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Abstract

The structure of microbial communitiesis often classified into discrete or semi-discrete
compositions of taxa as represented by “enterotypes’ of human gut microbiomes. Elucidating
mechanisms that generate such “alternative states’ of microbiome compositions has been one
of the mgjor challengesin ecology and microbiology. In atime-series analysis of experimental
microbiomes, we here show that both deterministic and stochastic ecological processes drive
divergence of aternative microbiome states. We introduced species-rich soil-derived
microbiomes into eight types of culture media with 48 replicates, monitoring shiftsin
community compositions at six time points (8 media x 48 replicates x 6 time points = 2,304
community samples). We then confirmed that microbial community structure diverged into a
few discrete states in each of the eight medium conditions as predicted in the presence of both
deterministic and stochastic community processes. In other words, microbiome structure was
differentiated into a small number of reproducible compositions under the same environment.
Thisfact indicates not only the presence of selective forces leading to specific equilibria of
community-scale resource use but also the influence of demographic drift (fluctuations)
across basins of such equilibria. A reference-genome analysis further suggested that the
observed aternative states differed in ecosystem-level functions. These findings will help us
examine how microbiome structure and functions can be controlled by changing the “stability
landscapes’ of ecological community compositions.

Keywords: biodiversity, community assembly, microbiome dynamics, ecological drift,
alternative stable states, multiple stability, transient dynamics, dysbiosis
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INTRODUCTION

Understanding the mechanisms by which microbial community structureisorganized is a
major challenge in ecology and microbiology [1-4]. In ageneral framework of community
dynamics, selection, diversification (speciation), dispersal, and drift have been considered as
fundamental components of community processes [5, 6] (Fig. 1). Among the four component
processes [5, 6], selection and drift can be regarded, respectively, as purely deterministic and
stochastic components[7, 8], while dispersal and diversification are considered to include
both deterministic and stochastic components [8]. Elucidating how those deterministic and
stochastic processes collectively organize ecological community assembly is the key to
predict and manage microbiome dynamics in diverse fields of applications such as human-gut

microbiome therapies [9-13] and agroecosystem microbiome control [14-16].

In empirical studies of ecological communities, consequences of deterministic and
stochastic ecological processes are observable as “ dternative states’ of community structure
[3, 17-19]. Pioneering studies on human-gut microbiomes have shown that microbiome
structure can be classified into a small number of categories (i.e., “enterotypes’) despite
potential numerous combinations of species or taxonomic compositions [20, 21]. The fact that
only a few community states out of innumerable possible states are realized implies the
presence of strong deterministic processes organizing community structure [22—-24].

M eanwhile, the presence of alternative community compositions suggests that stochastic
processes play some roles in the community differentiation. In other words, because no
variation in community structure is expected under the assumption of strict deterministic
processes, both deterministic and stochastic processes are necessary for the existence of
categorizable community compositions [18, 22] (Fig. 1). Thus, empirical studies on
community structure give essential insights into ecological community assembly. Nonetheless,
it is basically difficult to develop detailed discussion on ecological community processes
based on existing microbiome datasets because potential influence of environmental
conditions on community structural patterns cannot be fully understood in observational
studies.

In this respect, experimental studies with fully controlled environmental conditions are
expected to provide ideal opportunities for examining ecological community processesin
light of theories on alternative states [6, 8, 19]. By making a number of experimental
microbial communities with defined environmental conditions, we can perform strict tests of
the emergence of alternative community states. In other words, the presence of multiple
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reproducible states in the same experimental treatment is interpreted in the framework of
selection, diversification dispersal, and drift. Despite the potential contributions of the
experimental approaches to our fundamental knowledge of community assembly, few
attempts (but see [25]) have been made to explore alternative states of microbiomes with tens
of replications.

In this study, we examined the presence of alternative community states by performing
microbiome experiments under eight nutritional (medium) conditions with 48 replicates. We
constructed experimental microbiomes using a forest-soil-derived community of prokaryotes
as a source microbiome and then kept the 384 microbial communities (8 treatments x 48
replicates) under a fully controlled temperature condition. The experimental system was
designed to examine the roles of selection and drift in microbial community assembly. With
the aid of an automated pipetting system equipped in a clean laboratory environment, we
monitored changes in microbiome community compositions every two days for 12 days based
on the DNA metabarcoding of 16S rRNA gene sequences. The analysis of more than 2,000
community samples then allowed us to understand how deterministic and stochastic processes

could generate alternative states of ecological community structure.

MATERIALSAND METHODS
Terminology

In analyzing the data obtained in this study, we need to use consistent terminology to
minimize the risk of confusion and misunderstanding. It is necessary to confirm the
definitions of the ecological processes whose meaning can change depending on contexts.
Specifically, we use the terms “selection”, “drift”, “dispersal”, and “diversification
(speciation)” in ecological processes as conceptualized by Vellend [5]. Among the terms,
selection represents expected changes in local community compositions resulting from
differences in mean fitness between species, constituting purely deterministic processes [7].
Drift refers to demographic fluctuation that occurs regardless of among-species difference in
mean fitness, forming purely stochastic processes [7]. On the other hand, dispersal itself is not
aterm representing stochasticity or determinism, but it merely describes processes by which
organismal individuals or their propagules move between local communities. Diversification
is defined as evolutionary differentiation of genetic variants and hence it represents both
stochastic (e.g., nucleotide mutation) and deterministic (i.e., natural selection) phenomena|3,
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8.

Another important term we need to make clear before describing our microbiome
experiment is “aternative states’. In ecology, the term “alternative stable states” is often used
to discuss the processes by which divergence of community compositions are caused [17, 19,
26, 27]. Meanwhile, it is generally difficult to know whether the observed community
compositions are at stable states (i.e., equilibria) or they arein transient processes towards
stable states [28, 29]. Stability of communities has been a central topic in the history of
community ecology [30, 31]. In this study, however, we investigate divergence of community
compositions irrespective of the concept of community stability. In other words, our
community dataset can include information of both transient and stable states.

Continuous-culture of microbiomes

In the microbiome experiment, the source microbiome derived from the soil of the A layer (O-
10 cmin depth) in the research forest of Center for Ecological Research, Kyoto University,
Shiga, Japan (34.972 °N; 135.958 °E). After sampling, the soil was sieved with a4-mm
stainless mesh and then 5 g of the sieved soil was mixed in 100 mL PBS buffer with
cycloheximide [137 mM NaCl, 8.1 mM NaHPO,, 2.68 mM KCI, 1.47mM KH,PO., and 200
ug/ml cycloheximide]. In this process, we added cycloheximidein order to exclude
eukaryotes from the source microbiome. The source prokaryote microbiome was cultured at
22 °C for 48 hours.

We introduced the inoculum microbiome into eight types of mediawith different
constitutions of carbon sources with 48 replicate communities per medium type (in total, 8
media x 48 replicates = 384 experimental communities; Fig. 2). To make the compositions of
the media as simple as possible, we used M9 medium with minimal inorganic additives and
combinations of three types of the carbon resources, specifically, glucose, leucine, and citrate
asdetailed in Table S1. Specifically, each of the eight media was designed based on the
concentrations or presence/absence of the three carbon sources: i.e., low or high concentration
of glucose (G/HG), with or without leucine (-/L), and with or without citrate (-/C). Hereafter,
these medium types were designated as Medium-G (low glucose, without leucine, without
citrate), GL (low glucose, with leucine, without citrate), GC (low glucose, without leucine,
with citrate), GLC (low glucose, with leucine, with citrate), HG (high glucose, without
leucine, without citrate), HGL (high glucose, with leucine, without citrate), HGC (high
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glucose, without leucine, with citrate), and HGLC (high glucose, with leucine, with citrate),
respectively (Table S1).

In each well of a 240 uL deep-well plate, 10 uL of the diluted source microbiome
solution and 190 pL of medium were installed. Based on the quantitative amplicon
sequencing detailed below, the source microbiome solution was estimated to contain 3.12 x
10° DNA copies of the 16S rRNA gene (SD = 8.37 x 10°) (Fig. S1). Note that a previous
research estimated that a single cell of Enterobacteriaceae bacteria has an average of 7.3
DNA copies of 16S rRNA genes (SD = 0.9; calculated with rrnDB; [32]), although variation
in 16S rRNA gene copy numbers among prokaryote taxa has been known [32]. The deep-well
plate was kept shaken at 200 rpm using a plate thermo-shaker BSR-MB100-4A (Bio Medical
Sciences Co. Ltd., Tokyo) at 30 °C for two days. After two-days incubation, 190 uL out of the
200-pL culture medium was sampled from each of the 48 wells after mixing (pipetting) every
two days for 12 days. All pipetting manipulations were performed with high precision using
an automatic pipetting machine (EDR-384SR, BIOTEC Co. Ltd., Tokyo). In each sampling
event, 190 uL of fresh medium was added to each well so that the total culture volume was

kept constant. In total, 2,304 samples (384 communities/day x 6 time points) were collected.

Note that our study was not designed to examine historical contingency (priority
effects) because the microbial species were simultaneously introduced into the experimental
media. Dispersal between replicate communities were prohibited and diversification leading
to speciation events was unlikely to occur in the 12-day experiment. Thus, our aim in this
study was to examine how selection and drift could drive microbiome dynamics (Fig. 1).

DNA extraction

To extract DNA from each culture sample, 5 uL of the collected aliquot was mixed with 1 puL
lysozyme solution [50 mg/ml lysozyme (Sigma), 20 mM Tris-HCI (pH 8.0), 2 mM EDTA]
and the mixed solution was incubated at 37 °C for 2 hours. After adding proteinase K solution
[1/30 (v/v) Proteinase K (Takara), 20 mM Tris-HCI (pH 8.0), 2 mM EDTA], the aliquot was
incubated at 55 °C for 3 hours and 95 °C for 10 min, The solution was then vortexed for 10
min to increase DNA vyield.

We extracted DNA from the inoculum aliquot to reveal community structure of the
source microbiome. Because the source inoculum was expected to include high
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165  concentrations of soil-derived compounds, which can inhibit PCR reactions, a commercial
166  DNA extraction kit optimized for soil samples was used. Specifically, after 50 uL of the

167  inoculum sample were incubated with 350 uL SDS buffer with proteinase K [1/30 (v/v)

168 Proteinase K (Takara), 0.5 % SDS, 2 mM Tris-HCI (pH 8.0), 2 mM EDTA] based on the

169 temperature profile of 55 °C for 180 min and 95 °C for 10 min. The aliquot (400 uL) was then
170  subjected to DNA extraction with DNeasy PowerSoil Kit (Qiagen).

171
172 PCR and DNA sequencing

173  For the samples of the experimental microbiomes, prokaryote 16S rRNA V4 region was PCR-
174  amplified with the forward primer 515f fused with 3-6-mer Ns for improved Illumina

175  sequencing quality [33] and the forward Illumina sequencing primer (5'- TCG TCG GCA
176  GCG TCA GAT GTG TAT AAG AGA CAG- [3-6-mer Ns] —[515f] -3') and the reverse

177  primer 806rB fused with 3-6-mer Ns and the reverse sequencing primer (5- GTC TCG TGG
178 GCT CGGAGA TGT GTA TAA GAGACA G [3-6-mer Ng| - [806rB] -3') (0.2 uM each).
179  The buffer and polymerase system of KOD One (Toyobo) was used with the temperature

180 profileof 35 cyclesat 98 °C for 105, 55°C for 55, 68 °C for 1 s. To prevent generation of
181  chimeric sequences, the ramp rate through the thermal cycles was set to 1 °C/sec [34].

182  Illuminasequencing adaptors were then added to respective samples in the supplemental PCR
183  using the forward fusion primers consisting of the P5 Illumina adaptor, 8-mer indexes for

184 sampleidentification [35] and a partial sequence of the sequencing primer (5'- AAT GAT

185 ACGGCGACCACCGAGATCTACAC-[8-merindex] - TCGTCG GCA GCGTC-3)
186 and the reverse fusion primers consisting of the P7 adaptor, 8-mer indexes, and a partial

187  sequence of the sequencing primer (5 - CAA GCA GAA GAC GGC ATA CGA GAT - [8-mer
188 index] - GTC TCG TGG GCT CGG -3'). KOD One was used with atemperature profile of 8
189 cyclesat 98°C for 10 s, 55°Cfor 5, 68 °C for 5 s (ramp rate = 1 °C/s). The PCR amplicons
190  of the samples were then pooled after a purification/equalization process with the AMPureX P
191  Kit (Beckman Coulter). Primer dimers, which were shorter than 200 bp, were removed from
192 the pooled library by supplemental purification with AMPureXP: the ratio of AMPureXP

193  reagent to the pooled library was set to 1 (v/v) in this process. This library was further

194  purified with E-gel SizeSelect 2 (Invitrogen) and then ca. 440-bp DNA fragments was

195 selectively obtained. The sequencing libraries were processed in an I1lumina Miseq sequencer
196 [271forward (R1) and 31 reverse (R4) cycles; 20 % PhiX spike-in].
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For the source microbiome sample, the prokaryote 16S rRNA V4 region was amplified
aswell. To estimate concentrations of 16S rRNA genes included in the inoculum, a
guantitative amplicon sequencing platform was applied by introducing five “ standard DNA”
fragments with controlled concentrations to the PCR master mix solution of the first PCR
process as detailed elsewhere [36, 37]. The standard DNAs were used for the in-silico
calibration of 16S rRNA gene concentrations in the target sample after sequencing as detailed
in the previous study [36-38].

Bioinfor matics

In total, 25,284,304 sequencing reads were obtained with the Illumina sequencing. The raw
sequencing data obtained in the I1lumina sequencing were converted into FASTQ files using
the program bcl2fastq 1.8.4 distributed by Illumina. The output FASTQ files were then
demultiplexed with the program Claident v0.2. 2018.05.29. The sequencing reads were
subsequently processed with the program DADA2 [39] v.1.18.0 of R 3.6.3 to remove low-
quality data. The molecular identification of the obtained amplicon sequence variants (ASVs)
was performed based on the naive Bayesian classifier method [40] with the SILVA v.132
database [41]. Based on the in-silico calibration the quantitative amplicon sequencing data [36,
37], the number of DNA copiesin 10 uL of source microbiome (inoculum) was estimated to
be 3.12 x 10° copies as mentioned above (Fig. S1).

Community-level diversity

The rarefaction curves representing relationship between the number of sequencing reads and
the number of ASV's were drawn using the vegan 2.6.4 package [42] of R. In the sequencing
of experimental culture samples, the diversity of microbial ASV's reached plateaus along the
axis of the number of sequencing reads (Fig. S2). Given the rarefaction curves, the dataset
was rarefied to 5,000 reads per sample with the rrarefy function of the R vegan package. Of
the 2,304 samples (8 treatments x 48 replicates x 6 time points), 2,250 samples with more
than 5,000 reads were used in the following pipeline. After screening for the replicate
communities for which sequencing data were available for al the six time points, 2,094
samples were subjected to the following statistical analyses. In total, 718 prokaryote ASVs
belonging to two kingdoms, 19 phyla, 32 classes, 74 orders, 89 families, and 115 generawere
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detected.

For each sample, two types of o~diversity indices, ASV richness and Shannon-Wiener
diversity, were calculated. We then compared o~diversity among each medium using
Student’s t-test corrected by false discovery rate (FDR) by Benjamini-Hochberg method
(Table S2).

Overview of the community structure

To visualize the diversity of the prokaryote community structure, an analysis of non-metric
multidimensional scaling (NMDS) was performed based on the Bray-Curtis-metric of 5-
diversity. Likewise, to examine the dependence of community structure on medium
conditions, a series of permutational multivariate analysis of variance (PERMANOVA) [43]
was performed with 50,000 permutations. In each PERMANOVA model, glucose
concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the
presence/absence of citrate (df = 1) was included as the explanatory variable. An additional
model including all the medium conditions and interactions between them (df = 7) was
examined as well. Each PERM ANOVA model was supplemented by permutational analysis
of dispersion (PERMDISP; [44]) for potential effects of the medium condition on dispersion
in community structure. The NMDS, PERMANOVA, and PERMDISP were performed for
each dataset of the ASV-, genus-, and family-level compositions of prokaryote communities
using the vegan 2.6.4 package [42] of R.

Community structural differentiation

To examine the differentiation of community compositions among replicate samples, the
Bray-Curtis metric of S-diversity was calculated for respective pairs of samples collected on
the same day in each of the same treatments (medium conditions). Note that the Bray-Curtis
metric of S-diversity could range from O (identical community structure) to 1 (no overlap of
microbes). A histogram of the community structural difference was shown for each day in
each experimental treatment. If a small number of alternative states of community structure
exist under amedium condition, there can be some peaks of community structural difference
within a histogram. The analysis was performed for each dataset of the ASV-, genus-, and
family-level compositions of the prokaryote communities.
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Potential differentiation in community-level functions

To examine potential differentiation of ecosystem functions among the replicate communities,
we inferred the community-level functional profiles based on the phylogenetic estimation of
gene repertoires with PICRUSE2 [45]. The gene repertoire data were then subjected to NMDS,
PERMANOVA, and PERMDISP based on Bray-Curtis S-diversity. In total, the relative
functional compositions of 392 pathways were examined as input data. As examined in the
previous section about community structural differentiation, histograms of Bray-Curtis -
diversity were drawn at respective time point within respective treatments based on the
inferred gene repertoires.

RESULTS
Overview of the community structure

In each of the experimental treatments (medium conditions), taxonomic richness and
Shannon’s diversity index at the ASV, genus, and family levels decreased through time (Fig.
S3-4). The a-diversity indices varied depending also on medium conditions (Table S2). The
addition of leucine or citrate, for example, significantly increased a-diversity of the
experimental microbiomes (FDR: g < 0.01) (Fig. 3A; see Table S2).

At the genus level, the microbiomes were dominated by the four genera, Klebsiella,
Raoultella, Pseudomonas, and Cedecea, although there were substantial variation in the
balance of these taxa among the medium conditions examined (Fig. 4). For example, in the
media containing citrate (Medium-GC, GLC, HGC and HGLC), the relative abundance of
Citrobacter was higher than in other medium conditions. In the media containing leucine
(Medium-GL, GLC, HGL and HGLC), Cedecea were more abundant than in other medium
conditions. Moreover, within each of the medium conditions, Serratia became dominant only
in some replicate communities (Fig. 4).

At the family level, the communities were characterized by Enterobacteriaceae,
Pseudomonadaceae, and Comamodaceae, with Enterobacteriaceae being particularly
dominant (Fig. S6). Comamodaceae tended to appear at high proportions in the media with
high concentration of glucose. The substantial among-replicate variation in community

10
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compositions observed at the ASV- and genus-level analyses was evident aswell in the
family-level analysis. Specificaly, in the media containing leucine (medium-GL, GLC, HGL
and HGLC), Yersiniaceae, which included Serratia, was dominated only in some replicate
communities within each experimental treatment.

At all time points, differencesin community compositions were significantly explained
by differences in medium (Figs. 3B, S7-8 and Table S3). The results also indicated that the
overall variance explained by medium conditions decreased from Day 4 to 12 (Figs. 3B and
S7). Among the components of the medium conditions, concentrations of glucose had the
largest contributions to community structure at the family level (Fig. S7). Meanwhile, the
presence/absence of leucine had the highest impacts on the ASV- and genus-level community
structure (Fig. S7). The community structure within the NMDS plot distributed depending on
both time points and medium conditions (Fig. 3C). The PERMDISP indicated that the
concentration of glucose and the presence/absence of citrate greatly influenced dispersion of
family-level community structure among samples (Fig. S8 and Table $4). In contrast, the
presence/absence of leucine was the major determinant of community structural dispersion at
the genus- and ASV-level (Fig. S8).

Community structural differentiation

In some medium conditions (experimental treatments), large community structural difference
among replicate samples were observed. For example, in the Medium-GLC treatment,
substantial difference in community compositions were observed among replicate samples at
the ASV, genus, and family levels, and these differences seemingly increased until Day 10
(Figs. 5, 9 and S10). The community compositions seemed to be classified into some
categories within the NMDS plot (Figs. 5, SO and S10) due to the dominance of Serratia in
some, but not all, replicate samples (Fig. 4). In fact, the histogram of community structural
difference between samples (i.e., Bray-Curtis S-diversity between pairs of replicate samples)
showed bimodal or multi-modal distributions from Day 2 to Day 10, although eventually
displayed auniform distribution on Day 12 (Figs. 6, S11 and S12). Such bimodal or
multimodal distributions of S-diversity were observed in all the eight medium conditions (Fig.
6), although among-replicate differentiation in community structure on the NM DS surface
was conspi cuous in some treatments (Medium-G, GL, GLC, HGL, HGC, and HGLC) but not
in others (Medium-GC and HG) (Fig. 5).

11
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321 Within the deep-well plate used in the experiment, substantially different community
322  compositions were observed between adjacent replicate wells in each experimental treatment
323 (Fig. S15, 16). This fact suggests that potential fine-scale heterogeneity of temperature or
324  humidity within the small culture plate does not fully explain the observed among-replicate
325  divergence of community structure.

326
327  Potential differentiation in community-level functions

328  Asaobserved in the above analyses on the community compositions, functional profiles of the
329  community samples significantly differed depending on the medium conditions (Fig. 7A-B).
330 Moreover, among-replicate differentiation was evident in the functional profile dataset (Fig.
331 7C-D), dthough the extent of such differentiation varied among medium conditions (Fig.
332 S13-14).

333

334 Discussion

335 Based on the experimental design with many replicates in each of the multiple treatments, we
336  examined how microbial community assembly was driven by deterministic and stochastic
337  processes. Hereafter, we discuss respective components of those ecological processes in the
338 framework outlined in Fig. 1.

339 In terms of deterministic ecological processes, the importance of selection has been

340  discussed for decades in microbiology [7, 8, 46-50]. Indeed, in our study, the community
341  structure differed remarkably depending on the medium conditions (Fig. 3), indicating that
342  selection [8, 49] operated in the community processes of the experimental microbiomes. For
343  example, Citrobacter, which has the ability to metabolize citrate, occurred almost exclusively
344  inthe media containing citrate (Fig. 4). Thus, selection can be regarded as a fundamental

345  mechanism determining community structure.

346 In addition to selection, drift was shown to organize the community structure of the

347  experimental microbiomes. We found that community compositions could diverge into a

348  small number of reproducible alternative states even under the same environmental (medium)
349 conditions (Fig. 3-6). This finding indicates that selection and drift could collectively generate
350 alternative states of community structure in microbiome dynamics (Fig. 1). On a stability
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landscape of community structure, divergence into a small number of reproducible states
never occur without selection (Fig. 1). In addition, stochastic processes like drift
(demographic fluctuations) are necessary for such divergence because without stochasticity,
identical consequences are always expected. Meanwhile, careful interpretation is required
when we discuss the stochastic processes caused by drift. In our experiment, drift might
influence the community assembly not exclusively at the (pre-)colonization stage (i.e.,
stochastic sampling effects in the pipetting of inoculum microbiomes) but also at the post-
colonization stage (i.e., “random walk” fluctuation of community compositions). The relative
contributions of pre-colonization and post-colonization stochastic events need to be examined
in future studies. In our present experiment, 3.12 x 10° DNA copies of the 16S rRNA gene
were introduced into each replicate community at the pre-colonization stage, while 10 uL out
of 200 uL of culture media was left for successive time points (i.e., 5 % bottleneck in each
transition between time points) at the post-col onization stage. Experiments comparing
multiple source microbiome density and multiple post-colonization bottleneck levels will
provide further crucial knowledge of how drift can drive community dynamics leading to
alternative states.

In our results, community structural differences evident at the ASV or genus levels (Fig.
3-6) were less conspicuous at the family level (Fig. S6, SO and S11) partly due to the
dominance of bacteria belonging to Enterobacteriaceae. Such convergence of community
structure at higher taxonomic levels may stem from redundancy in functional compositions of
microbial communities as has been reported in previous studies [9, 51, 52]. However, in some
experimental treatments (e.g., Medium-GLC), substantial divergence of taxonomic
compositions among replicate communities was evident even at the family level (Fig. S6).
Thus, substantial functional differentiation could occur through the emergence of aternative
states of microbiome structure.

In fact, areference-genome-based analysis suggested that divergence into dternative
community structure could entail functional differentiation of microbial communities. The
inferred community-level gene repertoires were differentiated into some clusters within each
experimental treatment (Fig. 7C), resulting in bimodal or multi-modal distributions of
pairwise community dissimilarity (Fig. 7D). This observation is of particular interest because
knowledge of the processes driving divergence into functionally different microbiome states
is essential in diverse fields of applied sciences. In medicine, for example, the structure of
human gut microbiomes has been classified into some categories (i.e., enterotypes) differing

13
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in associations with host human health [20, 21]. Furthermore, recent studies have suggested
that fish-associated and plant-associated microbiomes can be classified into several
community compositional types potentially differing in physiological impacts on host
organisms[14, 53]. To extend the discussion on functional divergence of microbiomes, the
genomic information of the microbes constituting microbiomes need to be enriched with
shotgun metagenomic analyses [54-56].

From a detailed inspection of the experimental results, we found that shifts between
alternative states could occur in microbial community dynamics. While difference in
community structure were expanded from Day 2 to Day 10, transitions between alternative
states seemed to occur within the NM DS plots in some experimental treatments (Medium-GL,
GLC, and HGL; Fig. 5). This observation illuminates the ecological theory that transitions
between alternative stable states are possible if demographic fluctuations of microbial
populations within the communities are large enough to cross the “boundaries’ splitting
basins of stability landscapes [26, 27]. Alternatively, the observed dynamics may be
interpreted as transient dynamics towards a large basin within a stability landscape [19, 29].
Although it is notoriously difficult to distinguish alternative transient states from alternative
stable states based on current frameworks of empirical datasets, further feedback between
theoretical and empirical investigations will promote our understanding of large shiftsin
community structure [38].

The fact that patterns in the divergence into alternative states differed among
environmental conditions give significant implications for the “controllability” of
microbiomes. We found that the number and structure of alternative states differed depending
on medium conditions (Fig. 5). This result suggests that the shapes of underlying stability
landscapes, which are formed by selection, can be changed by the addition of specific
chemicals to the microbial ecosystems. Such changes in stability landscape structure have
been intensively discussed in theoretical ecology [27] but explored in afew empirical studies
[57, 58]. Thus, this study indicates that microbiome experiments under a series of
environmental conditions provide ideal opportunities for investigating how microbiome
structure can be managed by changing the structure of background stability landscapes based

on the manipulation of environmental conditions.

While the experiment using field-collected source microbiomes allowed us to explore
broad state space of possible community structure, experiments based on explicitly defined
sets of microbial species will provide complementary insights. A more mechanism-based
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417  understanding may become possible by conducting similar experiments on multispecies
418  systems with known genomes and metabolic pathways. In this respect, experiments on
419  synthetic communities (SynCom) [59-61] are expected to promote reductionistic

420  understanding of microbial community processes [62, 63]. With the aid of genome-based
421  metabolic modeling [64—66], for example, potential consequences of competitive and
422  facilitative interactions between microbial species may be inferred at the community level
423  [56]. For further understanding of microbiome assembly, it is also important to apply

424 empirical frameworks for describing complex time-series processes of ecological

425  communities [38, 67, 68] in light of shifts between alternative states [38]. Interdisciplinary
426  studies based on microbiology, genomics, and theoretical ecology will reorganize our
427  knowledge of the stability and dynamics of microbiomes.

428

429 DATAAVAILABILITY

430 The 16S rRNA gene sequence data are available from the DNA Data Bank of Japan (DDBJ;
431  accession number, Bioproject PRIDB15353) [to be released after acceptance of the paper].
432  Themicrobia community dataand all the R scripts used for the statistical analyses are

433 available at the GitHub repository (https://github.com/Ibuki-Hayashi/deterministic-and-
434 stochastic-processes-generati ng-alternative-states) [to be released after acceptance of the
435  paper].
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Fig. 1| Conceptual framework of community assembly. A Stability landscape of
community structure. Community assembly is often discussed based on the schema of
“stability landscapes’, which represent the stability/instability of community states (i.e.,
species or taxonomic compositions). Alternative states are defined as bottom positions within
basins on the stability landscapes. B Deterministic and stochastic processes in community
assembly. Our experiment was designed to test the contributions of deterministic and
stochastic ecological processes. Specifically, the results of our multi-replicate microbiome
experiments are expected to depend on the presence/absence of selection and drift. Without
drift (demographic fluctuations), all replicate communities will converge to asingle
community state (bottom panels). With drift, differentiation of community states can occur
depending on the structure of stability landscapes. In particular, if there are two or more
basins, differentiation into a small number of alternative community states will be observed as
a consequence of both selection and drift (top right).
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635 Fig. 2| Experimental design. Laboratory culture system. A source microbiome deriving from
636 forest soil was pre-cultured with cycloheximide under room temperature for 2 daysin order to
637  remove eukaryotes. The microbiome inoculum was then introduced into eight types of media
638 (Table S1) with 48 replicates. A fraction of the culture fluid was sampled every 2 days and
639 equivalent volume of fresh medium was added to the continual culture system throughout the
640 12-day experiment (8 mediax 48 replicates x 6 time points = 2,304 community samples).

641
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644  Fig. 3| Overview of the community structure. A o~diversity of the communities. In each
645 experimental treatment (medium condition), Shannon’s diversity index for ASV-level

646  community compositions is shown for each day. The results of Student’s t-test are shown in
647 Table S2. B Dependence of community structure on medium conditions. In each

648 PERMANOVA model of ASV-level community compositions, glucose concentration (high or
649 low; df = 1), the presence/absence of leucine (df = 1), or the presence/absence of citrate (df =
650 1) wasincluded as the explanatory variable. An additional model including all the medium
651 conditions and interactions between them (df = 7) was examined as well. The coefficient of
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652  determination (RP) is shown for each day. C Overview of the community structure. The ASV-
653 level community compositions are shown along the axes of honmetric multidimensional

654  scaling (NMDY) (stress = 0.157).

655
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Fig. 4 | Variation in community structure among replicate samples. For each replicate
community in each experimental treatment, changes in genus-level community compositions
(relative abundance) are shown. The numbers shown at the top of the bar plots refer to time
points (days). The replicate samples were ordered based on unweighted pair group method
with arithmetic mean (UPGMA) analyses performed on Day 2 for respective experimental
treatments. The order of replicate communities on successive days is the same as that on Day
2.
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668 Fig. 5| Time-series changesin community structure. For each replicate community in each
669 experimental treatment, time-series changesin ASV-level community structure are shown
670  with arrows on the NMDS surface defined in Figure 3C.

671
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Fig. 6 | Histograms of community structural differentiation. For each experimental
treatment, differencein ASV-level community structure (Bray-Curtis S-diversity) between
replicate communities is shown as a histogram for each day. The numbers shown at the top of
the histograms refer to the time points (days). The bi-modal or multi-modal distributions
within these histograms suggest the presence of aternative community states.
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682 Fig. 7 | Functional profiles of the microbiomes. A Overview of functional compositions.
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analysis of constituent bacteria based on PICRUSTS2), community samples are plotted on a
NMDS surface (stress = 0.125). B Dependence of community functional profiles on medium
conditions. In each PERMANOVA model of metabolic pathway compositions, glucose
concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the
presence/absence of citrate (df = 1) was included as the explanatory variable. An additional
model including al the medium conditions and interactions between them (df = 7) was
examined as well. The coefficient of determination (R?) is shown for each day. C Time-series
changes in community functional profiles. The results on two experimental treatments
(Medium GLC and HGC) are shown. See Fig. S13 for full results. D Histograms of
community functional differentiation. The results on two experimental treatments (Medium
GLC and HGC) are shown. See Fig. S14 for full results.
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