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 2 

Abstract  14 

The structure of microbial communities is often classified into discrete or semi-discrete 15 

compositions of taxa as represented by “enterotypes” of human gut microbiomes. Elucidating 16 

mechanisms that generate such “alternative states” of microbiome compositions has been one 17 

of the major challenges in ecology and microbiology. In a time-series analysis of experimental 18 

microbiomes, we here show that both deterministic and stochastic ecological processes drive 19 

divergence of alternative microbiome states. We introduced species-rich soil-derived 20 

microbiomes into eight types of culture media with 48 replicates, monitoring shifts in 21 

community compositions at six time points (8 media × 48 replicates × 6 time points = 2,304 22 

community samples). We then confirmed that microbial community structure diverged into a 23 

few discrete states in each of the eight medium conditions as predicted in the presence of both 24 

deterministic and stochastic community processes. In other words, microbiome structure was 25 

differentiated into a small number of reproducible compositions under the same environment. 26 

This fact indicates not only the presence of selective forces leading to specific equilibria of 27 

community-scale resource use but also the influence of demographic drift (fluctuations) 28 

across basins of such equilibria. A reference-genome analysis further suggested that the 29 

observed alternative states differed in ecosystem-level functions. These findings will help us 30 

examine how microbiome structure and functions can be controlled by changing the “stability 31 

landscapes” of ecological community compositions.  32 

 33 

Keywords: biodiversity, community assembly, microbiome dynamics, ecological drift, 34 

alternative stable states, multiple stability, transient dynamics, dysbiosis 35 
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 3 

INTRODUCTION 37 

Understanding the mechanisms by which microbial community structure is organized is a 38 

major challenge in ecology and microbiology [1–4]. In a general framework of community 39 

dynamics, selection, diversification (speciation), dispersal, and drift have been considered as 40 

fundamental components of community processes [5, 6] (Fig. 1). Among the four component 41 

processes [5, 6], selection and drift can be regarded, respectively, as purely deterministic and 42 

stochastic components [7, 8], while dispersal and diversification are considered to include 43 

both deterministic and stochastic components [8]. Elucidating how those deterministic and 44 

stochastic processes collectively organize ecological community assembly is the key to 45 

predict and manage microbiome dynamics in diverse fields of applications such as human-gut 46 

microbiome therapies [9–13] and agroecosystem microbiome control [14–16].  47 

 In empirical studies of ecological communities, consequences of deterministic and 48 

stochastic ecological processes are observable as “alternative states” of community structure 49 

[3, 17–19]. Pioneering studies on human-gut microbiomes have shown that microbiome 50 

structure can be classified into a small number of categories (i.e., “enterotypes”) despite 51 

potential numerous combinations of species or taxonomic compositions [20, 21]. The fact that 52 

only a few community states out of innumerable possible states are realized implies the 53 

presence of strong deterministic processes organizing community structure [22–24]. 54 

Meanwhile, the presence of alternative community compositions suggests that stochastic 55 

processes play some roles in the community differentiation. In other words, because no 56 

variation in community structure is expected under the assumption of strict deterministic 57 

processes, both deterministic and stochastic processes are necessary for the existence of 58 

categorizable community compositions [18, 22] (Fig. 1). Thus, empirical studies on 59 

community structure give essential insights into ecological community assembly. Nonetheless, 60 

it is basically difficult to develop detailed discussion on ecological community processes 61 

based on existing microbiome datasets because potential influence of environmental 62 

conditions on community structural patterns cannot be fully understood in observational 63 

studies.  64 

 In this respect, experimental studies with fully controlled environmental conditions are 65 

expected to provide ideal opportunities for examining ecological community processes in 66 

light of theories on alternative states [6, 8, 19]. By making a number of experimental 67 

microbial communities with defined environmental conditions, we can perform strict tests of 68 

the emergence of alternative community states. In other words, the presence of multiple 69 
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reproducible states in the same experimental treatment is interpreted in the framework of 70 

selection, diversification dispersal, and drift. Despite the potential contributions of the 71 

experimental approaches to our fundamental knowledge of community assembly, few 72 

attempts (but see [25]) have been made to explore alternative states of microbiomes with tens 73 

of replications.  74 

 In this study, we examined the presence of alternative community states by performing 75 

microbiome experiments under eight nutritional (medium) conditions with 48 replicates. We 76 

constructed experimental microbiomes using a forest-soil-derived community of prokaryotes 77 

as a source microbiome and then kept the 384 microbial communities (8 treatments × 48 78 

replicates) under a fully controlled temperature condition. The experimental system was 79 

designed to examine the roles of selection and drift in microbial community assembly. With 80 

the aid of an automated pipetting system equipped in a clean laboratory environment, we 81 

monitored changes in microbiome community compositions every two days for 12 days based 82 

on the DNA metabarcoding of 16S rRNA gene sequences. The analysis of more than 2,000 83 

community samples then allowed us to understand how deterministic and stochastic processes 84 

could generate alternative states of ecological community structure.   85 

 86 

MATERIALS AND METHODS 87 

Terminology 88 

In analyzing the data obtained in this study, we need to use consistent terminology to 89 

minimize the risk of confusion and misunderstanding. It is necessary to confirm the 90 

definitions of the ecological processes whose meaning can change depending on contexts. 91 

Specifically, we use the terms “selection”, “drift”, “dispersal”, and “diversification 92 

(speciation)” in ecological processes as conceptualized by Vellend [5]. Among the terms, 93 

selection represents expected changes in local community compositions resulting from 94 

differences in mean fitness between species, constituting purely deterministic processes [7]. 95 

Drift refers to demographic fluctuation that occurs regardless of among-species difference in 96 

mean fitness, forming purely stochastic processes [7]. On the other hand, dispersal itself is not 97 

a term representing stochasticity or determinism, but it merely describes processes by which 98 

organismal individuals or their propagules move between local communities. Diversification 99 

is defined as evolutionary differentiation of genetic variants and hence it represents both 100 

stochastic (e.g., nucleotide mutation) and deterministic (i.e., natural selection) phenomena [3, 101 
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8].  102 

 Another important term we need to make clear before describing our microbiome 103 

experiment is “alternative states”. In ecology, the term “alternative stable states” is often used 104 

to discuss the processes by which divergence of community compositions are caused [17, 19, 105 

26, 27]. Meanwhile, it is generally difficult to know whether the observed community 106 

compositions are at stable states (i.e., equilibria) or they are in transient processes towards 107 

stable states [28, 29]. Stability of communities has been a central topic in the history of 108 

community ecology [30, 31]. In this study, however, we investigate divergence of community 109 

compositions irrespective of the concept of community stability. In other words, our 110 

community dataset can include information of both transient and stable states. 111 

 112 

Continuous-culture of microbiomes 113 

In the microbiome experiment, the source microbiome derived from the soil of the A layer (0-114 

10 cm in depth) in the research forest of Center for Ecological Research, Kyoto University, 115 

Shiga, Japan (34.972 ºN; 135.958 ºE). After sampling, the soil was sieved with a 4-mm 116 

stainless mesh and then 5 g of the sieved soil was mixed in 100 mL PBS buffer with 117 

cycloheximide [137 mM NaCl, 8.1 mM Na2HPO4, 2.68 mM KCl, 1.47mM KH2PO4, and 200 118 

μg/ml cycloheximide]. In this process, we added cycloheximide in order to exclude 119 

eukaryotes from the source microbiome. The source prokaryote microbiome was cultured at 120 

22 ºC for 48 hours.  121 

 We introduced the inoculum microbiome into eight types of media with different 122 

constitutions of carbon sources with 48 replicate communities per medium type (in total, 8 123 

media × 48 replicates = 384 experimental communities; Fig. 2). To make the compositions of 124 

the media as simple as possible, we used M9 medium with minimal inorganic additives and 125 

combinations of three types of the carbon resources, specifically, glucose, leucine, and citrate 126 

as detailed in Table S1. Specifically, each of the eight media was designed based on the 127 

concentrations or presence/absence of the three carbon sources: i.e., low or high concentration 128 

of glucose (G/HG), with or without leucine (-/L), and with or without citrate (-/C). Hereafter, 129 

these medium types were designated as Medium-G (low glucose, without leucine, without 130 

citrate), GL (low glucose, with leucine, without citrate), GC (low glucose, without leucine, 131 

with citrate), GLC (low glucose, with leucine, with citrate), HG (high glucose, without 132 

leucine, without citrate), HGL (high glucose, with leucine, without citrate), HGC (high 133 
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glucose, without leucine, with citrate), and HGLC (high glucose, with leucine, with citrate), 134 

respectively (Table S1).  135 

 In each well of a 240 μL deep-well plate, 10 μL of the diluted source microbiome 136 

solution and 190 μL of medium were installed. Based on the quantitative amplicon 137 

sequencing detailed below, the source microbiome solution was estimated to contain 3.12 × 138 

106 DNA copies of the 16S rRNA gene (SD = 8.37 × 105) (Fig. S1). Note that a previous 139 

research estimated that a single cell of Enterobacteriaceae bacteria has an average of 7.3 140 

DNA copies of 16S rRNA genes (SD = 0.9; calculated with rrnDB; [32]), although variation 141 

in 16S rRNA gene copy numbers among prokaryote taxa has been known [32]. The deep-well 142 

plate was kept shaken at 200 rpm using a plate thermo-shaker BSR-MB100-4A (Bio Medical 143 

Sciences Co. Ltd., Tokyo) at 30 ºC for two days. After two-days incubation, 190 μL out of the 144 

200-μL culture medium was sampled from each of the 48 wells after mixing (pipetting) every 145 

two days for 12 days. All pipetting manipulations were performed with high precision using 146 

an automatic pipetting machine (EDR-384SR, BIOTEC Co. Ltd., Tokyo). In each sampling 147 

event, 190 μL of fresh medium was added to each well so that the total culture volume was 148 

kept constant. In total, 2,304 samples (384 communities/day × 6 time points) were collected.  149 

 Note that our study was not designed to examine historical contingency (priority 150 

effects) because the microbial species were simultaneously introduced into the experimental 151 

media. Dispersal between replicate communities were prohibited and diversification leading 152 

to speciation events was unlikely to occur in the 12-day experiment. Thus, our aim in this 153 

study was to examine how selection and drift could drive microbiome dynamics (Fig. 1). 154 

 155 

DNA extraction 156 

To extract DNA from each culture sample, 5 μL of the collected aliquot was mixed with 1 μL 157 

lysozyme solution [50 mg/ml lysozyme (Sigma), 20 mM Tris-HCl (pH 8.0), 2 mM EDTA] 158 

and the mixed solution was incubated at 37 ºC for 2 hours. After adding proteinase K solution 159 

[1/30 (v/v) Proteinase K (Takara), 20 mM Tris-HCl (pH 8.0), 2 mM EDTA], the aliquot was 160 

incubated at 55 ºC for 3 hours and 95 ºC for 10 min, The solution was then vortexed for 10 161 

min to increase DNA yield.  162 

 We extracted DNA from the inoculum aliquot to reveal community structure of the 163 

source microbiome. Because the source inoculum was expected to include high 164 
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concentrations of soil-derived compounds, which can inhibit PCR reactions, a commercial 165 

DNA extraction kit optimized for soil samples was used. Specifically, after 50 μL of the 166 

inoculum sample were incubated with 350 μL SDS buffer with proteinase K [1/30 (v/v) 167 

Proteinase K (Takara), 0.5 % SDS, 2 mM Tris-HCl (pH 8.0), 2 mM EDTA] based on the 168 

temperature profile of 55 ºC for 180 min and 95 ºC for 10 min. The aliquot (400 μL) was then 169 

subjected to DNA extraction with DNeasy PowerSoil Kit (Qiagen).  170 

 171 

PCR and DNA sequencing 172 

For the samples of the experimental microbiomes, prokaryote 16S rRNA V4 region was PCR-173 

amplified with the forward primer 515f fused with 3–6-mer Ns for improved Illumina 174 

sequencing quality [33] and the forward Illumina sequencing primer (5’- TCG TCG GCA 175 

GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-mer Ns] – [515f] -3’) and the reverse 176 

primer 806rB fused with 3–6-mer Ns and the reverse sequencing primer (5’- GTC TCG TGG 177 

GCT CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [806rB] -3’) (0.2 μM each). 178 

The buffer and polymerase system of KOD One (Toyobo) was used with the temperature 179 

profile of 35 cycles at 98 ºC for 10 s, 55 ºC for 5 s, 68 ºC for 1 s. To prevent generation of 180 

chimeric sequences, the ramp rate through the thermal cycles was set to 1 ºC/sec [34]. 181 

Illumina sequencing adaptors were then added to respective samples in the supplemental PCR 182 

using the forward fusion primers consisting of the P5 Illumina adaptor, 8-mer indexes for 183 

sample identification [35] and a partial sequence of the sequencing primer (5’- AAT GAT 184 

ACG GCG ACC ACC GAG ATC TAC AC - [8-mer index] - TCG TCG GCA GCG TC -3’) 185 

and the reverse fusion primers consisting of the P7 adaptor, 8-mer indexes, and a partial 186 

sequence of the sequencing primer (5’- CAA GCA GAA GAC GGC ATA CGA GAT - [8-mer 187 

index] - GTC TCG TGG GCT CGG -3’). KOD One was used with a temperature profile of 8 188 

cycles at 98 ºC for 10 s, 55 ºC for 5 s, 68 ºC for 5 s (ramp rate = 1 ºC/s). The PCR amplicons 189 

of the samples were then pooled after a purification/equalization process with the AMPureXP 190 

Kit (Beckman Coulter). Primer dimers, which were shorter than 200 bp, were removed from 191 

the pooled library by supplemental purification with AMPureXP: the ratio of AMPureXP 192 

reagent to the pooled library was set to 1 (v/v) in this process. This library was further 193 

purified with E-gel SizeSelect 2 (Invitrogen) and then ca. 440-bp DNA fragments was 194 

selectively obtained. The sequencing libraries were processed in an Illumina Miseq sequencer 195 

[271 forward (R1) and 31 reverse (R4) cycles; 20 % PhiX spike-in]. 196 
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  For the source microbiome sample, the prokaryote 16S rRNA V4 region was amplified 197 

as well. To estimate concentrations of 16S rRNA genes included in the inoculum, a 198 

quantitative amplicon sequencing platform was applied by introducing five “standard DNA” 199 

fragments with controlled concentrations to the PCR master mix solution of the first PCR 200 

process as detailed elsewhere [36, 37]. The standard DNAs were used for the in-silico 201 

calibration of 16S rRNA gene concentrations in the target sample after sequencing as detailed 202 

in the previous study [36–38]. 203 

 204 

Bioinformatics 205 

In total, 25,284,304 sequencing reads were obtained with the Illumina sequencing. The raw 206 

sequencing data obtained in the Illumina sequencing were converted into FASTQ files using 207 

the program bcl2fastq 1.8.4 distributed by Illumina. The output FASTQ files were then 208 

demultiplexed with the program Claident v0.2. 2018.05.29. The sequencing reads were 209 

subsequently processed with the program DADA2 [39] v.1.18.0 of R 3.6.3 to remove low-210 

quality data. The molecular identification of the obtained amplicon sequence variants (ASVs) 211 

was performed based on the naive Bayesian classifier method [40] with the SILVA v.132 212 

database [41]. Based on the in-silico calibration the quantitative amplicon sequencing data [36, 213 

37], the number of DNA copies in 10 μL of source microbiome (inoculum) was estimated to 214 

be 3.12 × 106 copies as mentioned above (Fig. S1).  215 

 216 

Community-level diversity 217 

The rarefaction curves representing relationship between the number of sequencing reads and  218 

the number of ASVs were drawn using the vegan 2.6.4 package [42] of R. In the sequencing 219 

of experimental culture samples, the diversity of microbial ASVs reached plateaus along the 220 

axis of the number of sequencing reads (Fig. S2). Given the rarefaction curves, the dataset 221 

was rarefied to 5,000 reads per sample with the rrarefy function of the R vegan package. Of 222 

the 2,304 samples (8 treatments × 48 replicates × 6 time points), 2,250 samples with more 223 

than 5,000 reads were used in the following pipeline. After screening for the replicate 224 

communities for which sequencing data were available for all the six time points, 2,094 225 

samples were subjected to the following statistical analyses. In total, 718 prokaryote ASVs 226 

belonging to two kingdoms, 19 phyla, 32 classes, 74 orders, 89 families, and 115 genera were 227 
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detected.  228 

 For each sample, two types of α-diversity indices, ASV richness and Shannon-Wiener 229 

diversity, were calculated. We then compared α-diversity among each medium using 230 

Student’s t-test corrected by false discovery rate (FDR) by Benjamini-Hochberg method 231 

(Table S2). 232 

 233 

Overview of the community structure 234 

To visualize the diversity of the prokaryote community structure, an analysis of non-metric 235 

multidimensional scaling (NMDS) was performed based on the Bray-Curtis-metric of β-236 

diversity. Likewise, to examine the dependence of community structure on medium 237 

conditions, a series of permutational multivariate analysis of variance (PERMANOVA) [43] 238 

was performed with 50,000 permutations. In each PERMANOVA model, glucose 239 

concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the 240 

presence/absence of citrate (df = 1) was included as the explanatory variable. An additional 241 

model including all the medium conditions and interactions between them (df = 7) was 242 

examined as well. Each PERMANOVA model was supplemented by permutational analysis 243 

of dispersion (PERMDISP; [44]) for potential effects of the medium condition on dispersion 244 

in community structure. The NMDS, PERMANOVA, and PERMDISP were performed for 245 

each dataset of the ASV-, genus-, and family-level compositions of prokaryote communities 246 

using the vegan 2.6.4 package [42] of R.  247 

 248 

Community structural differentiation 249 

To examine the differentiation of community compositions among replicate samples, the 250 

Bray-Curtis metric of β-diversity was calculated for respective pairs of samples collected on 251 

the same day in each of the same treatments (medium conditions). Note that the Bray-Curtis 252 

metric of β-diversity could range from 0 (identical community structure) to 1 (no overlap of 253 

microbes). A histogram of the community structural difference was shown for each day in 254 

each experimental treatment. If a small number of alternative states of community structure 255 

exist under a medium condition, there can be some peaks of community structural difference 256 

within a histogram. The analysis was performed for each dataset of the ASV-, genus-, and 257 

family-level compositions of the prokaryote communities.  258 
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 259 

Potential differentiation in community-level functions 260 

To examine potential differentiation of ecosystem functions among the replicate communities, 261 

we inferred the community-level functional profiles based on the phylogenetic estimation of 262 

gene repertoires with PICRUSt2 [45]. The gene repertoire data were then subjected to NMDS, 263 

PERMANOVA, and PERMDISP based on Bray-Curtis β-diversity. In total, the relative 264 

functional compositions of 392 pathways were examined as input data. As examined in the 265 

previous section about community structural differentiation, histograms of Bray-Curtis β-266 

diversity were drawn at respective time point within respective treatments based on the 267 

inferred gene repertoires.  268 

 269 

RESULTS 270 

Overview of the community structure 271 

In each of the experimental treatments (medium conditions), taxonomic richness and 272 

Shannon’s diversity index at the ASV, genus, and family levels decreased through time (Fig. 273 

S3-4). The α-diversity indices varied depending also on medium conditions (Table S2). The 274 

addition of leucine or citrate, for example, significantly increased α-diversity of the 275 

experimental microbiomes (FDR: � � 0.01) (Fig. 3A; see Table S2). 276 

 At the genus level, the microbiomes were dominated by the four genera, Klebsiella, 277 

Raoultella, Pseudomonas, and Cedecea, although there were substantial variation in the 278 

balance of these taxa among the medium conditions examined (Fig. 4). For example, in the 279 

media containing citrate (Medium-GC, GLC, HGC and HGLC), the relative abundance of 280 

Citrobacter was higher than in other medium conditions. In the media containing leucine 281 

(Medium-GL, GLC, HGL and HGLC), Cedecea were more abundant than in other medium 282 

conditions. Moreover, within each of the medium conditions, Serratia became dominant only 283 

in some replicate communities (Fig. 4). 284 

 At the family level, the communities were characterized by Enterobacteriaceae, 285 

Pseudomonadaceae, and Comamodaceae, with Enterobacteriaceae being particularly 286 

dominant (Fig. S6). Comamodaceae tended to appear at high proportions in the media with 287 

high concentration of glucose. The substantial among-replicate variation in community 288 
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compositions observed at the ASV- and genus-level analyses was evident as well in the 289 

family-level analysis. Specifically, in the media containing leucine (medium-GL, GLC, HGL 290 

and HGLC), Yersiniaceae, which included Serratia, was dominated only in some replicate 291 

communities within each experimental treatment. 292 

 At all time points, differences in community compositions were significantly explained 293 

by differences in medium (Figs. 3B, S7-8 and Table S3). The results also indicated that the 294 

overall variance explained by medium conditions decreased from Day 4 to 12 (Figs. 3B and 295 

S7). Among the components of the medium conditions, concentrations of glucose had the 296 

largest contributions to community structure at the family level (Fig. S7). Meanwhile, the 297 

presence/absence of leucine had the highest impacts on the ASV- and genus-level community 298 

structure (Fig. S7). The community structure within the NMDS plot distributed depending on 299 

both time points and medium conditions (Fig. 3C). The PERMDISP indicated that the 300 

concentration of glucose and the presence/absence of citrate greatly influenced dispersion of 301 

family-level community structure among samples (Fig. S8 and Table S4). In contrast, the 302 

presence/absence of leucine was the major determinant of community structural dispersion at 303 

the genus- and ASV-level (Fig. S8). 304 

 305 

Community structural differentiation 306 

In some medium conditions (experimental treatments), large community structural difference 307 

among replicate samples were observed. For example, in the Medium-GLC treatment, 308 

substantial difference in community compositions were observed among replicate samples at 309 

the ASV, genus, and family levels, and these differences seemingly increased until Day 10 310 

(Figs. 5, S9 and S10). The community compositions seemed to be classified into some 311 

categories within the NMDS plot (Figs. 5, S9 and S10) due to the dominance of Serratia in 312 

some, but not all, replicate samples (Fig. 4). In fact, the histogram of community structural 313 

difference between samples (i.e., Bray-Curtis β-diversity between pairs of replicate samples) 314 

showed bimodal or multi-modal distributions from Day 2 to Day 10, although eventually 315 

displayed a uniform distribution on Day 12 (Figs. 6, S11 and S12). Such bimodal or 316 

multimodal distributions of β-diversity were observed in all the eight medium conditions (Fig. 317 

6), although among-replicate differentiation in community structure on the NMDS surface 318 

was conspicuous in some treatments (Medium-G, GL, GLC, HGL, HGC, and HGLC) but not 319 

in others (Medium-GC and HG) (Fig. 5).  320 
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 Within the deep-well plate used in the experiment, substantially different community 321 

compositions were observed between adjacent replicate wells in each experimental treatment 322 

(Fig. S15, 16). This fact suggests that potential fine-scale heterogeneity of temperature or 323 

humidity within the small culture plate does not fully explain the observed among-replicate 324 

divergence of community structure. 325 

 326 

Potential differentiation in community-level functions 327 

As observed in the above analyses on the community compositions, functional profiles of the 328 

community samples significantly differed depending on the medium conditions (Fig. 7A-B). 329 

Moreover, among-replicate differentiation was evident in the functional profile dataset (Fig. 330 

7C-D), although the extent of such differentiation varied among medium conditions (Fig. 331 

S13-14).  332 

 333 

Discussion 334 

Based on the experimental design with many replicates in each of the multiple treatments, we 335 

examined how microbial community assembly was driven by deterministic and stochastic 336 

processes. Hereafter, we discuss respective components of those ecological processes in the 337 

framework outlined in Fig. 1.  338 

 In terms of deterministic ecological processes, the importance of selection has been 339 

discussed for decades in microbiology [7, 8, 46–50]. Indeed, in our study, the community 340 

structure differed remarkably depending on the medium conditions (Fig. 3), indicating that 341 

selection [8, 49] operated in the community processes of the experimental microbiomes. For 342 

example, Citrobacter, which has the ability to metabolize citrate, occurred almost exclusively 343 

in the media containing citrate (Fig. 4). Thus, selection can be regarded as a fundamental 344 

mechanism determining community structure.  345 

 In addition to selection, drift was shown to organize the community structure of the 346 

experimental microbiomes. We found that community compositions could diverge into a 347 

small number of reproducible alternative states even under the same environmental (medium) 348 

conditions (Fig. 3-6). This finding indicates that selection and drift could collectively generate 349 

alternative states of community structure in microbiome dynamics (Fig. 1). On a stability 350 
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landscape of community structure, divergence into a small number of reproducible states 351 

never occur without selection (Fig. 1). In addition, stochastic processes like drift 352 

(demographic fluctuations) are necessary for such divergence because without stochasticity, 353 

identical consequences are always expected. Meanwhile, careful interpretation is required 354 

when we discuss the stochastic processes caused by drift. In our experiment, drift might 355 

influence the community assembly not exclusively at the (pre-)colonization stage (i.e., 356 

stochastic sampling effects in the pipetting of inoculum microbiomes) but also at the post-357 

colonization stage (i.e., “random walk” fluctuation of community compositions). The relative 358 

contributions of pre-colonization and post-colonization stochastic events need to be examined 359 

in future studies. In our present experiment, 3.12 × 106 DNA copies of the 16S rRNA gene 360 

were introduced into each replicate community at the pre-colonization stage, while 10 μL out 361 

of 200 μL of culture media was left for successive time points (i.e., 5 % bottleneck in each 362 

transition between time points) at the post-colonization stage. Experiments comparing 363 

multiple source microbiome density and multiple post-colonization bottleneck levels will 364 

provide further crucial knowledge of how drift can drive community dynamics leading to 365 

alternative states.  366 

 In our results, community structural differences evident at the ASV or genus levels (Fig. 367 

3-6) were less conspicuous at the family level (Fig. S6, S9 and S11) partly due to the 368 

dominance of bacteria belonging to Enterobacteriaceae. Such convergence of community 369 

structure at higher taxonomic levels may stem from redundancy in functional compositions of 370 

microbial communities as has been reported in previous studies [9, 51, 52]. However, in some 371 

experimental treatments (e.g., Medium-GLC), substantial divergence of taxonomic 372 

compositions among replicate communities was evident even at the family level (Fig. S6). 373 

Thus, substantial functional differentiation could occur through the emergence of alternative 374 

states of microbiome structure. 375 

  In fact, a reference-genome-based analysis suggested that divergence into alternative 376 

community structure could entail functional differentiation of microbial communities. The 377 

inferred community-level gene repertoires were differentiated into some clusters within each 378 

experimental treatment (Fig. 7C), resulting in bimodal or multi-modal distributions of 379 

pairwise community dissimilarity (Fig. 7D). This observation is of particular interest because 380 

knowledge of the processes driving divergence into functionally different microbiome states 381 

is essential in diverse fields of applied sciences. In medicine, for example, the structure of 382 

human gut microbiomes has been classified into some categories (i.e., enterotypes) differing 383 
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in associations with host human health [20, 21]. Furthermore, recent studies have suggested 384 

that fish-associated and plant-associated microbiomes can be classified into several 385 

community compositional types potentially differing in physiological impacts on host 386 

organisms [14, 53]. To extend the discussion on functional divergence of microbiomes, the 387 

genomic information of the microbes constituting microbiomes need to be enriched with 388 

shotgun metagenomic analyses [54–56]. 389 

 From a detailed inspection of the experimental results, we found that shifts between 390 

alternative states could occur in microbial community dynamics. While difference in 391 

community structure were expanded from Day 2 to Day 10, transitions between alternative 392 

states seemed to occur within the NMDS plots in some experimental treatments (Medium-GL, 393 

GLC, and HGL; Fig. 5). This observation illuminates the ecological theory that transitions 394 

between alternative stable states are possible if demographic fluctuations of microbial 395 

populations within the communities are large enough to cross the “boundaries” splitting 396 

basins of stability landscapes [26, 27]. Alternatively, the observed dynamics may be 397 

interpreted as transient dynamics towards a large basin within a stability landscape [19, 29]. 398 

Although it is notoriously difficult to distinguish alternative transient states from alternative 399 

stable states based on current frameworks of empirical datasets, further feedback between 400 

theoretical and empirical investigations will promote our understanding of large shifts in 401 

community structure [38].  402 

 The fact that patterns in the divergence into alternative states differed among 403 

environmental conditions give significant implications for the “controllability” of 404 

microbiomes. We found that the number and structure of alternative states differed depending 405 

on medium conditions (Fig. 5). This result suggests that the shapes of underlying stability 406 

landscapes, which are formed by selection, can be changed by the addition of specific 407 

chemicals to the microbial ecosystems. Such changes in stability landscape structure have 408 

been intensively discussed in theoretical ecology [27] but explored in a few empirical studies 409 

[57, 58]. Thus, this study indicates that microbiome experiments under a series of 410 

environmental conditions provide ideal opportunities for investigating how microbiome 411 

structure can be managed by changing the structure of background stability landscapes based 412 

on the manipulation of environmental conditions.  413 

 While the experiment using field-collected source microbiomes allowed us to explore 414 

broad state space of possible community structure, experiments based on explicitly defined 415 

sets of microbial species will provide complementary insights. A more mechanism-based 416 
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understanding may become possible by conducting similar experiments on multispecies 417 

systems with known genomes and metabolic pathways. In this respect, experiments on 418 

synthetic communities (SynCom) [59–61] are expected to promote reductionistic 419 

understanding of microbial community processes [62, 63]. With the aid of genome-based 420 

metabolic modeling [64–66], for example, potential consequences of competitive and 421 

facilitative interactions between microbial species may be inferred at the community level 422 

[56]. For further understanding of microbiome assembly, it is also important to apply 423 

empirical frameworks for describing complex time-series processes of ecological 424 

communities [38, 67, 68] in light of shifts between alternative states [38]. Interdisciplinary 425 

studies based on microbiology, genomics, and theoretical ecology will reorganize our 426 

knowledge of the stability and dynamics of microbiomes.  427 

 428 
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accession number, Bioproject PRJDB15353) [to be released after acceptance of the paper]. 431 

The microbial community data and all the R scripts used for the statistical analyses are 432 
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 617 

 618 

Fig. 1 | Conceptual framework of community assembly. A Stability landscape of 619 

community structure. Community assembly is often discussed based on the schema of 620 

“stability landscapes”, which represent the stability/instability of community states (i.e., 621 

species or taxonomic compositions). Alternative states are defined as bottom positions within 622 

basins on the stability landscapes. B Deterministic and stochastic processes in community 623 

assembly. Our experiment was designed to test the contributions of deterministic and 624 

stochastic ecological processes. Specifically, the results of our multi-replicate microbiome 625 

experiments are expected to depend on the presence/absence of selection and drift. Without 626 

drift (demographic fluctuations), all replicate communities will converge to a single 627 

community state (bottom panels). With drift, differentiation of community states can occur 628 

depending on the structure of stability landscapes. In particular, if there are two or more 629 

basins, differentiation into a small number of alternative community states will be observed as 630 

a consequence of both selection and drift (top right).  631 

  632 
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 633 
 634 

Fig. 2 | Experimental design. Laboratory culture system. A source microbiome deriving from 635 

forest soil was pre-cultured with cycloheximide under room temperature for 2 days in order to 636 

remove eukaryotes. The microbiome inoculum was then introduced into eight types of media 637 

(Table S1) with 48 replicates. A fraction of the culture fluid was sampled every 2 days and 638 

equivalent volume of fresh medium was added to the continual culture system throughout the 639 

12-day experiment (8 media × 48 replicates × 6 time points = 2,304 community samples). 640 

  641 
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 642 

 643 

Fig. 3 | Overview of the community structure. A α-diversity of the communities. In each 644 

experimental treatment (medium condition), Shannon’s diversity index for ASV-level 645 

community compositions is shown for each day. The results of Student’s t-test are shown in 646 

Table S2. B Dependence of community structure on medium conditions. In each 647 

PERMANOVA model of ASV-level community compositions, glucose concentration (high or 648 

low; df = 1), the presence/absence of leucine (df = 1), or the presence/absence of citrate (df = 649 

1) was included as the explanatory variable. An additional model including all the medium 650 

conditions and interactions between them (df = 7) was examined as well. The coefficient of 651 
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determination (R2) is shown for each day. C Overview of the community structure. The ASV-652 

level community compositions are shown along the axes of nonmetric multidimensional 653 

scaling (NMDS) (stress = 0.157). 654 
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 657 

Fig. 4 | Variation in community structure among replicate samples. For each replicate 658 

community in each experimental treatment, changes in genus-level community compositions 659 

(relative abundance) are shown. The numbers shown at the top of the bar plots refer to time 660 

points (days). The replicate samples were ordered based on unweighted pair group method 661 

with arithmetic mean (UPGMA) analyses performed on Day 2 for respective experimental 662 

treatments. The order of replicate communities on successive days is the same as that on Day 663 

2.  664 
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Fig. 5 | Time-series changes in community structure. For each replicate community in each 668 

experimental treatment, time-series changes in ASV-level community structure are shown 669 

with arrows on the NMDS surface defined in Figure 3C.  670 
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Fig. 6 | Histograms of community structural differentiation. For each experimental 674 

treatment, difference in ASV-level community structure (Bray-Curtis β-diversity) between 675 

replicate communities is shown as a histogram for each day. The numbers shown at the top of 676 

the histograms refer to the time points (days). The bi-modal or multi-modal distributions 677 

within these histograms suggest the presence of alternative community states.  678 
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 680 
 681 

Fig. 7 | Functional profiles of the microbiomes. A Overview of functional compositions. 682 

Based on a phylogenetic inference of metabolic pathway compositions (a reference-genome 683 
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analysis of constituent bacteria based on PICRUSTs2), community samples are plotted on a 684 

NMDS surface (stress = 0.125). B Dependence of community functional profiles on medium 685 

conditions. In each PERMANOVA model of metabolic pathway compositions, glucose 686 

concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the 687 

presence/absence of citrate (df = 1) was included as the explanatory variable. An additional 688 

model including all the medium conditions and interactions between them (df = 7) was 689 

examined as well. The coefficient of determination (R2) is shown for each day. C Time-series 690 

changes in community functional profiles. The results on two experimental treatments 691 

(Medium GLC and HGC) are shown. See Fig. S13 for full results. D Histograms of 692 

community functional differentiation. The results on two experimental treatments (Medium 693 

GLC and HGC) are shown. See Fig. S14 for full results. 694 
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