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DNA methylation changes
underlie the long-term association
between periodontitis and
atherosclerotic cardiovascular
disease

Mohamed Omar, Maria Alexiou, Umar R. Rekhi, Konrad Lehmann,

Aneesh Bhardwaj, Cole Delyea, Shokrollah Elahi

and Maria Febbraio*

School of Dentistry, College of Life Sciences, University of Alberta, Edmonton, AB, Canada

Periodontitis, the leading cause of adult tooth loss, has been identified as an

independent risk factor for cardiovascular disease (CVD). Studies suggest that

periodontitis, like other CVD risk factors, shows the persistence of increased

CVD risk even after mitigation. We hypothesized that periodontitis induces

epigenetic changes in hematopoietic stem cells in the bone marrow (BM), and

such changes persist after the clinical elimination of the disease and underlie

the increased CVD risk. We used a BM transplant approach to simulate the

clinical elimination of periodontitis and the persistence of the hypothesized

epigenetic reprogramming. Using the low-density lipoprotein receptor knockout

(LDLRo) atherosclerosis mouse model, BM donor mice were fed a high-fat diet

to induce atherosclerosis and orally inoculated with Porphyromonas gingivalis

(Pg), a keystone periodontal pathogen; the second group was sham-inoculated.

Naïve LDLRo mice were irradiated and transplanted with BM from one of the

two donor groups. Recipients of BM from Pg-inoculated donors developed

significantly more atherosclerosis, accompanied by cytokine/chemokines that

suggested BM progenitor cell mobilization and were associated with

atherosclerosis and/or PD. Using whole-genome bisulfite sequencing, 375

differentially methylated regions (DMRs) and global hypomethylation in

recipients of BM from Pg-inoculated donors were observed. Some DMRs

pointed to the involvement of enzymes with major roles in DNA methylation

and demethylation. In validation assays, we found a significant increase in the

activity of ten-eleven translocase-2 and a decrease in the activity of DNA

methyltransferases. Plasma S-adenosylhomocysteine levels were significantly

higher, and the S-adenosylmethionine to S-adenosylhomocysteine ratio was

decreased, both of which have been associated with CVD. These changes may

be related to increased oxidative stress as a result of Pg infection. These data

suggest a novel and paradigm-shifting mechanism in the long-term association

between periodontitis and atherosclerotic CVD.
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Introduction

In most developed countries, cardiovascular disease (CVD)

remains the leading cause of death, despite major advances in

prevention and treatment options. In Canada, atherosclerosis,

which underlies CVD, accounts for 20% of all deaths (second

leading cause), which translates into a death every 7 min (1).

The evidence for chronic periodontal disease (PD) as an

independent risk factor for CVD has increased significantly in

recent years, with studies on both human and mouse models

suggesting a role (2–7). In total, 20%–24% of Canadians aged

20–79 years have moderate to severe PD, while 47% of the US

population >30 years has periodontitis; the rate is 64% for adults

65 years and older (1, 8). While the underlying mechanism for

the association between PD and CVD remains undetermined,

evidence supports increased systemic inflammation and

oxidative stress, endotoxemia, and endothelial dysfunction,

among others (9).

Porphyromonas gingivalis (Pg), a Gram-negative anaerobe, is a

keystone pathogen in chronic adult PD (10–12). This refers to its

ability to control the mass/composition of the oral plaque

community. Pg elicits a powerful host immune response that

leads to gum disengagement from teeth, pockets of inflammatory

cells, and bone destruction (13). Our previous work showed that

oral inoculation with Pg in an atherosclerosis-prone mouse

model, the low-density lipoprotein receptor knockout (LDLRo),

significantly increased atherosclerosis aortic lesion burden (4).

We found increased systemic inflammation related to toll-like

receptor 2 signaling and interleukin (IL)1beta generation, a key

cytokine in PD and atherosclerosis (4, 14–16). Our findings were

consistent with human studies that show that the effects of Pg

are not limited to the periodontium and add supportive evidence

for PD as a risk factor for inflammatory diseases other than

atherosclerosis, such as diabetes, chronic kidney disease, and

obesity (9).

Epidemiological and experimental human studies show that

atherosclerotic PD patients are at higher risk of heart attack and

stroke (17, 18). Successful treatment of PD has been shown to

have no effect or short-term changes on markers of

inflammation (19–22). The impact of therapy on CVD

progression, events, or mortality remains unclear (19, 20, 23, 24).

In one study, patients who had all teeth extracted and thus

verifiable eradication of PD were followed up for up to 17 years

and did not show lower CVD risk (23). Despite successful PD

treatment, the potential for sustained higher risk of CVD

suggests that PD may cause long-term changes and led to the

hypothesis that these changes affect immune cells and their

precursors, leading to an increased proatherogenic state, despite

eradication of the pathogen.

“Metabolic memory” is the concept that hyperglycemia can

induce persistent, long-term effects in cells after subsequent

normoglycemia is achieved (25). Thus, if tight glucose control is

not initiated immediately, despite such therapy, people with

diabetes remain at higher risk for CVD due to permanent

cellular changes (26, 27). Studies implicated epigenetic changes in

inflammatory genes and increased reactive oxygen species (ROS)

production as a driving mechanism (25, 28–32). Epigenetic

changes have also been shown due to PD, aging, diet,

atherosclerosis, and infection (33–40). Epigenetic modifications

alter gene expression in the absence of DNA sequence change

and include DNA methylation, histone modifications, and

changes in the expression of noncoding RNAs (41).

Transgenerational epigenetic effects of diet have been shown in

patients/mice and illustrate the potential for environmental

factors/CVD risk factors to induce such changes in stem cells

(42–47).

Atherosclerotic lesion macrophages derive from proliferation

at the site and through constant replenishment from the BM (48,

49). Thus, atherosclerotic risk factors may achieve long-lived

effects via epigenetic alterations in macrophage precursors.

Without downplaying the roles of other immune and vascular

cells in lesion development, or the potential impact of direct Pg

infection of lesions, this study focuses on the epigenomic

effects of Pg in the development of macrophage phenotype.

Our data show that LDLRo mice transplanted with BM from

LDLRo mice orally inoculated with Pg had greater

atherosclerosis than mice transplanted with sham-treated

mouse BM. This was accompanied by differential gene

expression in macrophages and genomic changes in

methylation patterns 5 months post-transplantation, all in the

absence of the pathogen.

Results

Oral lavage with Pg elicited an increased
inflammatory response in macrophages
from donor mice

The most commonly isolated human Pg strain (33277) was

used to infect LDLRo mice of both sexes by oral lavage (3, 4, 50);

control mice were sham-inoculated with vehicle alone (see

Figure 1A for study design). Mice were fed a high-fat diet (21%

fat, 0.15% cholesterol) to promote atherosclerosis, which

continued for 16 weeks. We designed this experiment to mimic a

patient with CVD risk factors (hyperlipidemia) with and without

PD. To determine the success in creating a chronic inflammatory

condition in mice after oral lavage with Pg, we investigated the

expression of cytokines known to be significantly associated with

PD (14, 15). qPCR of macrophage lysates isolated 16 weeks after

initial inoculation with Pg showed a significant 3- to 4-fold

increase in IL1beta and IL6 compared to sham-inoculated mice;

tumor necrosis factor (TNF) alpha was not significantly elevated

(Figure 1B). Donor mice were of similar weight (data not

shown) and had similar insulin sensitivity as gauged by glucose

tolerance testing (Figure 1C).
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Male mice transplanted with BM from
Pg-inoculated donors had greater
atherosclerosis lesion burden than male
mice transplanted with BM from
sham-inoculated mice

LDLRo mice of both sexes were irradiated (lethal dose)

following a standard protocol. Because we transplanted LDLRo

BM into LDLRo mice, it was impossible to directly confirm

engraftment success. Accordingly, a control experiment was

performed, whereby CD36o mice were transplanted with wild-

type BM. Chimerism was assessed by polymerase chain reaction

(PCR) using isolated DNA from white blood cells from recipient

mice, collected 4 weeks after irradiation. All recipient mice

showed only the CD36 wild-type genotype under conditions

where there was successful amplification of CD36 wild-type and

CD36o alleles (Supplementary Material Figure S1A). In a

second experiment, we transplanted CD36 wild-type mice with

CD36o BM. White blood cells were isolated and subjected to flow

cytometry analysis. Monocytes were selected by gating on the

CD11b- and CD11c-positive population, and then the expression

of CD36 was measured. Cells from nontransplanted CD36 wild-

type mice showed a CD36+ monocyte population of 18.6%,

whereas those transplanted with CD36o BM showed less than 1%

positive cells in three different recipients (Supplementary

Material Figure S1B) 4 weeks after transplantation. These

control experiments indicated that our irradiation and

transplantation protocols were successful.

As shown in Figure 2A, mice that received BM from Pg-

inoculated mice had significantly more (38%) atherosclerotic

lesions than those that received BM from sham-treated mice.

Sex-based analysis showed a significant 62% increase in

atherosclerotic lesions in male mice receiving Pg BM than in

those receiving sham but no significant difference between

female groups (Figure 2B). Representative aortae are shown in

Figure 2C. The reason for this sex effect is unknown and

requires further study. Examination of similarly sized isolated

lesions in the aortic sinus for collagen and macrophage foam

cell content showed no differences (Figures 2D,E). Fasting

plasma cholesterol levels showed no significant differences

between the groups (Figure 3A). Because obesity is a risk factor

for atherosclerosis and also impacts inflammation and insulin

resistance, we compared mouse weight at sacrifice. Again, there

were no significant differences between the groups (Figure 3B).

This also implied that inoculation with Pg had no effect on

mouse food intake. These data indicated that well-established

risk factors for atherosclerosis did not have a role/confound our

results.

FIGURE 1

(A) Study design. Male and female donor BM LDLRo mice were inoculated by oral lavage with a solution containing Pg or vehicle (sham) every other day for

2 weeks, coincident with high-fat diet feeding. After 16 weeks, femurs were removed for isolation of BM. The recipient LDLRo mice (n= 9–15/group) were

lethally irradiated and transplanted with gender-matched BM from the donor groups. The mice were fed normal chow for 4 weeks and then a high-fat

diet for 16 weeks. (B) qPCR analysis of macrophages isolated from donor mice showed significantly increased expression of IL6 and IL1beta; TNFalpha was

no different. These cytokines are associated with a chronic PD infection. (C) Glucose tolerance testing of male BM donor mice (n= 4 sham, n= 5 Pg).
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FIGURE 2

(A) En face morphometric analysis of oil red O-stained aortae showed a significant 38% increase in lesion area in mice that received BM from Pg-

inoculated donor mice compared with those that received BM from sham-inoculated donors. (B) Sex-specific analysis showed a significant 63%

increase in male mice that received BM from Pg-inoculated donor mice compared with those that received BM from sham-inoculated donors. There

was no significant difference between the female groups. M =male; F = female; n= 9–15/group. (C) Oil red O-stained aortae from the groups. (D)

Percent collagen content and (E) percent foam cell in similarly sized lesions from the aortic sinus (n= 5/group).

FIGURE 3

(A) Total plasma cholesterol and (B) weight at sacrifice. M =male; F = female (n= 8–15/group). (C) Significantly different cytokines/chemokines,

represented as fold over sham, in macrophage lysates from male mice that received BM from Pg-inoculated donor mice (n= 5/group, pooled), out of

a total of 40 measured.
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Male mice transplanted with BM from Pg-
inoculated donors had a macrophage
cytokine profile that suggested BM
mobilization and response to PD pathogens

In circulating macrophages, the cytokines shown in Figure 3C

were statistically different between male mice receiving Pg BM and

those receiving sham (51). Several of these, including granulocyte

colony-stimulating factor (G-CSF) and IL1alpha, induce expansion

and mobilization of immune cells from the BM (52–54).

Macrophage colony-stimulating factor (M-CSF) induces cells of the

myeloid lineage to differentiate into monocytes, macrophages, and

dendritic cells (55). IL23, G-CSF, M-CSF, TNFalpha, chemokine c-

c motif ligand (CCL)3, CCL5, complement component (C) 5/5a, c-

x-c motif chemokine ligand (CXCL)9, and CXCL13 have been

shown to induce osteoclastogenic differentiation and/or bone loss

(15, 52, 55–62). IL23 is considered to have a major role in the

pathogenesis of PD (56). Thus, the cytokine profile was consistent

with response to a PD infection in these mice, 20 weeks post-

transplant, in the absence of the pathogen.

Whole-genome bisulfite sequencing
(WGBS) showed a differentially methylated
profile in macrophages from male mice that
received BM from Pg-inoculated donors

We pooled (5/group) and isolated DNA from macrophages

obtained at sacrifice from male mice and performed WGBS to

determine whether methylation differences could account for the

observed changes in the phenotype. The bisulfite conversion rate

was greater than 99.6%. Bismark software was used to align

bisulfite-treated reads to the mouse reference genome (63). The

unique mapping rate was 74.2–79.7%, and the duplication rate

was 13.3–17.2%. Mean coverage was between 15.99× (Sham BM)

and 19.05× (Pg BM). In total, 90% of sequences in both samples

FIGURE 4

(A) Hierarchal cluster analysis of each differentially methylated promoter (DMP) presenting methylation values of 0 (deep blue, less methylation) to 1 (deep

red, more methylation), where 0 is unmethylated and 1 is completely methylated. Each line represents one DMP, and the columns represent the different

groups. Male mice that received BM from Pg-inoculated donors showed more intense blue, representing less methylation, than male mice that received

BM from sham-inoculated donors. (B) Promoter methylation at the single nucleotide level 2 kb upstream and downstream from the transcription start site

(TSS). Male mice that received BM from Pg-inoculated donors showed less methylation throughout this region. (C) Violin plot depicting the global DNA

methylation levels of male mice that received BM from Pg-inoculated and sham-inoculated donors. Using 10-kb bins, the methylation level was

calculated based on the ratio of methylated cytosines to total (unmethylated +methylated cytosines). The width of each violin represents the number

of methylated sites at the corresponding methylation level. The boxes represent the 25% and 75% interquartile ranges, and the horizontal line

represents the median level of methylation. Male mice that received BM from Pg-inoculated donors showed lower levels of methylation overall. (D)

Gene ontology terms and the number of genes in each group that were found to be differentially methylated in male mice that received BM from

Pg-inoculated donors compared to those that received BM from sham-inoculated donors. (E) Overall schematic of the intersection between DNA

methylation/demethylation pathways, the transsulfuration pathway, and reactive oxygen species detoxification. The circles represent genes that were

found to be hypo methylated (green) or hyper methylated (red) in our WGBS results. The arrows represent whether a path is predicted to be favored

(green) or reduced (red, yellow) based on our results. The predicted intersection of oxidative stress from chronic PD with these pathways is also shown.
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had a coverage depth of 5×, and at 10×, the values were 73.95%

(sham BM) and 83.48% (Pg BM). A recent study compared

differentially methylated regions (DMRs) identified at different

sequence depths and concluded that a sequence depth of 5× to

15× is sufficient and that higher depths are not justified (64).

Cluster analysis of differentially methylated promoters is shown

in Figure 4A. Promoter methylation changes occurred at the

region upstream of the transcription start site (Figure 4B); this

localization further suggested the potential for change in gene

expression. DMRs were assessed by a sliding window approach

(65), which incorporates statistical methods (Fisher’s exact test)

and repeated measures across the genome and is appropriate to

compare samples that do not have replicates. A false discovery

rate was obtained and used to adjust p-values. DMRs were

defined as having at least 2-fold change, at least 10 cytosines, a

methylation difference of at least 0.2, and adjusted p < 0.05.

Comparing samples Pg BM recipients vs. sham BM recipients,

there were 158 hypermethylated regions and 217 hypomethylated

regions, for a total of 375 DMRs that reached significance after

p-value adjustment (Supplementary Material Figures S1, S2).

Many DMRs were in cytosine–guanine (CpG) island shelf

regions. As shown in Figure 4C, DNA from macrophages from

male mice that received BM from Pg-inoculated donors had an

overall decrease in genomic methylation levels compared with

DNA from macrophages from male mice that received BM from

sham-treated mice. In general, hypomethylation favors increased

gene expression. Table 1 summarizes significantly differentially

methylated genes related to specific processes.

Gene ontology analysis significance was determined after

p-value correction (Supplementary Material Figures S3, S4).

The top biological processes uncovered were related to cellular

metabolism and the top molecular function was related to

protein binding (Figure 4D). Using the Kyoto Encyclopedia of

Genes and Genomes (KEGG), the top pathways hypermethylated

were peroxisome proliferator-activated receptor signaling,

cysteine and methionine metabolism, and glycolysis/

gluconeogenesis (Supplementary Material Figure S1).

Glutamine/glutamate was the top hypomethylated pathway

(Supplementary Material Figure S2). In macrophages, the

intersection between glutamine/glutamate, the tricarboxcylic acid

cycle, and cysteine/methionine and glutathione pathways have

recently emerged as key drivers of metabolism and macrophage

polarity (66–70).

Hypermethylation of the rate-limiting
enzymes in the methionine cycle in male
mice that received BM from Pg-inoculated
donors

Homocysteine, a sulfur-containing amino acid, is critically

positioned at the intersection between the methionine cycle and

the transsulfuration pathway (71). It is produced from

methionine in the methionine cycle and can then recycle back to

methionine or be converted to cysteine in the transsulfuration

pathway to generate glutathione (Figure 4E). In the methionine

cycle, the methyl group of methionine is activated by addition of

adenosine to sulfur from adenosine triphosphate, a process

catalyzed by methionine adenosyl transferase (MAT). This

converts methionine to S-adenosylmethionine (SAM), the

universal methyl donor (71). SAM is used by methyltransferases,

including DNA methyltransferases (DNMT), and in the process,

TABLE 1 DMRs that were statistically different in mice that received BM from Pg-inoculated donors relative to sham-treated.

FA Ox, glycol Glutamine methionine M1 vs. M2 Athero Athero Epigen Bone, osteoclast NFkB

Vps54 Gclm Grb10 (m2) Lrp8 Galnt2 Rbm15b LRP8 Sirt1

Ppp2r5a Grm4 Gclm (mox) Igf2r Apoa1 Gse1 Igf2r Tet2

Nrtn Mat1a Hoxa3 (m2) Zfpm1 Apob Tet2 Mn1 Plxna1

Foxk2 Ahcy Manf (m2) Gclm Apoe Gon4l Fam19a5 Atp11a

Acot4 Slc17a7 Ddx4 (m2) Manf Jund Setd8 Nrf2f2 Spat2l

Pde3b Adcy2 (m2) Grb10 Ahcy Bcor Pmepa1 Grsf1

Galnt2 Igf2r (m2) Sh2b3 Cldn5 Sirt1 Fignl1 Lmx1b

Dvl1 Mgat3 (m2) Igf2r Dmd Kmt2b Sh3pxd2b Gfi1

Igf2r Casz1 (m1) Lsamp Pabpc1 Setd8 Wt1os Otud7a

Egln1 Setd8 (m1) Wt1 Foxa2 Zfp521 Tnfaip2

Scd1 Sirt1 (m2) Slc23a2 Hsp8 Hivep3 Prkce

Mat1a Rbpj (m2) Furin Ikbkg Pou4f1 Pde3b

Aldob Aldob (m1) Adcy2 Cebpa Adcy2 Ikbkg

Apoa1 Tnfaip2 Actb Sirt1 Cebpa

Atp5d Bcor Foxo6 Usp7

Cebpa Hspa1b Egln1 Pigr

Car3 Fkbp5 Myo10

Foxa2 Prkce Dvl1

Egln1 Rbpj

Rbpj Fkbp5

Timp1 Cebpa

Ptprn2 Slc17a7

Green, hypomethylated; red, hypermethylated; FA Ox, fatty acid oxidation; Glycol, glycolysis; Athero, atherosclerosis; Epigen, epigenetics.
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SAM is converted to S-adenosylhomocysteine (SAH) (Figure 5A).

WGBS data showed significant hypermethylation of MAT in male

BM recipients from Pg-inoculated donors compared to sham-

inoculated donors. Importantly, this hypermethylation was in the

3′ untranslated region. Methylation of this specific region has

been associated with degradation of MAT and, in turn, depletion

of SAM. These data suggested that hypermethylation of MAT

and the subsequent attenuation of the methionine cycle could at

least be partially responsible for the hypomethylation observed.

SAH, a potent negative feedback inhibitor of methylation, is

hydrolyzed to homocysteine and adenosine by SAH hydrolase

(SAHH) in a reversible process (71, 72). SAHH is the only

enzyme that catalyzes this reaction and hence is critical (73). In

fact, deletion of SAHH in mice results in embryonic lethality,

and deficiency of SAHH in humans is associated with Wilson’s

disease, an incurable metabolic disorder (73). WGBS data

identified a hypermethylated DMR corresponding to SAHH in

male BM recipients from Pg-inoculated donors compared to

sham-inoculated donors. This increased methylation was located

in CpG islands and CpG shores, both of which have been

strongly associated with decreased gene expression. Therefore,

the hypermethylation of SAHH strongly suggested a decreased

expression of SAHH. Being the only enzyme capable of the

reversible hydrolysis of SAH to homocysteine (73), this suggested

that these mice would experience an increase in SAH or

homocysteine or both (Figure 5A). Several studies have identified

a strong, significant, and possibly synergistic association between

increased levels of homocysteine and/or increased levels of SAH

and atherosclerotic CVD (74, 75).

Given the critical opposing roles of SAM and SAH in the

methionine cycle, we measured and compared the plasma levels

of SAM and SAH in male BM recipients to validate the WGBS

data with regard to hypermethylation of MAT and SAHH

genes. We found comparable plasma SAM levels in both

groups (Figure 5B). In contrast, SAH levels were ∼3× higher

in BM recipients from Pg-inoculated donors than sham-

inoculated donors (Figure 5C). The ratio of SAM:SAH is a

measure of cellular methylation capacity. As shown in

Figure 5D, mice that received BM from Pg-inoculated donors

had a much lower SAM:SAH than those that received BM from

sham-inoculated mice, which further supported our finding of

DNA hypomethylation in these mice. These data were from a

separate cohort of transplanted mice, obtained ∼11 months

post-transplantation, suggesting robust, replicable epigenetic

changes resulting from Pg infection in the context of an

atherosclerotic mouse model.

FIGURE 5

(A) Methionine is converted to SAM through the action of MAT, which was found to be hypermethylated in mice that received Pg-BM; SAM levels are

therefore predicted to be lower, and this may lead to lower DNMT activity. SAH hydrolase, which converts SAH to homocysteine, was also

hypermethylated in mice that received Pg-BM. SAM conversion to SAH was predicted to be unaffected, but SAH conversion to homocysteine was

predicted to be inhibited, leading to increased levels of SAH. Increased SAH inhibits DNMT activity. TET was found to be hypomethylated in mice that

received Pg-BM; therefore, TET activity was predicted to be higher. Plasma levels of SAM (B) and SAH (C) and the ratio of SAM:SAH (D) in male mice

transplanted with BM from Pg- or sham-inoculated donors (n= 6/group). Levels of SAM did not differ, but mice that received Pg BM had significantly

higher SAH levels. The ratio of SAM:SAH was much lower in these mice. Nuclear extracts were isolated from male mice transplanted with BM from

Pg- or sham-inoculated donors, and the activities of DNMT (E) and TET (F) were measured. Mice that received Pg BM had significantly lower DNMT

activity and significantly higher TET activity (n= 4/group).
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Recipients of Pg-inoculated donor BM had
significantly lower DNMT activity and higher
TET activity than recipients of sham-
inoculated donor BM

Given that increased SAH has been associated with genomic

global hypomethylation (73, 74) and significant inhibition of

SAM-dependent methyltransferases (76), we next compared the

activity of DNMT in nuclear extracts isolated from BM-derived

macrophages (BMDM) from the two groups of mice. Our

analysis showed that DNMT activity in BM recipients of sham-

inoculated mice was 4× higher than that in BM recipients of Pg-

inoculated mice (Figure 5E), an inhibition of more than 80% in

the latter. These data suggested that differences in DNMT

activity, and not gene expression, could account for

hypomethylation of genes observed in BM recipients of Pg-

inoculated mice.

DNA methylation is governed by dual dynamic processes:

methylation by DNMTs and demethylation by the ten-eleven

translocation (TET) family of 5-methylcytosine dioxygenases.

Sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine

(5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC) is

catalyzed by TET enzymes (77, 78). Given the significant inhibition

of DNMT activity, we next investigated the demethylation process

by similarly analyzing and comparing TET activity in nuclear

extracts from BMDM from the two groups of mice. Our analysis

showed that there was ∼1.7× higher TET activity in mice that

received BM from Pg-inoculated donors compared to mice that

received BM from sham-inoculated donors (Figure 5F). This

suggested that TET-driven demethylation may contribute to the

observed hypomethylation of genes in mice that received BM from

Pg-inoculated donors. In line with this, the WGBS data showed

significant hypomethylation of DMRs corresponding to TET2 in

those mice. The location of this decreased methylation included

CpG islands, shores, and promoter regions. Hence, our WGBS data

strongly suggested that TET2 was overexpressed in these mice.

Differences in apolipoprotein (apo)
expression may contribute to increased
oxidative stress and atherosclerosis in Pg
BM recipients

ApoE was hypermethylated in the WGBS dataset of BM

recipients of Pg-inoculated donors. Using a mouse-specific ELISA,

we validated this predicted decrease in apolipoprotein E (apoE)

expression (Figure 6A). Lipoprotein profiling data showed

increased very low density lipoprotein (VLDL) and low density

lipoprotein (LDL) cholesterol, which would be affected by reduced

expression of apoE (79). In addition to its role in lipoprotein

metabolism, apoE protects against oxidation of proteins, including

LDL. WGBS data also showed hypermethylation of apoA1.

Decreased apoA1 would be predicted to lead to decreased HDL,

consistent with the lipoprotein profile analysis. There were no

differences in triacylglycerol among the fractions (Supplementary

Material Figure S2). Fasting glucose and glucose tolerance testing

revealed no differences between the groups (Figures 6B,C),

suggesting that insulin sensitivity was similar.

FIGURE 6

(A) ELISA for apoE in plasma from male mouse recipients of sham or Pg BM (n= 10/group). (B) Chromatographs of FPLC separation of lipoproteins and

cholesterol analysis from male mouse recipients of sham or Pg BM (n= 3 sham; n= 4 Pg). Quantification of peaks as the percent of the total is shown

adjacent. (C) Fasting glucose and (D) glucose tolerance testing of male mouse recipients of sham or Pg BM (n= 4 sham; n= 5 Pg).

Omar et al. 10.3389/fcvm.2023.1164499

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1164499
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Discussion

The pathophysiology of atherosclerosis is multifactorial,

wherein the interplay among multiple risk factors increases the

potential for initiation or worsening of the disease. PD, a

pathogen-driven chronic inflammatory disease, is the most

common oral disease and the leading cause of tooth loss in

adults (80). Although the mechanisms have not been completely

elucidated, in the last few decades, studies have associated PD

with atherosclerosis, and in 2012, the American Heart

Association identified PD as an independent risk factor for

atherosclerotic vascular diseases (2, 81–83). There are also data

to suggest that treatment of PD, and even eradication through

removal of all teeth, does not eliminate the subsequent risk of

cardiovascular events (19, 20, 23). This is similar to other CVD

risk factors, including smoking and diabetes. In this study, we

sought to probe this long-term sustained effect and the potential

underlying mechanism.

BM transplant reconstitutes hematopoietic cells and the

immune system of the lethally irradiated recipient mouse with

that of the donor. In our model, we hypothesized that this would

manifest as increased atherosclerotic lesion burden in the

recipients of BM from donors orally inoculated with Pg

compared with those that received BM from sham-inoculated

donors. Twenty weeks after transplantation, we found that mice

that received BM from the Pg-inoculated donors developed 38%

more atherosclerosis lesions than mice that received BM from

sham-inoculated donors. Interestingly, stratification according to

sex revealed that the increase was more pronounced and only

significant in male mice. This difference between male and

female mice is in line with studies showing sex-based differences

in the immune response (84). One study showed that male mice

produced significantly more IL6 and lipopolysaccharide (LPS)-

binding protein upon LPS treatment compared to female mice,

and in vitro, male peritoneal macrophages expressed higher levels

of IL1beta and TLR4 upon LPS stimulation (85). It is interesting

that this difference in atherosclerosis lesion burden was not

observed when mice were orally inoculated directly (i.e., both

males and females showed increased atherosclerosis compared to

sham-inoculated controls) (4). This suggests that epigenetic

changes in BM stem cells only occurred in male mice; this

intriguing possibility is for future study.

WGBS is considered the gold standard for an unbiased global

approach to quantitative assessment of DNA methylation of the

entire genome (86). Our data indicated a global hypomethylation

in recipients of BM from Pg-inoculated donors, in line with major

studies in the field that associated DNA global hypomethylation

with increased atherosclerosis in human and animal studies. One

study showed a 9% decrease in DNA methylation in advanced

human atherosclerotic lesions compared to that in non-diseased

arteries, and a 7% decrease in DNA methylation in high-fat diet-

induced atherosclerotic ApoEo mice compared to that in chow-fed

ApoEo mice (87). In the same study, the authors assessed global

methylation levels in rabbits after balloon denudation of the aorta.

Proliferation of intimal smooth muscle cells was associated with a

15% decrease in DNA methylation level (87). This level of

hypomethylation was evident in normal chow-fed and high-fat-

diet-fed rabbits, suggesting that the decreased methylation was

independent of cholesterol levels in this model (87). A more recent

study reported a 2.5-fold decrease in global DNA methylation in

human atherosclerotic arteries compared to that in healthy arteries,

and this was associated with increased gene expression (88).

Furthermore, a 2015 human study associated hypomethylation of

long interspersed nuclear element-1 (LINE-1) with an increased

risk of myocardial infarction (89). Since LINE-1 compromises

∼17% of the human genome, the extent of its methylation is

considered a surrogate marker of global DNA methylation (90).

The finding of DNA hypomethylation as a characteristic of

atherosclerosis is not conclusive; there are also studies that suggest

that global hypermethylation is a characteristic of atherosclerosis

(91). Why some studies identified hypomethylation and others

hypermethylation in atherosclerosis could represent population-

based differences or could be due to an inherent biological issue.

Our study differed from these in that we used non-lesion

macrophages for profiling to understand changes in bone marrow-

derived monocytes/macrophages as a result of PD prior to their

residency in atherosclerotic plaque.

Our WBGS data identified 217 hypomethylated and 158

hypermethylated DMRs and hypomethylation of promotors close

to the transcription start site. This localization strongly suggested

an impact on gene expression (92). The analysis and validation

of each of these DMRs are warranted but go beyond the scope of

the current study. However, it is noteworthy that many of these

genes can be categorized into pathways that affect macrophage

phenotype, inflammation, metabolism, and atherosclerosis. The

control group was treated the same, so the difference between

the groups is the exposure of one set of BM donors to Pg and an

increased atherosclerosis lesion burden. Interestingly, many

DMRs were also associated with TLR/nuclear factor kappa B

(NFkB) signaling and osteoclast biology. Thus, it appears that

these cells were responding to the PD pathogen, although they

had never been infected with Pg.

The DMRs identified showed enrichment for genes associated

with active methylation or active demethylation. MAT, which

encodes the enzyme responsible for catalyzing the conversion of

methionine to the universal methyl-donor, SAM, was

hypermethylated in mice that received BM from Pg-inoculated

donors, which suggested decreased expression. SAHH was also

hypermethylated; SAHH catalyzes hydrolysis of SAH, a potent

methylation inhibitor, to homocysteine and adenosine. This is a

reversible reaction, and interestingly, SAHH underexpression has

been associated with overexpression of both SAH and

homocysteine (73–75). In contrast, TET2, which encodes one of

the demethylation enzymes, and Sirt1, the gene for an enzyme

that modulates the activity of DNMT1, were hypomethylated.

Considering all these “methylation-determining” enzymes being

differentially methylated, we sought to investigate the potential

mechanism underlying the observed global hypomethylation in

mice that received BM from Pg-inoculated donors and its

association with the increased atherosclerosis observed.

DNMT1, the maintenance methyl transferase enzyme, has been

repeatedly reported to be underexpressed and inhibited in cases of
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global hypomethylation and has been associated with increased

atherogenesis (88, 93). Our activity assay could not differentiate

among DNMTs but showed that DNMT was four times more

active in mice that received BM from sham-inoculated donors

than in those that received BM from Pg-inoculated donors. This

is in line with a study that investigated the effect of

hyperlipidemia and hyperhomocysteinemia on atherogenesis in

ApoEo mice and found that increased atherosclerosis was

associated with global DNA hypomethylation, decreased DNMT1

gene expression and activity (94). Similar results have been

reported in human studies that assessed the activity of DNMT in

atherosclerosis patients with hyperhomocysteinemia (95).

In addition to the passive demethylation that results from a

decrease in or loss of DNMT activity, active DNA demethylation

is carried out by TET enzymes (77). Upon assessment of TET

activity in BMDM, our data indicated that TET activity in mice

that received BM from Pg-inoculated donors was almost double

that in mice that received BM from sham-inoculated donors.

Consistent with this, the WGBS data indicated that the promotor

region of TET2 was hypomethylated, which was suggestive of

overexpression.

Homocysteine, a non-protein-forming amino acid, is

strategically located at the intersection of the methionine cycle

and the transsulfuration pathway. The only source of

homocysteine is through the methionine cycle, where methionine

is converted to SAM in the presence of MAT, which is in turn

demethylated to SAH by various methyltransferases (71, 76). In a

reversible reaction, SAH is hydrolyzed to homocysteine. At this

point, homocysteine has three options: (1) it is converted back to

SAH via SAHH, (2) it is remethylated to methionine via

methionine synthase, and (3) it is synthesized to cysteine

through the transsulfuration pathway in the presence of the rate-

limiting enzyme, cystathionine β-synthetase. The fate of

homocysteine is governed by several factors, including diet,

medications, and pathological conditions. Glutathione (GSH), the

end-product of the transsulfuration pathway, is one of the

fundamental antioxidants synthesized in cells (96). Hence, under

conditions of oxidative stress, synthesis of cysteine and eventually

GSH through the transsulfuration pathway is favored over

remethylating homocysteine to methionine. Based on the WGBS

data that showed hypermethylation of the genes encoding the

rate-limiting enzymes MAT and SAHH, we analyzed plasma

levels of SAM and SAH. SAH plasma levels were significantly

higher in mice that received BM from Pg-inoculated donors than

in those that received BM from sham-inoculated donors.

This result is expository for multiple reasons. First, it validated

and strongly suggested a mechanism for our global

hypomethylation data revealed by WGBS. Increased levels of

SAH have been shown to directly inhibit DNMT1 activity by up

to 70%, and other SAM-dependent methyl transferases by up to

90% (76). Experimentally inhibiting SAHH with adenosine-2,3-

dialdehyde in endothelial cells resulted in increased intracellular

SAH and decreased DNA methylation (97). Second, it suggested

a mechanistic link between global hypomethylation and increased

atherosclerosis. Several studies have associated plasma SAH levels

with CVD and atherosclerosis (75). In a case–control study,

plasma SAH levels were significantly higher in CVD patients

than those in healthy controls, suggesting that plasma SAH levels

could be used as a sensitive indicator for CVD risk (98). A more

recent prospective cohort study on 1,003 patients undergoing

coronary angiography reported a significant association between

plasma SAH levels and increased risk of stroke and nonfatal

myocardial infarction (99). Experimentally, in a series of studies,

Luo et al. and Xiao et al. inhibited SAHH in ApoEo mice by

feeding them an adenosine-2,3-dialdehyde-supplemented diet

(100, 101). After 8, 16, and 24 weeks, there were significant

increases in plasma SAH levels associated with the accelerated

development of atherosclerotic lesions (100, 101).

Mechanistically, other than its role in passive DNA

demethylation, the role of SAH in increasing atherosclerosis is not

fully understood. Several studies proposed induction of oxidative

stress as a potential mechanism. An in vitro study reported

that intracellular accumulation of SAH in endothelial cells resulted

in significantly higher expression of nicotinamide adenine

dinucleotide phosphate oxidase and production of ROS associated

with apoptosis (102). Increased plasma SAH levels in ApoEo mice,

via methionine-supplemented diet or through inhibition of SAHH,

induced proliferation and migration of vascular smooth muscle

cells via an oxidative stress-dependent activation of the

extracellular signal-regulated protein kinase pathway (100).

Our results also showed lower plasma SAM levels in mice that

received BM from Pg-inoculated donors compared to those in mice

that received BM from sham-inoculated donors. Although the

difference is not statistically significant, in combination with the

increased levels of SAH, the resulting SAM:SAH ratio is lower in

the former mice. The ratio between SAM and SAH has been

referred to as the methylation index or methionine index and has

been repeatedly shown to be positively correlated with global

DNA methylation levels. Hence, the lower SAM:SAH ratio in

mice that received BM from Pg-inoculated donors was in line and

possibly underlaid the global DNA hypomethylation. Importantly,

this ratio has been associated with atherosclerosis and CVD (103).

To further understand the increased atherosclerosis in BM

recipients of Pg-inoculated donors mechanistically, we focused on

two apolipoproteins that were hypermethylated, apoE and apoA1.

ELISA demonstrated a 34% decrease in plasma apoE in BM

recipients of Pg-inoculated donors. ApoE regulates plasma lipid

levels by binding to cellular lipoprotein receptors, including the

LDLR, VLDL receptor, and the LDL receptor-related protein

(79). In LDLRo mice, a decrease in apoE binding to these

receptors exacerbates LDL cholesterol accumulation in plasma, as

confirmed by lipoprotein profiling (an 89% increase in VLDL

cholesterol and a 20% increase in LDL cholesterol). ApoE is also

important in preventing oxidation, including lipid oxidation of

LDL to oxLDL, which is proatherogenic (104). Lipoprotein

analysis also showed a 28% decrease in HDL cholesterol in BM

recipients of Pg-inoculated donors. HDL has both antioxidant

properties and protects against atherosclerosis through reverse

cholesterol transport (105). The changes observed were in line

with the increased atherosclerotic lesion burden.

Based on our results, we propose that Pg-induced PD in the

atherosclerotic LDLRo mouse model, possibly through oxidative
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stress, which has been shown to increase in PD patients, creates

epigenetic pressure in BM progenitor cells (106–108). This

epigenetic pressure manifests as global DNA hypomethylation

and is associated with increased atherosclerosis. One potential

mechanism is through SAH-driven disruption of the methionine

cycle. Whether oxidative stress, either Pg-induced or as a result

of increased SAH, underlies the initiation and sustainability of

this disruption, as well as the role of SAHH, are yet to be examined.

Materials and methods

Pg infection, high-fat diet, BM
transplantation, and assessment of
chimerism

All chemicals were from Fisher Scientific unless otherwise

specified. All animal procedures were prior approved by the

University of Alberta Animal Care and Use Committee (Protocol

#0570). LDLRo mice were commercially obtained, bred, and

housed under specific pathogen-free conditions (B6.129S7-

LDLRtm1Her/J, The Jackson Laboratory, IMSR JAX:002207, RRID:

IMSR_JAX:002207). Pg bacteria (33277, American Type Culture

Collection) were grown to saturation (109 cells/mL) at 37°C in

Schaedler’s broth containing vitamin K and hemin (L007496,

BBL) under anaerobic conditions using AnaeroPack-Anaero

(R681001, Mitsubishi Gas Company). Eight-week-old mice of

both sexes were anesthetized with ketamine [100 mg/kg

intraperitoneally (IP)] and xylazine (10 mg/kg IP). The bacteria

were concentrated to 1010 cells/mL in a phosphate-buffered

saline (PBS) solution containing 2% carboxymethylcellulose (a

thickener used in the food industry to promote tooth adherence).

Two hundred microliters of this was applied to the gums and

molars. Coincident with the first inoculation, mice were fed a

high-fat diet (21% fat, 0.15% cholesterol; 88317, Teklad, Envigo)

to promote atherosclerosis, which continued for 16 weeks.

Control mice were sham-inoculated and fed a high-fat diet for 16

weeks. The number of recipient mice/group was determined by a

power calculation based on a pilot experiment in male mice. The

sample size was calculated to be 9/group (80% power, alpha =

0.05). Extra mice were included in case of dermatitis/malocclusion.

LDLRo mice of both sexes (8 weeks of age) were irradiated (lethal

dose) following a standard protocol (2 × 5.5 Gray, Gammacell 1000

Elite irradiator) used successfully by our lab and others (109).

Irradiated mice received ∼1 × 107 sex-matched BM cells by retro-

orbital injection from mice inoculated with Pg and fed a high-fat

diet or from mice sham-inoculated and fed a high-fat diet. After

transplantation, recipient mice were fed a normal chow diet for 4

weeks to allow for complete engraftment and turnover of

hematopoietic cells and then the high-fat diet for 16 weeks.

We used PCR of DNA extracted from white blood cells to

assess chimerism following BM transplantation in the control

experiment, where CD36o mice were transplanted with wild-type

BM. The primers for the wild-type allele are EG1 5′ CAG CTC

ATA CAT TGC TGT TTA TGC ATG 3′ and EG2 5′ GGT ACA

ATC ACA GTG TTT TCT ACG TGG 3′; the product is ∼600

base pairs. The primers for the knockout allele are the EG1

primer above and EG3 5′ CCG CTT CCT CGT GCT TTA CGG

TAT C 3′; the product is ∼800 base pairs.

In a complementary experiment, wild-type mice were

transplanted with CD36o BM. Four weeks later, whole blood,

obtained by cardiac puncture, was treated twice with erythrocyte

lysis buffer. Washed pellets were resuspended in PBS containing

2 mM ethylenediamine tetraacetic acid disodium salt (EDTA)

and 0.5% bovine serum albumin. Fluorophore-conjugated

antibodies with specificity to mouse antigens are as follows: anti-

CD11b (M1/70, 550993, BD Biosciences, RRID:AB_394002),

anti-CD11c (HL3, 561022, BD Biosciences, RRID:AB_2033997),

and anti-CD36 (JC63.1, 10009870, Cayman Chemical, RRID:

AB_10342682). Dead cells were excluded using live/dead fixable

cell stains. The CD11b+/c + fraction was analyzed for CD36

expression. Paraformaldehyde-fixed cells were acquired using a

Becton Dickinson LSR Fortessa flow cytometer (University of

Alberta Faculty of Medicine and Dentistry Flow Cytometry

Core Facility, RRID:SCR_019195) and analyzed with FlowJo

(version 10) software (RRID:SCR_008520).

Aorta morphometry

Mice were euthanized by pentobarbital overdose (200 mg/kg,

IP), perfused first with 10 mL of PBS and then 5 mL of buffered

formalin (Formalde-Fresh). The complete aorta, including the

subclavian and left and right carotid arteries, was dissected free

of fat from the mouse and then postfixed in Formalde-Fresh at

4°C. Aortae were transferred to PBS after 24 h and stored at 4°C.

Neutral lipids in aortic plaque were stained with oil red O

(00625, Millipore Sigma) by incubation at room temperature for

15 min, followed by 1–2 min destaining in methanol. Each aorta

was placed open on a microscope slide, covered with a coverslip,

hydrated with PBS, and digitally scanned using a CanonScan

LiDE 210 scanner at 1,200 dpi and a depth of 24 bits. Three

independent measures of lesion area (red pixels) were chosen

and averaged for each aorta in a blinded fashion using Adobe

Photoshop software (RRID:SCR_014199). Likewise, the total

aorta area (red + white) was chosen. The lesion area was

represented as the mean percentage of the total aortic area.

A subset of hearts was cryostat sectioned (5 μM), and serial

sections were stained either with oil red O or Masson’s trichrome.

Similarly sized lesions (n = 5/group) were selected for further

analysis. Relative amounts of collagen (blue staining) or foam cell

(red staining) areas were assessed using Adobe Photoshop software

(RRID:SCR_014199) and expressed as a percentage of total lesions.

Macrophage isolation, blood collection,
qPCR, and cytokine profiling

Elicited macrophages were isolated by peritoneal lavage into

sterile PBS 4 days following intraperitoneal injection of 2 mL of

4% sterile Brewer’s thioglycolate (Difco). More than 90% of cells

are macrophages at this time point (110). After centrifugation,
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cells were frozen at −20°C. Blood was collected into EDTA

(1.6 mM final concentration) from the heart; plasma was stored

at −20°C for future analyses.

Reagents for qPCR were purchased from Bio-Rad: PrimePCR

PreAmp for the SYBR Green assay, PrimePCR Template for the

SYBR Green Assay, and primer pairs for the genes IL1beta

(qMmuCED0045755), IL6 (qMmuCED0045760), TNFalpha

(qMmuCED0004141), and GAPDH (qMmuCED0027497). Each

reaction consisted of 1 μL of 20× PrimePCR assay, 10 μL of 2×

SsoAdvanced Universal SYBR Green Supermix (1725271, Bio-

Rad), 4 μL of cDNA sample and 5 μL of nuclease-free water. A

positive control using the respective template and a negative

control were included. Reactions were run on a Bio-Rad C1000

touch thermal cycler (Bio-Rad CFX96 real-time PCR detection

system, RRID:SCR_018064) using the following protocol: step 1:

95°C × 1 min; step 2: 95°C × 5 s; step 3: 60°C × 30 s. Repeat steps

2 and 3 for 40 cycles. The melt curve was completed from 65°C

to 95°C (0.5 increments), 5 s/increment. Data were analyzed

using CFX Manager software (RRID:SCR_017251).

To determine the ideal housekeeping gene, we used reference

gene M96 (Bio-Rad), a predesigned 96-well panel preplated with

14 commonly used housekeeping genes. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was selected as our

housekeeping gene based on stability in our experimental conditions.

The relative expression levels of 40 mouse cytokines were

assessed using the Mouse Cytokine Array Panel A (R&D

Systems, ARY006; five pooled samples/group), following the

manufacturer’s instructions. A Bio-Rad ChemiDoc MP Imaging

System (RRID:SCR_019037) and Image Lab 5.0 software (Bio-

Rad, RRID:SCR_014210) were used to capture and analyze the

images. The average density of the duplicate spots representing

each cytokine was determined, then, the density of the negative

control spot was subtracted from that value.

Isolation of DNA, RNA and complementary
DNA synthesis

For DNA isolation, the macrophage pellet from each individual

mouse was incubated in 200 μl of 10 mM Tris, pH 7.5, 300 mM

sodium chloride, 5 mM EDTA, and 1% sodium dodecyl sulfate

containing 100 μg/mL proteinase K at 55°C overnight and then

vortexed. Two hundred microliters of tris-saturated phenol were

then added to the lysate and vortexed, followed by centrifugation

for 5 min at 22,000 × g. The aqueous layer (top) was then

removed to a new tube, and 200 microliters of chloroform was

added, vortexed, and then centrifuged as previously. The aqueous

layer (top) was removed to a new tube, and 2 volumes of 100%

ethanol were slowly added. DNA was collected by centrifugation

as before. The supernatant was removed, and the DNA pellet

was air-dried and then resuspended in 10 mM Tris, pH 8 and

1 mM EDTA + 2 μg/mL RNase A. The purity and concentration

were assessed by Thermo Fisher Qubit 2.0 Fluorometer Qubit 2.0

analysis (RRID:SCR_020553) and agarose gel electrophoresis.

RNA was purified using the RNeasy Mini Kit (74104, Qiagen)

following the manufacturer’s protocol. The purity and

concentration were assessed as above. Complementary DNA was

synthesized from purified RNA using the RT2 First Strand Kit

(330404, Qiagen) following the manufacturer’s protocol.

Whole genome bisulfite sequencing

Novogene Co. Ltd. performed all sequencing, library

construction, analysis, and quality control. We pooled equal

quantities of male macrophage DNA from five donors/group.

Bismark software (RRID:SCR_005604) was used to align

bisulfite-treated reads to the mouse reference genome (63).

Generation of BM-derived macrophages
and preparation of L929 conditioned media

Mice were euthanized with pentobarbital (200 mg/kg IP). The

femur and tibia were removed, cleaned, and flushed with Iscove’s

modified Dulbecco’s media (Cat# 12440053, Gibco) containing

10% fetal bovine serum (FBS). The BM cells were then

centrifuged (5 min @ 3,800 × g), and the pellet was resuspended

at a concentration of ∼107 cells per cryovial in a mixture of 90%

FBS and 10% dimethyl sulfoxide (DMSO). Cells were stored at

−80°C.

BMDM were generated following previously published

protocols (111). To dilute out the DMSO, frozen BM cells were

resuscitated by gently thawing at 37°C and then transferred to a

15-mL tube. Drops of resuscitation media (Roswell Park

Memorial Institute (RPMI) media (SH 30255.01, Hyclone)

containing 100 units/mL penicillin, 100 μg/mL streptomycin,

2 mM L-glutamine, and 10% FBS) to 9 mL were dropped along

the tube wall. Cells were centrifuged for 5 min at 870 × g and

resuspended in 10 mL of resuscitation media. Cells were plated

in 100 mm bacterial plates (2 plates/sample) to allow for easier

detachment and incubated at 37°C in 5% CO2. On the fourth

day following the initial culture, resuscitation media was removed

and 10 mL of differentiation medium [resuscitation media

containing 15% L929 conditioned media (LCCM)] were added to

the culture, and macrophages were allowed to develop.

To generate LCCM, cells were purchased from ATCC (NCTC

clone 929) and cultured according to their protocol. Briefly, cells

were resuscitated and expanded to near confluency in Dulbecco’s

modified Eagle’s medium (DMEM) (SH 30081.01, Hyclone)

containing 100 units/mL penicillin, 100 μg/mL streptomycin,

2 mM L-glutamine, and 10% FBS. At day 10, the amount of

media was doubled, and the cells were cultured for an additional

10 days. On day 20, media was collected, sterilized through a

0.2 μm filter, aliquoted, and stored at −20°C.

Nuclear extract preparation, DNMT and TET
activity assays

Nuclear extracts of BMDM were prepared using the EpiQuik

Nuclear Extraction Kit (OP-0002-1, Epigentek), following their
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protocol, generating nuclear and cytoplasmic extracts. The protein

concentration of the nuclear extract was determined using the

bicinchoninic acid protein assay (PI23235, ThermoFisher Pierce),

following the manufacturer’s protocol. To determine DNMT

activity, we used the EpiQuik DNA Methyltransferase Activity/

Inhibition Assay Kit (P-3001-2, Epigentek) and followed the

manufacturer’s protocol. BMDM nuclear extracts were used in

this assay. To determine TET activity, we used the Epigenase

5mC-Hydroxylase TET Activity/Inhibition Assay Kit (P-3086-96,

Epigentek) and followed the manufacturer’s protocol. BMDM

nuclear extracts were used in this assay.

S-adenosylmethionine and
S-adenosylhomocysteine plasma levels

We measured the plasma levels of S-adenosylmethionine

(SAM) and S-adenosylhomocysteine (SAH) using an ELISA

Combo Kit (MET-5151-C, Cell Biolabs), following the

manufacturer’s instructions. At the time of sacrifice, plasma from

3 mice/group was collected. Using Magne Protein A Beads

(G8781, Promega), IgG was removed from plasma samples prior

to measuring SAM and SAH levels as per the manufacturer’s

instructions. DNMT activity, TET activity, and SAM and SAH

experiments were performed on a different mice cohort from

that used in the atherosclerosis study. BM cells and plasma were

collected ∼11 months after BM transplantation.

ApoE ELISA and lipoprotein profiling

ApoE was detected in plasma using the Apolipoprotein

E SimpleStep ELISA Kit (ab2155086, Abcam). For lipoprotein

analysis, fresh plasma was provided to the University of Alberta

Faculty of Medicine and Dentistry Lipodomics Core (RRID:

SCR_019176).

Statistical analysis

The differences in donors’ gene expression and atherosclerosis

lesion burden, DNMT activity, TET activity, and SAM and SAH

plasma levels between the groups were statistically compared

using an unpaired t-test if samples passed the D’Agostino and

Pearson omnibus normality test or a Mann–Whitney U test if

they were not normally distributed, with significance set at

p < 0.05. GraphPad Prism software (RRID:SCR_002798) was used

for all statistical analyses.
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