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Abstract

Introduction: Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer’s
disease brain that are thought to contribute to disease onset and progression. Glial activation
due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have
been observed in Alzheimer’s disease patients. However, the mechanism by which this
immunometabolic feedback loop can injure neurons and cause neurodegeneration remains
unclear.

Methods: We used Luminex XMAP technology to quantify hippocampal cytokine concentrations
in the 5xFAD mouse model of Alzheimer's disease at milestone timepoints in disease
development. We used partial least squares regression to build cytokine signatures predictive
of disease progression, as compared to healthy aging in wild-type littermates. We applied the
disease-defining cytokine signature to wild-type primary neuron cultures and measured
downstream changes in gene expression using the NanoString nCounter system and
mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer.

Results: We identified a pattern of up-regulated IFNy, IP-10, and IL-9 as predictive of advanced
disease. When healthy neurons were exposed to these cytokines in proportions found in
diseased brain, gene expression of mitochondrial electron transport chain complexes, including
ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were
impaired following cytokine stimulation.

Conclusions: An Alzheimer’s disease-specific pattern of cytokine secretion reduces expression
of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy
neurons. We establish a mechanistic link between disease-specific immune cues and impaired
neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to
degeneration in Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive
decline and memory loss. AD is estimated to affect more than 6.5 million people in the United
State and 55 million worldwide, with prevalence predicted to increase with the world’s growing
aged population.'®® There are no proven therapies to prevent or cure the disease, which is in
part due to an incomplete understanding of the disease’s complex etiology. AD is histologically
characterized by neuron and synapse loss, reactive gliosis, and misfolded aggregated proteins
of extracellular amyloid beta (AB) plaques and intracellular neurofibrillary tangles.”
Neuroinflammation is an early event in AD,'540 appearing before the development of clinical
symptoms'383 and often prior to the detection of proteinopathy in AD mouse models.3%91.101
Neuroinflammation is an active driver of disease and is sufficient to initiate neurodegeneration.*°
Importantly, the majority of known AD risk genes participate in immune response.368
Immunomodulatory therapies are gaining interest for their potential to interfere with disease
progression or even disrupt disease initiation. However, the entangled nature of the immune
response complicates the identification of robust, effective targets that will not detrimentally
affect immune signals necessary for brain health.*° In this study, we examine the evolution of
cytokine expression over aging and disease progression in a transgenic mouse model of AD
(5xFAD)®? and wild-type littermates to generate a systems-level profile of dysregulated immune
signaling in the hippocampus, a primary brain region involved in AD onset and progression.’®
This systems biology approach allows us to identify key AD-implicated cytokine cues and their
downstream detrimental effect on neuron health.

Neuronal support cells in the brain, called glia, provide immune regulation that is necessary to
maintain brain homoeostasis. However, their prolonged activation can cause damaging and
even neurotoxic inflammation.'>3* Microglia, the resident immune-competent cells of the brain,
play essential roles in development and disease and are thought to be the primary contributor
to neuroinflammation in AD.'649.95 Another glial cell type, astrocytes, offer a variety of support
functions to neurons including metabolic support and neurotransmitter regulation. Additionally,
astrocytes play a role in the immune response, helping to clear debris and amplify microglial
signaling cascades.?*3° In neurodegenerative disease, beneficial immune responses, such
microglial activation for the clearance of debris,®® can become detrimental: prolonged microglial
activation is accompanied by an overproduction of pro-inflammatory factors, aberrant synapse
engulfment, and the release of nitric oxide.'?3” Concurrently, dampened immune responses
result in ineffective neuroprotection.5?74 The shift between detrimental and beneficial roles of
immune activation, in combination with the substantial overlap in these roles, complicates the
identification of therapeutic targets to ameliorate harmful neuroinflammation.?43” Consequently,
these therapies may also have a limited therapeutic window.3” Immunosuppressant drugs have
not thus far been found to consistently reduce one’s risk for AD or have protective effects in its
progression.®® However, the potential remains that if upstream, broad neuroinflammatory
pathways cannot be modulated with enough specificity to benefit disease state, targeting of
downstream pathways contributing to neuronal injury may prove to be more advantageous.

Metabolism deficits in AD are similarly characteristic of early disease and are closely intertwined
with the immune response, contributing to pathology progression and neurodegeneration
through an immunometabolic feedback loop.8” Evidence suggests that metabolic dysregulation
precedes proteinopathy and participates in the initiation of AD.'®8" The complimentary and
synergistic action of neuroinflammation and metabolic impairment in early disease creates a
unique opportunity to maximize therapeutic effect by disrupting this immunometabolic feedback
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interaction — a potentially more efficacious target than immune signaling or metabolic function
alone. However, the mechanism by which immunometabolic feedback injures neurons and
promotes neurodegeneration remains unclear. Here, we investigate downstream dysregulation
of neuronal metabolic pathways as a result of a disease-relevant signature of immune cues to
identify specific and actionable neuronal vulnerabilities created by immunometabolic feedback
in the hippocampus.

Cytokines, immune signaling molecules, both initiate and are a direct consequence of a variety
of immune responses and cell-to-cell immune signaling®'%* and are often dysregulated in the AD
brain.” Cytokine signaling is highly interdependent, forming a complex web of communications
between multiple cell types, and often results in a signaling cascade that prompts the secretion
of additional cytokine cues.'®™ These characteristics complicate the untangling of shifting
beneficial and detrimental roles of immune responses in neurodegeneration, but highlight the
necessity of a holistic view of cytokine signaling to describe the overall immune state of the brain.
To identify key pathways implicated in disease, we profiled a broad panel of cytokines and used
a multivariate mathematical modeling tool, partial least squares (PLS), to construct a signature
of cytokine cues associated with AD progression. The actions and downstream effects of
individual cytokines are often measured and investigated independently, leading to an
incomplete and potentially incorrect understanding of their actions in concert. We applied our
signature of AD-upregulated cytokines to healthy neuron and astrocyte cultures and analyzed
the resulting differential gene expression and subsequent activation of pathways affecting
neuronal viability and cellular metabolism. We determined that the AD cytokine signature
suppressed gene expression of numerous mitochondrial electron transport chain (ETC) complex
subunits and impaired the mitochondrial function of living neurons. Exposure to the cytokine
signature representing the milieu of the AD brain thus predisposes neurons to injury from
inadequate energy metabolism and reactive oxygen species (ROS) damage, which would in turn
exacerbate neuroinflammation. Our established mechanistic link between the disease-specific
cytokine signaling and impaired neuronal metabolism identifies opportunities to target specific
detrimental downstream metabolic pathways to disrupt the complex, cooperative actions of
neuroinflammation and dysregulated metabolism in disease.

Methods

Mice. All animal procedures were approved by the Penn State College of Medicine Institutional
Animal Care and Use Committee (PROTO201800449). 5xFAD (B6SJL, Jackson Laboratory)
breeding pairs were purchased for the generation of animals used in the longitudinal study of
cytokine profiles over Alzheimer's disease pathology progression. The 5xFAD strain is
hemizygous for 5 familial Alzheimer’s disease mutations under the Thy1 promoter for expression
in the brain: the Swedish (K670N, M671L), Florida (1716V), and London (V7171) mutations in
human amyloid beta precursor protein (APP) and the M146L and L286V mutations in human
presenilin 1 (PSEN1).%? Transgenic and noncarrier litermates were housed together and
genotyped according to Jackson Laboratory’s standard PCR assay protocol 31769 using DNA
isolated from tail clippings. Even numbers of male and female mice (n=5 per sex, per group)
were sacrificed for the timepoints of this study. CD1 breeder pairs and untimed pregnant females
were purchased from Charles River for the generation of primary cell cultures. All animals were
provided with food and water ad libitum and maintained under a 12-hour light/12-hour dark cycle.

Tissue collection and preparation. We aged the mice to 30, 60, 120, and 180 days to profile
cytokine concentrations prior to the deposition of intraneuronal AB at 1.5 months, at the
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development of extracellular amyloid and gliosis at 2 months, at the first appearance of synaptic
loss and cognitive deficits at 4 months, and with neuronal loss at 6 months in the 5xFAD model.5?
At each timepoint, 5xFAD mice and noncarrier littermates were sacrificed by unanesthetized
decapitation using a mouse guillotine (Braintree Scientific). The brain was isolated and placed
into cold HEPES-buffered Hanks’ Balanced Salt solution (pH 7.8). The hippocampus of the right
hemisphere was dissected, meninges removed, flash-frozen in liquid nitrogen, and stored at -
80°C. After all study samples were collected, hippocampi were thawed on ice and mechanically
digested by ftrituration in 200 uL of RIPA buffer (Boston BioProducts P8340) with protease
inhibitor cocktail (Thermo A32953, 1 Pierce mini Protease Inhibitor tablet/ 10 mL RIPA). Digested
samples were vortexed vigorously for 1-2 minutes, rested for at least 20 minutes, and then
centrifuged at 5000xg for 5 minutes. Supernatants were transferred to new sample tubes for
analysis. An aliquot of each homogenate sample was set aside for total protein quantification,
and the rest was flash frozen in liquid nitrogen and stored at -80°C for Luminex multiplex
immunoassays.

Quantification of total protein. The total protein content of the hippocampal homogenate samples
was quantified using the Pierce BCA Protein Assay Kit (Fisher 23225) according to the
manufacturer’s instructions. Samples were run in duplicate and absorbances read using a
SpectraMax i3 minimax 300 imaging cytometer (Molecular Devices). Sample concentrations
were quantified by linear regression using duplicate standard samples ran on each plate.

Luminex multiplex assays. Cytokine concentration levels of 5xFAD hippocampal homogenate
samples were quantified using the Milliplex Map Mouse Cytokine/ Chemokine Magnetic Kit
(Millipore MCYTMAG-70K-PX32), measuring a broad panel of secreted cytokines, on a the
Luminex FLEXMAP3D platform. The assay was performed according to the manufacturer’s
protocol with minor modifications to accommodate the use of 384-well plates. The magnetic
beads and antibody solutions were diluted 1:1 and used at half volume, and the streptavidin-
phycoerythrin was used at half volume. Equal amounts of RIPA buffer and assay buffer were
used in the preparation of the standards and blanks. Homogenate samples were thawed and
stored on ice. Samples were diluted to 0.3 g/mL total protein using RIPA buffer, allowing 7.5 ng
total protein per well, and assayed in technical triplicate.

Cytokine profile data cleaning. The Luminex Xponent software was used to interpolate sample
cytokine concentrations from 5-point logistic standard curves. Concentrations below the
detection limit (< 3.2pg/mL) were assigned 0 pg/mL. The raw concentration data was processed
using an automated in-house pipeline, available from GitHub at
https://github.com/elizabethproctor/Luminex-Data-Cleaning (Version 1.02). Briefly, the pipeline
removes readings generated from less than 20 beads (4 observations in the current dataset)
and calculates the pairwise differences of the remaining technical triplicates. If the difference
between one replicate is greater than twice the distance between the other two, that replicate is
removed from the analysis. The average of the remaining technical replicates for each cytokine
is then calculated for the final dataset for use in subsequent multivariate analyses. Following the
automated data cleaning, we removed entire cytokines from the dataset if over half the readings
were 0 pg/mL in a pattern that did not partition between experimental groups, such as disease
or timepoint.

Partial least squares modeling. Cytokine signatures were constructed using the linear,
supervised multivariate mathematical modeling tool partial least squares (PLS).33% We chose
PLS to account for the highly interdependent nature of cytokine expression and signaling. PLS
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allows for the identification of significant multivariate changes in correlative predictors (here, the
cytokines) as they relate to a dependent response or group (e.g., timepoint). This aim is achieved
by building linear combinations of the predictors (latent variables, LVs) that maximize the
covariation between the predictors and the response. This maximization of multivariate
covariance in predictors with response allows us to identify subtle but meaningful patterns in
cytokine expression that are undetectable using univariate analysis methods that are unsuitable
for highly correlative variables.

Partial least squares regression (PLSR) was conducted for prediction of continuous numerical
outcomes, such as timepoint, while partial least squares discriminant analysis (PLS-DA) was
used in the discrimination of experimental groups, such as disease versus control. PLS models
were built in R using the ropls package®*. Cytokine data were mean-centered and unit-variance
scaled prior to PLS modeling. To generate each model, the optimal number of latent variables
was determined by repeated random sub-sampling cross-validation. Cross-validation test sets
were randomly generated using 1/3 of the dataset if the number of samples used to build the
model was >30 or 1/5 of the dataset if samples <30. Cross-validation was repeated 100 times.
For every iteration, models were built using the training set (data excluded from test set)
comprised of either 1, 2, 3, 4, or 5 LVs. The resulting models were used to predict the group
identity or response value of each sample in the test set to estimate classification accuracy (in
PLS-DA) or root mean squared error of cross validation (RMSECV) (in PLSR). RMSECV was

calculated by:
2
n_ (P — A
RMSECV :j = (h = 4)

n

Where n is the number of samples in the test set, P is the predicted value, and A is the actual
value of the jth sample. The test/training set was randomly regenerated for the following
iterations, and the average of the estimated classification accuracy or RMSECYV following cross-
validation was calculated for each of the 1, 2, 3, 4, or 5 LV PLS models. The model with the
number of LVs resulting in the best accuracy/ lowest error was chosen for subsequent analysis
and significance testing. A model’'s significance was calculated using a permutation test. For
each iteration of the permutation test, the group identities or responses were randomly shuffled
among samples, preserving the data landscape of the cytokine profiles while creating
randomized associations. Cross-validation was performed as described previously, preserving
the number of latent variables comprising the “real” model, to estimate the true random accuracy.
The p-value of the optimized experimental model was then calculated by comparison with the
mean and standard deviation of the distribution of random models’ accuracy. For PLS models
containing 1 latent variable, the second latent variable is shown in the scores plot for ease of
visualization but was not included in the calculation of error, p-value, or Variable Importance in
Projection (VIP) scores. Models presented in this study were orthogonalized for improved
interpretability. Orthogonalization maximally projects covariation of the measured cytokines with
the response to the first latent variable, prioritizing this covariation over variation in the measured
cytokines between samples.?® We identified key differential cytokines by their variable
importance in projection (VIP) score, a measure of a variable’s normalized contribution to the
predictive accuracy of the model across all latent variables.3? Loadings on the first latent variable
of cytokines with VIP score > 1, indicating greater than average contribution to the model, are
designated as the cytokine signature of the given outcome (e.g. AD progression).

Primary cell culture. Primary hippocampal neuron and astrocyte cultures were generated from
PO CD1 neonates. Pups were sacrificed by decapitation using surgical scissors, and the brains
were removed and placed in pre-chilled sterile dissection medium (HEPES buffered Hanks’
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Balanced Salt solution, pH 7.8) on ice. Hippocampi were isolated and placed into a sterile
Eppendorf tube containing cold dissection medium following the removal of meninges. For each
cell culture experiment, hippocampi from 6-8 neonates were combined. The tube was
centrifuged briefly, and the dissection medium was aspirated. Warm neuronal plating medium
(Neurobasal Plus, 10% FBS, 1X GlutaMAX, 1X Penicillin-Streptomycin (Gibco): for neuron
cultures) or glial medium (DMEM/F12, 20% FBS, 1X Penicillin-Streptomycin, 1mM Sodium
Pyruvate (Gibco), 10 ng/mL Epithelial Growth Factor: for astrocyte cultures) was added to the
tube. The sample was manually triturated with a p1000 pipet followed by a p200 pipet.

For neuron cultures, the total cell concentration was measured using the Countess || automated
cell counter (Invitrogen), and 5.47*10% cells/cm? were plated in each well of a poly-D-lysine-
coated Seahorse XFe24 V7 PS Cell Culture Microplate (Agilent) or a 24-well tissue culture plate.
Following cell attachment 2-4 hours after neuron plating, plating medium was removed and
neuronal culture medium was added (Neurobasal Plus, 1X B27 Plus supplement, 1X GlutaMAX,
1X Penicillin-Streptomycin (Gibco)). Half of the neuronal culture medium was changed after 5
days, and all the neuronal medium was changed on day 9-10 with the addition of experimental
treatments. Neuron cultures were assayed or lysed on day 12-13.

For astrocyte cultures, the cell solution was transferred to a poly-D-lysine (Gibco)-coated tissue
culture flask with additional glial medium. Glial medium in astrocyte culture flasks was replaced
every 2-3 days until cells reached confluency. Flasks were then placed on an orbital shaker in a
cell culture incubator for 2 hours at 180 rpm, and the cell culture medium containing non-
adherent cells was removed. The remaining adherent astrocytes were washed with 1X PBS,
detached using 0.05% trypsin-EDTA, quenched with fresh glial medium, and evenly distributed
into the wells of a poly-D-lysine-coated 6-well tissue culture plate. Glial medium was switched
every 2-3 days and treatments were applied at 50% confluency in the 6-well plates. All cell
culture plates (neurons and astrocytes) were maintained at 37°C and 5% CO..

Cytokine stimulation of primary culture. The up-regulated Alzheimer’s disease-specific cytokine
profile of IFNy, IP-10, and IL-9, as determined by the multivariate modeling, was applied to
primary neuron and astrocyte cultures derived from CD1 PO neonates. The combination cytokine
treatment was applied 72 hours prior to experimentation in levels proportional to the
concentrations we measured in 5xFAD 180-day hippocampus samples. Concentrations were
centered in the nanomolar range previously used to study acute cytokine responses in neuron
cultures.?*8 Recombinant murine cytokines were purchased from Peprotech, IFN-y (cat 315-
05), IP-10 (cat 250-16), and IL-9 (cat 219-19), and reconstituted to 1 mg/mL in sterile water and
diluted to 250 pg/mL (IL-9) or 10 ug/mL (IFNy and IP-10) in 0.1% cell-culture grade bovine
serum albumin (Sigma A9418) in 1X PBS. 5nM IFNy, 12nM IP-10, and 500nM IL-9 or an equal
amount of 0.1% bovine serum albumin vehicle were added to the appropriate neuronal or glial
cell culture medium for treatment. Neuron cultures were treated 9 or 10 days after plating, and
astrocytes were treated, following the removal of non-adherent cells, at 50% confluency. After a
72-hour stimulation, cells were assayed on the Seahorse XFe24 Extracellular Flux Analyzer or
lysed for RNA isolation.

RNA isolation and NanoString nCounter analysis. Cytokine- or vehicle-stimulated primary CD1
astrocyte cultures in 6-well plates and neuron cultures in 24-well plates were lysed and their total
RNA extracted using RNeasy Mini Kits (Qiagen 74104) according to the manufacturer’s
instructions. The lysis of 2 wells of astrocytes or 3 wells of neurons were combined for each
biological replicate to minimize technical variation, resulting in N=3 biological replicates for each
treatment/cell-type. The RNA content and quality of each sample was determined using the
NanoDrop 2000 Spectrophotometer (Thermo). RNA samples had a 260/280 absorbance ratio
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of 1.9 or greater and a 260/230 ratio of 1.8 or greater, quality control guidelines outlined by
NanoString to exclude samples containing protein or organic compound contamination.
Targeted gene expression was quantified using NanoString nCounter technology and the Mouse
Metabolic Pathways Panel, with the assay performed by the NanoString Proof of Principle Lab
(Seattle, Washington) to measure expression of 768 metabolism-relevant genes and 20
common housekeeping genes. The raw expression data were processed using the NanoString
nSolver Analysis software. All samples passed quality control (QC) with the default parameters.
Data normalization was performed separately for neuron and astrocyte samples. For
background thresholding, genes with a raw count less than 20 were reassigned a threshold
count of 20, in order to calculate fold changes to the same baseline reading. Data was
normalized using a 2-step positive control and housekeeping gene normalization. For the
selection of appropriate housekeeping genes for each cell type, housekeeping genes with counts
under 100 were first removed. Then, the housekeeping genes with a coefficient of variation of
10% or less were kept for normalization (5 genes kept for neurons, 6 genes for astrocytes).
Using the final normalized astrocyte and neuron expression data, the log2 fold changes of
cytokine versus vehicle treatment comparisons were calculated using the nSolver software.
Genes with a significant log2 fold change, as determined by a p-value of 0.05 or less, were kept
for further analysis. Significantly differentially expressed genes were excluded if the average
counts for both cytokine and vehicle treatments were both below 30, close to the assigned
background threshold of 20.

Construction of protein-protein interaction networks. Significantly differentially expressed genes
in cytokine-treated neurons and astrocytes were used to construct protein-protein interaction
networks using the STRING database.?? Pair-wise gene inputs were given a score based on
known and predicted protein interactions from experimental, co-expression, and gene fusion
evidence. The Cytoscape StringApp was used for network visualization?? with the edge-
weighted, spring-embedded layout. The nodes of the networks are individual significantly
differentially expressed genes. The genes were characterized by their overall functional group.®’
Isolated sub-networks of 4 or fewer genes were removed.

Seahorse Mito Stress Test. Neuronal mitochondrial function following vehicle or cytokine
treatment was characterized on the Seahorse XFe24 Extracellular Flux Analyzer platform
(Agilent). The Seahorse Analyzer measures oxygen consumption rate (OCR) to quantify
characteristics of mitochondrial function. During the Mito Stress test, a series of compounds is
injected into the cell culture medium to inhibit complexes of the mitochondrial electron transport
chain (ETC) to isolate readings of basal respiration, maximal respiration, ATP production, and
non-mitochondrial respiration. Following baseline oxygen consumption readings (basal
respiration), oligomycin A, an inhibitor of ATP synthase, is added the cell culture medium and
the subsequent drop in oxygen consumption corresponds to the mitochondrial ATP production
by ATP synthase. The following addition of FCCP, an uncoupling agent that disrupts the
mitochondrial membrane potential, allows for uninhibited electron flow, and the resulting
increase in oxygen consumption demonstrates the maximal respiration of the mitochondria.
Finally, rotenone and antimycin A (inhibitors of complex | and lll, respectively, and together
considered a mitochondrial poison) are added to disable the electron transport chain and, thus,
residual consumption of oxygen is driven by non-mitochondrial processes.

Primary CD1 hippocampal neurons were stimulated with 5 nM IFNy, 12 nM IP-10, and
500 nM IL-9 for 72 hours prior to Seahorse assays. Neuron culture wells were washed with
Seahorse assay medium and given fresh assay medium: DMEM (cat 103680-100), 10 mM
glucose solution (cat 103577-100), 1 mM pyruvate solution (cat 103578-100), 2 mM glutamine
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solution (cat 103579-100) (Agilent). Neuron cultures were transferred to a non-CO: incubator for
1 hour prior to running the assay. All Seahorse compound stocks were diluted to 50 mM working
stocks with assay medium and added to the appropriate Seahorse cartridge ports to give final
well concentrations of 4 uM oligomycin A, 4 uM FCCP, and 1 uM of both rotenone and antimycin
A after each injection. Following the assay, the neuron culture wells were washed with 1X PBS,
and the cells were lysed in 25 uL lysis buffer (Millipore 43-040) by manual titration. The total
protein content of each lysis sample was quantified using the Pierce BCA Protein Assay Kit
(Fisher 23225) according to the manufacturer’s instructions in technical triplicate with standards
measured on each plate. Total protein content was used to normalize intra-plate variation using
the Seahorse Wave software. Individual wells were excluded from subsequent analysis if the
cells were not viable (i.e. near-zero OCR measurements) or did not appropriately respond to the
compounds (e.g. FCCP did not increase oxygen consumption). Each biological replicate was an
independent Seahorse experiment of neurons derived from a unique group of neonates and was
the average measurement (calculated according to Table 1) of the readings of 5-10 wells. Final
OCR measurements of the biological replicates were normalized to non-mitochondrial
respiration to account for batch effects.®® Two-tailed Student's T Tests were conducted to
determine significant differences in basal respiration, maximal respiration, ATP production, and
proton leak in OCR measurements between cytokine and vehicle treatments. Statistical
significance was determined by a significance level of less than 0.05.

Table 1: Calculations of Seahorse Mito Stress Test Assay Measurements

Measurement Calculation

Non-mitochondrial respiration | Median OCR measurement following rotenone/antimycin A
injection

Basal Respiration (Median OCR measurement prior to the addition of oligomycin A) —
(Non-mitochondrial respiration)

ATP production (Basal respiration) — (minimum OCR measurement following
oligomycin A injection)

Maximal Respiration (Maximum OCR measurement following FCCP injection) — (Non-
mitochondrial respiration)

Proton Leak (Minimum OCR measurement following oligomycin A injection) —
(Non-mitochondrial respiration)

Results

The cytokine signature of AD is distinct from that of healthy aqging

To define the evolution of the immune milieu of the hippocampus over the course of disease
progression in the 5xFAD model, we first built a partial least squares regression (PLSR) model
to regress timepoint against 5xFAD hippocampal cytokine concentrations (Fig. 1A). We identified
the above-average contributors to the predictive accuracy of our model (2 latent variables,
RMSECV=58.4, p=10-°) using the variable importance in projection score (Methods). We found
that IP-10, IL-9, and IFN-y, are up-regulated over the course of disease, and levels of IL-2 and
IL-1o0 decrease with disease progression. This signature describes a milieu that enacts a two-
pronged increase in neuronal vulnerability: first, by increasing expression of canonically pro-
inflammatory cytokines, 445.5556.79.80.88 gand second, by decreasing expression of cytokines with
neuroprotective functions in the brain. 7273192 However, subtleties exist in these relationships,
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some cytokines having both pro- and anti-inflammatory actions, and others whose action is
incompletely understood in the brain or in the context of AD.14.17:23.56.59.93

To distinguish the evolving milieu of immune cues in AD onset and progression from that of
normal aging, which also exhibits an immune component (“inflammaging”),'%28.2° we constructed
a PLSR model regressing timepoint against cytokines profiles of wild-type samples (Fig. 1B).
The key contributors to the predictive accuracy of the model (1 latent variable, RMSECV=51.9,
p=10-°) are increased IFN-y and KC/CXCL1 and decreased MIP-1a and IL-13 with advancing
age. Notably, the up-regulated immune cues in healthy aging and AD are largely non-
overlapping, indicating that AD onset and progression involves pathological changes in a distinct
set of process from those that change in the normal course of aging. Emphasizing these distinct
processes, MIG/CXCL9, while not a key contributor to our AD signature, was identified as
increasing with disease progression, but was absent in wild-type mice at all timepoints. In
contrast, because the majority of cytokine species were down-regulated with aging in the wild-
type model, all down-regulated species in the AD signature discussed above are also decreasing
in healthy aging, suggesting a natural decrease in immune responsiveness or surveillance.
However, we note that a key decreasing cytokine in healthy aging, MIP-1a/CCL3, increases with
disease, although not as a key contributor to the AD signature. We conclude that while
similarities exist between the immune milieus of healthy aging and AD, which is fitting for a
disease with the primary risk factor of age, they are minimally overlapping, supporting a
fundamental shift in the brain rather than accelerated aging, as has been suggested by some.%°

These models independently assess how cytokine levels change with the progression of aging
or of AD. While there are distinct differences in the disease and wild-type models, particularly in
the contributions of IP-10, IL-9, and MIP-1q, there is also overlap, and any comparison of such
separately-constructed models is necessarily qualitative. We observed cytokines implicated in
AD, such as CXCL1 and IL-13,30:54.66.98,105 {5 glso be important for the prediction of age in wild-
type samples. In order to directly and quantitatively compare the hippocampal immune milieu in
AD or normal aging, we next constructed PLS models to differentiate the AD and wild-type
groups at each.
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Fig 1. Unique cytokine signatures predict aging in 5xFAD and wild-type hippocampi. Scores plot (top)
and LV1 loadings plot (bottom) of PLSR models regressing cytokine concentrations against timepoint in (A)
5xFAD hippocampus (2 LV, RMSECV: 58.4, p-value: <0.00001) and (B) wild-type hippocampus (1 LV,
RMSECV: 51.9, p-value: 0.00001). Colored loadings signify cytokines with a VIP score > 1. Each point
represents a single mouse. PLS modeling is comparative and not absolute: older mice (positive scores on
LV1) feature up-regulation of cytokines with positive loadings and down-regulation of cytokines with negative
loadings, as compared to younger mice (negative scores on LV1).

AD mice exhibit neuroimmune over-activation late in the disease timeline

To directly compare cytokine signatures of AD and wild-type control mice, we constructed partial
least square discriminant analysis (PLS-DA) models to predict disease status at 30 or 180 days,
representing prodromal and fully symptomatic AD, respectively. In 30-day-old hippocampus,
prior to intracellular deposition of Ap, we discriminate AD from wild-type with 83% accuracy and
high significance (p-value: <0.005, Fig. 2A). The strongest contributors to predictive accuracy,
MIP-1a and IL-9, are both down-regulated in AD before the development of pathology, in
comparison to healthy controls. When we compare this result with the AD- and aging-specific
progression signatures (Fig. 1), we find that both MIP-1a and IL-9 decrease with healthy aging
but increase with disease progression.

The 180-day PLS-DA model features a similarly high predictive accuracy (80%) and significance
(p-value: <0.01) in discriminating cytokine expression in AD versus wild-type control
hippocampus. The model describes an overall increase in cytokine levels in late-stage AD as
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compared to healthy controls. The strongest contributors to predictive accuracy were IL-9, IFN-
Y, and MIP-1a, all up-regulated in AD. These results are in agreement with the AD- and aging-
specific progression signatures, where IL-9 and MIP-1a both increased with AD progression but
decreased with healthy aging. While IFN-y increased in both AD progression and healthy aging,
this direct comparison of AD with wild-type control at the 180-day time point demonstrates that
the increase in disease is significantly more pronounced than that in healthy aging, a point that
cannot be drawn from the comparison of the two separately-derived models in Figure 1. A similar
point can be drawn for KC/CXCL1, which was also up-regulated in both AD progression and
healthy aging but is significantly higher in disease samples at 180 days.

In total, these models reflect low immune activity at an early age in the AD brain, which may
suggest an increased vulnerability to disease. With the onset of disease pathology and fully
symptomatic AD, the AD brain exhibits a significant increase in overall cytokine expression as
compared to wild-type control, with a specific pro-inflammatory signature that agrees with the
time-evolution signature of AD progression when considered outside of comparison to healthy
aging.
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Fig 2. Cytokines are up-regulated in aged 5xFAD hippocampus but dampened in comparison to wild-
type prior to protein deposition. PLS-DA scores plot (top) and LV1 loadings plot (bottom) of (A) 30-day
5xFAD vs wild-type hippocampus (3 LV, accuracy: 83%, p-value: <0.005) and (B) 180-day 5xFAD vs wild-
type hippocampus (2 LV, accuracy: 80%, p-value: <0.01). Colored cytokine loadings signify cytokines with a
VIP score > 1. Each point represents a single mouse. PLS modeling is comparative and not absolute: 5xFAD
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mice (negative scores) feature down-regulation of cytokines with positive loadings and up-regulation of
cytokines with negative scores, as compared to wild-type mice (positive scores on LV1).

AD cytokine signature alters metabolic gene expression in neurons but not astrocytes

The cytokine signature of AD progression represents the evolving neuroimmune milieu in the
AD brain. We next endeavored to characterize the effect of this evolving milieu on neuron health.
We approached this question from two directions: the direct effect of the AD cytokine signature
on neurons, and the indirect effect of loss of support to neurons via astrocyte dysfunction.”4®
Astrocytes provide critical metabolic support to neurons, and disruption of this support would
lead to increased neuronal vulnerability to insult. Importantly, we use the outbred, wild-type CD1
mouse to generate our cultures, in order to examine the effect of the cytokine signature of AD
progression in the absence of AD pathology, aiming to isolate the independent effect of the
immune cues and eliminate any confounding factors caused by the overexpression of amyloid-
related proteins in the 5xFAD mouse model.”

We stimulated cultures with recombinant IFN-y, IP-10, and IL-9, in concentrations proportional
to those measured in the 5xFAD hippocampus at 180 days of age and analyzed the expression
of metabolism-associated genes (Methods). Metabolic and immune dysregulation are both early
characteristics of the pre-clinical AD brain and are closely linked, contributing to an aggressive
“immunometabolic” positive feedback loop that is capable of driving pathology progression.®’
Cellular metabolism also provides a critical readout of cellular health, allowing fine-tuned
assessment of the large “grey area” between live, healthy cells and cell death.

As Alzheimer’s disease is a neurodegenerative disease that selectively affects neurons, we first
investigated the direct effect of the cytokine signature of AD progression on healthy primary
neurons. We identified significantly differentially-expressed genes in neurons treated with the
AD progression cytokine signature compared to vehicle-treated neurons (Supplementary Table
1) and analyzed their downstream protein interactions using the STRING database (Methods).
Out of the 155 significantly differentially expressed genes in neurons following cytokine
treatment, 80 were included in the main neuron STRING interaction network. The resulting
neuron interaction network (Fig. 3A) demonstrated a wide variety of affected genes.
Unsurprisingly, the genes most substantially effected by cytokine stimulation were associated
with immune response. Genes involved in immune response were closely linked to genes
involved in stress response, autophagy, and protein degradation processes, all of which are key
dysregulated systems in AD.?" The network of affected neuronal transcripts also includes a
down-regulated cluster of genes traditionally associated with the cell cycle. While neurons are
post-mitotic cells, many of these genes have known functions in post-mitotic cells, including
neurons: Plk1, cdc20, and kif2c are involved in the regulation of synapses, dendrites, and the
cytoskeleton.'944.106 Cdk9 and npm1 are implicated in cell survival 5636769 and ccna2 is
associated with DNA repair in aging, rRNA homeostasis, and cellular senescence. 36100 The
down-regulation of this cluster of genes with treatment suggests increased neuronal and
synaptic vulnerability to injury. Strikingly, the neuron network includes a grouping of primarily
down-regulated genes involved in mitochondrial respiration, including subunits of every complex
involved in the electron transport chain. The significantly down-regulated genes include the
subunits Ndufa1 (complex I), Sdhc (complex I), Ugcr11 (complex I1), Ndufa4 (Complex IV), and
Atp5d (ATP synthase or complex V).
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The interaction network of differentially expressed genes (Supplementary Table 2) in cytokine-
treated astrocytes compared to vehicle-treated astrocytes (Fig. 3B) demonstrated that fewer
astrocyte genes were affected by the cytokine treatment than in neurons, and those that were
affected are primarily involved in immune response. Out of the 54 significantly differentially
expressed genes in astroctes following cytokine treatment, 23 were included in the main
STRING interaction network. However, hk3, involved in glycolysis, was up-regulated in the
astrocytes, which may indicate activation of a response to increase neuronal metabolic
support.285 The astrocyte network also features a cluster of up-regulated proteasome related
genes, many of which were also featured in the neuron network. Proteasomes are involved in
the degradation of AB, and their dysfunction has been linked to the abnormal accumulation of
pathological proteins in AD.4'4247 The differential gene regulation indicates that AD-associated
cytokine cues may activate astrocytes to bolster neuronal support functions, but the response to
the AD signature was less robust than in neurons.

®
&2

: ®%° o
® e

Immune response Transcriptional regulation
Stress response Amino acid metabolism

Autophagy, lysosomal/ Cell cycle, cell fate
proteasomal degradation

Mitochondrial respiration, Fatty acid/ lipid metabolism
sugar metabolism

DNA repair/ replication, Small molecule metabolism
nucleotide synthesis

Fig 3. Cytokine signature of AD progression generates widespread gene expression changes in
healthy neurons. STRING protein-protein interaction network of significantly differentially expressed genes
in (A) neurons and (B) astrocytes in cytokine signature-treated primary cultures compared to vehicle controls.
Individual genes, represented as nodes, are colored by their primary function(s) and sized according to the
log2 fold change between treatments. Nodes are outlined in red or blue to indicate up- or down-regulation,
respectively, with treatment. Network edges denote the STRING interaction score, with a shorter edge length
indicating a stronger interaction. Thus, nodes that are closer together are more strongly linked.

Alzheimer’s disease-specific cytokine signature impairs neuronal metabolism.

Treatment with the cytokine signature of AD progression resulted in marked down-regulation of
sub-units in every electron transport chain complex. The resulting reduction of components
responsible for mitochondrial respiration would result in significant impairment of neuronal
oxidative phosphorylation. We stimulated primary neurons with the AD progression signature of
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IFN-y, IP-10, and IL-9 and quantified parameters of mitochondrial function through oxygen
consumption measurements on the Seahorse Extracellular Flux Analyzer (Agilent) using the
Mito Stress Test Assay (Methods).

We found an overall decrease in oxygen consumption as a result of cytokine treatment compared
to the vehicle control (Fig. 4). Basal respiration was significantly decreased in cytokine treated
neurons (Fig. 4B, p-value: 0.031). Maximal respiration, induced by the mitochondrial membrane
uncoupling agent FCCP, was similarly decreased with cytokine treatment (Fig. 4C, p-value=
0.012). ATP production also decreased following cytokine treatment, although this finding was
not statistically significant (Fig. 4D, p-value: 0.065). Finally, the proton leak, the mitochondrial
oxygen consumption not due to the action of ATP synthase, was also significantly reduced with
treatment (Fig. 4E, p-value= 0.00021). Overall, the observed functional decrease in neuron
mitochondrial respiration is in agreement with the gene expression findings of down-regulated
electron transport chain complexes. A variety of subunits from all 5 complexes were down-
regulated in the neuron cultures with IFN-y, IP-10, and IL-9 treatment, and likely contributed the
overall reduction in mitochondrial election transport chain performance that negatively impacts
neuronal health and resilience.
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Fig 4. Wild-type primary hippocampal neurons treated with cytokine signature of AD progression
exhibit decreased mitochondrial respiration. (A) Oxygen consumption during Seahorse Mito Stress Test
following 72-hour vehicle (blue) or combination IFN-y, IP-10, IL-9 treatment (orange) and corresponding
measurements of (B) basal respiration (p-value= 0.031), (C) maximal respiration (p-value= 0.012), (D) ATP
production (p-value= 0.065), and (E) proton leak (p-value= 0.00021). P-values calculated by two-tailed
student’s t-tests. Results generated from the average of 6 independent biological experiments with 5-10
technical replicates for each of treatment and control. Seahorse oxygen consumption rate measurements are
displayed as mean + standard error of the mean.
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Discussion

An incomplete understanding of AD etiology has prevented the development of successful
strategies for prevention and treatment. Immune and metabolic dysfunction are among the
earliest detectable pathologies in the disease, coinciding with or by some accounts preceding
protein deposition.*®8! A greater understanding of the mechanisms underlying immune and
metabolic dysfunction in AD has the potential to facilitate early interference to ameliorate
disease. However, the complex and all-encompassing nature of entangled beneficial and
harmful immune responses with intercellular communication and neuronal support functions
complicate the identification of robust and effective targets. Recent systems biology approaches
address this issue by characterizing the molecular-, cellular-, and tissue-level processes
disrupted in AD, but have rarely gone beyond descriptive findings of altered cellular pathways.?’
Here, we identified an AD-specific cytokine signature predictive of disease progression that
defines the evolving immune state in the hippocampus, a primary site of neurodegeneration in
AD and one of the earliest brain regions affected by the disease. Our signature was not exclusive
to or built using a single cell type, instead representing the overall immunological milieu
promoting AD progression. Notably, our signature does not include traditional pro-inflammatory
cytokines associated with AD, such as TNF-a,, IL-6, and IL-1B.4° While these cytokines are likely
present in the tissue, their levels were below our threshold for inclusion in the model. While the
individual members of the strong up-regulated signature we identified, IFN-y, IP-10, and IL-9,
have been linked to AD previously,>831.5492 with the possible exception of IP-10 they have not
been appreciated as playing a strong role in AD progression. Further, the pathological role of
these cytokines in neuronal metabolic dysfunction has never before been identified. We attribute
our identifications of these cytokines to the multivariate nature of our model: the synergistic
action of these cytokine cues drove the predictive power of our model, emphasizing the
importance of considering emergent manifestation of network activities when identifying potential
critical drivers of disease with possible strategic value as therapeutic targets.

Astrocytes and neurons are metabolically coupled, and dysfunction in astrocytes could
predispose neurons to injury and death. We studied the independent effects of our cytokine
signature of AD progression on both cell types to identify potential pathways of neuronal injury
and subsequent contribution to disease. Receptors for IFN-y, IP-10, and IL-9 are found on both
neurons?”:538597 and astrocytes,126:37:197 supporting the study of their combined effect on each
of these cell types. While AD signature-stimulated changes in astrocyte gene expression were
limited and primarily related to immune response, we identified numerous differentially
expressed genes in neurons with known AD implications, such as regulation of synapse plasticity
and dendrite projection and tryptophan and mitochondrial metabolism. We note that these
assays were specifically performed in healthy, wild-type primary neuron cultures in the absence
of any pre-existing AD pathology. Our objective was to determine the capacity of the AD
progression cytokine signature to affect neuron health and viability, which is most cleanly
demonstrated in the absence of any other AD-promoting factors. The fact that treatment with the
cytokine signature altered expression of genes previously linked to Alzheimer’s disease, in the
direction that would promote disease and absent of any other AD-related factors present,
demonstrates the power of our model to extract patterns of effectors with discernible value for
mechanistic insight. These insights have broad potential toward predicting diverse types of
outcomes in AD and AD risk; we have previously used the partial least squares method to identify
brain cytokine signatures predictive of systemic metabolism?® and to discover a previously
unknown neurotoxic effect of VEGF in the presence of Ap aggregates.®®
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The suppression of neuronal mitochondrial metabolism by the cytokine signature of AD
progression indicates that, at baseline under normal energy demands, neuronal metabolism in
this immune environment does not function efficiently and would not be able to adequately
respond to an increased energy demand when presented with a disease insult such as AD-
related proteinopathy. The energy demands of the brain are great, far exceeding other organs
of the body, and are primarily achieved through glucose metabolism.'® Impaired metabolic
capacity in neurons could predispose to neuronal injury and neurodegeneration by an inability
to sustain the energetic demand of synapse activity and other neuronal functions while under
stress.'®

The cytokines comprising our signature of AD progression have not previously been connected
to a impaired metabolism. However, dysregulated immune signaling and metabolic impairment
are both well-known features of AD etiology, and their synergistic connection has been
established in other tissues and diseases such as cancer and type 2 diabetes.*®¢! In AD, glial
activation and the accompanying cytokine release causes downstream metabolic stress,?® which
is largely characterized by an increase in reactive oxygen species (ROS) and decreased ETC
activity.®*71.77.81 While not directly connected to neuroinflammation or cytokine signaling, multiple
subunits of mitochondrial ETC complexes are down-regulated in the AD brain,®” including in the
hippocampus,’® temporal cortex,®® and frontal cortex.’*® Outside of the brain, cytokines have
been implicated in the reduced expression of ETC complex genes and impaired mitochondrial
respiration in cultures of other cell-types, such as HepG2 cells (a cell line originating from a
hepatocellular carcinoma),*39° cardiomyocytes, %3 and hepatocytes®46.

Conclusion

Here, we identified a hippocampal cytokine signature of AD progression that is predictive of
advancing disease in the 5xFAD mouse model of AD. Exposure to this signature of AD
progression was sufficient to initiate mitochondrial dysfunction in primary neuron cultures that
was similar to that previously observed in AD, but in the complete absence of AD pathology. The
resulting decrease in mitochondrial respiration predisposes neurons to injury and in the presence
of a stressor such as proteinopathy could lead to energetic insufficiency and, ultimately, cell
death. The cytokines comprising our signature of AD progression have not previously been
connected to mitochondrial dysfunction, highlighting the power of a systems biology approach
that considers the inter-relatedness of immune signaling. Overall, our findings support the
existence of an immunometabolic feedback loop driving neuronal vulnerability in AD. Further
investigation is needed to evaluate the relevance of the signature in human AD rather than the
mouse model used here, particularly in the presence of tau pathology, which is absent in the
5xFAD model. However, the interdependency and redundancy of cytokine signaling, as well as
the differences between mice and humans, make it likely that there is a corresponding human
signature capable of driving mitochondrial dysfunction.
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Supplementary Table 1: Significantly differentially expressed genes of cytokine-treated neurons

compared to vehicle-treated neurons

P- P- P-
Gene log2FC | value Gene log2FC | value Gene log2FC | value
A2m -0.91 0.043 H2-DMa | 4.32 0.000 Psat1 -0.34 0.030
Acaa? -0.8 0.003 H2-Eb1 7.61 0.001 Psma3 0.49 0.001
Acad| 0.2 0.001 H2-M3 2.13 0.024 Psma7 0.72 0.003
Acox1 -0.44 0.004 H2-T23 4.42 0.014 Psmb10 | 3.27 0.004
Ak1 -0.19 0.028 Hacd2 -0.5 0.017 Psmb3 0.34 0.001
Ak3 -0.37 0.040 Hadh -0.18 0.004 Psmc1 0.14 0.014
Aldh2 -0.43 0.015 Hdc 1.75 0.002 Psmd13 | 0.15 0.046
Apoe -0.52 0.030 Hk2 0.72 0.011 Psme2 22 0.002
Ar 0.64 0.043 Hk3 2.25 0.014 Psph -0.16 0.015
Atf4 0.3 0.021 Hsd11b1 | -1.16 0.032 Ptger4 -0.54 0.022
Atf7ip 0.37 0.004 Hspe1 0.26 0.010 Ptges 1.22 0.001
Atp5d -0.26 0.010 Idh3g -0.23 0.048 Rgn 0.81 0.046
Birc3 1.01 0.021 Idnk 1.3 0.000 Rplp0 0.28 0.027
Brip1 1.03 0.016 Irf1 5.15 0.000 Rps6kb1 | 0.3 0.014
Bub1 -0.47 0.007 Itch 0.18 0.030 Rrm1 -0.26 0.006
Cacng2 | -0.43 0.026 Itga1 -0.64 0.021 Rrm2 -0.69 0.006
Cat -0.23 0.014 Jak2 0.97 0.000 Scd1 -0.44 0.001
Ccl19 1.56 0.001 Keap1 0.51 0.002 Sdhb 0.49 0.006
Ccl2 3.44 0.001 Kif2c -0.46 0.028 Sdhc -0.05 0.012
Ccl4 -2.75 0.011 Kirk1 5.22 0.002 Sec13 0.12 0.035
Ccl5 5.18 0.001 Kmt2a 0.41 0.050 Slc16a1 | 0.19 0.027
Ccna2 -0.68 0.009 Kyat1 -0.39 0.014 Slc16a2 | -0.46 0.001
Cd14 -2.32 0.002 Lamc1 0.55 0.035 Slc16a3 | -0.5 0.001
Cd274 | 4.94 0.001 Lamtor2 | 0.13 0.001 Slc1a5 -1.14 0.002
Cd36 4.36 0.000 Lck 1.24 0.020 Slc25a1 | 0.1 0.010
Cdc20 | -0.39 0.048 Ldha -0.41 0.036 Slc7a5 -0.36 0.007
Cdk9 0.09 0.006 Ldhb -0.37 0.000 Smad4 0.17 0.022
Cenpa | -0.56 0.015 Map1ic3b | -0.37 0.002 Sox2 0.29 0.011
Ctsl -0.62 0.035 Map2k2 0.21 0.010 Sgstm1 | 0.31 0.001
Cxcl9 5.13 0.004 Mki67 -0.86 0.005 Stat1 4.05 0.006
Cyp1b1 | -0.17 0.033 Msrb2 -0.6 0.009 Stat3 0.76 0.001
Dck 0.3 0.040 Mtf1 -0.16 0.032 Stat5a 0.46 0.020
Dguok | 0.34 0.020 Myb -0.65 0.007 Tbk1 0.37 0.020
Epc1 0.33 0.006 Myd88 1.2 0.007 Tkt -0.2 0.022
Fcf1 0.35 0.031 Nadk 0.35 0.023 Tir1 0.76 0.023
Fcgr4 2.71 0.015 Ncoa2 0.33 0.021 Tnf 1.76 0.023
Ferls -3.06 0.013 Ndufa1 -0.15 0.005 Tpr 0.22 0.025
Fdx1 0.39 0.012 Ndufa4 -0.37 0.032 Traf1 1.02 0.001
Fgf1 -1.05 0.002 Nfs1 -0.13 0.042 Traft 0.17 0.023
Fnip1 0.18 0.031 Nme2 0.21 0.020 Trf -0.82 0.045
Foxm1 | -0.6 0.005 Npm1 0.2 0.010 Trp53 0.4 0.016
Fpr1 1.68 0.011 Ngo1 -1.05 0.008 Trp63 -0.83 0.017
Gad1 -0.52 0.044 Nras 0.31 0.027 Txn1 0.81 0.002
Gclc -0.26 0.024 Pclaf -0.5 0.029 Ubb 0.38 0.003
Glrx 0.71 0.011 Pgk1 -0.38 0.017 Upp1 0.79 0.008
Glul -0.86 0.016 Pik3cb -0.26 0.040 Uqcr11 -0.32 0.045
Gmpr -0.69 0.008 Pik3r3 0.54 0.008 Usp39 0.35 0.011
Gng12 | 0.24 0.021 Plk1 -0.87 0.005 Usp8 0.39 0.006
Gpx1 0.89 0.006 Pole -0.58 0.037 Washc4 | 0.4 0.020
Gusb -0.81 0.042 Prdx5 0.38 0.001 Wrn 1.06 0.001
H2-Aa 9.43 0.001 Prim2 -0.22 0.016 Zfp65 0.31 0.005
H2-D1 2.74 0.019 Prkag1 -0.22 0.009 Zfp869 0.44 0.006
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Supplementary Table 2: Significantly differentially expressed genes of cytokine-treated astrocytes

compared to vehicle-treated astrocytes

Gene log2FC P-value
Psmb10 3.73 0.000
Psmb3 0.35 0.006
Psmc1 0.17 0.013
Psmd13 0.16 0.042
Psme?2 217 0.000
Ptk2 -0.25 0.015
Pycr1 0.59 0.021
Rbks -0.34 0.025
Sdha -0.25 0.050
Slc25a1 0.23 0.014
Sqgstm1 0.29 0.044
Stat1 5.3 0.000
Tyms -0.44 0.033
Washc4 0.3 0.000
Wrn 0.53 0.048
Xdh 1.67 0.006
Zfp457 -0.67 0.001

Gene log2FC P-value
Ada 0.73 0.049
Akt3 0.48 0.002
Cab39 -0.22 0.025
Ccl2 2.88 0.037
Ccl5 3.55 0.016
Cd180 0.7 0.020
Cd274 5.36 0.000
Ctss 1.63 0.003
Cxcl9 3.21 0.017
Cybb 1.2 0.002
Dnajc14 -0.15 0.043
Fcgrd 2.02 0.001
Fgf1 -0.85 0.003
Gns 0.23 0.040
Gsk3b -0.29 0.020
H2-Aa 8.65 0.001
H2-D1 5.79 0.000
H2-DMa 5.32 0.000
H2-Eb1 6.87 0.001
H2-M3 4.61 0.000
H2-T23 4 0.003
Hexa 0.27 0.003
Hk3 2.07 0.008
Hspa2 0.52 0.011
Hspa4 -0.39 0.001
Idh2 -0.49 0.036
ldnk 1.31 0.007
Irf1 4.39 0.001
ltgb2 0.91 0.041
Ldha -0.46 0.025
Ly86 0.54 0.045
Map2k1 0.1 0.028
MIst8 -0.39 0.026
Mycn -0.5 0.021
Ndufa3 0.17 0.028
Pik3r1 -0.4 0.035
Prkcg -0.63 0.032
Psma3 0.46 0.008
Psma7 0.55 0.009
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