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Abstract 
 
Introduction: Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer’s 
disease brain that are thought to contribute to disease onset and progression. Glial activation 
due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have 
been observed in Alzheimer’s disease patients. However, the mechanism by which this 
immunometabolic feedback loop can injure neurons and cause neurodegeneration remains 
unclear.  
Methods: We used Luminex XMAP technology to quantify hippocampal cytokine concentrations 
in the 5xFAD mouse model of Alzheimer’s disease at milestone timepoints in disease 
development. We used partial least squares regression to build cytokine signatures predictive 
of disease progression, as compared to healthy aging in wild-type littermates. We applied the 
disease-defining cytokine signature to wild-type primary neuron cultures and measured 
downstream changes in gene expression using the NanoString nCounter system and 
mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer.  
Results: We identified a pattern of up-regulated IFNγ, IP-10, and IL-9 as predictive of advanced 
disease. When healthy neurons were exposed to these cytokines in proportions found in 
diseased brain, gene expression of mitochondrial electron transport chain complexes, including 
ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were 
impaired following cytokine stimulation.  
Conclusions: An Alzheimer’s disease-specific pattern of cytokine secretion reduces expression 
of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy 
neurons. We establish a mechanistic link between disease-specific immune cues and impaired 
neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to 
degeneration in Alzheimer’s disease.   
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Abbreviations 
 
Alzheimer’s disease       AD 
Amyloid beta        Ab 
Electron Transport Chain      ETC  
Nuclear Respiratory factor      NRF 
Oxygen Consumption Rate     OCR 
Partial least squares discriminant analysis   PLS-DA 
Partial least squares regression      PLSR 
Reactive Oxygen Species      ROS 
Variable importance in projection     VIP 
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Introduction 
 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive 
decline and memory loss. AD is estimated to affect more than 6.5 million people in the United 
State and 55 million worldwide, with prevalence predicted to increase with the world’s growing 
aged population.108 There are no proven therapies to prevent or cure the disease, which is in 
part due to an incomplete understanding of the disease’s complex etiology. AD is histologically 
characterized by neuron and synapse loss, reactive gliosis, and misfolded aggregated proteins 
of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles.78  
Neuroinflammation is an early event in AD,15,40 appearing before the development of clinical 
symptoms13,83 and often prior to the detection of proteinopathy in AD mouse models.39,91,101 
Neuroinflammation is an active driver of disease and is sufficient to initiate neurodegeneration.40 
Importantly, the majority of known AD risk genes participate in immune response.38,68  
Immunomodulatory therapies are gaining interest for their potential to interfere with disease 
progression or even disrupt disease initiation. However, the entangled nature of the immune 
response complicates the identification of robust, effective targets that will not detrimentally 
affect immune signals necessary for brain health.40 In this study, we examine the evolution of 
cytokine expression over aging and disease progression in a transgenic mouse model of AD 
(5xFAD)62 and wild-type littermates to generate a systems-level profile of dysregulated immune 
signaling in the hippocampus, a primary brain region involved in AD onset and progression.70 
This systems biology approach allows us to identify key AD-implicated cytokine cues and their 
downstream detrimental effect on neuron health.  
 
Neuronal support cells in the brain, called glia, provide immune regulation that is necessary to 
maintain brain homoeostasis. However, their prolonged activation can cause damaging and 
even neurotoxic inflammation.12,34 Microglia, the resident immune-competent cells of the brain, 
play essential roles in development and disease and are thought to be the primary contributor 
to neuroinflammation in AD.16,40,95 Another glial cell type, astrocytes, offer a variety of support 
functions to neurons including metabolic support and neurotransmitter regulation. Additionally, 
astrocytes play a role in the immune response, helping to clear debris and amplify microglial 
signaling cascades.24,35 In neurodegenerative disease, beneficial immune responses, such 
microglial activation for the clearance of debris,95 can become detrimental: prolonged microglial 
activation is accompanied by an overproduction of pro-inflammatory factors, aberrant synapse 
engulfment, and the release of nitric oxide.12,37 Concurrently, dampened immune responses 
result in ineffective neuroprotection.52,74 The shift between detrimental and beneficial roles of 
immune activation, in combination with the substantial overlap in these roles, complicates the 
identification of therapeutic targets to ameliorate harmful neuroinflammation.24,37 Consequently, 
these therapies may also have a limited therapeutic window.37 Immunosuppressant drugs have 
not thus far been found to consistently reduce one’s risk for AD or have protective effects in its 
progression.39 However, the potential remains that if upstream, broad neuroinflammatory 
pathways cannot be modulated with enough specificity to benefit disease state, targeting of 
downstream pathways contributing to neuronal injury may prove to be more advantageous. 
 
Metabolism deficits in AD are similarly characteristic of early disease and are closely intertwined 
with the immune response, contributing to pathology progression and neurodegeneration 
through an immunometabolic feedback loop.87 Evidence suggests that metabolic dysregulation 
precedes proteinopathy and participates in the initiation of AD.18,81  The complimentary and 
synergistic action of neuroinflammation and metabolic impairment in early disease creates a 
unique opportunity to maximize therapeutic effect by disrupting this immunometabolic feedback 
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interaction – a potentially more efficacious target than immune signaling or metabolic function 
alone. However, the mechanism by which immunometabolic feedback injures neurons and 
promotes neurodegeneration remains unclear. Here, we investigate downstream dysregulation 
of neuronal metabolic pathways as a result of a disease-relevant signature of immune cues to 
identify specific and actionable neuronal vulnerabilities created by immunometabolic feedback 
in the hippocampus. 
 
Cytokines, immune signaling molecules, both initiate and are a direct consequence of a variety 
of immune responses and cell-to-cell immune signaling6,104 and are often dysregulated in the AD 
brain.74 Cytokine signaling is highly interdependent, forming a complex web of communications 
between multiple cell types, and often results in a signaling cascade that prompts the secretion 
of additional cytokine cues.104 These characteristics complicate the untangling of shifting 
beneficial and detrimental roles of immune responses in neurodegeneration, but highlight the 
necessity of a holistic view of cytokine signaling to describe the overall immune state of the brain. 
To identify key pathways implicated in disease, we profiled a broad panel of cytokines and used 
a multivariate mathematical modeling tool, partial least squares (PLS), to construct a signature 
of cytokine cues associated with AD progression. The actions and downstream effects of 
individual cytokines are often measured and investigated independently, leading to an 
incomplete and potentially incorrect understanding of their actions in concert. We applied our 
signature of AD-upregulated cytokines to healthy neuron and astrocyte cultures and analyzed 
the resulting differential gene expression and subsequent activation of pathways affecting 
neuronal viability and cellular metabolism. We determined that the AD cytokine signature 
suppressed gene expression of numerous mitochondrial electron transport chain (ETC) complex 
subunits and impaired the mitochondrial function of living neurons. Exposure to the cytokine 
signature representing the milieu of the AD brain thus predisposes neurons to injury from 
inadequate energy metabolism and reactive oxygen species (ROS) damage, which would in turn 
exacerbate neuroinflammation. Our established mechanistic link between the disease-specific 
cytokine signaling and impaired neuronal metabolism identifies opportunities to target specific 
detrimental downstream metabolic pathways to disrupt the complex, cooperative actions of 
neuroinflammation and dysregulated metabolism in disease. 
 
Methods 
 
Mice. All animal procedures were approved by the Penn State College of Medicine Institutional 
Animal Care and Use Committee (PROTO201800449). 5xFAD (B6SJL, Jackson Laboratory) 
breeding pairs were purchased for the generation of animals used in the longitudinal study of 
cytokine profiles over Alzheimer’s disease pathology progression. The 5xFAD strain is 
hemizygous for 5 familial Alzheimer’s disease mutations under the Thy1 promoter for expression 
in the brain: the Swedish (K670N, M671L), Florida (I716V), and London (V717I) mutations in 
human amyloid beta precursor protein (APP) and the M146L and L286V mutations in human 
presenilin 1 (PSEN1).62 Transgenic and noncarrier littermates were housed together and 
genotyped according to Jackson Laboratory’s standard PCR assay protocol 31769 using DNA 
isolated from tail clippings. Even numbers of male and female mice (n=5 per sex, per group) 
were sacrificed for the timepoints of this study. CD1 breeder pairs and untimed pregnant females 
were purchased from Charles River for the generation of primary cell cultures. All animals were 
provided with food and water ad libitum and maintained under a 12-hour light/12-hour dark cycle.  
 
Tissue collection and preparation. We aged the mice to 30, 60, 120, and 180 days to profile 
cytokine concentrations prior to the deposition of intraneuronal Ab at 1.5 months, at the 
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development of extracellular amyloid and gliosis at 2 months, at the first appearance of synaptic 
loss and cognitive deficits at 4 months, and with neuronal loss at 6 months in the 5xFAD model.62 
At each timepoint, 5xFAD mice and noncarrier littermates were sacrificed by unanesthetized 
decapitation using a mouse guillotine (Braintree Scientific). The brain was isolated and placed 
into cold HEPES-buffered Hanks’ Balanced Salt solution (pH 7.8). The hippocampus of the right 
hemisphere was dissected, meninges removed, flash-frozen in liquid nitrogen, and stored at -
80°C. After all study samples were collected, hippocampi were thawed on ice and mechanically 
digested by trituration in 200 µL of RIPA buffer (Boston BioProducts P8340) with protease 
inhibitor cocktail (Thermo A32953, 1 Pierce mini Protease Inhibitor tablet/ 10 mL RIPA). Digested 
samples were vortexed vigorously for 1-2 minutes, rested for at least 20 minutes, and then 
centrifuged at 5000xg for 5 minutes. Supernatants were transferred to new sample tubes for 
analysis. An aliquot of each homogenate sample was set aside for total protein quantification, 
and the rest was flash frozen in liquid nitrogen and stored at -80°C for Luminex multiplex 
immunoassays.    
 
Quantification of total protein. The total protein content of the hippocampal homogenate samples 
was quantified using the Pierce BCA Protein Assay Kit (Fisher 23225) according to the 
manufacturer’s instructions. Samples were run in duplicate and absorbances read using a 
SpectraMax i3 minimax 300 imaging cytometer (Molecular Devices). Sample concentrations 
were quantified by linear regression using duplicate standard samples ran on each plate.    
 
Luminex multiplex assays. Cytokine concentration levels of 5xFAD hippocampal homogenate 
samples were quantified using the Milliplex Map Mouse Cytokine/ Chemokine Magnetic Kit 
(Millipore MCYTMAG-70K-PX32), measuring a broad panel of secreted cytokines, on a the 
Luminex FLEXMAP3D platform. The assay was performed according to the manufacturer’s 
protocol with minor modifications to accommodate the use of 384-well plates. The magnetic 
beads and antibody solutions were diluted 1:1 and used at half volume, and the streptavidin-
phycoerythrin was used at half volume. Equal amounts of RIPA buffer and assay buffer were 
used in the preparation of the standards and blanks. Homogenate samples were thawed and 
stored on ice. Samples were diluted to 0.3 g/mL total protein using RIPA buffer, allowing 7.5 µg 
total protein per well, and assayed in technical triplicate.  
 
Cytokine profile data cleaning. The Luminex Xponent software was used to interpolate sample 
cytokine concentrations from 5-point logistic standard curves. Concentrations below the 
detection limit (< 3.2pg/mL) were assigned 0 pg/mL. The raw concentration data was processed 
using an automated in-house pipeline, available from GitHub at 
https://github.com/elizabethproctor/Luminex-Data-Cleaning (Version 1.02). Briefly, the pipeline 
removes readings generated from less than 20 beads (4 observations in the current dataset) 
and calculates the pairwise differences of the remaining technical triplicates. If the difference 
between one replicate is greater than twice the distance between the other two, that replicate is 
removed from the analysis. The average of the remaining technical replicates for each cytokine 
is then calculated for the final dataset for use in subsequent multivariate analyses. Following the 
automated data cleaning, we removed entire cytokines from the dataset if over half the readings 
were 0 pg/mL in a pattern that did not partition between experimental groups, such as disease 
or timepoint.   
 
Partial least squares modeling. Cytokine signatures were constructed using the linear, 
supervised multivariate mathematical modeling tool partial least squares (PLS).33,94 We chose 
PLS to account for the highly interdependent nature of cytokine expression and signaling. PLS 
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allows for the identification of significant multivariate changes in correlative predictors (here, the 
cytokines) as they relate to a dependent response or group (e.g., timepoint). This aim is achieved 
by building linear combinations of the predictors (latent variables, LVs) that maximize the 
covariation between the predictors and the response. This maximization of multivariate 
covariance in predictors with response allows us to identify subtle but meaningful patterns in 
cytokine expression that are undetectable using univariate analysis methods that are unsuitable 
for highly correlative variables.  
Partial least squares regression (PLSR) was conducted for prediction of continuous numerical 
outcomes, such as timepoint, while partial least squares discriminant analysis (PLS-DA) was 
used in the discrimination of experimental groups, such as disease versus control. PLS models 
were built in R using the ropls package84. Cytokine data were mean-centered and unit-variance 
scaled prior to PLS modeling. To generate each model, the optimal number of latent variables 
was determined by repeated random sub-sampling cross-validation. Cross-validation test sets 
were randomly generated using 1/3 of the dataset if the number of samples used to build the 
model was >30 or 1/5 of the dataset if samples <30. Cross-validation was repeated 100 times. 
For every iteration, models were built using the training set (data excluded from test set) 
comprised of either 1, 2, 3, 4, or 5 LVs. The resulting models were used to predict the group 
identity or response value of each sample in the test set to estimate classification accuracy (in 
PLS-DA) or root mean squared error of cross validation (RMSECV) (in PLSR). RMSECV was 
calculated by: 

𝑅𝑀𝑆𝐸𝐶𝑉 = (∑ *𝑃! − 𝐴!.
"#

!$%

𝑛  

Where n is the number of samples in the test set, P is the predicted value, and A is the actual 
value of the jth sample. The test/training set was randomly regenerated for the following 
iterations, and the average of the estimated classification accuracy or RMSECV following cross-
validation was calculated for each of the 1, 2, 3, 4, or 5 LV PLS models. The model with the 
number of LVs resulting in the best accuracy/ lowest error was chosen for subsequent analysis 
and significance testing. A model’s significance was calculated using a permutation test. For 
each iteration of the permutation test, the group identities or responses were randomly shuffled 
among samples, preserving the data landscape of the cytokine profiles while creating 
randomized associations. Cross-validation was performed as described previously, preserving 
the number of latent variables comprising the “real” model, to estimate the true random accuracy. 
The p-value of the optimized experimental model was then calculated by comparison with the 
mean and standard deviation of the distribution of random models’ accuracy. For PLS models 
containing 1 latent variable, the second latent variable is shown in the scores plot for ease of 
visualization but was not included in the calculation of error, p-value, or Variable Importance in 
Projection (VIP) scores. Models presented in this study were orthogonalized for improved 
interpretability. Orthogonalization maximally projects covariation of the measured cytokines with 
the response to the first latent variable, prioritizing this covariation over variation in the measured 
cytokines between samples.86 We identified key differential cytokines by their variable 
importance in projection (VIP) score, a measure of a variable’s normalized contribution to the 
predictive accuracy of the model across all latent variables.32 Loadings on the first latent variable 
of cytokines with VIP score > 1, indicating greater than average contribution to the model, are 
designated as the cytokine signature of the given outcome (e.g. AD progression).  
 
Primary cell culture. Primary hippocampal neuron and astrocyte cultures were generated from 
P0 CD1 neonates. Pups were sacrificed by decapitation using surgical scissors, and the brains 
were removed and placed in pre-chilled sterile dissection medium (HEPES buffered Hanks’ 
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Balanced Salt solution, pH 7.8) on ice. Hippocampi were isolated and placed into a sterile 
Eppendorf tube containing cold dissection medium following the removal of meninges. For each 
cell culture experiment, hippocampi from 6-8 neonates were combined. The tube was 
centrifuged briefly, and the dissection medium was aspirated. Warm neuronal plating medium 
(Neurobasal Plus, 10% FBS, 1X GlutaMAX, 1X Penicillin-Streptomycin (Gibco): for neuron 
cultures) or glial medium (DMEM/F12, 20% FBS, 1X Penicillin-Streptomycin, 1mM Sodium 
Pyruvate (Gibco), 10 ng/mL Epithelial Growth Factor: for astrocyte cultures) was added to the 
tube. The sample was manually triturated with a p1000 pipet followed by a p200 pipet.  
For neuron cultures, the total cell concentration was measured using the Countess II automated 
cell counter (Invitrogen), and 5.47*105 cells/cm2 were plated in each well of a poly-D-lysine-
coated Seahorse XFe24 V7 PS Cell Culture Microplate (Agilent) or a 24-well tissue culture plate. 
Following cell attachment 2-4 hours after neuron plating, plating medium was removed and 
neuronal culture medium was added (Neurobasal Plus, 1X B27 Plus supplement, 1X GlutaMAX, 
1X Penicillin-Streptomycin (Gibco)). Half of the neuronal culture medium was changed after 5 
days, and all the neuronal medium was changed on day 9-10 with the addition of experimental 
treatments. Neuron cultures were assayed or lysed on day 12-13.  
For astrocyte cultures, the cell solution was transferred to a poly-D-lysine (Gibco)-coated tissue 
culture flask with additional glial medium. Glial medium in astrocyte culture flasks was replaced 
every 2-3 days until cells reached confluency. Flasks were then placed on an orbital shaker in a 
cell culture incubator for 2 hours at 180 rpm, and the cell culture medium containing non-
adherent cells was removed. The remaining adherent astrocytes were washed with 1X PBS, 
detached using 0.05% trypsin-EDTA, quenched with fresh glial medium, and evenly distributed 
into the wells of a poly-D-lysine-coated 6-well tissue culture plate. Glial medium was switched 
every 2-3 days and treatments were applied at 50% confluency in the 6-well plates. All cell 
culture plates (neurons and astrocytes) were maintained at 37°C and 5% CO2. 
 
Cytokine stimulation of primary culture. The up-regulated Alzheimer’s disease-specific cytokine 
profile of IFNγ, IP-10, and IL-9, as determined by the multivariate modeling, was applied to 
primary neuron and astrocyte cultures derived from CD1 P0 neonates. The combination cytokine 
treatment was applied 72 hours prior to experimentation in levels proportional to the 
concentrations we measured in 5xFAD 180-day hippocampus samples. Concentrations were 
centered in the nanomolar range previously used to study acute cytokine responses in neuron 
cultures.23,89 Recombinant murine cytokines were purchased from Peprotech, IFN-γ (cat 315-
05), IP-10 (cat 250-16), and IL-9 (cat 219-19), and reconstituted to 1 mg/mL in sterile water and 
diluted to 250 µg/mL  (IL-9) or 10 µg/mL (IFNγ and IP-10) in 0.1% cell-culture grade bovine 
serum albumin (Sigma A9418) in 1X PBS. 5nM IFNγ, 12nM IP-10, and 500nM IL-9 or an equal 
amount of 0.1% bovine serum albumin vehicle were added to the appropriate neuronal or glial 
cell culture medium for treatment. Neuron cultures were treated 9 or 10 days after plating, and 
astrocytes were treated, following the removal of non-adherent cells, at 50% confluency. After a 
72-hour stimulation, cells were assayed on the Seahorse XFe24 Extracellular Flux Analyzer or 
lysed for RNA isolation.  
 
RNA isolation and NanoString nCounter analysis. Cytokine- or vehicle-stimulated primary CD1 
astrocyte cultures in 6-well plates and neuron cultures in 24-well plates were lysed and their total 
RNA extracted using RNeasy Mini Kits (Qiagen 74104) according to the manufacturer’s 
instructions. The lysis of 2 wells of astrocytes or 3 wells of neurons were combined for each 
biological replicate to minimize technical variation, resulting in N=3 biological replicates for each 
treatment/cell-type. The RNA content and quality of each sample was determined using the 
NanoDrop 2000 Spectrophotometer (Thermo). RNA samples had a 260/280 absorbance ratio 
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of 1.9 or greater and a 260/230 ratio of 1.8 or greater, quality control guidelines outlined by 
NanoString to exclude samples containing protein or organic compound contamination. 
Targeted gene expression was quantified using NanoString nCounter technology and the Mouse 
Metabolic Pathways Panel, with the assay performed by the NanoString Proof of Principle Lab 
(Seattle, Washington) to measure expression of 768 metabolism-relevant genes and 20 
common housekeeping genes. The raw expression data were processed using the NanoString 
nSolver Analysis software. All samples passed quality control (QC) with the default parameters. 
Data normalization was performed separately for neuron and astrocyte samples. For 
background thresholding, genes with a raw count less than 20 were reassigned a threshold 
count of 20, in order to calculate fold changes to the same baseline reading. Data was 
normalized using a 2-step positive control and housekeeping gene normalization. For the 
selection of appropriate housekeeping genes for each cell type, housekeeping genes with counts 
under 100 were first removed. Then, the housekeeping genes with a coefficient of variation of 
10% or less were kept for normalization (5 genes kept for neurons, 6 genes for astrocytes). 
Using the final normalized astrocyte and neuron expression data, the log2 fold changes of 
cytokine versus vehicle treatment comparisons were calculated using the nSolver software. 
Genes with a significant log2 fold change, as determined by a p-value of 0.05 or less, were kept 
for further analysis. Significantly differentially expressed genes were excluded if the average 
counts for both cytokine and vehicle treatments were both below 30, close to the assigned 
background threshold of 20.  
 
Construction of protein-protein interaction networks. Significantly differentially expressed genes 
in cytokine-treated neurons and astrocytes were used to construct protein-protein interaction 
networks using the STRING database.82 Pair-wise gene inputs were given a score based on 
known and predicted protein interactions from experimental, co-expression, and gene fusion 
evidence. The Cytoscape StringApp was used for network visualization22 with the edge-
weighted, spring-embedded layout. The nodes of the networks are individual significantly 
differentially expressed genes. The genes were characterized by their overall functional group.57 
Isolated sub-networks of 4 or fewer genes were removed.  
 
Seahorse Mito Stress Test. Neuronal mitochondrial function following vehicle or cytokine 
treatment was characterized on the Seahorse XFe24 Extracellular Flux Analyzer platform 
(Agilent). The Seahorse Analyzer measures oxygen consumption rate (OCR) to quantify 
characteristics of mitochondrial function. During the Mito Stress test, a series of compounds is 
injected into the cell culture medium to inhibit complexes of the mitochondrial electron transport 
chain (ETC) to isolate readings of basal respiration, maximal respiration, ATP production, and 
non-mitochondrial respiration. Following baseline oxygen consumption readings (basal 
respiration), oligomycin A, an inhibitor of ATP synthase, is added the cell culture medium and 
the subsequent drop in oxygen consumption corresponds to the mitochondrial ATP production 
by ATP synthase. The following addition of FCCP, an uncoupling agent that disrupts the 
mitochondrial membrane potential, allows for uninhibited electron flow, and the resulting 
increase in oxygen consumption demonstrates the maximal respiration of the mitochondria. 
Finally, rotenone and antimycin A (inhibitors of complex I and III, respectively, and together 
considered a mitochondrial poison) are added to disable the electron transport chain and, thus, 
residual consumption of oxygen is driven by non-mitochondrial processes.  

Primary CD1 hippocampal neurons were stimulated with 5 nM IFNγ, 12 nM IP-10, and 
500 nM IL-9 for 72 hours prior to Seahorse assays. Neuron culture wells were washed with 
Seahorse assay medium and given fresh assay medium: DMEM (cat 103680-100), 10 mM 
glucose solution (cat 103577-100), 1 mM pyruvate solution (cat 103578-100), 2 mM glutamine 
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solution (cat 103579-100) (Agilent). Neuron cultures were transferred to a non-CO2 incubator for 
1 hour prior to running the assay. All Seahorse compound stocks were diluted to 50 mM working 
stocks with assay medium and added to the appropriate Seahorse cartridge ports to give final 
well concentrations of 4 µM oligomycin A, 4 µM FCCP, and 1 µM of both rotenone and antimycin 
A after each injection. Following the assay, the neuron culture wells were washed with 1X PBS, 
and the cells were lysed in 25 µL lysis buffer (Millipore 43-040) by manual titration. The total 
protein content of each lysis sample was quantified using the Pierce BCA Protein Assay Kit 
(Fisher 23225) according to the manufacturer’s instructions in technical triplicate with standards 
measured on each plate. Total protein content was used to normalize intra-plate variation using 
the Seahorse Wave software. Individual wells were excluded from subsequent analysis if the 
cells were not viable (i.e. near-zero OCR measurements) or did not appropriately respond to the 
compounds (e.g. FCCP did not increase oxygen consumption). Each biological replicate was an 
independent Seahorse experiment of neurons derived from a unique group of neonates and was 
the average measurement (calculated according to Table 1) of the readings of 5-10 wells. Final 
OCR measurements of the biological replicates were normalized to non-mitochondrial 
respiration to account for batch effects.60 Two-tailed Student’s T Tests were conducted to 
determine significant differences in basal respiration, maximal respiration, ATP production, and 
proton leak in OCR measurements between cytokine and vehicle treatments. Statistical 
significance was determined by a significance level of less than 0.05.  
 
 
Table 1: Calculations of Seahorse Mito Stress Test Assay Measurements 

Measurement Calculation 
Non-mitochondrial respiration Median OCR measurement following rotenone/antimycin A 

injection  
Basal Respiration (Median OCR measurement prior to the addition of oligomycin A) – 

(Non-mitochondrial respiration) 
ATP production  (Basal respiration) – (minimum OCR measurement following 

oligomycin A injection) 
Maximal Respiration (Maximum OCR measurement following FCCP injection) – (Non-

mitochondrial respiration) 
Proton Leak (Minimum OCR measurement following oligomycin A injection) – 

(Non-mitochondrial respiration) 
 
 
Results 
 
The cytokine signature of AD is distinct from that of healthy aging  
 
To define the evolution of the immune milieu of the hippocampus over the course of disease 
progression in the 5xFAD model, we first built a partial least squares regression (PLSR) model 
to regress timepoint against 5xFAD hippocampal cytokine concentrations (Fig. 1A). We identified 
the above-average contributors to the predictive accuracy of our model (2 latent variables, 
RMSECV=58.4, p=10-5) using the variable importance in projection score (Methods). We found 
that IP-10, IL-9, and IFN-g, are up-regulated over the course of disease, and levels of IL-2 and 
IL-1a decrease with disease progression. This signature describes a milieu that enacts a two-
pronged increase in neuronal vulnerability: first, by increasing expression of canonically pro-
inflammatory cytokines, 4,45,55,56,79,80,88 and second, by decreasing expression of cytokines with 
neuroprotective functions in the brain. 72,73,102  However, subtleties exist in these relationships, 
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some cytokines having both pro- and anti-inflammatory actions, and others whose action is 
incompletely understood in the brain or in the context of AD.14,17,23,56,59,93 
 
To distinguish the evolving milieu of immune cues in AD onset and progression from that of 
normal aging, which also exhibits an immune component (“inflammaging”),10,28,29 we constructed 
a PLSR model regressing timepoint against cytokines profiles of wild-type samples (Fig. 1B). 
The key contributors to the predictive accuracy of the model (1 latent variable, RMSECV=51.9, 
p=10-5) are increased IFN-g  and KC/CXCL1 and decreased MIP-1a and IL-13 with advancing 
age. Notably, the up-regulated immune cues in healthy aging and AD are largely non-
overlapping, indicating that AD onset and progression involves pathological changes in a distinct 
set of process from those that change in the normal course of aging. Emphasizing these distinct 
processes, MIG/CXCL9, while not a key contributor to our AD signature, was identified as 
increasing with disease progression, but was absent in wild-type mice at all timepoints. In 
contrast, because the majority of cytokine species were down-regulated with aging in the wild-
type model, all down-regulated species in the AD signature discussed above are also decreasing 
in healthy aging, suggesting a natural decrease in immune responsiveness or surveillance. 
However, we note that a key decreasing cytokine in healthy aging, MIP-1a/CCL3, increases with 
disease, although not as a key contributor to the AD signature. We conclude that while 
similarities exist between the immune milieus of healthy aging and AD, which is fitting for a 
disease with the primary risk factor of age, they are minimally overlapping, supporting a 
fundamental shift in the brain rather than accelerated aging, as has been suggested by some.99 
 
These models independently assess how cytokine levels change with the progression of aging 
or of AD. While there are distinct differences in the disease and wild-type models, particularly in 
the contributions of IP-10, IL-9, and MIP-1a, there is also overlap, and any comparison of such 
separately-constructed models is necessarily qualitative. We observed cytokines implicated in 
AD, such as CXCL1 and IL-13,30,54,66,98,105 to also be important for the prediction of age in wild-
type samples. In order to directly and quantitatively compare the hippocampal immune milieu in 
AD or normal aging, we next constructed PLS models to differentiate the AD and wild-type 
groups at each.  
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Fig 1. Unique cytokine signatures predict aging in 5xFAD and wild-type hippocampi. Scores plot (top) 
and LV1 loadings plot (bottom) of PLSR models regressing cytokine concentrations against timepoint in (A) 
5xFAD hippocampus (2 LV, RMSECV: 58.4, p-value: <0.00001) and (B) wild-type hippocampus (1 LV, 
RMSECV: 51.9, p-value: 0.00001). Colored loadings signify cytokines with a VIP score > 1. Each point 
represents a single mouse. PLS modeling is comparative and not absolute: older mice (positive scores on 
LV1) feature up-regulation of cytokines with positive loadings and down-regulation of cytokines with negative 
loadings, as compared to younger mice (negative scores on LV1). 
 
 
AD mice exhibit neuroimmune over-activation late in the disease timeline 
 
To directly compare cytokine signatures of AD and wild-type control mice, we constructed partial 
least square discriminant analysis (PLS-DA) models to predict disease status at 30 or 180 days, 
representing prodromal and fully symptomatic AD, respectively. In 30-day-old hippocampus, 
prior to intracellular deposition of Ab, we discriminate AD from wild-type with 83% accuracy and 
high significance (p-value: <0.005, Fig. 2A). The strongest contributors to predictive accuracy, 
MIP-1a and IL-9, are both down-regulated in AD before the development of pathology, in 
comparison to healthy controls. When we compare this result with the AD- and aging-specific 
progression signatures (Fig. 1), we find that both MIP-1a and IL-9 decrease with healthy aging 
but increase with disease progression.  
 
The 180-day PLS-DA model features a similarly high predictive accuracy (80%) and significance 
(p-value: <0.01) in discriminating cytokine expression in AD versus wild-type control 
hippocampus. The model describes an overall increase in cytokine levels in late-stage AD as 
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compared to healthy controls. The strongest contributors to predictive accuracy were IL-9, IFN-
γ, and MIP-1α, all up-regulated in AD. These results are in agreement with the AD- and aging-
specific progression signatures, where IL-9 and MIP-1α both increased with AD progression but 
decreased with healthy aging. While IFN-γ increased in both AD progression and healthy aging, 
this direct comparison of AD with wild-type control at the 180-day time point demonstrates that 
the increase in disease is significantly more pronounced than that in healthy aging, a point that 
cannot be drawn from the comparison of the two separately-derived models in Figure 1. A similar 
point can be drawn for KC/CXCL1, which was also up-regulated in both AD progression and 
healthy aging but is significantly higher in disease samples at 180 days. 
 
In total, these models reflect low immune activity at an early age in the AD brain, which may 
suggest an increased vulnerability to disease. With the onset of disease pathology and fully 
symptomatic AD, the AD brain exhibits a significant increase in overall cytokine expression as 
compared to wild-type control, with a specific pro-inflammatory signature that agrees with the 
time-evolution signature of AD progression when considered outside of comparison to healthy 
aging.  
 
 

 
Fig 2. Cytokines are up-regulated in aged 5xFAD hippocampus but dampened in comparison to wild-
type prior to protein deposition. PLS-DA scores plot (top) and LV1 loadings plot (bottom) of (A) 30-day 
5xFAD vs wild-type hippocampus (3 LV, accuracy: 83%, p-value: <0.005) and (B) 180-day 5xFAD vs wild-
type hippocampus (2 LV, accuracy: 80%, p-value: <0.01). Colored cytokine loadings signify cytokines with a 
VIP score > 1. Each point represents a single mouse. PLS modeling is comparative and not absolute: 5xFAD 
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mice (negative scores) feature down-regulation of cytokines with positive loadings and up-regulation of 
cytokines with negative scores, as compared to wild-type mice (positive scores on LV1). 
 
 
AD cytokine signature alters metabolic gene expression in neurons but not astrocytes  
 
The cytokine signature of AD progression represents the evolving neuroimmune milieu in the 
AD brain. We next endeavored to characterize the effect of this evolving milieu on neuron health. 
We approached this question from two directions: the direct effect of the AD cytokine signature 
on neurons, and the indirect effect of loss of support to neurons via astrocyte dysfunction.7,48 
Astrocytes provide critical metabolic support to neurons, and disruption of this support would 
lead to increased neuronal vulnerability to insult. Importantly, we use the outbred, wild-type CD1 
mouse to generate our cultures, in order to examine the effect of the cytokine signature of AD 
progression in the absence of AD pathology, aiming to isolate the independent effect of the 
immune cues and eliminate any confounding factors caused by the overexpression of amyloid-
related proteins in the 5xFAD mouse model.75  
 
We stimulated cultures with recombinant IFN-g, IP-10, and IL-9, in concentrations proportional 
to those measured in the 5xFAD hippocampus at 180 days of age and analyzed the expression 
of metabolism-associated genes (Methods). Metabolic and immune dysregulation are both early 
characteristics of the pre-clinical AD brain and are closely linked, contributing to an aggressive 
“immunometabolic” positive feedback loop that is capable of driving pathology progression.87 
Cellular metabolism also provides a critical readout of cellular health, allowing fine-tuned 
assessment of the large “grey area” between live, healthy cells and cell death. 
 
As Alzheimer’s disease is a neurodegenerative disease that selectively affects neurons, we first 
investigated the direct effect of the cytokine signature of AD progression on healthy primary 
neurons. We identified significantly differentially-expressed genes in neurons treated with the 
AD progression cytokine signature compared to vehicle-treated neurons (Supplementary Table 
1) and analyzed their downstream protein interactions using the STRING database (Methods). 
Out of the 155 significantly differentially expressed genes in neurons following cytokine 
treatment, 80 were included in the main neuron STRING interaction network. The resulting 
neuron interaction network (Fig. 3A) demonstrated a wide variety of affected genes. 
Unsurprisingly, the genes most substantially effected by cytokine stimulation were associated 
with immune response. Genes involved in immune response were closely linked to genes 
involved in stress response, autophagy, and protein degradation processes, all of which are key 
dysregulated systems in AD.21 The network of affected neuronal transcripts also includes a 
down-regulated cluster of genes traditionally associated with the cell cycle. While neurons are 
post-mitotic cells, many of these genes have known functions in post-mitotic cells, including 
neurons: Plk1, cdc20, and kif2c are involved in the regulation of synapses, dendrites, and the 
cytoskeleton.19,44,106 Cdk9 and npm1 are implicated in cell survival,51,63,67,69 and ccna2 is 
associated with DNA repair in aging, rRNA homeostasis, and cellular senescence. 3,36,100 The 
down-regulation of this cluster of genes with treatment suggests increased neuronal and 
synaptic vulnerability to injury. Strikingly, the neuron network includes a grouping of primarily 
down-regulated genes involved in mitochondrial respiration, including subunits of every complex 
involved in the electron transport chain. The significantly down-regulated genes include the 
subunits Ndufa1 (complex I), Sdhc (complex II), Uqcr11 (complex III), Ndufa4 (Complex IV), and 
Atp5d (ATP synthase or complex V).  
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The interaction network of differentially expressed genes (Supplementary Table 2) in cytokine-
treated astrocytes compared to vehicle-treated astrocytes (Fig. 3B) demonstrated that fewer 
astrocyte genes were affected by the cytokine treatment than in neurons, and those that were 
affected are primarily involved in immune response. Out of the 54 significantly differentially 
expressed genes in astroctes following cytokine treatment, 23 were included in the main 
STRING interaction network. However, hk3, involved in glycolysis, was up-regulated in the 
astrocytes, which may indicate activation of a response to increase neuronal metabolic 
support.2,65 The astrocyte network also features a cluster of up-regulated proteasome related 
genes, many of which were also featured in the neuron network. Proteasomes are involved in 
the degradation of Ab, and their dysfunction has been linked to the abnormal accumulation of 
pathological proteins in AD.41,42,47 The differential gene regulation indicates that AD-associated 
cytokine cues may activate astrocytes to bolster neuronal support functions, but the response to 
the AD signature was less robust than in neurons.   
 

 
Fig 3. Cytokine signature of AD progression generates widespread gene expression changes in 
healthy neurons. STRING protein-protein interaction network of significantly differentially expressed genes 
in (A) neurons and (B) astrocytes in cytokine signature-treated primary cultures compared to vehicle controls. 
Individual genes, represented as nodes, are colored by their primary function(s) and sized according to the 
log2 fold change between treatments. Nodes are outlined in red or blue to indicate up- or down-regulation, 
respectively, with treatment. Network edges denote the STRING interaction score, with a shorter edge length 
indicating a stronger interaction. Thus, nodes that are closer together are more strongly linked.   
 
 
Alzheimer’s disease-specific cytokine signature impairs neuronal metabolism. 
 
Treatment with the cytokine signature of AD progression resulted in marked down-regulation of 
sub-units in every electron transport chain complex. The resulting reduction of components 
responsible for mitochondrial respiration would result in significant impairment of neuronal 
oxidative phosphorylation. We stimulated primary neurons with the AD progression signature of 
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IFN-g, IP-10, and IL-9 and quantified parameters of mitochondrial function through oxygen 
consumption measurements on the Seahorse Extracellular Flux Analyzer (Agilent) using the 
Mito Stress Test Assay (Methods).   
  
We found an overall decrease in oxygen consumption as a result of cytokine treatment compared 
to the vehicle control (Fig. 4). Basal respiration was significantly decreased in cytokine treated 
neurons (Fig. 4B, p-value: 0.031). Maximal respiration, induced by the mitochondrial membrane 
uncoupling agent FCCP, was similarly decreased with cytokine treatment (Fig. 4C, p-value= 
0.012). ATP production also decreased following cytokine treatment, although this finding was 
not statistically significant (Fig. 4D, p-value: 0.065). Finally, the proton leak, the mitochondrial 
oxygen consumption not due to the action of ATP synthase, was also significantly reduced with 
treatment (Fig. 4E, p-value= 0.00021). Overall, the observed functional decrease in neuron 
mitochondrial respiration is in agreement with the gene expression findings of down-regulated 
electron transport chain complexes. A variety of subunits from all 5 complexes were down-
regulated in the neuron cultures with IFN-g, IP-10, and IL-9 treatment, and likely contributed the 
overall reduction in mitochondrial election transport chain performance that negatively impacts 
neuronal health and resilience.  
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Fig 4. Wild-type primary hippocampal neurons treated with cytokine signature of AD progression 
exhibit decreased mitochondrial respiration. (A) Oxygen consumption during Seahorse Mito Stress Test 
following 72-hour vehicle (blue) or combination IFN-y, IP-10, IL-9 treatment (orange) and corresponding 
measurements of (B) basal respiration (p-value= 0.031), (C) maximal respiration (p-value= 0.012), (D) ATP 
production (p-value= 0.065), and (E) proton leak (p-value= 0.00021). P-values calculated by two-tailed 
student’s t-tests. Results generated from the average of 6 independent biological experiments with 5-10 
technical replicates for each of treatment and control. Seahorse oxygen consumption rate measurements are 
displayed as mean ± standard error of the mean. 
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Discussion 
 
An incomplete understanding of AD etiology has prevented the development of successful 
strategies for prevention and treatment. Immune and metabolic dysfunction are among the 
earliest detectable pathologies in the disease, coinciding with or by some accounts preceding 
protein deposition.40,81 A greater understanding of the mechanisms underlying immune and 
metabolic dysfunction in AD has the potential to facilitate early interference to ameliorate 
disease. However, the complex and all-encompassing nature of entangled beneficial and 
harmful immune responses with intercellular communication and neuronal support functions 
complicate the identification of robust and effective targets. Recent systems biology approaches 
address this issue by characterizing the molecular-, cellular-, and tissue-level processes 
disrupted in AD, but have rarely gone beyond descriptive findings of altered cellular pathways.21 
Here, we identified an AD-specific cytokine signature predictive of disease progression that 
defines the evolving immune state in the hippocampus, a primary site of neurodegeneration in 
AD and one of the earliest brain regions affected by the disease. Our signature was not exclusive 
to or built using a single cell type, instead representing the overall immunological milieu 
promoting AD progression. Notably, our signature does not include traditional pro-inflammatory 
cytokines associated with AD, such as TNF-a, IL-6, and IL-1b.40 While these cytokines are likely 
present in the tissue, their levels were below our threshold for inclusion in the model. While the 
individual members of the strong up-regulated signature we identified, IFN-g, IP-10, and IL-9, 
have been linked to AD previously,5,8,31,54,92 with the possible exception of IP-10 they have not 
been appreciated as playing a strong role in AD progression. Further, the pathological role of 
these cytokines in neuronal metabolic dysfunction has never before been identified. We attribute 
our identifications of these cytokines to the multivariate nature of our model: the synergistic 
action of these cytokine cues drove the predictive power of our model, emphasizing the 
importance of considering emergent manifestation of network activities when identifying potential 
critical drivers of disease with possible strategic value as therapeutic targets.   
 
Astrocytes and neurons are metabolically coupled, and dysfunction in astrocytes could 
predispose neurons to injury and death. We studied the independent effects of our cytokine 
signature of AD progression on both cell types to identify potential pathways of neuronal injury 
and subsequent contribution to disease. Receptors for IFN-g, IP-10, and IL-9 are found on both 
neurons27,53,85,97 and astrocytes,11,26,37,107 supporting the study of their combined effect on each 
of these cell types. While AD signature-stimulated changes in astrocyte gene expression were 
limited and primarily related to immune response, we identified numerous differentially 
expressed genes in neurons with known AD implications, such as regulation of synapse plasticity 
and dendrite projection and tryptophan and mitochondrial metabolism. We note that these 
assays were specifically performed in healthy, wild-type primary neuron cultures in the absence 
of any pre-existing AD pathology. Our objective was to determine the capacity of the AD 
progression cytokine signature to affect neuron health and viability, which is most cleanly 
demonstrated in the absence of any other AD-promoting factors. The fact that treatment with the 
cytokine signature altered expression of genes previously linked to Alzheimer’s disease, in the 
direction that would promote disease and absent of any other AD-related factors present, 
demonstrates the power of our model to extract patterns of effectors with discernible value for 
mechanistic insight. These insights have broad potential toward predicting diverse types of 
outcomes in AD and AD risk; we have previously used the partial least squares method to identify 
brain cytokine signatures predictive of systemic metabolism25 and to discover a previously 
unknown neurotoxic effect of VEGF in the presence of Ab aggregates.96  
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The suppression of neuronal mitochondrial metabolism by the cytokine signature of AD 
progression indicates that, at baseline under normal energy demands, neuronal metabolism in 
this immune environment does not function efficiently and would not be able to adequately 
respond to an increased energy demand when presented with a disease insult such as AD-
related proteinopathy. The energy demands of the brain are great, far exceeding other organs 
of the body, and are primarily achieved through glucose metabolism.18 Impaired metabolic 
capacity in neurons could predispose to neuronal injury and neurodegeneration by an inability 
to sustain the energetic demand of synapse activity and other neuronal functions while under 
stress.18 
 
The cytokines comprising our signature of AD progression have not previously been connected 
to a impaired metabolism. However, dysregulated immune signaling and metabolic impairment 
are both well-known features of AD etiology, and their synergistic connection has been 
established in other tissues and diseases such as cancer and type 2 diabetes.49,61 In AD, glial 
activation and the accompanying cytokine release causes downstream metabolic stress,20 which 
is largely characterized by an increase in reactive oxygen species (ROS) and decreased ETC 
activity.64,71,77,81 While not directly connected to neuroinflammation or cytokine signaling, multiple 
subunits of mitochondrial ETC complexes are down-regulated in the AD brain,87 including in the 
hippocampus,76 temporal cortex,58 and frontal cortex.1,50 Outside of the brain, cytokines have 
been implicated in the reduced expression of ETC complex genes and impaired mitochondrial 
respiration in cultures of other cell-types, such as HepG2 cells (a cell line originating from a 
hepatocellular carcinoma),43,90 cardiomyocytes,103 and hepatocytes9,46. 
 
 
Conclusion 
 
Here, we identified a hippocampal cytokine signature of AD progression that is predictive of 
advancing disease in the 5xFAD mouse model of AD. Exposure to this signature of AD 
progression was sufficient to initiate mitochondrial dysfunction in primary neuron cultures that 
was similar to that previously observed in AD, but in the complete absence of AD pathology. The 
resulting decrease in mitochondrial respiration predisposes neurons to injury and in the presence 
of a stressor such as proteinopathy could lead to energetic insufficiency and, ultimately, cell 
death. The cytokines comprising our signature of AD progression have not previously been 
connected to mitochondrial dysfunction, highlighting the power of a systems biology approach 
that considers the inter-relatedness of immune signaling. Overall, our findings support the 
existence of an immunometabolic feedback loop driving neuronal vulnerability in AD. Further 
investigation is needed to evaluate the relevance of the signature in human AD rather than the 
mouse model used here, particularly in the presence of tau pathology, which is absent in the 
5xFAD model. However, the interdependency and redundancy of cytokine signaling, as well as 
the differences between mice and humans, make it likely that there is a corresponding human 
signature capable of driving mitochondrial dysfunction.  
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Supplementary Table 1: Significantly differentially expressed genes of cytokine-treated neurons 
compared to vehicle-treated neurons 

Gene log2FC 
P-
value 

A2m -0.91 0.043 
Acaa2 -0.8 0.003 
Acadl 0.2 0.001 
Acox1 -0.44 0.004 
Ak1 -0.19 0.028 
Ak3 -0.37 0.040 
Aldh2 -0.43 0.015 
Apoe -0.52 0.030 
Ar 0.64 0.043 
Atf4 0.3 0.021 
Atf7ip 0.37 0.004 
Atp5d -0.26 0.010 
Birc3 1.01 0.021 
Brip1 1.03 0.016 
Bub1 -0.47 0.007 
Cacng2 -0.43 0.026 
Cat -0.23 0.014 
Ccl19 1.56 0.001 
Ccl2 3.44 0.001 
Ccl4 -2.75 0.011 
Ccl5 5.18 0.001 
Ccna2 -0.68 0.009 
Cd14 -2.32 0.002 
Cd274 4.94 0.001 
Cd36 4.36 0.000 
Cdc20 -0.39 0.048 
Cdk9 0.09 0.006 
Cenpa -0.56 0.015 
Ctsl -0.62 0.035 
Cxcl9 5.13 0.004 
Cyp1b1 -0.17 0.033 
Dck 0.3 0.040 
Dguok 0.34 0.020 
Epc1 0.33 0.006 
Fcf1 0.35 0.031 
Fcgr4 2.71 0.015 
Fcrls -3.06 0.013 
Fdx1 0.39 0.012 
Fgf1 -1.05 0.002 
Fnip1 0.18 0.031 
Foxm1 -0.6 0.005 
Fpr1 1.68 0.011 
Gad1 -0.52 0.044 
Gclc -0.26 0.024 
Glrx 0.71 0.011 
Glul -0.86 0.016 
Gmpr -0.69 0.008 
Gng12 0.24 0.021 
Gpx1 0.89 0.006 
Gusb -0.81 0.042 
H2-Aa 9.43 0.001 
H2-D1 2.74 0.019 

 

Gene log2FC 
P-
value 

H2-DMa 4.32 0.000 
H2-Eb1 7.61 0.001 
H2-M3 2.13 0.024 
H2-T23 4.42 0.014 
Hacd2 -0.5 0.017 
Hadh -0.18 0.004 
Hdc 1.75 0.002 
Hk2 0.72 0.011 
Hk3 2.25 0.014 
Hsd11b1 -1.16 0.032 
Hspe1 0.26 0.010 
Idh3g -0.23 0.048 
Idnk 1.3 0.000 
Irf1 5.15 0.000 
Itch 0.18 0.030 
Itga1 -0.64 0.021 
Jak2 0.97 0.000 
Keap1 0.51 0.002 
Kif2c -0.46 0.028 
Klrk1 5.22 0.002 
Kmt2a 0.41 0.050 
Kyat1 -0.39 0.014 
Lamc1 0.55 0.035 
Lamtor2 0.13 0.001 
Lck 1.24 0.020 
Ldha -0.41 0.036 
Ldhb -0.37 0.000 
Map1lc3b -0.37 0.002 
Map2k2 0.21 0.010 
Mki67 -0.86 0.005 
Msrb2 -0.6 0.009 
Mtf1 -0.16 0.032 
Myb -0.65 0.007 
Myd88 1.2 0.007 
Nadk 0.35 0.023 
Ncoa2 0.33 0.021 
Ndufa1 -0.15 0.005 
Ndufa4 -0.37 0.032 
Nfs1 -0.13 0.042 
Nme2 0.21 0.020 
Npm1 0.2 0.010 
Nqo1 -1.05 0.008 
Nras 0.31 0.027 
Pclaf -0.5 0.029 
Pgk1 -0.38 0.017 
Pik3cb -0.26 0.040 
Pik3r3 0.54 0.008 
Plk1 -0.87 0.005 
Pole -0.58 0.037 
Prdx5 0.38 0.001 
Prim2 -0.22 0.016 
Prkag1 -0.22 0.009 

 

Gene log2FC 
P-
value 

Psat1 -0.34 0.030 
Psma3 0.49 0.001 
Psma7 0.72 0.003 
Psmb10 3.27 0.004 
Psmb3 0.34 0.001 
Psmc1 0.14 0.014 
Psmd13 0.15 0.046 
Psme2 2.2 0.002 
Psph -0.16 0.015 
Ptger4 -0.54 0.022 
Ptges 1.22 0.001 
Rgn 0.81 0.046 
Rplp0 0.28 0.027 
Rps6kb1 0.3 0.014 
Rrm1 -0.26 0.006 
Rrm2 -0.69 0.006 
Scd1 -0.44 0.001 
Sdhb 0.49 0.006 
Sdhc -0.05 0.012 
Sec13 0.12 0.035 
Slc16a1 0.19 0.027 
Slc16a2 -0.46 0.001 
Slc16a3 -0.5 0.001 
Slc1a5 -1.14 0.002 
Slc25a1 0.1 0.010 
Slc7a5 -0.36 0.007 
Smad4 0.17 0.022 
Sox2 0.29 0.011 
Sqstm1 0.31 0.001 
Stat1 4.05 0.006 
Stat3 0.76 0.001 
Stat5a 0.46 0.020 
Tbk1 0.37 0.020 
Tkt -0.2 0.022 
Tlr1 0.76 0.023 
Tnf 1.76 0.023 
Tpr 0.22 0.025 
Traf1 1.02 0.001 
Traf6 0.17 0.023 
Trf -0.82 0.045 
Trp53 0.4 0.016 
Trp63 -0.83 0.017 
Txn1 0.81 0.002 
Ubb 0.38 0.003 
Upp1 0.79 0.008 
Uqcr11 -0.32 0.045 
Usp39 0.35 0.011 
Usp8 0.39 0.006 
Washc4 0.4 0.020 
Wrn 1.06 0.001 
Zfp65 0.31 0.005 
Zfp869 0.44 0.006 
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Supplementary Table 2: Significantly differentially expressed genes of cytokine-treated astrocytes 
compared to vehicle-treated astrocytes 

Gene log2FC P-value 
Ada 0.73 0.049 
Akt3 0.48 0.002 
Cab39 -0.22 0.025 
Ccl2 2.88 0.037 
Ccl5 3.55 0.016 
Cd180 0.7 0.020 
Cd274 5.36 0.000 
Ctss 1.63 0.003 
Cxcl9 3.21 0.017 
Cybb 1.2 0.002 
Dnajc14 -0.15 0.043 
Fcgr4 2.02 0.001 
Fgf1 -0.85 0.003 
Gns 0.23 0.040 
Gsk3b -0.29 0.020 
H2-Aa 8.65 0.001 
H2-D1 5.79 0.000 
H2-DMa 5.32 0.000 
H2-Eb1 6.87 0.001 
H2-M3 4.61 0.000 
H2-T23 4 0.003 
Hexa 0.27 0.003 
Hk3 2.07 0.008 
Hspa2 0.52 0.011 
Hspa4 -0.39 0.001 
Idh2 -0.49 0.036 
Idnk 1.31 0.007 
Irf1 4.39 0.001 
Itgb2 0.91 0.041 
Ldha -0.46 0.025 
Ly86 0.54 0.045 
Map2k1 0.1 0.028 
Mlst8 -0.39 0.026 
Mycn -0.5 0.021 
Ndufa3 0.17 0.028 
Pik3r1 -0.4 0.035 
Prkcg -0.63 0.032 
Psma3 0.46 0.008 
Psma7 0.55 0.009 

 

  

 

Gene log2FC P-value 
Psmb10 3.73 0.000 
Psmb3 0.35 0.006 
Psmc1 0.17 0.013 
Psmd13 0.16 0.042 
Psme2 2.17 0.000 
Ptk2 -0.25 0.015 
Pycr1 0.59 0.021 
Rbks -0.34 0.025 
Sdha -0.25 0.050 
Slc25a1 0.23 0.014 
Sqstm1 0.29 0.044 
Stat1 5.3 0.000 
Tyms -0.44 0.033 
Washc4 0.3 0.000 
Wrn 0.53 0.048 
Xdh 1.67 0.006 
Zfp457 -0.67 0.001 
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