
	 1	

 
HIV reservoirs are dominated by genetically younger and clonally enriched proviruses 
 
Natalie N. Kinloch1,2, Aniqa Shahid1,2, Winnie Dong2, Don Kirkby2, Bradley R. Jones2,3 , 
Charlotte J. Beelen2, Daniel MacMillan2, Guinevere Q. Lee4, Talia M. Mota4, Hanwei 
Sudderuddin2,5, Evan Barad1,2, Marianne Harris2,6, Chanson J. Brumme2,7, R. Brad Jones4, Mark 
A. Brockman1,8, Jeffrey B. Joy2,3,7, Zabrina L. Brumme1,2 
 
 
1Faculty of Health Sciences, Simon Fraser University, Burnaby, BC 
2British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC 
3Bioinformatics Program, University of British Columbia, Vancouver, BC 
4Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New 
York, NY, USA 
5Experimental Medicine Program, University of British Columbia, Vancouver, BC 
6Department of Family Practice, Faculty of Medicine, University of British Columbia, 
Vancouver, BC 
7Department of Medicine, University of British Columbia, Vancouver, BC 
8Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser 
University, Burnaby BC 
 
 
 
Corresponding Author: 
Zabrina L. Brumme, PhD 
Professor 
Faculty of Health Sciences 
Simon Fraser University 
BLU 11706 
8888 University Drive 
Burnaby, BC, Canada 
zbrumme@sfu.ca 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536611
http://creativecommons.org/licenses/by-nc/4.0/


	 2	

Abstract  
 
In order to cure HIV, we need to better understand the within-host evolutionary origins of the 

small reservoir of genome-intact proviruses that persists within infected cells during 

antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did 

not discriminate genome-intact proviruses from the vast background of defective ones. We 

reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged 

this information to infer the ages of intact and defective proviruses sampled after an average >9 

years on ART, along with the ages of rebound and low-level/isolated viremia occurring during 

this time. We observed that the longest-lived proviruses persisting on ART were exclusively 

defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV 

exclusively dated to the years immediately preceding ART. These observations are consistent 

with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of 

elimination following viral reactivation and protein production. Consistent with this, intact 

proviruses (and those with packaging signal defects) were three times more likely to be 

genetically identical compared to other proviral types, highlighting clonal expansion as 

particularly important in ensuring their survival. By contrast, low-level/isolated viremia 

sequences were genetically heterogeneous and sometimes ancestral, where viremia may have 

originated from defective proviruses. Results reveal that the HIV reservoir is dominated by 

clonally-enriched and genetically younger sequences that date to the untreated infection period 

when viral populations had been under within-host selection pressures for the longest duration. 

Knowledge of these qualities may help focus strategies for reservoir elimination.   
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Importance:  

Characterizing the HIV reservoir that endures despite antiretroviral therapy (ART) is critical to 

cure efforts. Our observation that the oldest proviruses persisting during ART were exclusively 

defective, while intact proviruses (and rebound HIV) all dated to the years immediately pre-

ART, explains why prior studies that sampled sub-genomic proviruses on-ART (which are 

largely defective) routinely found sequences dating to early infection, whereas those that 

sampled viral outgrowth sequences found essentially none. Together with our findings that intact 

proviruses were also more likely to be clonal, and that on-ART low-level/isolated viremia 

originated from proviruses of varying ages (including possibly defective ones), our observations 

indicate that: 1) on-ART and rebound viremia can have distinct within-host origins, 2) intact 

proviruses have shorter lifespans than grossly-defective ones, and therefore depend on clonal 

expansion for persistence, and 3) the HIV reservoir, being overall genetically younger, will be 

substantially adapted to within-host pressures, complicating immune-based cure strategies.  

 
Key words: HIV, reservoir, persistence, genomic integrity, molecular dating, proviral landscape, 
phylogenetics, low-level viremia, rebound 
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Introduction 

 Following infection, Human Immunodeficiency Virus 1 (HIV-1) integrates its genome 

into that of the host cell, usually a CD4+ T-lymphocyte1,2. Most infected cells die, or are 

eliminated by the immune system3, usually within two days of infection4, but a minority persist 

even during long-term antiretroviral therapy (ART), and can fuel viral rebound if ART is 

interrupted5-8. If we are to cure HIV, it is critical to understand the within-host evolutionary 

origins and dynamics of the genome-intact and replication-competent proviruses that comprise 

this persistent HIV reservoir.  

 Seeding of HIV sequences into the reservoir begins immediately following infection9-12, 

and continues until ART initiation13-16. During untreated infection however, turnover is relatively 

rapid14,16-18, where recent half-life estimates are on the order of half a year, compared to nearly 

four years for intact proviruses during the initial years of ART19-27. As such, if ART is not 

initiated until chronic infection, most early within-host HIV lineages will have already been 

eliminated by this time, as demonstrated by the observation that most proviruses sampled during 

ART "date" to the year or two prior to ART initiation13-16,28,29. Nevertheless, older proviruses, 

some dating as far back as transmission, are also routinely recovered during ART13-16. While it is 

now becoming clear that host cell features, such as genomic integration site30-37 and clonal 

expansion21,31,33,38-47 influence how long a HIV provirus will persist within-host, the contribution 

of viral genetic features to proviral persistence remains incompletely understood.  

 Strong evidence nevertheless supports such a relationship. The small pool of genetically 

intact proviruses that comprises the HIV reservoir, but that represents only ~5% of all proviruses 

persisting on ART48-50, decays more rapidly during ART than the much larger pool of defective 

proviruses that harbor large deletions, hypermutation, packaging signal region defects, point 
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mutations and/or other defects21,22,25-27,38,48,50. In individuals who initiated ART in chronic 

infection therefore, the very long-lived proviruses that are routinely recovered during ART (i.e. 

those dating back to early infection) would thus be predicted to be defective, whereas intact 

proviruses should generally be "younger" (i.e. date to the year or two before ART initiation). No 

studies to our knowledge have leveraged information from pre-ART within-host evolutionary 

histories to simultaneously elucidate the integration dates of both intact and defective proviruses 

sampled during ART13-16,28,29: all but one prior study collected sub-genomic sequences only, 

which meant that they could not distinguish intact from defective proviruses48,50, while the 

remaining study exclusively sampled replication-competent HIV following ex vivo stimulation, 

and therefore could not investigate age differences between intact and defective sequences29.  

 Our knowledge of the within-host evolutionary origins of HIV sequences reactivated 

from the reservoir in vivo − namely, HIV RNA sequences rebounding in plasma following ART 

interruption, as well as low-level and/or isolated viremia occurring during otherwise suppressive 

ART − also remains limited. While rebound virus likely originates from intact HIV proviruses, 

there is evidence that on-ART viremia can originate from both genome-intact51 and defective 

proviruses52. Indeed, as we now appreciate that proviruses with genomic defects can in some 

cases produce HIV transcripts, proteins49,53 and even virions52, and that cells harboring them can 

be recognized by the immune system53,54, achieving a deeper understanding of their longevity 

and potential to contribute to on-ART viremia is also important. To address these knowledge 

gaps, we employed a phylogenetic approach13 to reconstruct within-host HIV evolutionary 

histories and investigate the age distribution of intact proviruses, different types of defective 

proviruses, along with in vivo and ex vivo reactivated HIV sequences, in six individuals living 

with HIV who had been receiving ART for a median of more than 9 years.  
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Results 
 
Participant characteristics and reservoir sampling 
 
 We isolated 2,336 near-full-length proviruses (median 352; range 195-733 per 

participant) at a single time point from six participants living with HIV who had been receiving 

ART for a median 9.3 (range 7.2- 12.2) years (Table 1; Figure 1). In contrast to some previous 

studies21,23,40, we used a strict definition of genome-intact that required all HIV proteins 

(including accessory proteins) to be intact. Also, as we retained only amplicons that were 

sequenced end-to-end (see methods), we could definitively classify each provirus as intact or 

defective (i.e. there was no "inferred intact" category). For four participants, we performed 

additional on-ART sampling as follows: from BC-003 and BC-004, we isolated 2 and 7 full-

genome HIV RNA sequences, respectively, from limiting-dilution Quantitative Viral Outgrowth 

Assays (QVOA) performed on the same sample as used for proviral amplification. From BC-001 

we isolated 9 subgenomic (nef) HIV RNA sequences from plasma after ART interruption. From 

BC-001, BC-002 and BC-004 we isolated 104 HIV RNA sequences from low-level or isolated 

viremia events during otherwise suppressive ART. We defined these as isolated or intermittent 

viremia generally below 1,000 HIV RNA copies/mL according to WHO guidelines55, though 

participants 2 and 4 had isolated measurements exceeding this, but with no record of ART 

interruption nor appearance of new antiretroviral resistance mutations.  

 We also isolated 885 HIV RNA nef sequences (median 141; range 65-221 per 

participant) from a median 8 (range 4- 17) longitudinal archived plasma samples that spanned a 

median 7.1 (range 0.75- 14.25) years prior to ART. These sequences were used to reconstruct 

participants' pre-ART HIV evolutionary histories, which were in turn used to infer the ages of 

HIV sequences persisting on ART. We used nef because it evolves rapidly within-host, but is 
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nevertheless representative of within-host HIV diversity elsewhere in the genome13. Using nef 

also allowed us to maximize the number of sequences whose integration dates could be inferred, 

as it is the most likely region to be intact in proviruses persisting on ART50. All participants had 

HIV subtype B, and within-host sequences were monophyletic with no evidence of super-

infection (Supplemental Figures 1, 2). 

Proviral Landscape During Long-term ART  

 Of the 2,336 near full-length proviruses collected, only 4% were genome-intact: a median 

of 2% of sequences (range 0.4%- 11%; 1- 47 sequences) per participant (Figure 1, Table 1, 

Supplemental Table 1). BC-004 had the highest proportion of intact sequences, at 11% (n=47; 

25 unique), while BC-002 had the lowest, at 0.4% (n=1) (Figure 1B, 1D, Table 1, 

Supplemental Table 1). For four participants (BC-001, BC-002, BC-003, BC-021), the 

recovered proportion of intact proviruses was lower than that predicted by the Intact Proviral 

DNA Assay (Supplemental Table 1), which is not surprising given the inefficiency of long-

range PCR56 and the ability of sequencing to capture defects outside of the IPDA target 

regions50. Proviruses with large deletions dominated in all participants except BC-003, and made 

up a median 59%, range 39- 90% of proviruses/participant (Figure 1A-F, Supplemental Table 

1). These varied greatly in length − the shortest, recovered from BC-004, was just 167 base pairs 

− and many had additional defects such as gene inversions, scrambles and hypermutation. We 

also observed evidence of template switching between repeated genomic elements during reverse 

transcription as a reproducible mechanism for large deletion formation, both within and between 

individuals. Thirteen distinct sequences from BC-003 for example had a deletion spanning HIV 

genomic nucleotides 4,781 - 9,064 (numbering according to the HXB2 reference strain), where 

the sequence flanking the deletion was ‘TTTTAAAAGAAAAGGGGGGA’. These exact 
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breakpoints, which have been described by others38,48, were also observed in one of BC-001's 

proviruses, one of BC-004's, and eleven distinct proviruses from BC-021.  

 By contrast, hypermutation dominated BC-003’s proviral landscape, at 53%. Prior CD4+ 

T-cell phenotyping of this participant had revealed a 47% frequency of naive CD4+ T-cells28, 

which have been shown to be enriched in hypermutated proviruses57. On average however, 

hypermutated proviruses comprised a median 19% (range 2%- 53%) of participants' proviral 

pools, whereas those with packaging signal defects comprised a median 8% (range 4- 23%). 

Proviruses with inversions, gene scrambles, premature stop codons and HIV-human chimeras 

were uncommon, making up a median 2% (range 0.5%- 5%) of proviruses per participant.  

 As expected50, nef was the most commonly intact region in four participants (BC-001, 

BC-002, BC-004 and BC-027), and the second most commonly intact region in BC-003 and BC-

021. The fraction of proviruses with an intact nef region ranged from 65% (127 sequences) for 

BC-027 to only 16% (115 sequences) for BC-003, due to the high proportion of hypermutated 

proviruses in the latter participant. The subset of nef-intact proviruses were those whose 

integration dates could be phylogenetically inferred, as described below. 

Proviral Clonality During Long-term ART  

 Consistent with the major role of clonal expansion in sustaining the HIV reservoir21,31-

33,38-42,44,58, a median 39% (range 17-55%) of proviruses were identical (100% sequence identity) 

to at least one other from that participant, where an average of 24 such "clonal sets" (range 16- 

33) were recovered per participant (Figure 2A). BC-003 had the lowest proportion of clonal 

sequences, at 17% (n=121), while BC-027 had the highest, at 55% (n=107). BC-027 also 

harbored the most abundant clone: isolated 39 times, it harbored a ~3,000 base deletion and 

made up 20% of the proviral pool (Figure 2A, bottom). BC-001’s three most frequent clones, 
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which were recovered between 20-32 times each and included two sequences with packaging 

signal defects, together made up 24% of the proviral pool.  

 Clonal frequency significantly differed by proviral genomic integrity (Figure 2B-E). 

Across all participants, intact proviruses were nearly three times more likely to be part of a 

clonal set (19% of intact compared to 8% of other proviruses were clonal; Odds Ratio [OR] 2.7; 

p= 0.01, Figure 2B), as were proviruses with packaging signal defects (OR 2.8; p=0.0007; 

Figure 2C). Proviruses with large deletions were not preferentially clonal (p=0.6; Figure 2D), 

and hypermutated proviruses were less likely to be clonal (OR 0.51; p=0.0009, Figure 2E).  

Elucidating the ages of intact and defective proviruses and reservoir-origin viremia 

 We used a phylogenetic approach13 to estimate the ages of HIV sequences persisting on 

ART. To do this, we inferred within-host phylogenies relating longitudinal pre-ART plasma HIV 

RNA nef sequences with viral sequences sampled post-ART, whose integration dates we wished 

to estimate. The latter included near full-length proviruses for all participants, as well as QVOA 

outgrowth sequences, HIV RNA from on-ART viremia episodes and/or HIV RNA isolated after 

ART interruption for four participants. To mitigate the inherent uncertainty in within-host 

phylogenetic reconstruction, we inferred distributions of 1,500 - 4,500 phylogenies per 

participant using Bayesian approaches, and conditioned results over all trees.  

 We began by rooting each tree at the inferred most recent common ancestor (see 

methods). If plasma HIV RNA sampling goes back far enough, this root would represent the 

transmitted founder virus; if it does not go back far enough, it would represent a descendant of 

this founder. We then fit a linear model relating the root-to-tip genetic distances of unique pre-

ART plasma HIV RNA nef sequences to their sampling dates. The slope of this line, which 

represents the average within-host pre-ART nef evolutionary rate, was then used to convert the 
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root-to-tip distance of each post-ART sequence of interest to its integration date. We conditioned 

these dates over all trees that met our quality control criteria (see methods), yielding integration 

date point estimates and 95% highest posterior density (HPD) intervals for each sequence. As 

trees were inferred from nef sequences, only nef-intact proviruses could be dated: this amounted 

to a median 121 (range 70- 165) proviruses per participant, representing a median 32% (range 

16-65%) of all proviruses collected.  

Participant BC-001 

 Participant BC-001 was diagnosed with HIV in August 1996. ART was initiated in 

August 2006 but interrupted shortly thereafter, and durable viral suppression was not achieved 

until June 2008 (Figure 3A). We collected 102 plasma HIV RNA nef sequences from 15 pre-

ART time points spanning 10 years, along with 317 proviruses sampled in June 2016, ~9.5 years 

after ART initiation, 131 (41%) of which had an intact nef (Figure 3A, Table 1). We also 

isolated nine (five unique) HIV RNA nef sequences from plasma collected in September 2007, 

after ART was interrupted and viremia rebounded to 23,000 copies/mL, and one HIV RNA nef 

sequence from plasma collected in September 2015 when an isolated viremia "blip" to 76 

copies/mL occurred. All 1,500 rooted within-host phylogenies showed strong molecular clock 

signal, yielding an average estimated nef pre-ART evolutionary rate of 3x10-5 (95% HPD 1.7x10-

5 – 4.2x10-5) substitutions/nucleotide site/day, and a mean root date of February 1995 (95% HPD 

December 1993 – February 1996), approximately 18 months prior to the participant's HIV 

diagnosis (example phylogeny and linear model in Figures 3B and 3C; amino acid highlighter 

plot in Supplemental Figure 3A). The phylogeny exhibited the "ladder-like" form typical of 

within-host HIV evolution, which is shaped by serial genetic bottlenecks imposed by host 
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immune pressures59-62, a phenomenon that is apparent in the selective sweeps occurring at 

numerous Nef residues during untreated infection (Supplemental Figure 3A).  

 The unique HIV sequences sampled post-ART interspersed throughout the phylogeny, 

consistent with their continual archiving throughout infection. Averaging their phylogenetically-

derived integration dates across all 1,500 trees revealed that the oldest of these sequences, a 

provirus with a large deletion, was estimated to have integrated in May 1997, 19 years prior to 

sampling, while the youngest was estimated to have integrated in March 2008, during the ART 

interruption, consistent with reservoir re-seeding during this rebound event. Despite this wide 

spread in integration dates, ~50% of proviruses persisting during long-term ART dated to within 

1.25 years of ART initiation (Figure 3D), and therefore harbored accumulated mutational 

adaptations to within-host pressures (Supplemental Figure 3A).  

 Notably, all of the old sequences sampled on ART (those estimated to have integrated in 

the first five years of infection, i.e. in ~2001 or prior) were defective proviruses (Figure 3D). By 

contrast, all intact proviruses, as well as the HIV RNA sequences from the 2007 viremia 

rebound, were estimated to have integrated in the 2.75 years prior to ART. Though this is 

consistent with the hypothesis that intact HIV sequences persisting on ART are overall younger 

than the larger defective proviral pool, this comparison did not reach statistical significance (p= 

0.28; Figure 3D), as many defective proviruses also dated to this period. Integration dates did 

not significantly differ between defective provirus types (Kruskal-Wallis p=0.05), though the 

very oldest all harbored large deletions. The single sequence isolated from the 2015 isolated 

viremia event dated to March 2006, close to ART initiation.  

Participant BC-002 
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 Participant BC-002 was diagnosed with HIV in April 1995, received non-suppressive 

dual ART between July 2000 and December 2006, after which viral suppression was finally 

achieved on triple ART (Figure 4A). Viral suppression was maintained until May 2011, after 

which frequent low-level viremia occurred, reaching a peak of 1,063 HIV RNA copies/mL in 

March 2013, despite no documented ART interruption during this time. We collected 160 plasma 

HIV RNA nef sequences from 17 time points spanning 9.5 years pre-ART (Figure 4A, Table 1), 

along with 265 proviruses sampled in August 2016, 9.6 years after ART initiation, 70 (26%) of 

which were nef-intact. We also isolated 13 (10 unique) plasma HIV RNA nef sequences from 

2013 during on-ART viremia. All 1,500 within-host phylogenies exhibited strong molecular 

clock signal, yielding a mean pre-ART nef evolutionary rate of 1.5x10-5 (95% HPD 8.2x10-6 – 

2.2x10-5) substitutions/site/day (example reconstruction in Figures 4B, 4C; highlighter plot in 

Supplemental Figure 3B) with a mean root date of May 1992 (95% HPD August 1989 – 

October 1994), three years prior to diagnosis. Proviral and HIV RNA sequences sampled on 

ART interspersed through the tree, where the oldest one, a defective provirus, was estimated to 

have integrated in the first year of infection, making it nearly 21 years old at time of sampling 

(Figure 4D). Nevertheless, ~50% of sampled proviruses were estimated to have integrated in the 

2.25 years prior to ART. 

 Like BC-001, all of BC-002's old proviruses (those dating to before the initiation of dual 

ART in July 2000) were defective. By contrast, the single intact provirus was estimated to have 

integrated in 2004, though many defective proviruses also dated to around this time. Notably, the 

HIV RNA sequences recovered during the persistent on-ART viremia period were genetically 

diverse and included sequences dating as far back as 1995; in fact, the sequences that emerged in 

plasma during this 2013 event were on average older than sampled proviruses (p=0.027; Figure 
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4D). Four of these sequences, one of which was recovered four times, mapped to a single 

subclade near the top of the tree, where the most closely related sequence was a provirus whose 

sole defect was a premature stop codon in Vif (Figure 4B). This further supports the recent 

finding that defective proviruses can contribute to low-level viremia on ART52, though we 

cannot rule out an unsampled intact provirus as the origin. Proviruses with large deletions were 

slightly older than those with Ψ defects (p= 0.043) though otherwise no significant age 

differences were found between defective proviral types (Figure 4D).  

Participant BC-003 

 Participant BC-003 was diagnosed with HIV in 2002. HIV was suppressed on ART in 

October 2007 and largely maintained for ~ 9 years, except for isolated low-level viremia (<250 

HIV RNA copies/mL) in April 2010 and June 2015, from which HIV amplification was 

unsuccessful (Figure 5A). We isolated 122 plasma HIV RNA nef sequences from 8 pre-ART 

time points spanning 4.75 years, along with 733 proviruses on ART, of which 115 (16%) were 

nef-intact (Figure 5A, Table 1). We also isolated one full and one partial HIV RNA genome 

from limiting-dilution QVOA performed on the same sample as the proviral isolation. All 4,500 

within-host phylogenies showed strong molecular clock signal, yielding a mean pre-ART nef 

estimated evolutionary rate of 6.8x10-5 (95% HPD 4x10-5 – 1x10-4) substitutions/site/day and a 

mean root date of December 2001 (95% HPD February 2001 – August 2002), which was only a 

few months prior to diagnosis (example reconstruction in Figure 5B, 5C; highlighter plot in 

Supplemental Figure 3C). Overall, BC-003's proviral pool was markedly skewed in age: all but 

two proviruses dated to the 2.75 years prior to ART (Figure 5C, 5D). Nevertheless, intact 

proviruses and QVOA outgrowth viruses were on average significantly younger than defective 
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proviruses (p=0.03; Figure 5D). Though defective proviral types did not overall differ in age 

(Kruskal-Wallis p= 0.8), the oldest proviruses all harbored large deletions.  

Participant BC-004 

 Participant BC-004 initiated ART less than two years following diagnosis, which was 

much earlier than the other participants (Figure 6A). Intermittent low-level viremia occurred in 

the first four years of ART, but suppression was maintained thereafter except for an isolated 

measurement of 3,120 copies/mL in 2019. There was no documented ART interruption at this 

time, and antiretroviral resistance genotyping predicted that all drugs retained full activity. We 

isolated 65 plasma HIV RNA nef sequences from 4 pre-ART time points spanning 8 months, 

along with 440 proviral genomes (165; 38% nef-intact), and 7 unique HIV RNA genomes from 

QVOA in July 2016 (Figure 6A, Table 1). We also isolated 46 (4 unique) and 44 (4 unique) 

plasma HIV RNA nef sequences from the on-ART viremia in 2011 and 2019. Of the 1,500 

rooted within-host phylogenies, only 379 (25%) had sufficient molecular clock signal to pass 

quality control, which is not surprising given that early ART initiation limits within-host HIV 

evolution63-67. The passing trees yielded a mean pre-ART nef evolutionary rate of 1x10-4 (95% 

HPD 4.9x10-5 – 1.6x10-4) substitutions/site/day (example reconstruction in Figures 6B, 6C; 

highlighter plot in Supplemental Figure 3D) and a mean root date of April 2005 (95% HPD 

October 2004 – September 2005). This, combined with the limited viral diversity in this 

individual (Supplemental Figure 3D), is consistent with HIV diagnosis during early infection. 

Due to the inherent uncertainty in phylogenies inferred from limited-diversity datasets, estimated 

integration dates for this participant have wide 95% HPD intervals, and should be cautiously 

interpreted. Overall, BC-004's intact and defective proviruses did not differ in terms of age 

(p=0.41), nor did defective proviruses differ in age based on defect type (p=0.48) (Figure 6D). 
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Nevertheless, the oldest provirus, estimated to have integrated in October 2005, six months 

following the estimated transmission date, was defective due to a large deletion (Figure 6D). 

Moreover, sequences isolated from the on-ART viremia in 2011 and 2019 exclusively dated to 

early infection (January/February 2006), and in fact were on average older than sampled 

proviruses (p<0.001) (Figure 6D). The 2011 viremia sequences, one of which was recovered 43 

times, all fell within a single diverse subclade that featured both intact and defective proviruses 

sampled on ART (Figure 6B, near top of tree), while the 2019 viremia sequences, one of which 

was recovered 41 times, were more restricted in terms of diversity and formed an exclusive 

subcluster also relatively near the root (Figure 6B).  

Participant BC-021 

 Participant BC-021 was diagnosed with HIV in November 2002 and achieved viral 

suppression on ART in April 2007 (Figure 7A). Suppression was largely maintained except for 

low-level viremia to 367 HIV RNA copies/mL in May 2018 from which sequence isolation was 

unsuccessful. We isolated 221 plasma HIV RNA nef sequences from 8 pre-ART time points 

spanning 2.5 years, and 386 proviruses on ART in July 2019, of which 93 (24%) were nef-intact 

(Figure 7A, Table 1). All 3,000 rooted phylogenies demonstrated strong molecular clock signal, 

yielding a mean pre-ART nef evolutionary rate of 8.4x10-5 (95% HPD 5.1x10-5 -1.2 x10-4) 

substitutions/site/day (example reconstruction in Figure 7B, 7C; highlighter plot in 

Supplemental Figure 3E) and a mean root date of April 2002 (95% HPD December 2001- 

August 2002), seven months prior to diagnosis. BC-021's on-ART proviral pool was markedly 

skewed in age, with all but two unique sequences dating to the 2 years prior to ART (Figure 

7D). Though intact and defective proviruses did not differ in age (p=0.99), the only two old 
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proviruses, which dated to 2003, 16 years prior to sampling, both harbored large deletions (p=0.1 

for comparison with other defective proviral types, Figure 7D).  

Participant BC-027 

 Participant BC-027 was diagnosed with HIV in 1985, received various non-suppressive 

ART regimens beginning in the mid-1990s, and finally achieved viral suppression in December 

2011 (Figure 8A). Suppression was maintained except for two low-level viremia events <80 

HIV RNA copies/mL from which sequence isolation was unsuccessful. We isolated 215 pre-

ART plasma HIV RNA nef sequences from 7 time points spanning a 14.25 year period, along 

with 195 proviruses on-ART in 2019, of which 127 (65%) were nef-intact (Figure 8A, Table 1). 

All 1,500 within-host rooted phylogenies displayed strong molecular clock signal, yielding a 

mean (95% HPD) pre-ART nef estimated evolutionary rate of 1.5x10-5 (9.1x10-6 – 2.1x10-5) 

substitutions/site/day (example reconstruction in Figure 8B, 8C; highlighter plot in 

Supplemental Figure 3F). The mean root date was September 1992 (95% HPD January 1990 – 

March 1995), indicating that we did not reconstruct back to the founder virus but rather to one of 

its descendants. Though integration dates did not differ between intact and defective proviruses 

(p=0.96, Figure 8D), all of the old proviruses, the oldest of which dated to 1996, 23 years prior 

to sampling, were defective. BC-027 was therefore the only participant for whom no proviruses 

dating to the earliest years of infection were recovered (1996 was > 10 years after diagnosis). 

Defective proviruses did not differ significantly in age (Kruskal-Wallis p=0.31) (Figure 8D). 

Clones do not differ from unique sequences in terms of age 

 We investigated whether clonal sequences differed from unique ones in terms of their 

overall age distribution. Here, members of a clonal set were collapsed into a single data point for 

analysis, and sequences from plasma viral rebound and on-ART viremia were not considered, as 
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only nef was sequenced and therefore clonality cannot be established. We observed no 

significant differences in age distribution between clonal and unique sequences in any participant 

(Supplementary Figure 4, all p>0.1). This remained true when sequences were stratified by 

genomic integrity (all p>0.12). 
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Discussion  

 Reservoir dynamics studies should distinguish intact proviruses from the vast background 

of defective ones, as only the former can re-seed infection if ART is stopped. We therefore 

resampled near-full-length proviruses persisting on ART, along with reservoir-origin HIV RNA, 

from four participants for whom only subgenomic proviral sequencing had previously been 

performed (BC-001 through BC-004)13,28, along with two others. This allowed us to explore the 

relationship between proviral genomic integrity and longevity, as well as the within-host origins 

of plasma viremia. As expected, given that proviruses were sampled after an average of more 

than 9 years on ART48, only 4% were intact, with some participants (e.g. BC-002) having as few 

as 0.4% intact. Proviruses with large deletions typically dominated, where, consistent with 

previous studies38,48, we identified shared HIV genomic breakpoints within and across 

individuals that illuminate how such deletions reproducibly occur.  

 Our observation that intact and Ψ-defective proviruses were nearly three times more 

likely to be clonal, while hypermutated proviruses were twofold less likely, extend our 

understanding of clonal expansion in reservoir maintenance21,31,38-42,44,45. While these differences 

in part reflect cellular distribution57 (intact and Ψ-defective proviruses tend to be enriched in 

effector memory CD4+ T-cells39,44,57,68, which have the highest proliferative capacity69, while 

hypermutated proviruses tend to be enriched in naive CD4+ T-cells39,44,57,68,70, which have the 

lowest proliferative capacity69), they are also consistent with intact and Ψ-defective proviruses 

being more dependent on clonal expansion for survival. This is because they are at higher risk of 

elimination by cytopathic effects or immune responses after reactivation (at least some Ψ-

defective proviruses can produce HIV proteins71 and even virions72). As not all members of a 

clone will reactivate upon stimulation73,74, expansion enhances the likelihood that at least some 
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members will persist75. In contrast, grossly defective proviruses rely less on clonal expansion for 

survival, as their risk of elimination is inherently lower due to limited or no viral antigen 

presentation21,53.   

 Also consistent with prior studies14-16,29, participants' on-ART proviral pools ranged from 

modestly (e.g. BC-001) to substantially (e.g BC-003 and BC-021) skewed towards viral variants 

archived in the years immediately preceding ART. This is consistent with continual reservoir 

seeding - and turnover - during untreated infection, such that, if ART is not initiated until chronic 

infection, many ancestral within-host lineages will have already been eliminated by this 

time14,17,18. Nevertheless, and consistent with prior studies that sampled subgenomic proviral 

sequences on-ART13-16,28, we recovered at least one sequence dating to early infection in all 

participants but BC-027 (this individual's oldest provirus, though 23 years old when sampled, 

dated to more than 10 years after diagnosis). Importantly, the oldest recovered proviruses were 

exclusively defective, usually due to large deletions, whereas all intact proviruses dated to within 

approximately 3 years preceding ART. This indicates that intact proviruses have shorter 

lifespans than those with gross defects. This is consistent with their more rapid decay during 

ART21-23,25,26, and likely during untreated infection as well14,17,18, though the latter has not been 

explicitly demonstrated.   

 The observation that the oldest on-ART proviruses are exclusively defective also resolves 

a discordance in the literature. It explains why studies that recovered subgenomic proviral 

sequences on ART (which are largely defective) routinely recovered proviruses dating to early 

infection13-16,28, whereas the study that exclusively dated ex vivo viral outgrowth sequences 

sampled on ART yielded hardly any sequences dating to this time29. The latter study nevertheless 

did find a handful of  "old" intact viruses, whereas we found none (except in BC-004, for whom 
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all proviruses dated to the short period between infection and ART). This difference may be 

because both the time to ART initiation (except for BC-004) and the time on ART were 

substantially longer in the present study, allowing more time for intact proviruses to be 

eliminated in vivo. Taken together with existing data40,41,44, our findings indicate that intact 

proviruses are at a survival disadvantage compared to their grossly defective counterparts and are 

thereby more dependent on clonal expansion for persistence.  

 Our observations also suggest that low-level/isolated viremia on ART can have distinct 

within-host origins from rebound viremia. Though the sequence recovered from BC-001's low-

level viremia dated to the year before ART, those recovered from BC-002 and BC-004's on-ART 

viremia indicated that proviruses capable of reactivating to produce viremia can be genetically 

heterogeneous, and can originate from very ancestral proviruses, which may in some cases be 

defective. The existence of genetically defective virions is supported by their presence during 

untreated infection76 (though recently-infected, rather than reservoir cells, would be the likely 

source during that time), and the recent discovery that low-level viremia can originate from 

defective proviruses51,72. By contrast, HIV RNA rebounding in plasma after ART interruption 

dated to the years just prior to ART (BC-001), consistent with its origin from intact proviruses 

dating to that same period.  

 Our observation that intact proviruses (and rebound viremia) exclusively dated to the 

later years of untreated infection has implications for immune-based cure strategies, because 

sequences from this period will have substantially adapted to within-host selective pressures 

(Supplemental Figure 3 illustrates the selective sweeps that typify this process67,77). Indeed, 

Human Leukocyte Antigen (HLA) class I-restricted escape mutations were apparent in the five 

participants who initiated ART in advanced chronic infection; these included the C*06:02-
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restricted Nef-125H adaptation78 at position 6 of the C*06-restricted-YT9 epitope (Nef 120-

128)79,80 in BC-001, the C*07:01-restricted Nef-105Q adaptation78 at position 1 of the C*07-

restricted KY11 epitope (Nef 120-128)78 in BC-003, the B*35:01-restricted Nef-81F adaptation78 

at the C-terminus of the B*35:01-restricted VY8 epitope (Nef 74-81)81 in BC-027, and others. 

Studies of rebound HIV from larger numbers of individuals in a within-host evolutionary context 

will help establish whether rebound sequences are on average even more adapted to host immune 

responses than the overall intact proviral pool. If so, this would be consistent with the notion that 

rebound is a selective process, where the viruses that first appear in plasma at high levels are not 

necessarily those that reactivated first, but rather those that host immune responses, particularly 

antibodies, subsequently fail to control82,83 (this may also explain why in vivo rebound and in 

vitro outgrowth HIV don't always match84).  

 Our study has some limitations. Despite extensive sampling, we recovered fewer intact 

proviruses than predicted based on the IPDA, reflecting the inefficiency of long-range PCR56. As 

we did not determine integration site, we cannot definitively state that identical sequences are 

clonal, though the likelihood is high as all proviruses were sequenced end-to-end, and a prior 

study demonstrated that proviruses with 100% sequence identity also share integration sites85. 

We also acknowledge that sequences isolated only once may still be part of a clonal set86. HIV 

integration dates are derived from a model that assumes a strict molecular clock, which may not 

be ideal over long time frames87. Nevertheless, the observation that the oldest proviruses are 

defective is apparent even without the model, as these were always the closest to the root of the 

phylogeny. As we could only "date" nef-intact proviruses, we cannot rule out that nef-defective 

proviruses have a different age distribution, which is possible as nef may promote proviral 

longevity57. Nevertheless, studies that have used gag and env for dating14-16,29 have produced 
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similar proviral age distributions, suggesting that our results are not overly biased. There are also 

no ideal solutions to this, as the abundance of large deletions means that no single HIV region 

can be used to date all proviruses phylogenetically, nor can hypermutated sequences be dated 

using such approaches.  

 Despite these limitations, our study is the first to compare the ages of defective and intact 

proviruses on ART, along with reservoir-origin HIV RNA, in context of within-host HIV 

evolutionary history. As participants were sampled during the slower second phase of on-ART 

decay22,24, recovered proviruses represent truly long-lived populations. We addressed within-host 

phylogenetic reconstruction uncertainty by inferring 1,500- 4,500 trees per participant. Rather 

than using clustering approaches, which can only "date" sequences of interest to the specific time 

points when plasma HIV RNA was sampled pre-ART29,88, our approach allowed us to date 

sequences to before (or after) pre-ART plasma sampling. This was particularly important for BC-

021, whose pre-ART sampling stops ~2 years prior to ART, but where substantial HIV evolution 

and proviral archiving undoubtedly took place during this time.  

 In summary, the oldest proviruses persisting during long-term ART were exclusively 

genetically defective, whereas intact proviruses and rebound HIV RNA dated nearer to ART 

initiation and were thus enriched in mutations consistent with accumulated adaptation to host 

pressures. Intact proviruses were also more likely to be clonal. This indicates that genomic 

integrity shortens a provirus' lifespan, likely due to increased risk of viral reactivation, antigen 

production and elimination49,53,71, such that intact proviruses are significantly more dependent on 

clonal expansion for survival than their defective counterparts. By contrast, on-ART viremia 

sometimes belonged to very old and possibly defective within-host lineages72, underscoring the 

need to better understand the biological and clinical management implications of the large 
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burden of defective proviruses that persist during ART. Nevertheless, our results provide further 

evidence that cure strategies will need to eliminate an intact viral reservoir that is clonally-

enriched, genetically "younger", and thus more adapted to its host. 
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Methods  

 
Participants and Sampling 
 
 We recruited six participants living with HIV. All were male, and had initiated triple 

ART a median 11 (range 2.2- 26.5) years after estimated HIV infection. At the time of peripheral 

blood mononuclear cell (PBMC) sampling on ART, plasma viral loads had been largely 

suppressed for a median 9.3 (range 7.2- 12.2) years. A median 8 (range 4- 17) pre-ART 

longitudinal plasma samples per participant were used to reconstruct within-host HIV 

evolutionary histories. We also studied plasma from a viremia rebound event following ART 

interruption in one participant (BC-001), and plasma from on-ART low-level and/or isolated 

viremia events in three participants (BC-001; BC-002; BC-004). Human Leukocyte Antigen 

(HLA) Class I typing was performed on DNA extracted from whole blood or CD4+ T-cells, 

using a sequence-based method89.  

Ethics statement  

 Ethical approval to conduct this study was obtained from the research ethics boards of 

Providence Health Care/ University of British Columbia and Simon Fraser University. All 

participants provided written informed consent. 

Amplification and Sequencing of Plasma HIV RNA  

 HIV RNA nef sequences were isolated from longitudinal pre-ART plasma samples, 

rebound viremia and on-ART viremia events as follows. Total nucleic acids were extracted from 

500mL of plasma on the NucliSENS EasyMag (bioMerieux), and subjected to DNAse treatment 

if the original plasma viral load was < 250 HIV RNA copies/mL. cDNA, generated using HIV-

specific primers, was endpoint-diluted such that subsequent nested PCR reactions yielded no 

more than 30% positive amplicons, as previously described13,17. Amplicons were sequenced 
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using a 3130xl or 3730xl Automated DNA Sequencer (Applied BioSystems) and chromatograms 

were analyzed using Sequencher (v.5.0, Gene Codes). Sequences with nucleotide mixtures, 

hypermutation or suspected within-host recombination (identified using RDP490) were removed 

prior to phylogenetic inference. HIV drug resistance genotyping was performed on select on-

ART viremia samples using standard approaches91, and interpretations were performed using the 

Stanford HIV drug resistance database92.  

Intact Proviral DNA Assay (IPDA) 

 Intact and total proviral DNA was quantified in CD4+ T-cells isolated by negative 

selection from on-ART PBMC using the Intact Proviral DNA Assay (IPDA)50,93, as previously 

described93, where XhoI restriction enzyme (New England Biolabs) was added to each ddPCR 

reaction to aid in droplet formation per the manufacturer’s recommendation. For participant BC-

004, an autologous env probe (VIC-CCTTGGGTTTCTGGGA-MGBNFQ) was used, as the 

published IPDA probe failed due to these polymorphisms93.  

Near full-length HIV Proviral Amplification and Sequencing 

 Single-template, near full-length HIV proviral amplification was performed on genomic 

DNA extracted from CD4+ T-cells using Platinum Taq DNA Polymerase High Fidelity 

(Invitrogen), where IPDA-determined total proviral loads were used to dilute DNA such that no 

more than 30% of resulting nested PCR reactions yielded an amplicon (protocol described in 40). 

Amplicons were sequenced (Illumina MiSeq) and reads were de novo assembled using an in-

house modification of the Iterative Virus Assembler94 (IVA) implemented in the custom software 

MiCall (http://github.com/cfe-lab/MiCall) to generate a consensus sequence. Each sequence was 

verified to have been sequenced end-to-end (by locating at least part of the 2nd round PCR 

primers at both 5' and 3' ends) and to have a minimum read depth of ≥100 over all positions. 
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Sequences not meeting these criteria were discarded. We validated our pipeline by single-

genome sequencing the provirus integrated within the J-Lat 9.2 cell line95 in 146 independent 

replicates, as well as by sequencing a panel of nine in-house engineered pNL4-3 plasmids in 

which we had deleted large HIV genomic regions96-99. The J-Lat validation yielded 25 consensus 

base errors out of a total 1,375,174 bases sequenced (i.e. an error rate of 1.8 x 10-5), while the 

plasmid validation correctly reconstructed the deletion breakpoints 100% of the time. The 

genomic integrity of sequenced proviruses was determined using an in-house modification of the 

open-source software HIV SeqinR100, where an intact classification required all HIV reading 

frames, including accessory proteins, to be intact. Intactness classifications for all non-

hypermutated proviruses longer than 8,000bp were manually confirmed by checking each HIV 

gene for the presence of start and stop codons (where applicable), internal stop codons, 

hypermutation, or other defects, and checking for known defects in the packaging signal 

region38. Sequences with 100% identity across the entire amplicon were considered identical and 

clonal. 

Sequence isolation from Quantitative Viral Outgrowth Assay (QVOA) 

 QVOA101 was performed for four participants for whom sufficient biological material 

was available (BC-001, BC-002, BC-003 and BC-004), as previously described93. Only two of 

these participants, BC-003 and BC-004, yielded viral outgrowth. For these, near-full length HIV 

RNA genomes were RT-PCR amplified from viral culture supernatants in five overlapping 

amplicons, sequenced on an Illumina MiSeq, and assembled as described above. 

Within-host HIV evolutionary reconstruction and phylogenetic dating  

 Within-host phylogenies were inferred from nef sequence alignments comprising all 

unique plasma, proviral and QVOA sequences collected per participant. To mitigate uncertainty 
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in within-host HIV phylogenetic reconstruction, we inferred a median 1,500 (range 1,500- 4,500) 

phylogenies per participant using Bayesian approaches. To do this, the best-fitting substitution 

models for each dataset was first determined using jModelTest (version 2.1.10 102). Markov 

Chain Monte Carlo (MCMC) methods were then used to infer a random sample of phylogenies 

for each participant. Two parallel runs with MCMC chains of five million generations each, 

sampled every 10,000 generations, were performed in Mr. Bayes (version 3.2.5 103), employing 

the best-fitting nucleotide substitution model (or second best fitting model when runs did not 

readily converge) and model-specific or default priors. Convergence was assessed by ensuring 

the deviation of split frequencies was <0.03, the effective sample size of all parameters was ≥200 

and through visual inspection of parameter traces in Tracer (version1.7.2, 104). The first 25% of 

generations were discarded as burn-in. Nodal support values are derived from Bayesian posterior 

probabilities from the consensus tree. 

 The integration dates of on-ART sequences of interest were subsequently inferred using a 

phylogenetic approach13 as follows. First, each participant's phylogenies were rooted at the 

estimated most recent common ancestor, by identifying the location that maximized the 

correlation between the root-to-tip distance and the sampling date of the pre-ART plasma HIV 

RNA sequences (as within-host sequence divergence from the transmitted/founder virus 

increases over time87,105,106). Linear regression was then used to relate the sampling dates of the 

pre-ART plasma HIV RNA sequences and their root-to-tip divergence, where the slope of the 

regression represents the average within-host nef evolutionary rate and the x-intercept represents 

the root date. We assessed model fit by comparing the Akaike Information Criterion (AIC) of the 

model to that of the null model (a zero slope), where a ΔAIC ≥10 was required to pass quality 

control. Passing linear models were then used to convert root-to-tip distances of on-ART 
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sequences of interest to their estimated integration dates, which were then averaged across all 

passing models per participant. Highest posterior density intervals were computed using the R 

package HDInterval (version 0.2.2). 

 Between-host phylogenies shown in Supplemental Figures 1 and 2 were inferred using 

gag and nef sequences under a maximum likelihood model. Briefly, sequences were aligned in a 

codon-aware manner in MAFFT (version 7.475 107) and manually edited in AliView (version 

1.19 108). Phylogenies were inferred with IQ-Tree109 following automated model selection using 

ModelFinder110 with an AIC selection criterion. Branch support values were derived from 1,000 

bootstraps. Phylogenies were visualized using the R package ggtree111.  

Statistical Analyses  

 Unless otherwise indicated, statistics were computed using GraphPad Prism 8 or R 

version 4.2.1 implemented in RStudio v2021-01-06 or greater.  

Data Availability 

 Previously published sequences used in this study have the following accession numbers: 

MG822917, MG822918, MG822920-MG822961, MG822963- MG823015, MN600002- 

MN600010, MG823016, MG823017, MG823019-MG823143, MN600011-MN600053, 

MN600054- MN600175 and MN600183- MN600247. GenBank accession numbers for the HIV 

RNA nef sequences from pre-ART plasma and rebound and on-ART viremia collected in this 

study are: OQ723958- OQ7244 and OQ750829- OQ750838. GenBank accession numbers for 

defective HIV proviral sequences are: OQ750839- OQ753083, while those for intact HIV 

proviruses and QVOA outgrowth viruses are pending. 
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Figure	1:	On-ART	proviral	landscapes.	Proviral	genomes	isolated	
from	BC-001	(n=317;	panel	A),	BC-002	(n=265;	panel	B),		BC-003	(n	
=733;	panel	C),	BC-004	(n=440;	panel	D),	BC-021	(n=386;	panel	E),	
and	BC-027	(n=195;	panel	F),	colored	based	on	genomic	integrity	as	
indicated.	The	frequency	of	each	proviral	category	is	shown	to	the	
right.	For	defecNve	sequences,	white	regions	denote	deleNons	and	
grey	regions	denote	HIV	regions	that	are	in	the	reverse	orientaNon.	
For	the	"premature	stop	codon"	and	"scramble"	categories,	black	
regions	denote	the	region(s)	containing	the	defect(s).		
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Figure	2:	Proviral	clonality	and	rela1onship	with	genomic	integrity.		
Panel	A:	(top)	White	pie	slices	denote	each	parNcipant's	proporNon	of	
clonal	sequences	(defined	as	100%	idenNcal	sequences	observed	at	
least	twice).	(bo4om)	Breakdown	of	clonal	sequences	by	clone	size	
(color	gradient)	and	genomic	integrity	(hatching).	Panels	B-E:	Pairwise	
comparisons	of	the	proporNon	of	clonal	sequences	in	each	proviral	
category	as	indicated	(clonal	proporNon	shown	in	white),	compared	to	
all	other	provirus	types.	Data	are	combined	across	all	parNcipants.	P-
values	are	computed	using	Fisher's	exact	test	and	are	not	corrected	for	
mulNple	comparisons.		
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Figure	3:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-001.	Panel	A:	Clinical	and	sampling	
history.	Plasma	viral	load	is	shown	as	a	solid	black	line,	with	pre-ART	
plasma	HIV	RNA	sampling	dates	shown	as	colored	circles.	Shaded	
periods	denote	ART.	Red	symbols	denote	sampling	dates	of	on-ART	
sequences	of	interest,	including	intact	proviruses	(solid	red	
diamonds),	defecNve	proviruses	(open	red	diamonds),	plasma	
rebound	viremia	following	ART	interrupNon	(solid	red	diamond	with	
black	dot)	and	on-ART	low-level	viremia	(solid	red	square).	Panel	B:	
Example	within-host	phylogeny,	which	is	the	highest	likelihood	tree	
derived	from	Bayesian	inference,	rooted	at	the	most	recent	
common	ancestor	as	described	in	the	methods.	Scale	in	esNmated	
subsNtuNons	per	nucleoNde	site.	Asterisks	idenNfy	nodes	supported	
by	posterior	probabiliNes	≥70%.	Panel	C:	HIV	sequence	divergence-
versus-Nme	plot	derived	from	the	example	phylogeny.	The	blue	
dashed	line	represents	the	linear	model	relaNng	the	root-to-Np	
distances	of	disNnct	pre-ART	plasma	HIV	RNA	sequences	(colored	
circles)	to	their	sampling	Nmes,	which	is	used	to	convert	the	root-
to-Np	distances	of	disNnct	proviral	sequences	sampled	during	ART	
(red	symbols)	to	their	integraNon	dates.	Light	grey	lines	trace	the	
ancestral	relaNonships	between	HIV	sequences.	Sequences	from	
the	last	pre-ART	Nmepoint	were	excluded	from	the	linear	model	as	
the	parNcipant	had	iniNated	ART	and	viral	load	was	decreasing	at	
this	Nme.	Panel	D:	IntegraNon	date	point	esNmates	and	95%	
highest	posterior	density	intervals	for	disNnct	post-ART	sequences	
of	interest,	straNfied	by	sequence	type,	that	were	derived	from	
averaging	results	across	all	1,500	passing	trees	for	this	parNcipant.	
P-values	compare	the	integraNon	date	point	esNmates	between	
groups:	the	Mann-Whitney	U	test	was	used	to	compare	the	intact	
vs.	combined	defecNve	categories	(p=0.28),	while	the	Kruskal-Wallis	
test	was	used	to	compare	the	different	types	of	defecNve	
proviruses	(p=0.05).	
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Figure	4:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-002.		Legend	as	in	Figure	3,	with	the	
following	modificaNons:	In	panel	A,	the	yellow	shading	denotes	
the	period	of	non-suppressive	dual	ART.	In	panel	D,	the	Kruskal-
Wallis	test	comparing	the	three	types	of	defecNve	proviruses	was	
staNsNcally	significant,	so	the	post-test	p-values	for	the	individual	
pairwise	comparisons,	corrected	for	mulNple	comparisons,	are	
shown.			
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Figure	5:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-003.		Legend	as	in	Figure	3,	with	the	
following	modificaNons:	QVOA	outgrowth	virus	sequences	are	
denoted	with	solid	red	diamonds	with	a	black	outline.		
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Figure	6:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-004.		Legend	as	in	Figure	3,	with	the	
following	modificaNons:	QVOA	outgrowth	virus	sequences	are	
denoted	with	solid	red	diamonds	with	a	black	outline.	Unique	
symbols	are	used	to	differenNate	the	2011	(solid	red	square	with	
black	outline)	and	2019	(solid	red	square)	on-ART	viremia	events.	
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Figure	7:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-021.		Legend	as	in	Figure	3.	
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Figure	8:	HIV	evolu1onary	reconstruc1on	and	on-ART	sequence	
da1ng	for	par1cipant	BC-027.		Legend	as	in	Figure	3.	
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Table 1: Participant clinical history and HIV sequence sampling  

aInfection date was estimated using clinically-recorded information, participant-reported date or the mean root date of within-host phylogenies, whichever was 
earlier. ‘First ART’ refers to first treatment with triple ART 
bThis number is a subset of the total number of proviruses collected on ART  
 

Participant Years from 
estimated 

infection to 
first ARTa 

Years of  
pre-ART 
sampling  
(n time 
points) 

Number of 
pre-ART 

HIV RNA 
sequences 
collected 

(% unique) 

Subsequent 
years of ART 

Total number 
of proviral 
sequences 

collected on 
ART 

(% unique) 

Number of 
intact 

proviruses 
collected on 

ARTb 
(% unique) 

Number of 
QVOA 

sequences 
collected on 

ART  
(% unique) 

Number of 
rebound HIV 

RNA 
sequences 
collected  

(% unique) 

Number of 
low-level 
viremia 

sequences 
collected   

(% unique) 
BC-001 11.9 10 (15) 102 (91%) 9.5 317 (65%) 5 (100%) - 9 (56%) 1 (100%) 
BC-002 14.6 9.5 (17)  160 (82%) 9.6 265 (75%) 1 (100%) - - 13 (77%) 
BC-003 5.9 4.75 (8) 122 (93%) 8.7 733 (88%) 15 (87%) 2 (100%) - - 
BC-004 2.2 0.75 (4) 65 (91%) 9.1 440 (69%) 47 (53%) 7 (100%) - 90 (9%) 
BC-021 5 2.5 (8) 221 (79%) 12.2 386 (72%) 9 (44%) - - - 
BC-027 26.5 14.25 (7) 215 (82%) 7.2 195 (54%) 14 (43%) - - - 
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