorsiflexion
442 torque passively as the knee is flexed. Finally, we suspect that the ankle joint is at least partly
443 dorsiflexed passively during both stance and swing phases of hopping gait: during stance as the

444 torso and proximal hindlimb move cranially and near the end of the cranial swing of the
445 hindlimb due to the inertia of the foot.

446
447 There are several possible reasons for the modest biomechanical declines from pre- to post-
448 surgery of rabbits with the PET-SI artificial tendons. For one, the PET-SI artificial tendon did
449 not interface with the muscle as seamlessly as a biological tendon does. Specifically, biological
450 tendons integrate with muscles over a large portion of their length via aponeuroses, which
451 facilitates force transmission between muscle and tendon²⁸; conversely, a relatively small
452 number (four) of suture strands of the artificial tendon were tied to the distal end of the muscle.
453 Second, the mechanical properties (e.g., stiffness) may be different between biological and
454 artificial tendons; such differences have not been quantified but will be investigated in a future
455 study. Third, though surgical interventions may have caused pain and discomfort in both groups,
456 these may have been greater in the PET-SI group due to the implantation of the artificial tendons.
457 Fourth, the biologic tendon passes under the extensor retinaculum whereas the artificial tendon,
458 due to its size, cannot be placed under the retinaculum. This results in a change in the moment
459 arm and torque direction between the biologic and artificial tendons. Finally, both groups were
460 bandaged for 3 days post-surgery, which partly immobilized the ankle joint; bandaging may have
461 had modest adverse effects (e.g., disuse muscle atrophy) leading to impaired biomechanical
462 function²⁹.

463
464 There were several limitations of our study. First, the number of samples per group was
465 relatively small, which may have underpowered our statistical comparisons for some variables;
466 however, the group size was similar to those of the previous *in vivo* studies of the PET-SI

467 tendons¹⁴⁻¹⁷. Second, the study duration was relatively short; functional recovery may have been
468 improved with more time. Third, the study did not include a control group of healthy, non-
469 operated rabbits to account for potential changes in biomechanics as the rabbits aged or gained
470 more experience with our experiment protocol from pre- to post-surgery. Fourth, we surgically
471 replaced a healthy biological tendon with an artificial tendon in a single surgery; future studies
472 should model the common clinical scenario that a tendon defect is present for some period prior
473 to surgical replacement with an artificial tendon.

474
475 In conclusion, our *in vivo* study provided the most substantial quantitative evidence to date of a
476 positive treatment effect of PET-SI artificial tendons on biomechanical motor function.
477 Therefore, PET-SI artificial tendons potentially could be an effective alternative treatment option
478 for critically sized tendon defects and other severe tendon pathologies.

479
480 **Conflict of Interest**
481 None.

482
483 **Acknowledgements**
484 Thank you to Dr. Bryce Burton, Dr. Kelsey Finnie, and Chris Carter for veterinary care and
485 support, and to the Animal Housing Facility staff for animal care assistance. Thank you to Kellie
486 McGhee, Ivy Milligan, and Raina Desai for their help with data collection and analysis. Research
487 was funded by the National Institutes of Health Award #R61AR078096. The funder had no role
488 in study design, data collection and analysis, decision to publish, or preparation of the
489 manuscript.

490
491
492
493
494

495 References

496

- 497 1. Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendinous and
498 ligamentous injuries. *Injury*. 2008;39(12):1338-1344.
- 499 2. Jepegnanam TS, Nithyananth M, Boopalan PR, Cherian VM, Titus VT. Reconstruction
500 of open contaminated achilles tendon injuries with soft tissue loss. *J Trauma*.
501 2009;66(3):774-779.
- 502 3. Iorio ML, Han KD, Evans KK, Attinger CE. Combined Achilles tendon and soft tissue
503 defects: functional outcomes of free tissue transfers and tendon vascularization. *Ann Plast
504 Surg*. 2015;74(1):121-125.
- 505 4. Schachter AK, White BJ, Namkoong S, Sherman O. Revision reconstruction of a
506 pectoralis major tendon rupture using hamstring autograft: a case report. *Am J Sports
507 Med*. 2006;34(2):295-298.
- 508 5. Sarzaem MM, Lemraski MM, Safdari F. Chronic Achilles tendon rupture reconstruction
509 using a free semitendinosus tendon graft transfer. *Knee Surg Sports Traumatol Arthrosc*.
510 2012;20(7):1386-1391.
- 511 6. Crossett LS, Sinha RK, Sechriest VF, Rubash HE. Reconstruction of a ruptured patellar
512 tendon with achilles tendon allograft following total knee arthroplasty. *J Bone Joint Surg
513 Am*. 2002;84(8):1354-1361.
- 514 7. Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after
515 anterior cruciate ligament reconstruction using autografts. *Arthroscopy*. 2001;17(9):971-
516 980.
- 517 8. LaSalle WB, Strickland JW. An evaluation of the two-stage flexor tendon reconstruction
518 technique. *J Hand Surg Am*. 1983;8(3):263-267.
- 519 9. Frakking TG, Depuydt KP, Kon M, Werker PM. Retrospective outcome analysis of
520 staged flexor tendon reconstruction. *J Hand Surg Br*. 2000;25(2):168-174.
- 521 10. Murray GA, Semple JC. A review of work on artificial tendons. *J Biomed Eng*.
522 1979;1(3):177-184.
- 523 11. Rawlins R. The role of carbon fibre as a flexor tendon substitute. *Hand*. 1983;15(2):145-
524 148.
- 525 12. Howard CB, McKibbin B, Ralis ZA. The use of Dexon as a replacement for the calcaneal
526 tendon in sheep. *J Bone Joint Surg Br*. 1985;67(2):313-316.
- 527 13. Mendes DG, Iusim M, Angel D, Rotem A, Mordehovich D, Roffman M, Lieberson S,
528 Boss J. Ligament and tendon substitution with composite carbon fiber strands. *J Biomed
529 Mater Res*. 1986;20(6):699-708.
- 530 14. Melvin DB, Klosterman B, Gramza BR, Byrne MT, Weisbrode SL, Litsky AS, Clarson
531 SJ. A durable load bearing muscle to prosthetic coupling. *ASAIO journal (American
532 Society for Artificial Internal Organs : 1992)*. 2003;49(3):314-319.
- 533 15. Melvin AJ, Litsky AS, Mayerson JL, Stringer K, Juncosa-Melvin N. Extended healing
534 validation of an artificial tendon to connect the quadriceps muscle to the Tibia: 180-day
535 study. *J Orthop Res*. 2012;30(7):1112-1117.

536 16. Melvin A, Litsky A, Mayerson J, Stringer K, Melvin D, Juncosa-Melvin N. An artificial
537 tendon to connect the quadriceps muscle to the tibia. *J Orthop Res.* 2011;29(11):1775-
538 1782.

539 17. Melvin A, Litsky A, Mayerson J, Witte D, Melvin D, Juncosa-Melvin N. An artificial
540 tendon with durable muscle interface. *J Orthop Res.* 2010;28(2):218-224.

541 18. Abdullah S. Usage of synthetic tendons in tendon reconstruction. *BMC Proceedings.*
542 2015;9(3):A68.

543 19. Talia AJ, Tran P. Bilateral patellar tendon reconstruction using LARS ligaments: case
544 report and review of the literature. *BMC Musculoskeletal Disorders.* 2016;17(1):302.

545 20. Hall PT, Stubbs C, Pedersen AP, Billings C, Stephenson SM, Greenacre CB, Anderson
546 DE, Crouch DL. Effect of polyester-based artificial tendons on movement biomechanics:
547 A preliminary in vivo study. *Journal of Biomechanics.* 2023;151:111520.

548 21. Barry JA, Cotter MA, Cameron NE, Pattullo MC. The effect of immobilization on the
549 recovery of rabbit soleus muscle from tenotomy: modulation by chronic electrical
550 stimulation. *Exp Physiol.* 1994;79(4):515-525.

551 22. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M.
552 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
553 *Nature Neuroscience.* 2018;21(9):1281-1289.

554 23. Pataky TC. One-dimensional statistical parametric mapping in Python. *Computer
555 Methods in Biomechanics and Biomedical Engineering.* 2012;15(3):295-301.

556 24. Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical
557 parametric mapping. *J Biomech.* 2010;43(10):1976-1982.

558 25. Pataky TC. 2022; <https://spml1d.org>. Accessed February 3, 2023.

559 26. Lieber RL, Blevins FT. Skeletal muscle architecture of the rabbit hindlimb: functional
560 implications of muscle design. *J Morphol.* 1989;199(1):93-101.

561 27. Grover DM, Chen AA, Hazelwood SJ. Biomechanics of the rabbit knee and ankle:
562 muscle, ligament, and joint contact force predictions. *J Biomech.* 2007;40(12):2816-2821.

563 28. Bojsen-Moller J, Magnusson SP. Mechanical properties, physiological behavior, and
564 function of aponeurosis and tendon. *J Appl Physiol (1985).* 2019;126(6):1800-1807.

565 29. Bodine SC. Disuse-induced muscle wasting. *Int J Biochem Cell Biol.* 2013;45(10):2200-
566 2208.

567
568
569