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Abstract

Recent technological advancements have enabled spatially resolved transcriptomic profiling but
at multi-cellular resolution. The task of cell type deconvolution has been introduced to disentangle
discrete cell types from such multi-cellular spots. However, existing datasets for cell type decon-
volution are limited in scale, predominantly encompassing data on mice, and are not designed for
human immuno-oncology. In order to overcome these limitations and promote comprehensive inves-
tigation of cell type deconvolution for human immuno-oncology, we introduce a large-scale spatial
transcriptomic dataset named SpatialCTD, encompassing 1.8 million cells from the human tu-
mor microenvironment across the lung, kidney, and liver. Distinct from existing approaches that
primarily depend on single-cell RNA sequencing data as a reference without incorporating spatial
information, we introduce Graph Neural Network-based method (i.e., GNNDeconvolver) that ef-
fectively utilize the spatial information from reference samples, and extensive experiments show that
GNNDeconvolver often outperforms existing state-of-the-art methods by a substantial margin,
without requiring single-cell RNA-seq data. To enable comprehensive evaluations on spatial tran-
scriptomics data from flexible protocols, we provide an online tool capable of converting spatial
transcriptomic data from other platforms (e.g., 10x Visium, MERFISH and sci-Space) into pseudo
spots, featuring adjustable spot size. The SpatialCTD dataset and GNNDeconvolver implemen-
tation are available at https://github.com/OmicsML/SpatialCTD, and the online converter tool can
be accessed at https://omicsml.github.io/SpatialCTD/.

Keywords: Cell type deconvolution, Spatial transcriptomic data, Benchmark dataset, Tumor mi-
croenvironment, Human immuno-oncology, Graph Neural Networks

1 Introduction

Spatial transcriptomics has provided novel opportunities to gain a deeper understanding of spatial het-
erogeneity of tissue architecture [9, 14], analyze cellular interactions [15, 23], and investigate tissue
neighborhoods and local features that contribute to disease [14, 24]. However, the majority of exist-
ing relatively affordable spatial transcriptomic technologies, such as Spatial Trascriptomics [19], 10X
Visium [1], and Slide-seq [17, 20], detect expressed RNAs at the spot-level in space where each spot
contains multiple cells, resulting in a mixed gene expression profile that does not provide spatial single-
cell resolution. This limitation hinders the accurate quantification of spatial cellular distribution and
subsequent analysis.

To overcome the aforementioned limitation, the task of cell type deconvolution has been introduced
to decompose spatial mixture gene expression into cellular proportions per spot. Recent years have
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witnessed an increasing number of computational approaches for cell type deconvolution. For exam-
ple, Seurat [21] and Giotto [7] leverage the enrichment score of a gene set (such as cell-type-specific
marker genes obtained from scRNA-seq data) to estimate the likelihood of each cell type in a given spot.
SPOTlight [8] utilizes seeded non-negative matrix factorization (NMF) regression to deconvolve spatial
transcriptomics spots with single-cell transcriptomes. Stereoscope [5] develops a Bayesian model that
integrates information from both single-cell and spatial transcriptomics data to estimate the probability
of each cell type at each location within the tissue sample. Cell2location [12] is a Bayesian hierarchical
model to analyze spatial expression counts with a spatially informed prior on cell-type compositions for
cell type composition inference. In addition, deep learning based methods have also been developed to
advance cell type devconvolution. Tangram [6] employs a deep learning framework to discover a spa-
tial alignment for scRNA-seq data, and then utilizes the identified spatially co-expressed gene modules
from the alignment process to deduce the existence of various cell types within a given tissue sample.
DSTG [18] utilizes graph-based convolutional networks to estimate cell type proportion of real spatial
transcriptomics data from pseudo spatial transcriptomics with established cell type compositions for
reference.

However, the majority of existing datasets to study cell type deconvolution are relatively small, unre-
lated to human tissues, and not specifically designed for immuno-oncology purpose, which is to combat
neoplasms through the investigation of interactions between tumor cells and the immune system. For
example, Lulu Yan et al. [25] propose three benchmark datasets about mouse tissues for benchmarking
deconvoluting spatial transcriptomic data, and the sum of the three datasets are as small as 80,000 cells.
Bin Li et al. [13] simulate 32 datasets for cell type deconvolution from the scRNA-seq data as the ground
truth, which may not fully capture the biological variability in real tissues and reflect the complexity
and heterogeneity of real biological systems. Note that the composition and density of immune cells in
the tumor microenvironment (TME) profoundly influence tumor progression and success of anti-cancer
therapies [22]. Thus, to facilitate the cell type deconvolution research, a spatial transcriptomic dataset
in the tumor microenvironment for human immuno-oncology purpose is a pressing need.

To bridge this gap, we introduce a large-scale spatial transcriptomic dataset from human tumor mi-
croenvironment with 1.8 millions cells to evaluate cell type deconvolution for immuno-oncology. Different
from existing methods that predominantly rely on single-cell RNA sequencing data as a reference with-
out spatial information, we introduce Graph Neural Network-based method i.e., GNNDeconvolver,
which effectively leverage the spatial information of reference samples with known cell compositions to
infer unlabeled ones. Extensive experiments demonstrate that GNNDeconvolver usually outperforms
existing state-of-the-art methods by a large margin. Note that GNNDeconvolver is a reference-free
approach, which circumvents the need for utilizing single-cell RNA-seq data as a reference. To enable
comprehensive evaluations for cell type deconvolution with spatial transcriptomics data from diverse
protocols, we provide an online tool to convert spatial transciptomic data at a single-cell resolution from
other platforms (e.g., 10x Visium, MERFISH and sci-Space) to pseudo spots with adjustable spot size.

2 Results

2.1 An overview of our generated SpatialCTD dataset

The majority of current benchmark datasets for cell type deconvolution are primarily composed of
mouse data [4, 13, 25], simulated from single-cell RNA sequencing data instead of real transcriptomic
data [13, 25], and not derived from the human tumor microenvironment [2–4, 8, 13, 25]. To address
the dearth of benchmark datasets for cell type deconvolution in human immuno-oncology research, we
introduce SpatialCTD, a large-scale human-based spatial transcriptomic dataset. The design purpose
of SpatialCTD is to enable flexible and comprehensive cell type deconvolution research in immuno-
oncology. We initially collect spatial transcriptomic data at a single-cell resolution from CosMx plat-
form [10] using the spatial molecular imaging technique. The collected datasets encompass approximately
2 million cells, derive from 20 distinct samples originating from human lung, kidney, and liver tissues, and
are captured at a single-cell resolution. Given that the collected data is at a single-cell resolution with
known single-cell cell type, a grid-based approach is employed to generate pseudo spots from the spatial
transcriptomic data, allowing for cell type deconvolution at spot level while maintaining the integrity
of the true cellular microenvironment and biological variance(Fig. 1). Regarding the cell type of each
individual cell, we directly use the cell type annotation from the original article. To simulate the tran-
scriptome profile of each pseudo spot, the expression profiles of all cells located within one grid region are
summed, with the coordinates of the simulated spot set to the center of the region. The ground truth for

2

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.11.536333doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.536333
http://creativecommons.org/licenses/by-nd/4.0/


Draft

each spot is determined by calculating the percentage of cell types within the corresponding spot. The
generated benchmarking dataset called SpatialCTD presently comprises three human tissues including
human lung, kidney and liver. From each sample, SpatialCTD encompasses three files: a spot gene
expression file indicating mixed gene expression of multiple cells at the spot level, a spot location file
indicating the spatial location of spots within the tissue, and a ground truth file to reveal the cell type
proportion of generated pseudo spots (Fig. 1). More details about how to generate SpatialCTD can
be referred to Section 4.
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Figure 1: An Overview of SpatialCTD. (a), The method for generating the SpatialCTD dataset.
SpatialCTD comprises three distinct human tissues, namely, lung, kidney, and liver. For each sample
in tissues, SpatialCTD consists of a spot gene expression file, a spot location file, and a ground truth
file. (b), A summary of SpatialCTD.
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In SpatialCTD, a total of 20 samples are included. Of these, 8 are obtained from human lung
tissue (Fig. 1). Specifically, Lung 5-1, 5-2, and 5-3 are from the same patient, while Lung 9-1 and
9-2 are from another patient. The remaining lung tissue samples are collected from different patients.
Regarding the human kidney tissue, samples of Run1087 SP19 4061, Run1087 SP20 1098, and
Run1080 SP20 10838 are from the one patient, while the remaining kidney tissue samples are obtained
from different patients. For the human liver tissue, the normal sample is collected from a 35-year-old male
patient, while the hepatocellular carcinoma sample is from a 65-year-old female patient. The field of view
(FOV) layout of samples in lung ( Fig. 7 in Supplementary) and liver tissues (Fig. 9 in Supplementary)
is highly regular, whereas the FOV layout of samples in kidney tissue ( Fig. 8 in Supplementary) is less
regular. Each tissue has more than 17 cell types, resulting in a highly detailed cell type resolution. The
spot size is determined based on the mean and median spot size from the GeoMx platform, which are
37456.28 µm2 and 24168.74 µm2, respectively. For lung and kidney tissues, each field of view (FOV)
is divided into 20 (4*5) pseudo spots, leading to a spot area of 32338.2067 µm2. Similarly, for human
liver tissue, each FOV is divided into 9 (3*3) pseudo spots, bringing about a spot area of 28709.9136
µm2. Both of these spot sizes fall within a reasonable range. The average number of cells per spot
ranges from 61 to 219. After filtering out spots with low quality, a total of 771,236 cells, 296,838 cells,
and 760,506 cells are retained for human lung, kidney, and liver tissues, respectively. To the best of our
knowledge, this is the first large-scale dataset of real spatial transcriptomics across several human tissues
from tumor microenvironment, which enable advanced and extensive cell type deconvolution research for
immuno-oncology.

2.2 Comparison between existing benchmark datasets and SpatialCTD

To demonstrate the necessity of the SpatialCTD dataset, we compare, from both biological variance
and statistical perspectives, SpatialCTD with existing simulated cell type deconvolution benchmark
datasets.

Biological variance: We first illustrate the presence of cellular heterogeneity in SpatialCTD collected
from the tumor microenvironment (TME), as well as in the simulated spatial transcriptomic data de-
rived from single-cell RNA sequencing data in Experiment 1, and then reveal the existence of cellular
heterogeneity in SpatialCTD between normal and tumor tissues in Experiment 2.

In Experiment 1, we initially extract a particular cell type from our dataset (SpatialCTD Lung
5-1) and one simulated dataset (D7 [13]). D7 is obtained from single-cell RNA sequencing data. Note
that both SpatialCTD and D7 pertain to the human lung tissue. As a demonstration, the macrophage
cell population is collected, comprising 7,405 cells from Lung 5-1 and 2,406 cells from D7. We obtain
942 common genes from two datasets and then perform differential expression (DE) analysis using the
R package limma [16], setting the adjusted P value to less than 0.05, between two groups of cells.
Subsequently, we identify 283 and 101 DE genes from the DE analysis in macrophage and fibroblast
cells, respectively. The same phenomenon can be observed in other major cell types, like B cells, CD4
cells, CD8 cells, endothelial cells and mast cells ( Fig. 14 in Supplementary). Experiment 1 provides
evidence that cellular heterogeneity is present even for the identical cell type in SpatialCTD compared
to D7. SpatialCTD represents the authentic spatial transcriptomic data and is more representative of
the actual biological system.

In Experiment 2, we conduct the same DE analysis above between SpatialCTD samples of healthy
liver tissue and hepatocellular carcinoma to explore if cellular heterogeneity exists between normal and
malignant tissues in spatial transcriptomic data. We use inflammatory macrophage as an example.
Healthy liver tissue and hepatocellular cancer yield 5,882 and 14,797 cells, respectively, out of 332,877
and 460,441 cells. The DE genes are then found via DE analysis. TTR, APOA1, HSPA1A, S100A9,
S100A8, and SERPINA1 are strongly expressed in the healthy liver tissue but not in hepatocellular
carcinoma, whereas HLA-A, CD74, GPX1, HLA-DRB1, PSAP, and MALAT1 are substantially expressed
in hepatocellular carcinoma but not in the healthy liver tissue ( Fig. 15 and Fig. 16 in Supplementary).
For erythroid cells, TTR, APOA1, HSPA1A, APOC1 and SERPINA1 are highly expressed in the healthy
liver tissue but lowly expressed in hepatocellular carcinoma while HLA-A, MALAT1, CD74 and B2M
are highly expressed in hepatocellular carcinoma but lowly expressed in the healthy liver tissue. The
same phenomenon can be observed in other major cell types, like B cells, endothelial cells, T cells and
stellate cells ( Fig. 15 and Fig. 16 in Supplementary). The two preceding investigations demonstrate the
existence of cellular heterogeneity in both real and simulated spatial transcriptomic data, as well as in
normal and cancerous tissues. This underscores the need of SpatialCTD to evaluate immuno-oncology
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cell type deconvolution.
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Figure 2: Comparison between SpatialCTD and existing cell type deconvolution benchmark datasets,
and SpatialCTD converter tool. a, Statistical comparison between SpatialCTD and existing cell
type deconvolution benchmark datasets. b, An interface of the web-based SpatialCTD converter
tool to convert spatial transcriptomic data at a single-cell resolution to ST pseudo spots for cell type
deconvolution benchmarking.

Statistical difference We conduct a thorough comparison of SpatialCTD with a number of existing
cell type deconvolution benchmark datasets (Fig. 2). Mouse Embryo [25], MPOA [25], Mouse Cortex [13],
and Mouse Visual Cortex [13], adopted a similar approach as ours to generate pseudo spots from spatial
transcriptomics (ST) data at the single-cell level. However, these studies were conducted solely on mice
and did not involve human samples. Additionally, Mouse Brain [25], Simulated ST for Human Lung [13],
and Simulated ST for Human Liver [13] were simulated from single-cell RNA sequencing data rather than
actual ST data, and were not derived from TME tissues. Similarly, Mouse Posterior Brain [4] and Mouse
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Olfactory Bulb [4] are mice based. Despite HEK293T, CCRF-CEM [2] and Human PDAC [3] derived
from human tissue, they do not originate from the tumor microenvironment. Furthermore, it is worth
noting that the datasets under comparison have a limited sample size, with the largest comprising only
60,000 cells, whereas SpatialCTD comprises up to 770,000 cells within a single tissue. In addition, Spa-
tialCTD presents several distinctive features that are not yet commonly available in existing benchmark
datasets, including spot images, which offer a complementary modality for the cell type deconvolution
task. Additionally, SpatialCTD provides spatial location data for both cellular and subcellular entities,
which has the potential to prompt further cutting-edge research utilizing these features. For example, the
identification of cell states in a tissue can be facilitated by cellular location within the tissue. Changes
in the spatial distribution of cells within a tissue have been linked to alterations in cell type composition
and distribution, which are often associated with disease. The cell and subcellular location can be also
further explored to aid in the investigation of ligand-receptor interactions. SpatialCTD is the first
large-scale dataset of real spatial transcriptomics collected from various human tissues within the tumor
microenvironment. This unique dataset provides an unprecedented opportunity for studying cell type
deconvolution in the field of immuno-oncology.

2.3 Online conversion tool

To ease the process of converting spatial transcriptomics data at single-cell resolution to pseudo spots
for benchmarking cell type deconvolution, we have developed a web-based online conversion tool. We
provide a friendly web interface for researchers to upload four files, with the first two being mandatory
and the latter two being optional. The first file (coordinates of single-cell local in FOV file) contains
single-cell level coordinates local in field of view (FOV) (Fig. 2). The second file (coordinates of FOV
file) indicates the coordinates of FOV in the slide, which is the spatial coordinates of the center point
of each FOV. The third file (single-cell level gene expression file) has gene expression at the single-cell
level, which is optional, and the fourth file (single-cell level cell type file) includes single-cell level cell
type label, which is also optional. Researchers can refer to the sample data file on our GitHub repository
for the specific column naming of each file. Furthermore, researchers need to specify the pixel size of
each FOV. We assume that the size of each FOV in the slide is identical. Note that we allow researchers
to customize the size of the pseudo spot by specifying how the spots in the FOV are divided.

Upon uploading the aforementioned files and providing the necessary information, researchers can
generate the pseudo spot related files by clicking the ’Generate’ button. The output files include the spot
location file, which contains the spatial information of each pseudo spot, and the cell mapping file, which
displays the mapping relationship between the pseudo spot ID and the cell ID. The ground truth file has
the cell type proportion per spot, and the spot gene expression file provides spot-level gene expression
data. If the researcher only uploads the first two files, the tool will only generate the spot location file
and the cell mapping file. Researchers can generate the ground truth file and the spot gene expression
file offline using the cell mapping file. We anticipate that SpatialCTD will expand beyond the three
human tissues we have currently generated, and thus, we hope that developing such tool can simplify
the conversion process of other spatial transcriptomics data.

2.4 Performance Comparison in SpatialCTD

In this subsection, we design GNNDeconvolver as a Graph Neural Network-based approach that
serves as a robust and strong baseline method for analyzing SpatialCTD. In this study, we assume that
cell composition labels are either present for the entire sample or not present at all. Prior to applying
GNNDeconvolver, we construct a linked graph that connects labeled and unlabeled nodes where
labeled nodes denote spots with established cellular compositions in reference samples, and unlabeled
nodes correspond to spots within the query sample to be inferred for the cell type proportion. Specifically,
we treat each spot as a node in the graph, and build up an internal graph for each sample based on spatial
distance (euclidean distance) and the similarity of gene expression between node pairs. We then establish
connections between pairs of nodes across different graphs based on the similarity of gene expression.
This approach enables the connection of both labeled and unlabeled nodes in the graph. For example, we
have three samples: sample 1, sample 2, and sample 3. Sample 1 and sample 2 are labeled with cell type
proportion for each spot or node, and hence are referred to as reference or training data. Sample 3, on
the other hand, is the test or query data that requires prediction by the model. To achieve this goal, we
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construct a graph by linking nodes in sample 3 with those in sample 1 and sample 2 that exhibit similar
gene expression (Fig. 3). Our approach is based on the assumption that nodes with similar gene expression
are likely to have similar cell type proportions. We then apply GNNDeconvolver to the constructed
graph. GNNDeconvolver incorporates two graph convolutional layers [11], followed by a softmax
function that produces the cell type composition from the output logits. The fundamental principle of
GNNDeconvolver is to utilize the graph convolutional operator to propagate the information cross
samples and nodes, and thus enable the prediction of cell composition for the unlabeled node. More
details about GNNDeconvolver can be referred to Section 4.

To leverage spatial information among spots in the reference data with established cell type propor-
tions, we conduct our experiments with training on ST reference samples with known cell compositions
and testing on unlabeled query samples. To distinguish the difficulty of the experiments, we divide them
into four settings based on the dissimilarity between the reference and query samples, and all of four
settings are supported by GNNDeconvolver. Setting 1 only includes samples from the same patient
in both reference and query. In setting 2, the reference samples are from the same patient, while the
query samples are from other patients. In setting 3, reference samples are from different patients and the
sample patients in the query are present in the reference. Unlike setting 3, the query sample patients in
setting 4 have no previous reference (Fig. 3).

Based on totally 20 samples in SpatialCTD across three human tissues, we assess the performance
of GNNDeconvolver and state-of-the-art methods in the following four perspectives: (i) overall pre-
diction accuracy, which is the average of the measured metrics of Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Pearson Correlation Coefficient (PCC); (ii) performance of each individual
metric (MSE, MAE and PCC); (iii) performance on each tissue (Lung, Kidney and Liver); and (iv)
performance under each setting (Setting 1, 2, 3 and 4); Our results show that GNNDeconvolver
often outperforms existing state-of-the-art methods, followed by RCTD and CARD (Fig. 4). A detailed
description about how to calculate rankings in terms of each perspective is provided below.

Step 1: MSE, MAE and PCC are computed for each method across all experimental settings.

Step 2: For each method under each experiment, three ranking scores are established based on its
performance in terms of MSE, MAE, and PCC.

Step 3: We then calculate the average metric specific rankings under all experiments to represent
this method’s overall metric ranking (ii).

Step 4: The overall ranking for each method is determined by the average ranking of overall MSE,
MAE and PCC ranking mentioned above (i).

For overall ranking under each tissue, we would repeat above steps and replace all experiments in
Step 3 with tissue specific experiments (iii). Similarly, to calculate overall ranking under each setting,
we repeat above steps and replace all experiments in Step 3 with setting specific experiments (iv).

We find that the accuracy of most of the 9 methods is generally stable across three metrics, three
tissues and four settings. In terms of overall ranking, GNNDeconvolver (1.57) outperforms existing
representative methods by a substantial margin, like RCTD (3.27), CARD (3.28) and DestVI (4.7).
GNNDeconvolver performs consistently to achieve the first place among all methods in most cases
(MSE:1.65, MAE:1.66, PCC: 1.4, Kidney:1.1, Liver: 1.25, Setting 1:1.8, Setting 2: 2.5, Settig 3: 1.3
and Setting 4: 1.0). CARD is always ranked second or third regardless of which evaluation aspect.
However, the accuracy of some methods (i.e. Cell2location or stereoscope) varies depending on tissues
and settings (Fig. 4). In conclusion, GNNDeconvolver usually outperforms baselines tremendously
and its performance is very robust across various settings. These achievements of GNNDeconvolver
can be attributed to its following advantages. First, GNNDeconvolver is robust to noise and dropout
in ST data where certain gene expression measurements in spots are missing or unreliable, as GNNDe-
convolver can leverage the relationships between spots and their neighbors to better estimate missing
or noisy values. Second, GNNDeconvolver has the potential ability of transfer learning. GNNDe-
convolver can be trained on reference samples with known cell type composition and applied to other
samples, allowing it to learn from multiple sources and adapt to different experimental conditions. This
capability enables GNNDeconvolver to leverage prior knowledge in reference samples and general-
ize across different ST samples. Third, the cell type proportions in neighboring spots exhibit a high
degree of similarity. GNNDeconvolver can incorporate the spatial information of spots into graph
construction, and can capture local relationships among spots by leveraging the graph structure, which
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Figure 3: An overview of GNNDeconvolver and experimental settings. a, An overview of GNNDe-
convolver. Note that reference refers to the training data with known cell type proportion labels, and
query indicates test data the model will predict. b, Four types of experimental settings.

help distinguish cell type proportions among spots.

Specifically, on the kidney tissue, there are 4, 2, 6 and 8 experiments conducted and evaluated in
Setting 1, 2, 3 and 4 respectively in terms MSE, MAE and PCC (Fig. 4). For MSE, we find that
GNNDeconvolver consistently ranks first while CARD and RCTD are among the top three methods
across all settings. GNNDeconvolver consistently achieves the highest MAE and PCC scores, while
RCTD consistently ranks second for both MAE and PCC metrics no matter which setting. Simultane-
ously, we observe that RCTD demonstrates favorable performance in the first three settings (S1, S2 and
S3), but exhibits suboptimal performance compared to the majority of the other methods in the last
setting (S4) in terms of MSE. This may be attributed its limited generalization ability given that both
reference and query samples in S4 are derived from distinct patients. RCTD assumes that the propor-
tion of genes in each spot correlates with the distribution of cell types in that spot, thereby relying on
specific data distribution assumptions. Nevertheless, the data distribution across patients may exhibit
considerable variability. Our analysis also suggests that the performance of a given method may vary
across different metrics. For instance, while RCTD yields satisfactory results in PCC and MAE across
all four settings, its performance in MSE is inferior to that in PCC and MAE. GNNDeconvolver can
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Figure 4: Performance of 9 methods in cell type deconvolution. a, A summary of results for 9 cell type
deconvolution methods. b, Comparison of the models under different settings on SpatialCTD lung
tissue in terms of MSE, MAE and PCC.
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Figure 5: GNNDeconvolver deconvolution on SpatialCTD lung 5-2 sample. a, Ground truth single-
cell resolution on SpatialCTD Lung 5-2 sample. Each dot is a single cell colored by its ground truth cell
type label. Proportions of deconvolved cell types from ground truth andGNNDeconvolver represented
as pie charts for each spot. b, Spatial autocorrelation of the cell type proportion computed using
Hotspot. Spatial distribution of cell type proportion for T CD4 memory cells, T CD8 memory cells,
tumor, macrophage and neutrophil cells, as inferred by GNNDeconvolver. Each dot represents a
spot. The depth of the point indicates the proportion of the cell type in the spot.
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still exhibit exceptional performance on the liver tissue, but its efficacy is reduced when applied to the
lung tissue ( Fig. 17 in Supplementary).

To further demonstrate the efficacy of GNNDeconvolver, we reconstruct spatial maps of cell
type distributions for the SpatialCTD lung 5-2 sample dataset using the deconvolution proportions
generated by the model. Subsequently, we compare these maps with the established gold standard. We
can clearly see that the spatial patterns of cell types predicted by GNNDeconvolver are consistent
with the ground truth (Fig. 5). To be specific, GNNDeconvolver correctly maps the tumor cells
(red) at the bottom left and spreading at upper right area and B cells (blue) on the diagonal. What’s
more, we explore spatial distribution of cell type proportion from each cell type (Fig. 5). The first
striking pattern is the similar spatial organization between macrophage cells and neutrophil cells, which
indicates the strong extent of co-localization between two cell types in the whole sample. Similar co-
localization pattern can be found between CD4 memory cells and CD8 memory cells. We also find that
tumor cells and macrophage cells are arranged mutually exclusive in space. This is consistent with the
conclusion from previous studies of tumor-associated macrophages in lung tumor [26]. The study typifies
the complexity of macrophage function in cancer which is the respective antitumoral and protumoral
roles of M1 and M2 tumor-associated macrophages. In spatial distribution of cell type proportion for
macrophage cells, we interpret the dark dots represent M1 macrophage cells playing an antitumoral role
while light colored dots indicate M2 macrophage cells playing a protumoral role.

2.5 Impact of spot size

To evaluate the stability of the method with respect to spot size of the spatial transcriptomics (ST)
data, we test all methods on three different spot sizes (large spots: 32338.2067 µm2), medium spots:
16169 µm2 and small spots: 10779 µm2). We find that GNNDeconvolver consistently performs the
best among all different spot sizes no matter which metric evaluation and is more stable to varying spot
sizes (Fig. 6). This nice property of GNNDeconvolver is enbaled by its intrinsic design. GNNDe-
convolver aggregates information and labels from neighboring nodes within the graph structure, thus
it can adapt to different spot sizes through the efficient integration of information from diverse numbers
of neighboring nodes. In terms of MSE, the performance of all methods except CARD tends to become
increasingly worse when the spot size becomes smaller, which is consistent with the results in previous
cell type deconvolution benchmarking studies [25]. This phenomenon can be also observed on the PCC
metric for all methods. One difference between these two metrics is that the variation of PCC is not as
obvious as that of MSE for different spot sizes. Note that the PCC score of SpatialDecon and RCTD
drops greatly when spot size decreases from the large spot size to the medium and small spot sizes.
What’s more, different from other methods, both Tangram and RCTD perform best in small spots but
not in large spots in terms of the MAE metric. The MAE of all methods performs similarly on different
spot sizes, unlike MSE and PCC, which are more sensitive to the spot size.

2.6 Computational resources

In order to assess the usability, we conduct comprehensive investigations of all methods in terms of
running time, system memory, and GPU memory. The experiment is conducted on SpatialCTD kidney
datasets, where the reference data (training data) is the sample Run1087 SP20 1098 with 33k cells,
and the query data (test data) is the sample Run1087 SP19 4061 with 16k cells. All experiments are
conducted on the same platform (12.7 GB System Ram, 166.8 GB Disk, 46080 KB Cache, 6 CPU cores,
Tesla T4 GPU) for fair comparison. It is noteworthy that certain methods, such as GNNDeconvolver
and Tangram, rely on deep learning techniques and can potentially benefit from GPU acceleration.

Regarding overall running time, we observe that Tangram has shortest running time, which is con-
sistent with the conclusion from previous cell type deconvolution benchmarking studies [25]. The run-
ning time for CRAD, NNLS, SpatialDecon, and GNNDeconvolver is under 60 seconds. Conversely,
Cell2location requires around 20 minutes to complete, and Sterescope typically runs more than one hour
(Fig. 6). It should be noted that GNNDeconvolver not only demonstrates superior performance
relative to all other methods, but also is capable of completing its computations in less than one minute.

Regarding system memory consumption and GPU memory consumption, our findings indicate that
Tangram, Stereoscope, and RCTD exhibit higher RAM requirements, whereas SpatialDecon, NNLS, and
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a

b

c

d Two SpatialCTD kidney samples ( reference: 33k cells, 38 cell types; query: 16k cells, 38 cell types)

Figure 6: Assessment of 9 methods from stability and usability perspectives. a-c, Comparison of 9
models on different pseudo spots size for SpatialCTD kidney Setting 1. The determination of spot size
relies on the method of dividing one field of view (FOV). We conduct simulations of three distinct spot
sizes, where each FOV is partitioned into 20 (4x5) spots denoted as large spots (spot area: 32338.2067
µm2), 40 (5x8) spots as medium spots (spot area: 16169 µm2), and 60 (6x10) spots as small spots (spot
area: 10779 µm2). d, Usability evaluation of the methods in terms of running time, system memory and
GPU memory. All experiments are conducted in the same platform (12.7 GB System Ram, 166.8 GB
Disk, 46080 KB Cache, 6 CPU cores, Tesla T4 GPU).

CRAD exhibit lower RAM requirements. The RAM requirements of GNNDeconvolver fall within an
intermediate range. GNNDeconvolver, Cell2location, Tangram and Stereoscope have similar GPU
memory consumption while others only work under CPU computation.

In summary, CARD exhibits the highest level of efficiency, whereas Stereoscope and Cell2location are
the least efficient. Among the top-performing methods, GNNDeconvolver and CARD are the most
efficient.
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3 Discussion

The advent of emerging spatial transcriptomics (ST) technologies has provided novel insights into cellular
abundance and gene expression heterogeneity in a spatial context. Nevertheless, the resolutions of most
of the current ST data are not guaranteed to be single-cell. The task of cell type deconvolution has been
developed to isolate discrete cell types from such multicellular spots. However, the existing datasets for
cell type deconvolution are either simulated from single-cell RNA seq data lack of biological variance or
obtained from ST data at a single-cell resolution but constrained in scale, primarily comprising data on
mice and not intended for human immuno-oncology. Therefore, we introduce a comprehensive spatial
transcriptomic dataset called SpatialCTD, comprising 1.8 million cells derived from the human tumor
microenvironment in the lung, kidney, and liver. In addition, we introduce a robust Graph Neural
Network (GNN)-based approach, known as GNNDeconvolver, that often surpasses current state-of-
the-art methods by a significant margin, even in the absence of single-cell RNA-seq data. To facilitate cell
type deconvolution evaluations, we provide an online tool capable of converting spatial transcriptomic
data at the single-cell resolution into pseudo spots with adjustable spot size.

To demonstrate its necessity, we compare, through both biological variance and statistical differences,
SpatialCTD with existing simulated cell type deconvolution benchmark datasets. The results of the
differential expression (DE) analysis indicate that some cell types exhibit disparate expression patterns
between the natural tumor environment (SpatialCTD data) and the healthy tissue environment (sim-
ulated benchmark datasets). We then conduct a thorough comparison of SpatialCTD with a number
of existing cell type deconvolution benchmark datasets. Most of the ST data generated via the grid
spot way are solely on mice and do not involve human samples while other datasets are simulated from
single-cell RNA sequencing data rather than actual ST data, and are not derived from TME tissues nei-
ther. It is worth noting that the datasets under comparison have a limited sample size, with the largest
comprising only 60,000 cells, whereas SpatialCTD comprises up to 770,000 cells within a single tissue,
and sum up to 1.8 millions of cells. What’s more, SpatialCTD presents several distinctive features
that are not yet commonly available in existing benchmark datasets above, including spot images, and
spatial location data for both cellular and subcellular entities. To ease the process of converting spatial
transcriptomics data at single-cell resolution to pseudo spots for cell type deconvolution studies, we have
developed a web-based online conversion tool.

In addition, we propose GNNDeconvolver as a Graph Neural Network-based approach that serves
as a reliable and strong baseline method for analyzing SpatialCTD. Kindly note that GNNDecon-
volver is a method that does not require single-cell RNA seq data as reference data. Extensive experi-
ments show that GNNDeconvolver usually outperforms state-of-the-art methods by a large margin.

To evaluate the stability of the method with respect to spot size of the ST data, we evaluate all
methods on three different spot sizes (large spots: 32338.2067 µm2), medium spots: 16169 µm2 and
small spots: 10779 µm2). We observe that GNNDeconvolver consistently outperforms all baselines
across various spot sizes under each evaluation metric. We also test the running time, system memory and
GPU memory usage of all methods in order to assess their usability. We find that GNNDeconvolver
and CARD are the most efficient methods among the top-performing methods.

Subsequent studies may incorporate single-cell resolution ST data from other platforms into Spa-
tialCTD. Moreover, more human tissues may be included in SpatialCTD to establish it as a bench-
mark dataset at the atlas level. For GNNDeconvolver, approaches to combine single-cell RNA seq
data and ST data to infer cell type deconvolution can be further explored.

4 Methods

4.1 SpatialCTD generation

Dataset collection. We collect spatial transcriptomic data at a single-cell resolution and subcellular
(RNA) resolution from CosMx platform [10] using spatial molecular imaging technique. Twenty samples
across human lung, kidney and liver tissues containing tumor cells are obtained.

Human Lung. This dataset is generated with a 960-plex CosMx RNA panel run on CosMx SMI. There
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are 8 samples from 5 NSCLC (non-small cell lung cancer) tissues. It includes 3 female and 2 male
patients, all of whom are white and over the age of 60. In total, there are 800,327 cells in this dataset,
766,313 cells are analyzed and 259,604,214 transcripts are detected. Each cell is represented by 960
selected gene targets, and each cell in the tissue is categorized as one of 18 distinct cell types.

Human Kidney. This dataset is generated with 960-plex CosMx RNA panel run on CosMx SMI, and
is collected from a kidney core biopsy from lupus nephritis patients. There are 10 samples and around
300,000 single cells in this dataset.

Human Liver. The CosMx SMI human liver dataset offers a subcellular expression map of 1,000 genes.
With over 800,000 single cells and approximately 700 million transcripts, this comprehensive dataset
covers a 180 mm2 area of liver tissue. This dataset contains one sample each from normal liver and
hepatocellular carcinoma tissues. Normal liver is from a male patient at the age of 35 while Hepatocellular
carcinoma is from a female patient at the age of 65.

Generation of pseudo spots. In order to obtain multi-cell-per-spot datasets with known cell type
compositions at each spot, we grid our collected single-cell resolution spatial transcriptomics datasets to
generate pseudo spots. We aggregate the expression profiles of all cells in the pseudo spot to denote the
expression profile of a simulated spot, and sum cell types of all cells residing in the simulated spot to be
cell type propositions of the spot as the ground truth. The centered point of the grid spot is defined as
the coordinate of the spot. Spots with few cells will be filtered out. After generation, each sample comes
with at least five files. Spot cell state file summarizes the number of cells in each pseudo spot. Cell Id
mapping file indicates the mapping relationship between cell id and pseudo spot id. Spot location file
tells the spatial information of each generated pseudo spot. Spot gene expression file is the spot level
gene expression while the ground truth file describes the cell type compositions for each spot. For spot
size, we refer to the spot size from GeoMx platform whose mean spot size is 37456.28 µm2, and median
spot size is 24168.74 µm2.

Human Lung. The sizes of all FOVs in human lung samples are identical (5,472 pixels * 3,648 pixels,
0.18 µm per pixel). We divide each FOV into 20 (4*5) pseudo spots. Each spot area is 32338.2067 µm2

within the reasonable range of GeoMx spot size. After filtering out generated spots with low quality, we
totally get 4,660 generated spots from 8 samples and 771,236 cells are kept.

Human Kidney. The sizes of all FOVs in human kidney samples are identical (5,472 pixels * 3,648 pixels,
0.18 µm per pixel). Same with human lung, we divide each FOV into 20 (4*5) pseudo spots. Each spot
area is 32338.2067 µm2. Once spots with low quality have been filtered out, we totally get 2,460 spots
from 10 samples, and 296,838 cells are kept.

Human Liver. The sizes of all FOVs in human liver samples are identical (4,236 pixels * 4,236 pixels,
0.12 µm per pixel). Each FOV would be divided into 9 (3*3) pseudo spots. Each spot area is 28709.9136
µm2. After filtering out generated spots with low quality, we totally get 5,796 generated spots from 2
samples and 760,506 cells are kept.

4.2 GNNDeconvolver

Assuming that we have t samples with n1, n2,..., nt spots respectively, and the gene expression dimension
of each spot is identical as d. We consider each spot as a node in a graph. For each sample, we construct
individual graph connecting all nodes in the sample via spatial distance and spot gene expression. To be
specific, we first construct two adjacency matrices Aspatial and Agene based on spatial distance and gene
expression, respectively. For Aspatial, each node is connected to its closest top K nodes in the surrounding
space. Here we can also set the threshold to connect pair of nodes. When the distance between two nodes
is less than the specified threshold, the two nodes would be connected. Similarly, Agene is built up by
connecting node with its most similar top K nodes of gene expression. Then the final adjacency matrix
Asample of each sample is obtained by weighting two adjacency matrices Asample = αAspatial + βAgene

where α and β are weights. The graph for sample 1 can be represented as Asample1 ∈ Rn1×n1 and
Xsample1 ∈ Rn1×d where Asample1 is the final adjacency matrix, and Xsample1 is the node representation
matrix.

To connect nodes across samples, we only leverage gene expression to construct the KNN graph since
spatial information of spots across samples doesn’t exist. To be specific, to connect nodes in sample
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1 with nodes in other samples, we first calculate the gene expression similarity between the node in
sample 1 and all nodes in other samples. We then choose the K most similar nodes across samples and
establish connections between them. In such case, we can construct one graph connecting nodes across
all t samples where some samples are labeled with cell type compositions and some are not. The graph
can be represented as Aall ∈ Rn×n and Xall ∈ Rn×d where n = n1+n2+ · · ·+nt. Next, we will introduce
how our designed Graph Neural Network based method (GNNDeconvolver) propagates features from
labeled nodes to infer cell type compositions of unlabeled nodes in a graph.

After graph construction, we have a linked graph G = (V,E). The goal of GNNDeconvolver is
to predict cell type proportions of unlabeled spots by using not only the features of each spot, but also
the graph structure describing the connections between labeled nodes and unlabeled nodes, which is
characterized as the above adjacent matrix A. To be clear and specific, GNNDeconvolver takes two
inputs. One is the adjacent matrix A ∈ Rn×n learned from the graph construction process. The other is
the node representation matrix X ∈ Rn×d where n indicates the number of spots and d is the number
of variable genes.

GNNDeconvolver consists of two convolutional layers. Specifically, each graph convolutional layer
is defined as:

H(l+1) = σ
(
ÃH(l)W (l)

)
= ReLU

(
ÃH(l)W (l)

)
(1)

where Ã = D̃−1/2(A+ I)D̃−1/2 with D̃ the diagonal matrix of A+ I and I the identity matrix. H(l) is
the input from the previous layer. W (l) is the weight matrix of the l-th layer. ReLU(·) is the nonlinear
activation function. Here, the input for the first layer would be the original node representation H(0) = X.

The overall structure of GNNDeconvolver is described as:

Ŷ = ÃReLU
(
ÃXTW (0)

)
W (1) (2)

where W (0) and W (1) are weight matrices to be learned, and Ŷ is the predicted cell type compositions
with F unique cell types. The loss function is defined as the cross-entropy at labeled spots below:

L = −
nq∑
i=1

F∑
f=1

yi,f ln (ŷi,f ) (3)

where nq is the number of all labeled nodes from samples, ŷi,f represents the predicted value of cell type
f in spot i, and yi,f indicates real proportion value of cell type f in spot i. The model is trained by
minimizing the cross-entropy L between the known cell type compositions and the predicted cell type
proportions on training datasets, and parameters are learned via stochastic gradient descent.

4.3 Baselines

SpatialDecon. We used a python implementation https://github.com/OmicsML/dance/blob/main

/dance/modules/spatial/cell_type_deconvo/spatialdecon.py that follows the guidelines on the
SpatialDecon (R) GitHub repository: https://github.com/Nanostring-Biostats/SpatialDecon.

CARD. We used a python implementation https://github.com/OmicsML/dance/blob/main/dance

/modules/spatial/cell_type_deconvo/card.py that follows the guidelines on the CARD (R) GitHub
repository: https://github.com/YingMa0107/CARD. We applied hyper-parameter tuning to optimize
this model, which has default parameters max iter=100, converge threshold epsilon=1e-4, and spatial
gaussian scale factor sigma=1e-1.

RCTD. We followed the guidelines on the RCTD GitHub repository: https://github.com/dmcable

/RCTD.We set doublet mode = ‘full’.

Cell2location. We followed the guidelines on the Cell2location GitHub repository: https://github

.com/BayraktarLab/cell2location. The single-cell model was trained with parameters max epochs
= 250 and lr = 0.002. The Cell2location model was obtained with parameters max epochs = 30,000,
N cells per location = 120, and detection alpha = 20.

DestVI. We followed the guidelines on the DestVI GitHub repository: https://github.com/scver

se/scvi-tutorials/blob/main/DestVI_tutorial.ipynb.The single-cell model was trained with
parameters max epochs = 250, lr = 0.001. The spatial model was trained with max epochs = 2,500.
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stereoscope We followed the guidelines on the stereoscope GitHub repository: https://github.com/a
lmaan/stereoscope.The single-cell model was trained with parameters max epochs = 100. The spatial
model was trained with max epochs = 10,000.

NNLS. It is a linear regression model. We followed the guidelines from sklearn: https://scikit-lea
rn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html. We applied a
non-negative regression model, without bias.

Tangram. We followed the instructions on the Tangram GitHub repository: https://github.com/bro
adinstitute/Tangram. We set the parameters as modes = ‘clusters’ and density = ‘rna count based’.
To deconvolute the cell types in space, we invoke ‘project cell annotation’ to transfer the annotation to
space.

4.4 Evaluation metrics

We use the following metrics to evaluate the predicted cell type composition for cell type deconvolution
task.

MSE. The Mean Squared Error (MSE) describes the average squared difference between the predicted
values and the actual values in a dataset. A lower MSE value indicates better prediction accuracy. It is
defined as:

MSE =
1

M

M∑
i=1

F∑
j=1

(ŷi,j − yi,j)
2

(4)

where M is the number of all unlabeled spots in the test dataset, and F indicates the number of unique
cell types to be predicted. ŷi,j is the predicted value of cell type j in spot i while yi,j is the ground truth.

MAE. The Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of
predictions. It’s the average over the test sample of the absolute differences between prediction and
actual observations where all individual differences have equal weight. A lower MAE value indicates
better prediction accuracy. It is defined as follows:

MAE =
1

M

M∑
i=1

F∑
j=1

|ŷi,j − yi,j | (5)

PCC. The Pearson Correlation Coefficient (PCC) is a measure of linear correlation between two sets of
data. A higher PCC value indicates better prediction accuracy. It’s defined as:

PCC =
E [(ŷ − û) (y − u)]

σ̂σ
(6)

where ŷ is the predicted cell type proportions with F values, and û is the average proportion value of the
predicted cell types. y is the ground truth, and u is the average proportion value in the ground truth.
σ̂ and σ are the s.d. of the cell type proportion in the predicted result and ground truth, respectively.

4.5 Experimental settings

To incorporate spatial information of spots from reference samples with established cell type propor-
tions, we perform our experiments by training on spatial transcriptomics reference samples with known
cell compositions and evaluating the model on unlabeled query samples. To comprehensively evaluate
deconvolution methods, we partition our experiments into four distinct settings based on the dissimi-
larity between the reference and query samples. Setting 1 comprises reference and query samples from
the same patient. In setting 2, the reference samples are derived from the same patient, whereas the
query samples originate from different patients with reference samples. In setting 3, reference samples
are obtained from distinct patients, but the sample patients in the query are present in the reference.
In contrast to setting 3, the query sample patient in setting 4 has no prior reference. In SpatialCTD
lung, we conduct 3 experiments in Setting 1 and 2 experiments in Setting 2. In SpatialCTD kidney,
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we conduct 4 experiments in Setting 1, 2 experiments in Setting 2, 6 experiments in Setting 3 and 8
experiments in Setting 4. In SpatialCTD liver, we conduct 8 experiments in Setting 1.
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