

1 Deterministic and stochastic processes generating
2 alternative states of microbiomes

3

4 Ibuki Hayashi^{1†}, Hiroaki Fujita¹ and Hirokazu Toju^{1†}

5

6 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

7

8 [†]**Correspondence:** Ibuki Hayashi (hayashi.ibuki.62z@st.kyoto-u.ac.jp) **or** Hirokazu Toju
9 (toju.hirokazu.4c@kyoto-u.ac.jp).

10

11 This article includes 7 Figures, 16 Supplementary Figures, and 4 Supplementary Tables.

12

13

14 **Abstract**

15 The structure of microbial communities is often classified into discrete or semi-discrete
16 compositions of taxa as represented by “enterotypes” of human gut microbiomes. Elucidating
17 mechanisms that generate such “alternative states” of microbiome compositions has been one
18 of the major challenges in ecology and microbiology. In a time-series analysis of experimental
19 microbiomes, we here show that both deterministic and stochastic ecological processes drive
20 divergence of alternative microbiome states. We introduced species-rich soil-derived
21 microbiomes into eight types of culture media with 48 replicates, monitoring shifts in
22 community compositions at six time points (8 media \times 48 replicates \times 6 time points = 2,304
23 community samples). We then confirmed that microbial community structure diverged into a
24 few discrete states in each of the eight medium conditions as predicted in the presence of both
25 deterministic and stochastic community processes. In other words, microbiome structure was
26 differentiated into a small number of reproducible compositions under the same environment.
27 This fact indicates not only the presence of selective forces leading to specific equilibria of
28 community-scale resource use but also the influence of demographic drift (fluctuations)
29 across basins of such equilibria. A reference-genome analysis further suggested that the
30 observed alternative states differed in ecosystem-level functions. These findings will help us
31 examine how microbiome structure and functions can be controlled by changing the “stability
32 landscapes” of ecological community compositions.

33

34 **Keywords:** biodiversity, community assembly, microbiome dynamics, ecological drift,
35 alternative stable states, multiple stability, transient dynamics, dysbiosis

36

37 INTRODUCTION

38 Understanding the mechanisms by which microbial community structure is organized is a
39 major challenge in ecology and microbiology [1–4]. In a general framework of community
40 dynamics, selection, diversification (speciation), dispersal, and drift have been considered as
41 fundamental components of community processes [5, 6] (Fig. 1). Among the four component
42 processes [5, 6], selection and drift can be regarded, respectively, as purely deterministic and
43 stochastic components [7, 8], while dispersal and diversification are considered to include
44 both deterministic and stochastic components [8]. Elucidating how those deterministic and
45 stochastic processes collectively organize ecological community assembly is the key to
46 predict and manage microbiome dynamics in diverse fields of applications such as human-gut
47 microbiome therapies [9–13] and agroecosystem microbiome control [14–16].

48 In empirical studies of ecological communities, consequences of deterministic and
49 stochastic ecological processes are observable as “alternative states” of community structure
50 [3, 17–19]. Pioneering studies on human-gut microbiomes have shown that microbiome
51 structure can be classified into a small number of categories (i.e., “enterotypes”) despite
52 potential numerous combinations of species or taxonomic compositions [20, 21]. The fact that
53 only a few community states out of innumerable possible states are realized implies the
54 presence of strong deterministic processes organizing community structure [22–24].
55 Meanwhile, the presence of alternative community compositions suggests that stochastic
56 processes play some roles in the community differentiation. In other words, because no
57 variation in community structure is expected under the assumption of strict deterministic
58 processes, both deterministic and stochastic processes are necessary for the existence of
59 categorizable community compositions [18, 22] (Fig. 1). Thus, empirical studies on
60 community structure give essential insights into ecological community assembly. Nonetheless,
61 it is basically difficult to develop detailed discussion on ecological community processes
62 based on existing microbiome datasets because potential influence of environmental
63 conditions on community structural patterns cannot be fully understood in observational
64 studies.

65 In this respect, experimental studies with fully controlled environmental conditions are
66 expected to provide ideal opportunities for examining ecological community processes in
67 light of theories on alternative states [6, 8, 19]. By making a number of experimental
68 microbial communities with defined environmental conditions, we can perform strict tests of
69 the emergence of alternative community states. In other words, the presence of multiple

70 reproducible states in the same experimental treatment is interpreted in the framework of
71 selection, diversification dispersal, and drift. Despite the potential contributions of the
72 experimental approaches to our fundamental knowledge of community assembly, few
73 attempts (but see [25]) have been made to explore alternative states of microbiomes with tens
74 of replications.

75 In this study, we examined the presence of alternative community states by performing
76 microbiome experiments under eight nutritional (medium) conditions with 48 replicates. We
77 constructed experimental microbiomes using a forest-soil-derived community of prokaryotes
78 as a source microbiome and then kept the 384 microbial communities (8 treatments \times 48
79 replicates) under a fully controlled temperature condition. The experimental system was
80 designed to examine the roles of selection and drift in microbial community assembly. With
81 the aid of an automated pipetting system equipped in a clean laboratory environment, we
82 monitored changes in microbiome community compositions every two days for 12 days based
83 on the DNA metabarcoding of 16S rRNA gene sequences. The analysis of more than 2,000
84 community samples then allowed us to understand how deterministic and stochastic processes
85 could generate alternative states of ecological community structure.

86

87 MATERIALS AND METHODS

88 Terminology

89 In analyzing the data obtained in this study, we need to use consistent terminology to
90 minimize the risk of confusion and misunderstanding. It is necessary to confirm the
91 definitions of the ecological processes whose meaning can change depending on contexts.
92 Specifically, we use the terms “selection”, “drift”, “dispersal”, and “diversification
93 (speciation)” in ecological processes as conceptualized by Vellend [5]. Among the terms,
94 selection represents expected changes in local community compositions resulting from
95 differences in mean fitness between species, constituting purely deterministic processes [7].
96 Drift refers to demographic fluctuation that occurs regardless of among-species difference in
97 mean fitness, forming purely stochastic processes [7]. On the other hand, dispersal itself is not
98 a term representing stochasticity or determinism, but it merely describes processes by which
99 organismal individuals or their propagules move between local communities. Diversification
100 is defined as evolutionary differentiation of genetic variants and hence it represents both
101 stochastic (e.g., nucleotide mutation) and deterministic (i.e., natural selection) phenomena [3],

102 8].

103 Another important term we need to make clear before describing our microbiome
104 experiment is “alternative states”. In ecology, the term “alternative stable states” is often used
105 to discuss the processes by which divergence of community compositions are caused [17, 19,
106 26, 27]. Meanwhile, it is generally difficult to know whether the observed community
107 compositions are at stable states (i.e., equilibria) or they are in transient processes towards
108 stable states [28, 29]. Stability of communities has been a central topic in the history of
109 community ecology [30, 31]. In this study, however, we investigate divergence of community
110 compositions irrespective of the concept of community stability. In other words, our
111 community dataset can include information of both transient and stable states.

112

113 **Continuous-culture of microbiomes**

114 In the microbiome experiment, the source microbiome derived from the soil of the A layer (0-
115 10 cm in depth) in the research forest of Center for Ecological Research, Kyoto University,
116 Shiga, Japan (34.972 °N; 135.958 °E). After sampling, the soil was sieved with a 4-mm
117 stainless mesh and then 5 g of the sieved soil was mixed in 100 mL PBS buffer with
118 cycloheximide [137 mM NaCl, 8.1 mM Na₂HPO₄, 2.68 mM KCl, 1.47mM KH₂PO₄, and 200
119 µg/ml cycloheximide]. In this process, we added cycloheximide in order to exclude
120 eukaryotes from the source microbiome. The source prokaryote microbiome was cultured at
121 22 °C for 48 hours.

122 We introduced the inoculum microbiome into eight types of media with different
123 constitutions of carbon sources with 48 replicate communities per medium type (in total, 8
124 media × 48 replicates = 384 experimental communities; Fig. 2). To make the compositions of
125 the media as simple as possible, we used M9 medium with minimal inorganic additives and
126 combinations of three types of the carbon resources, specifically, glucose, leucine, and citrate
127 as detailed in Table S1. Specifically, each of the eight media was designed based on the
128 concentrations or presence/absence of the three carbon sources: i.e., low or high concentration
129 of glucose (G/HG), with or without leucine (-/L), and with or without citrate (-/C). Hereafter,
130 these medium types were designated as Medium-G (low glucose, without leucine, without
131 citrate), GL (low glucose, with leucine, without citrate), GC (low glucose, without leucine,
132 with citrate), GLC (low glucose, with leucine, with citrate), HG (high glucose, without
133 leucine, without citrate), HGL (high glucose, with leucine, without citrate), HGC (high

134 glucose, without leucine, with citrate), and HGLC (high glucose, with leucine, with citrate),
135 respectively (Table S1).

136 In each well of a 240 μ L deep-well plate, 10 μ L of the diluted source microbiome
137 solution and 190 μ L of medium were installed. Based on the quantitative amplicon
138 sequencing detailed below, the source microbiome solution was estimated to contain $3.12 \times$
139 10^6 DNA copies of the 16S rRNA gene ($SD = 8.37 \times 10^5$) (Fig. S1). Note that a previous
140 research estimated that a single cell of *Enterobacteriaceae* bacteria has an average of 7.3
141 DNA copies of 16S rRNA genes ($SD = 0.9$; calculated with rrnDB; [32]), although variation
142 in 16S rRNA gene copy numbers among prokaryote taxa has been known [32]. The deep-well
143 plate was kept shaken at 200 rpm using a plate thermo-shaker BSR-MB100-4A (Bio Medical
144 Sciences Co. Ltd., Tokyo) at 30 °C for two days. After two-days incubation, 190 μ L out of the
145 200- μ L culture medium was sampled from each of the 48 wells after mixing (pipetting) every
146 two days for 12 days. All pipetting manipulations were performed with high precision using
147 an automatic pipetting machine (EDR-384SR, BIOTEC Co. Ltd., Tokyo). In each sampling
148 event, 190 μ L of fresh medium was added to each well so that the total culture volume was
149 kept constant. In total, 2,304 samples (384 communities/day \times 6 time points) were collected.

150 Note that our study was not designed to examine historical contingency (priority
151 effects) because the microbial species were simultaneously introduced into the experimental
152 media. Dispersal between replicate communities were prohibited and diversification leading
153 to speciation events was unlikely to occur in the 12-day experiment. Thus, our aim in this
154 study was to examine how selection and drift could drive microbiome dynamics (Fig. 1).

155

156 **DNA extraction**

157 To extract DNA from each culture sample, 5 μ L of the collected aliquot was mixed with 1 μ L
158 lysozyme solution [50 mg/ml lysozyme (Sigma), 20 mM Tris-HCl (pH 8.0), 2 mM EDTA]
159 and the mixed solution was incubated at 37 °C for 2 hours. After adding proteinase K solution
160 [1/30 (v/v) Proteinase K (Takara), 20 mM Tris-HCl (pH 8.0), 2 mM EDTA], the aliquot was
161 incubated at 55 °C for 3 hours and 95 °C for 10 min, The solution was then vortexed for 10
162 min to increase DNA yield.

163 We extracted DNA from the inoculum aliquot to reveal community structure of the
164 source microbiome. Because the source inoculum was expected to include high

165 concentrations of soil-derived compounds, which can inhibit PCR reactions, a commercial
166 DNA extraction kit optimized for soil samples was used. Specifically, after 50 µL of the
167 inoculum sample were incubated with 350 µL SDS buffer with proteinase K [1/30 (v/v)
168 Proteinase K (Takara), 0.5 % SDS, 2 mM Tris-HCl (pH 8.0), 2 mM EDTA] based on the
169 temperature profile of 55 °C for 180 min and 95 °C for 10 min. The aliquot (400 µL) was then
170 subjected to DNA extraction with DNeasy PowerSoil Kit (Qiagen).

171

172 **PCR and DNA sequencing**

173 For the samples of the experimental microbiomes, prokaryote 16S rRNA V4 region was PCR-
174 amplified with the forward primer 515f fused with 3–6-mer Ns for improved Illumina
175 sequencing quality [33] and the forward Illumina sequencing primer (5' - TCG TCG GCA
176 GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-mer Ns] – [515f] -3') and the reverse
177 primer 806rB fused with 3–6-mer Ns and the reverse sequencing primer (5' - GTC TCG TGG
178 GCT CCG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [806rB] -3') (0.2 µM each).
179 The buffer and polymerase system of KOD One (Toyobo) was used with the temperature
180 profile of 35 cycles at 98 °C for 10 s, 55 °C for 5 s, 68 °C for 1 s. To prevent generation of
181 chimeric sequences, the ramp rate through the thermal cycles was set to 1 °C/sec [34].
182 Illumina sequencing adaptors were then added to respective samples in the supplemental PCR
183 using the forward fusion primers consisting of the P5 Illumina adaptor, 8-mer indexes for
184 sample identification [35] and a partial sequence of the sequencing primer (5' - AAT GAT
185 ACG GCG ACC ACC GAG ATC TAC AC - [8-mer index] - TCG TCG GCA GCG TC -3')
186 and the reverse fusion primers consisting of the P7 adaptor, 8-mer indexes, and a partial
187 sequence of the sequencing primer (5' - CAA GCA GAA GAC GGC ATA CGA GAT - [8-mer
188 index] - GTC TCG TGG GCT CGG -3'). KOD One was used with a temperature profile of 8
189 cycles at 98 °C for 10 s, 55 °C for 5 s, 68 °C for 5 s (ramp rate = 1 °C/s). The PCR amplicons
190 of the samples were then pooled after a purification/equalization process with the AMPureXP
191 Kit (Beckman Coulter). Primer dimers, which were shorter than 200 bp, were removed from
192 the pooled library by supplemental purification with AMPureXP: the ratio of AMPureXP
193 reagent to the pooled library was set to 1 (v/v) in this process. This library was further
194 purified with E-gel SizeSelect 2 (Invitrogen) and then ca. 440-bp DNA fragments was
195 selectively obtained. The sequencing libraries were processed in an Illumina Miseq sequencer
196 [271 forward (R1) and 31 reverse (R4) cycles; 20 % PhiX spike-in].

197 For the source microbiome sample, the prokaryote 16S rRNA V4 region was amplified
198 as well. To estimate concentrations of 16S rRNA genes included in the inoculum, a
199 quantitative amplicon sequencing platform was applied by introducing five “standard DNA”
200 fragments with controlled concentrations to the PCR master mix solution of the first PCR
201 process as detailed elsewhere [36, 37]. The standard DNAs were used for the *in-silico*
202 calibration of 16S rRNA gene concentrations in the target sample after sequencing as detailed
203 in the previous study [36–38].

204

205 **Bioinformatics**

206 In total, 25,284,304 sequencing reads were obtained with the Illumina sequencing. The raw
207 sequencing data obtained in the Illumina sequencing were converted into FASTQ files using
208 the program bcl2fastq 1.8.4 distributed by Illumina. The output FASTQ files were then
209 demultiplexed with the program Claident v0.2. 2018.05.29. The sequencing reads were
210 subsequently processed with the program DADA2 [39] v.1.18.0 of R 3.6.3 to remove low-
211 quality data. The molecular identification of the obtained amplicon sequence variants (ASVs)
212 was performed based on the naive Bayesian classifier method [40] with the SILVA v.132
213 database [41]. Based on the *in-silico* calibration the quantitative amplicon sequencing data [36,
214 37], the number of DNA copies in 10 µL of source microbiome (inoculum) was estimated to
215 be 3.12×10^6 copies as mentioned above (Fig. S1).

216

217 **Community-level diversity**

218 The rarefaction curves representing relationship between the number of sequencing reads and
219 the number of ASVs were drawn using the vegan 2.6.4 package [42] of R. In the sequencing
220 of experimental culture samples, the diversity of microbial ASVs reached plateaus along the
221 axis of the number of sequencing reads (Fig. S2). Given the rarefaction curves, the dataset
222 was rarefied to 5,000 reads per sample with the rrarefy function of the R vegan package. Of
223 the 2,304 samples (8 treatments \times 48 replicates \times 6 time points), 2,250 samples with more
224 than 5,000 reads were used in the following pipeline. After screening for the replicate
225 communities for which sequencing data were available for all the six time points, 2,094
226 samples were subjected to the following statistical analyses. In total, 718 prokaryote ASVs
227 belonging to two kingdoms, 19 phyla, 32 classes, 74 orders, 89 families, and 115 genera were

228 detected.

229 For each sample, two types of α -diversity indices, ASV richness and Shannon-Wiener
230 diversity, were calculated. We then compared α -diversity among each medium using
231 Student's *t*-test corrected by false discovery rate (FDR) by Benjamini-Hochberg method
232 (Table S2).

233

234 **Overview of the community structure**

235 To visualize the diversity of the prokaryote community structure, an analysis of non-metric
236 multidimensional scaling (NMDS) was performed based on the Bray-Curtis-metric of β -
237 diversity. Likewise, to examine the dependence of community structure on medium
238 conditions, a series of permutational multivariate analysis of variance (PERMANOVA) [43]
239 was performed with 50,000 permutations. In each PERMANOVA model, glucose
240 concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the
241 presence/absence of citrate (df = 1) was included as the explanatory variable. An additional
242 model including all the medium conditions and interactions between them (df = 7) was
243 examined as well. Each PERMANOVA model was supplemented by permutational analysis
244 of dispersion (PERMDISP; [44]) for potential effects of the medium condition on dispersion
245 in community structure. The NMDS, PERMANOVA, and PERMDISP were performed for
246 each dataset of the ASV-, genus-, and family-level compositions of prokaryote communities
247 using the vegan 2.6.4 package [42] of R.

248

249 **Community structural differentiation**

250 To examine the differentiation of community compositions among replicate samples, the
251 Bray-Curtis metric of β -diversity was calculated for respective pairs of samples collected on
252 the same day in each of the same treatments (medium conditions). Note that the Bray-Curtis
253 metric of β -diversity could range from 0 (identical community structure) to 1 (no overlap of
254 microbes). A histogram of the community structural difference was shown for each day in
255 each experimental treatment. If a small number of alternative states of community structure
256 exist under a medium condition, there can be some peaks of community structural difference
257 within a histogram. The analysis was performed for each dataset of the ASV-, genus-, and
258 family-level compositions of the prokaryote communities.

259

260 **Potential differentiation in community-level functions**

261 To examine potential differentiation of ecosystem functions among the replicate communities,
262 we inferred the community-level functional profiles based on the phylogenetic estimation of
263 gene repertoires with PICRUSt2 [45]. The gene repertoire data were then subjected to NMDS,
264 PERMANOVA, and PERMDISP based on Bray-Curtis β -diversity. In total, the relative
265 functional compositions of 392 pathways were examined as input data. As examined in the
266 previous section about community structural differentiation, histograms of Bray-Curtis β -
267 diversity were drawn at respective time point within respective treatments based on the
268 inferred gene repertoires.

269

270 **RESULTS**

271 **Overview of the community structure**

272 In each of the experimental treatments (medium conditions), taxonomic richness and
273 Shannon's diversity index at the ASV, genus, and family levels decreased through time (Fig.
274 S3-4). The α -diversity indices varied depending also on medium conditions (Table S2). The
275 addition of leucine or citrate, for example, significantly increased α -diversity of the
276 experimental microbiomes (FDR: $q < 0.01$) (Fig. 3A; see Table S2).

277 At the genus level, the microbiomes were dominated by the four genera, *Klebsiella*,
278 *Raoultella*, *Pseudomonas*, and *Cedecea*, although there were substantial variation in the
279 balance of these taxa among the medium conditions examined (Fig. 4). For example, in the
280 media containing citrate (Medium-GC, GLC, HGC and HGLC), the relative abundance of
281 *Citrobacter* was higher than in other medium conditions. In the media containing leucine
282 (Medium-GL, GLC, HGL and HGLC), *Cedecea* were more abundant than in other medium
283 conditions. Moreover, within each of the medium conditions, *Serratia* became dominant only
284 in some replicate communities (Fig. 4).

285 At the family level, the communities were characterized by *Enterobacteriaceae*,
286 *Pseudomonadaceae*, and *Comamodaceae*, with *Enterobacteriaceae* being particularly
287 dominant (Fig. S6). *Comamodaceae* tended to appear at high proportions in the media with
288 high concentration of glucose. The substantial among-replicate variation in community

289 compositions observed at the ASV- and genus-level analyses was evident as well in the
290 family-level analysis. Specifically, in the media containing leucine (medium-GL, GLC, HGL
291 and HGLC), *Yersiniaceae*, which included *Serratia*, was dominated only in some replicate
292 communities within each experimental treatment.

293 At all time points, differences in community compositions were significantly explained
294 by differences in medium (Figs. 3B, S7-8 and Table S3). The results also indicated that the
295 overall variance explained by medium conditions decreased from Day 4 to 12 (Figs. 3B and
296 S7). Among the components of the medium conditions, concentrations of glucose had the
297 largest contributions to community structure at the family level (Fig. S7). Meanwhile, the
298 presence/absence of leucine had the highest impacts on the ASV- and genus-level community
299 structure (Fig. S7). The community structure within the NMDS plot distributed depending on
300 both time points and medium conditions (Fig. 3C). The PERMDISP indicated that the
301 concentration of glucose and the presence/absence of citrate greatly influenced dispersion of
302 family-level community structure among samples (Fig. S8 and Table S4). In contrast, the
303 presence/absence of leucine was the major determinant of community structural dispersion at
304 the genus- and ASV-level (Fig. S8).

305

306 **Community structural differentiation**

307 In some medium conditions (experimental treatments), large community structural difference
308 among replicate samples were observed. For example, in the Medium-GLC treatment,
309 substantial difference in community compositions were observed among replicate samples at
310 the ASV, genus, and family levels, and these differences seemingly increased until Day 10
311 (Figs. 5, S9 and S10). The community compositions seemed to be classified into some
312 categories within the NMDS plot (Figs. 5, S9 and S10) due to the dominance of *Serratia* in
313 some, but not all, replicate samples (Fig. 4). In fact, the histogram of community structural
314 difference between samples (i.e., Bray-Curtis β -diversity between pairs of replicate samples)
315 showed bimodal or multi-modal distributions from Day 2 to Day 10, although eventually
316 displayed a uniform distribution on Day 12 (Figs. 6, S11 and S12). Such bimodal or
317 multimodal distributions of β -diversity were observed in all the eight medium conditions (Fig.
318 6), although among-replicate differentiation in community structure on the NMDS surface
319 was conspicuous in some treatments (Medium-G, GL, GLC, HGL, HGC, and HGLC) but not
320 in others (Medium-GC and HG) (Fig. 5).

321 Within the deep-well plate used in the experiment, substantially different community
322 compositions were observed between adjacent replicate wells in each experimental treatment
323 (Fig. S15, 16). This fact suggests that potential fine-scale heterogeneity of temperature or
324 humidity within the small culture plate does not fully explain the observed among-replicate
325 divergence of community structure.

326

327 **Potential differentiation in community-level functions**

328 As observed in the above analyses on the community compositions, functional profiles of the
329 community samples significantly differed depending on the medium conditions (Fig. 7A-B).
330 Moreover, among-replicate differentiation was evident in the functional profile dataset (Fig.
331 7C-D), although the extent of such differentiation varied among medium conditions (Fig.
332 S13-14).

333

334 **Discussion**

335 Based on the experimental design with many replicates in each of the multiple treatments, we
336 examined how microbial community assembly was driven by deterministic and stochastic
337 processes. Hereafter, we discuss respective components of those ecological processes in the
338 framework outlined in Fig. 1.

339 In terms of deterministic ecological processes, the importance of selection has been
340 discussed for decades in microbiology [7, 8, 46–50]. Indeed, in our study, the community
341 structure differed remarkably depending on the medium conditions (Fig. 3), indicating that
342 selection [8, 49] operated in the community processes of the experimental microbiomes. For
343 example, *Citrobacter*, which has the ability to metabolize citrate, occurred almost exclusively
344 in the media containing citrate (Fig. 4). Thus, selection can be regarded as a fundamental
345 mechanism determining community structure.

346 In addition to selection, drift was shown to organize the community structure of the
347 experimental microbiomes. We found that community compositions could diverge into a
348 small number of reproducible alternative states even under the same environmental (medium)
349 conditions (Fig. 3-6). This finding indicates that selection and drift could collectively generate
350 alternative states of community structure in microbiome dynamics (Fig. 1). On a stability

351 landscape of community structure, divergence into a small number of reproducible states
352 never occur without selection (Fig. 1). In addition, stochastic processes like drift
353 (demographic fluctuations) are necessary for such divergence because without stochasticity,
354 identical consequences are always expected. Meanwhile, careful interpretation is required
355 when we discuss the stochastic processes caused by drift. In our experiment, drift might
356 influence the community assembly not exclusively at the (pre-)colonization stage (i.e.,
357 stochastic sampling effects in the pipetting of inoculum microbiomes) but also at the post-
358 colonization stage (i.e., “random walk” fluctuation of community compositions). The relative
359 contributions of pre-colonization and post-colonization stochastic events need to be examined
360 in future studies. In our present experiment, 3.12×10^6 DNA copies of the 16S rRNA gene
361 were introduced into each replicate community at the pre-colonization stage, while 10 μL out
362 of 200 μL of culture media was left for successive time points (i.e., 5 % bottleneck in each
363 transition between time points) at the post-colonization stage. Experiments comparing
364 multiple source microbiome density and multiple post-colonization bottleneck levels will
365 provide further crucial knowledge of how drift can drive community dynamics leading to
366 alternative states.

367 In our results, community structural differences evident at the ASV or genus levels (Fig.
368 3-6) were less conspicuous at the family level (Fig. S6, S9 and S11) partly due to the
369 dominance of bacteria belonging to Enterobacteriaceae. Such convergence of community
370 structure at higher taxonomic levels may stem from redundancy in functional compositions of
371 microbial communities as has been reported in previous studies [9, 51, 52]. However, in some
372 experimental treatments (e.g., Medium-GLC), substantial divergence of taxonomic
373 compositions among replicate communities was evident even at the family level (Fig. S6).
374 Thus, substantial functional differentiation could occur through the emergence of alternative
375 states of microbiome structure.

376 In fact, a reference-genome-based analysis suggested that divergence into alternative
377 community structure could entail functional differentiation of microbial communities. The
378 inferred community-level gene repertoires were differentiated into some clusters within each
379 experimental treatment (Fig. 7C), resulting in bimodal or multi-modal distributions of
380 pairwise community dissimilarity (Fig. 7D). This observation is of particular interest because
381 knowledge of the processes driving divergence into functionally different microbiome states
382 is essential in diverse fields of applied sciences. In medicine, for example, the structure of
383 human gut microbiomes has been classified into some categories (i.e., enterotypes) differing

384 in associations with host human health [20, 21]. Furthermore, recent studies have suggested
385 that fish-associated and plant-associated microbiomes can be classified into several
386 community compositional types potentially differing in physiological impacts on host
387 organisms [14, 53]. To extend the discussion on functional divergence of microbiomes, the
388 genomic information of the microbes constituting microbiomes need to be enriched with
389 shotgun metagenomic analyses [54–56].

390 From a detailed inspection of the experimental results, we found that shifts between
391 alternative states could occur in microbial community dynamics. While difference in
392 community structure were expanded from Day 2 to Day 10, transitions between alternative
393 states seemed to occur within the NMDS plots in some experimental treatments (Medium-GL,
394 GLC, and HGL; Fig. 5). This observation illuminates the ecological theory that transitions
395 between alternative stable states are possible if demographic fluctuations of microbial
396 populations within the communities are large enough to cross the “boundaries” splitting
397 basins of stability landscapes [26, 27]. Alternatively, the observed dynamics may be
398 interpreted as transient dynamics towards a large basin within a stability landscape [19, 29].
399 Although it is notoriously difficult to distinguish alternative transient states from alternative
400 stable states based on current frameworks of empirical datasets, further feedback between
401 theoretical and empirical investigations will promote our understanding of large shifts in
402 community structure [38].

403 The fact that patterns in the divergence into alternative states differed among
404 environmental conditions give significant implications for the “controllability” of
405 microbiomes. We found that the number and structure of alternative states differed depending
406 on medium conditions (Fig. 5). This result suggests that the shapes of underlying stability
407 landscapes, which are formed by selection, can be changed by the addition of specific
408 chemicals to the microbial ecosystems. Such changes in stability landscape structure have
409 been intensively discussed in theoretical ecology [27] but explored in a few empirical studies
410 [57, 58]. Thus, this study indicates that microbiome experiments under a series of
411 environmental conditions provide ideal opportunities for investigating how microbiome
412 structure can be managed by changing the structure of background stability landscapes based
413 on the manipulation of environmental conditions.

414 While the experiment using field-collected source microbiomes allowed us to explore
415 broad state space of possible community structure, experiments based on explicitly defined
416 sets of microbial species will provide complementary insights. A more mechanism-based

417 understanding may become possible by conducting similar experiments on multispecies
418 systems with known genomes and metabolic pathways. In this respect, experiments on
419 synthetic communities (SynCom) [59–61] are expected to promote reductionistic
420 understanding of microbial community processes [62, 63]. With the aid of genome-based
421 metabolic modeling [64–66], for example, potential consequences of competitive and
422 facilitative interactions between microbial species may be inferred at the community level
423 [56]. For further understanding of microbiome assembly, it is also important to apply
424 empirical frameworks for describing complex time-series processes of ecological
425 communities [38, 67, 68] in light of shifts between alternative states [38]. Interdisciplinary
426 studies based on microbiology, genomics, and theoretical ecology will reorganize our
427 knowledge of the stability and dynamics of microbiomes.

428

429 **DATA AVAILABILITY**

430 The 16S rRNA gene sequence data are available from the DNA Data Bank of Japan (DDBJ);
431 accession number, Bioproject PRJDB15353) [to be released after acceptance of the paper].
432 The microbial community data and all the R scripts used for the statistical analyses are
433 available at the GitHub repository (<https://github.com/Ibuki-Hayashi/deterministic-and-stochastic-processes-generating-alternative-states>) [to be released after acceptance of the
434 paper].

436

437 **REFERENCES**

- 438 1. Diamond JM. Assembly of species communities. In: Cody ML, Diamond JM (eds).
439 *Ecology and evolution of communities*. 1975. Harvard University Press, pp 342–444.
- 440 2. Peter Chesson. Mechanisms of Maintenance of Species Diversity. *Annu Rev Ecol Syst*
441 2000; **31**: 343–366.
- 442 3. Nemerugut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al.
443 Patterns and Processes of Microbial Community Assembly. *Microbiol Mol Biol Rev*
444 2013; **77**: 342–356.
- 445 4. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks,
446 competition, and stability. *Science (80-)* 2015; **350**: 663–666.

447 5. Vellend M. Conceptual Synthesis in Community Ecology. *Q Rev Biol* 2010; **85**: 183–
448 206.

449 6. Vellend M. The Theory of Ecological Communities. *PRINCETON UNIVERSITY*
450 *PRESS*. 2017. Princeton University Press.

451 7. Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et
452 al. Assessing the relative importance of neutral stochasticity in ecological communities.
453 *Oikos* 2014; **123**: 1420–1430.

454 8. Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial
455 Ecology? *Microbiol Mol Biol Rev* 2017; **81**.

456 9. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al.
457 Diet rapidly and reproducibly alters the human gut microbiome. *Nature* 2013; **505**:
458 559–563.

459 10. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. *Curr*
460 *Opin Gastroenterol* 2015; **31**: 69.

461 11. Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, et al.
462 Recovery of gut microbiota of healthy adults following antibiotic exposure. *Nat*
463 *Microbiol* 2018; **3**: 1255–1265.

464 12. Chng KR, Ghosh TS, Tan YH, Nandi T, Lee IR, Ng AHQ, et al. Metagenome-wide
465 association analysis identifies microbial determinants of post-antibiotic ecological
466 recovery in the gut. *Nat Ecol Evol* 2020; **4**: 1256–1267.

467 13. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. *Nat Rev*
468 *Microbiol* 2020; **19**: 55–71.

469 14. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core
470 microbiomes for sustainable agroecosystems. *Nat Plants* 2018; **4**: 247–257.

471 15. Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome:
472 Ecology, functions, and emerging trends in microbial application. *J Adv Res* 2019; **19**:
473 29–37.

474 16. Ke J, Wang B, Yoshikuni Y. Microbiome Engineering: Synthetic Biology of Plant-
475 Associated Microbiomes in Sustainable Agriculture. *Trends Biotechnol* 2021; **39**: 244–

476 261.

477 17. Law R, Morton RD. Alternative Permanent States of Ecological Communities. *Ecology*
478 1993; **74**: 1347–1361.

479 18. Chase JM, Myers JA. Disentangling the importance of ecological niches from
480 stochastic processes across scales. *Philos Trans R Soc B Biol Sci* 2011; **366**: 2351–
481 2363.

482 19. Fukami T. Historical Contingency in Community Assembly: Integrating Niches,
483 Species Pools, and Priority Effects. *Annu Rev Ecol Evol Syst* 2015; **46**: 1–23.

484 20. Arumugam M, Raes J, Pelletier E, Paslier D Le, Yamada T, Mende DR, et al.
485 Enterotypes of the human gut microbiome. *Nature* 2011; **473**: 174–180.

486 21. Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, et al.
487 Enterotypes in the landscape of gut microbial community composition. *Nat Microbiol*
488 2017; **3**: 8–16.

489 22. Adler PB, HilleRisLambers J, Levine JM. A niche for neutrality. *Ecol Lett* 2007; **10**:
490 95–104.

491 23. Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules
492 in microbial microcosms. *Nat Ecol Evol* 2017; **1**: 1–7.

493 24. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al.
494 Emergent simplicity in microbial community assembly. *Science (80-)* 2018; **361**: 469–
495 474.

496 25. Estrela S, Vila JCC, Lu N, Bajić D, Rebolleda-Gómez M, Chang CY, et al. Functional
497 attractors in microbial community assembly. *Cell Syst* 2022; **13**: 42.e7.

498 26. Beisner BE, Haydon DT, Cuddington K. Alternative stable states in ecology. *Front
499 Ecol Environ* . 2003. Ecological Society of America. , **1**: 376–382

500 27. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in
501 ecosystems. *Nature* . 2001. Nature Publishing Group. , **413**: 591–596

502 28. Fukami T, Nakajima M. Community assembly: alternative stable states or alternative
503 transient states? *Ecol Lett* 2011; **14**: 973–984.

504 29. Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai YC, et al. Transient
505 phenomena in ecology. *Science* (80-) 2018; **361**.

506 30. McCann KS. The diversity–stability debate. *Nature* 2000; **405**: 228–233.

507 31. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and
508 resilience of the human gut microbiota. *Nature* 2012; **489**: 220–230.

509 32. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: the Ribosomal RNA
510 Operon Copy Number Database. *Nucleic Acids Res* 2001; **29**: 181–184.

511 33. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations
512 for high-throughput amplicon sequencing. *Nat Methods* 2013; **10**: 999–1002.

513 34. Stevens JL, Jackson RL, Olson JB. Slowing PCR ramp speed reduces chimaera
514 formation from environmental samples. *J Microbiol Methods* 2013; **93**: 203–205.

515 35. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-correcting barcoded
516 primers for pyrosequencing hundreds of samples in multiplex. *Nat Methods* 2008; **5**:
517 235–237.

518 36. Ushio M, Murakami H, Masuda R, Sado T, Miya M, Sakurai S, et al. Quantitative
519 monitoring of multispecies fish environmental DNA using high-throughput sequencing.
520 *Metabarcoding and Metagenomics* 2018; **2**.

521 37. Ushio M. Interaction capacity as a potential driver of community diversity. *Proc R Soc
522 B* 2022; **289**.

523 38. Fujita H, Ushio M, Suzuki K, Abe MS, Yamamichi M, Iwayama K, et al. Alternative
524 stable states, nonlinear behavior, and predictability of microbiome dynamics.
525 *Microbiome* 2023; **11**: 1–16.

526 39. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
527 High-resolution sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**:
528 581–583.

529 40. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
530 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ
531 Microbiol* 2007; **73**: 5261–5267.

532 41. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
533 ribosomal RNA gene database project: improved data processing and web-based tools.
534 *Nucleic Acids Res* 2013; **41**: D590–D596.

535 42. Oksanen J, F. Guillaume B, Michael F, Roeland K, Pierre L, Dan M, et al. vegan:
536 Community Ecology Package. <https://cran.r-project.org/package=vegan>. .

537 43. Anderson MJ. A new method for non-parametric multivariate analysis of variance.
538 *Austral Ecol* 2001; **26**: 32–46.

539 44. Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of
540 beta diversity. *Ecol Lett* 2006; **9**: 683–693.

541 45. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al.
542 PICRUSt2 for prediction of metagenome functions. *Nat Biotechnol* 2020; **38**: 685–688.

543 46. Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of
544 immigration and chance in shaping prokaryote community structure. *Environ
545 Microbiol* 2006; **8**: 732–740.

546 47. Zhou J, Liu W, Deng Y, Jiang YH, Xue K, He Z, et al. Stochastic assembly leads to
547 alternative communities with distinct functions in a bioreactor microbial community.
548 *MBio* 2013; **4**.

549 48. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemain K, et al.
550 Contribution of neutral processes to the assembly of gut microbial communities in the
551 zebrafish over host development. *ISME J* 2015; **10**: 655–664.

552 49. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. Community assembly,
553 coexistence and the environmental filtering metaphor. *Funct Ecol* 2015; **29**: 592–599.

554 50. Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing
555 ecological stochasticity. *Proc Natl Acad Sci U S A* 2019; **116**: 16892–16898.

556 51. Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High
557 taxonomic variability despite stable functional structure across microbial communities.
558 *Nat Ecol Evol* 2016; **1**: 1–12.

559 52. Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global
560 ocean microbiome. *Science (80-)* 2016; **353**: 1272–1277.

561 53. Yajima D, Fujita H, Hayashi I, Shima G, Suzuki K, Toju H. Core species and
562 interactions prominent in fish-associated microbiome dynamics. *Microbiome* 2023; **11**:
563 1–15.

564 54. Alneberg J, Bennke C, Beier S, Bunse C, Quince C, Ininbergs K, et al. Ecosystem-wide
565 metagenomic binning enables prediction of ecological niches from genomes. *Commun
566 Biol* 2020; **3**: 1–10.

567 55. Fahimipour AK, Gross T. Mapping the bacterial metabolic niche space. *Nat Commun*
568 2020; **11**: 1–8.

569 56. Fujita H, Ushio M, Suzuki K, Abe MS, Yamamichi M, Okazaki Y, et al. Facilitative
570 interaction networks in experimental microbial community dynamics. *Front Microbiol*
571 2023; **(in press)**.

572 57. Klausmeier CA. Regular and irregular patterns in semiarid vegetation. *Science* (80-)
573 1999; **284**: 1826–1828.

574 58. Rietkerk M, Dekker SC, De Ruiter PC, Van De Koppel J. Self-organized patchiness
575 and catastrophic shifts in ecosystems. *Science* (80-) 2004; **305**: 1926–1929.

576 59. De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Synthetic
577 microbial ecosystems: an exciting tool to understand and apply microbial communities.
578 *Environ Microbiol* 2014; **16**: 1472–1481.

579 60. Vrancken G, Gregory AC, Huys GRB, Faust K, Raes J. Synthetic ecology of the
580 human gut microbiota. *Nat Rev Microbiol* 2019; **17**: 754–763.

581 61. Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA.
582 Synthetic microbiota reveal priority effects and keystone strains in the *Arabidopsis*
583 phyllosphere. *Nat Ecol Evol* 2019; **3**: 1445–1454.

584 62. Lloréns-Rico V, Simcock JA, Huys GRB, Raes J. Single-cell approaches in human
585 microbiome research. *Cell* 2022; **185**: 2725–2738.

586 63. Liu YX, Qin Y, Bai Y. Reductionist synthetic community approaches in root
587 microbiome research. *Curr Opin Microbiol* 2019; **49**: 97–102.

588 64. Marsland R, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. Available energy
589 fluxes drive a transition in the diversity, stability, and functional structure of microbial

590 communities. *PLOS Comput Biol* 2019; **15**.

591 65. Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization
592 of microbial communities between competitive and cooperative metabolism. *Nat Ecol
593 Evol* 2021; **5**: 195–203.

594 66. Dukovski I, Bajić D, Chacón JM, Quintin M, Vila JCC, Sulheim S, et al. A metabolic
595 modeling platform for the computation of microbial ecosystems in time and space
596 (COMETS). *Nat Protoc* 2021; **16**: 5030–5082.

597 67. Hsieh CH, Glaser SM, Lucas AJ, Sugihara G. Distinguishing random environmental
598 fluctuations from ecological catastrophes for the North Pacific Ocean. *Nature* 2005;
599 **435**: 336–340.

600 68. Ushio M, Hsieh C, Masuda R, Deyle ER, Ye H, Chang C, et al. Fluctuating interaction
601 network and time-varying stability of a natural fish community. *Nature* 2018; **554**:
602 360–364.

603

604 **ACKNOWLEDGEMENTS**

605 This work was financially supported by NEDO Moonshot Research and Development
606 Program (JPNP18016) and JST FOREST (JPMJFR2048) to HT.

607

608 **AUTHOR CONTRIBUTIONS**

609 IH and HT designed the work. IH performed the experiments. IH and HF analyzed the data.
610 IH and HT wrote the paper with HF.

611

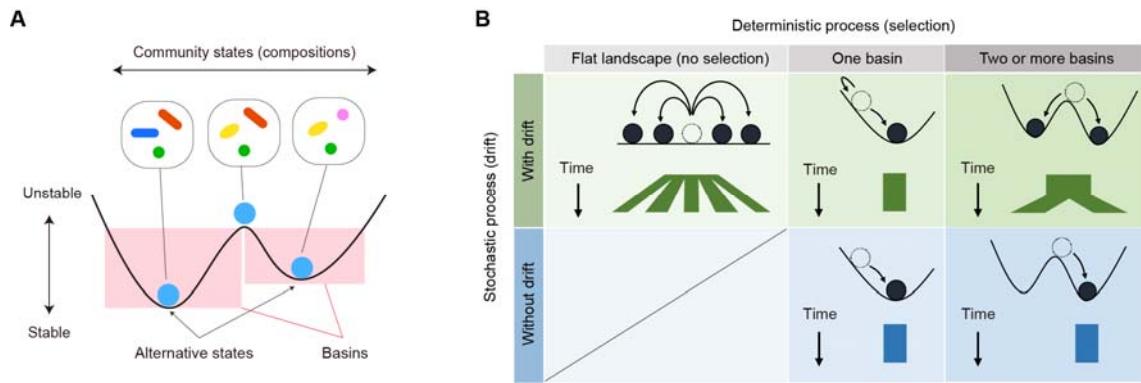
612 **COMPETING INTERESTS**

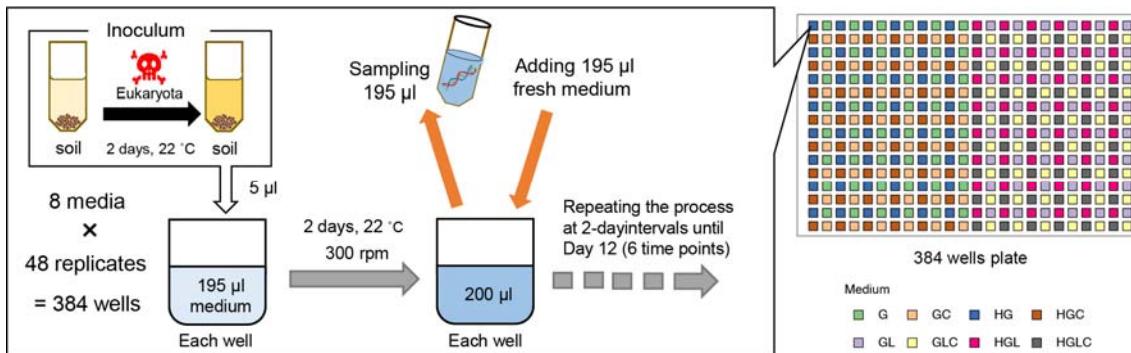
613 The authors declare no competing interests.

614

615

616



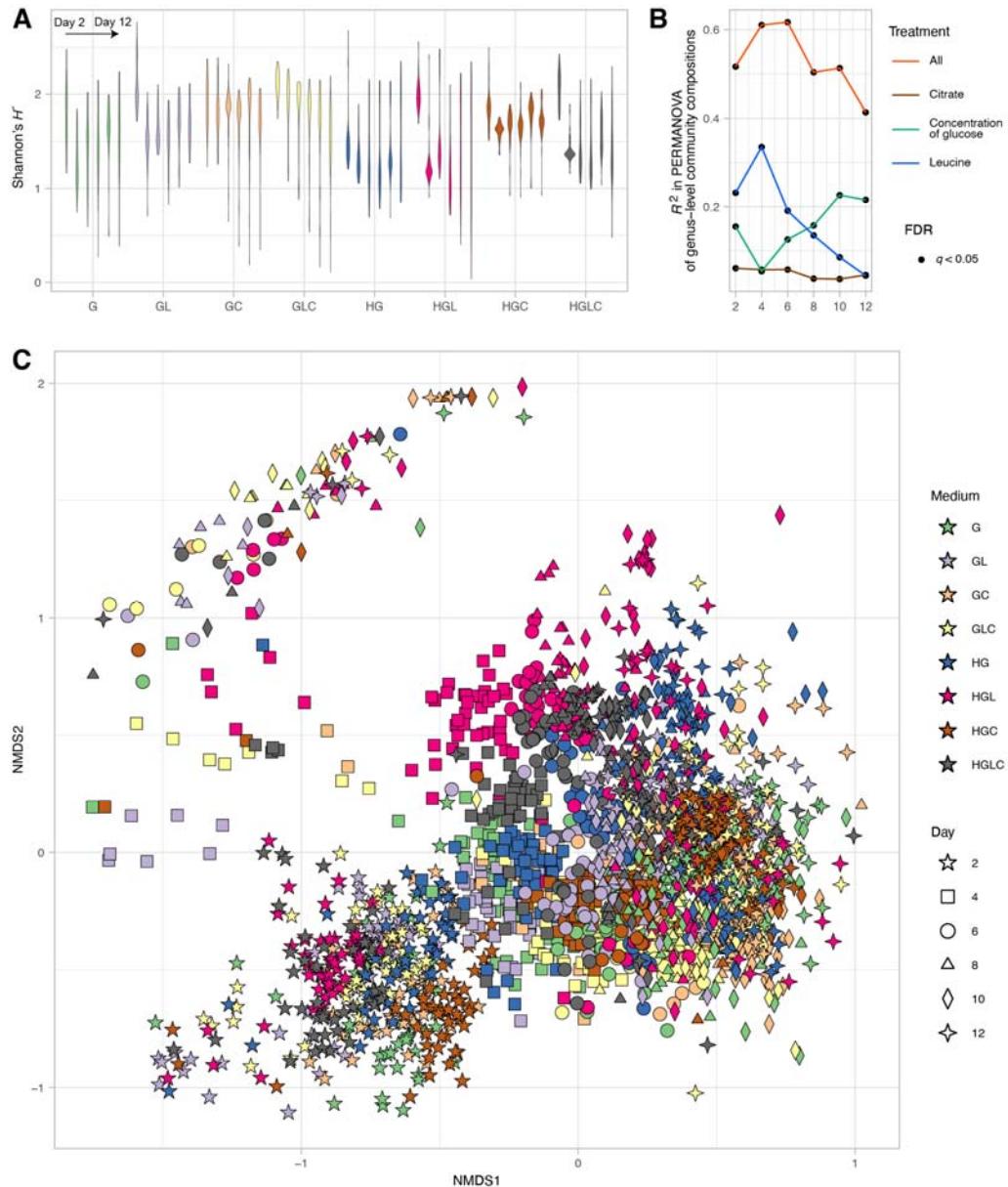


633

634

635 **Fig. 2 | Experimental design.** Laboratory culture system. A source microbiome deriving from
636 forest soil was pre-cultured with cycloheximide under room temperature for 2 days in order to
637 remove eukaryotes. The microbiome inoculum was then introduced into eight types of media
638 (Table S1) with 48 replicates. A fraction of the culture fluid was sampled every 2 days and
639 equivalent volume of fresh medium was added to the continual culture system throughout the
640 12-day experiment (8 media \times 48 replicates \times 6 time points = 2,304 community samples).

641



642

643

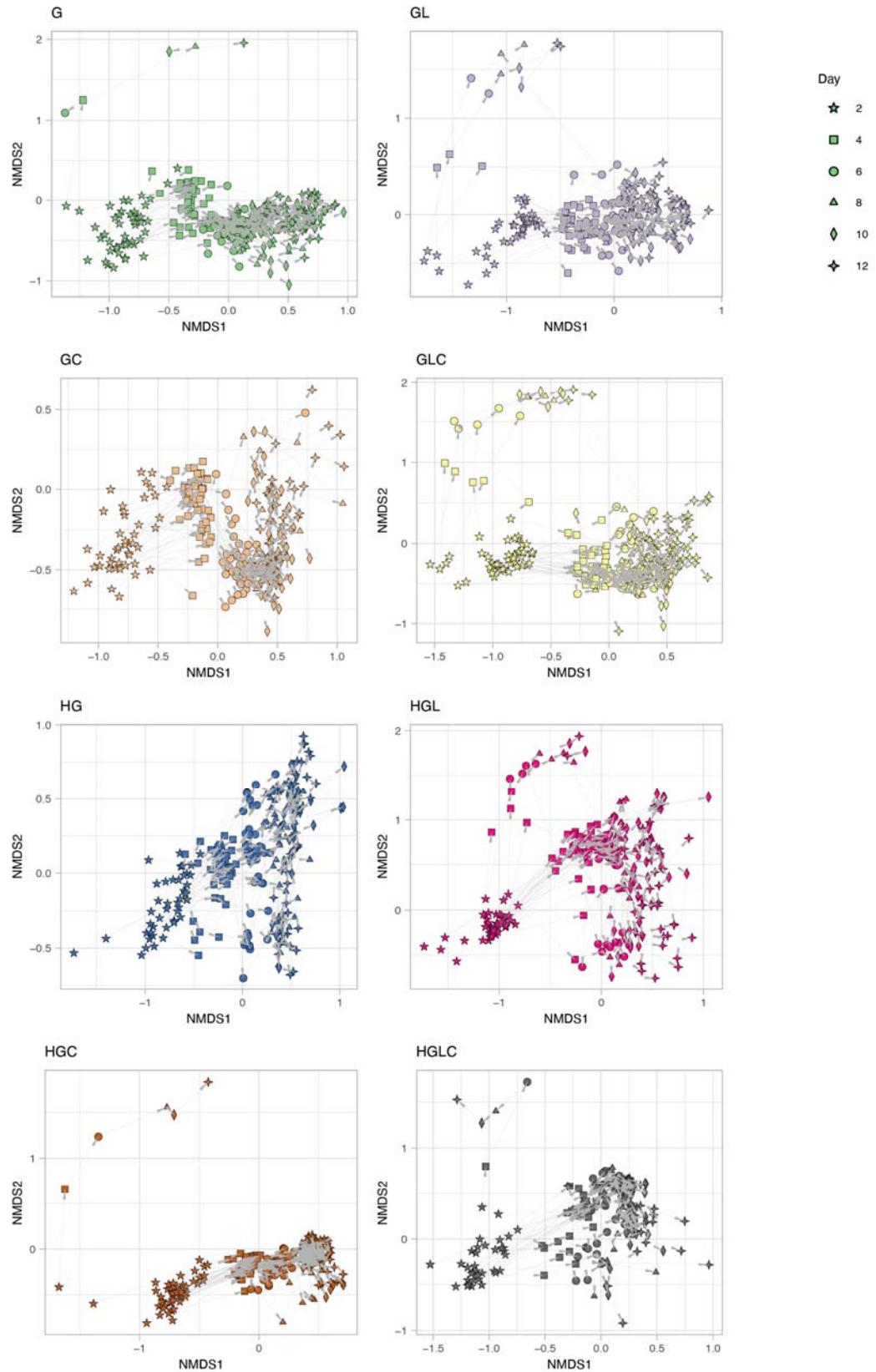
644 **Fig. 3 | Overview of the community structure.** **A** α -diversity of the communities. In each
645 experimental treatment (medium condition), Shannon's diversity index for ASV-level
646 community compositions is shown for each day. The results of Student's t -test are shown in
647 Table S2. **B** Dependence of community structure on medium conditions. In each
648 PERMANOVA model of ASV-level community compositions, glucose concentration (high or
649 low; $df = 1$), the presence/absence of leucine ($df = 1$), or the presence/absence of citrate ($df =$
650 1) was included as the explanatory variable. An additional model including all the medium
651 conditions and interactions between them ($df = 7$) was examined as well. The coefficient of

652 determination (R^2) is shown for each day. **C** Overview of the community structure. The ASV-
653 level community compositions are shown along the axes of nonmetric multidimensional
654 scaling (NMDS) (stress = 0.157).
655

657

658 **Fig. 4 | Variation in community structure among replicate samples.** For each replicate
659 community in each experimental treatment, changes in genus-level community compositions
660 (relative abundance) are shown. The numbers shown at the top of the bar plots refer to time
661 points (days). The replicate samples were ordered based on unweighted pair group method
662 with arithmetic mean (UPGMA) analyses performed on Day 2 for respective experimental
663 treatments. The order of replicate communities on successive days is the same as that on Day
664 2.

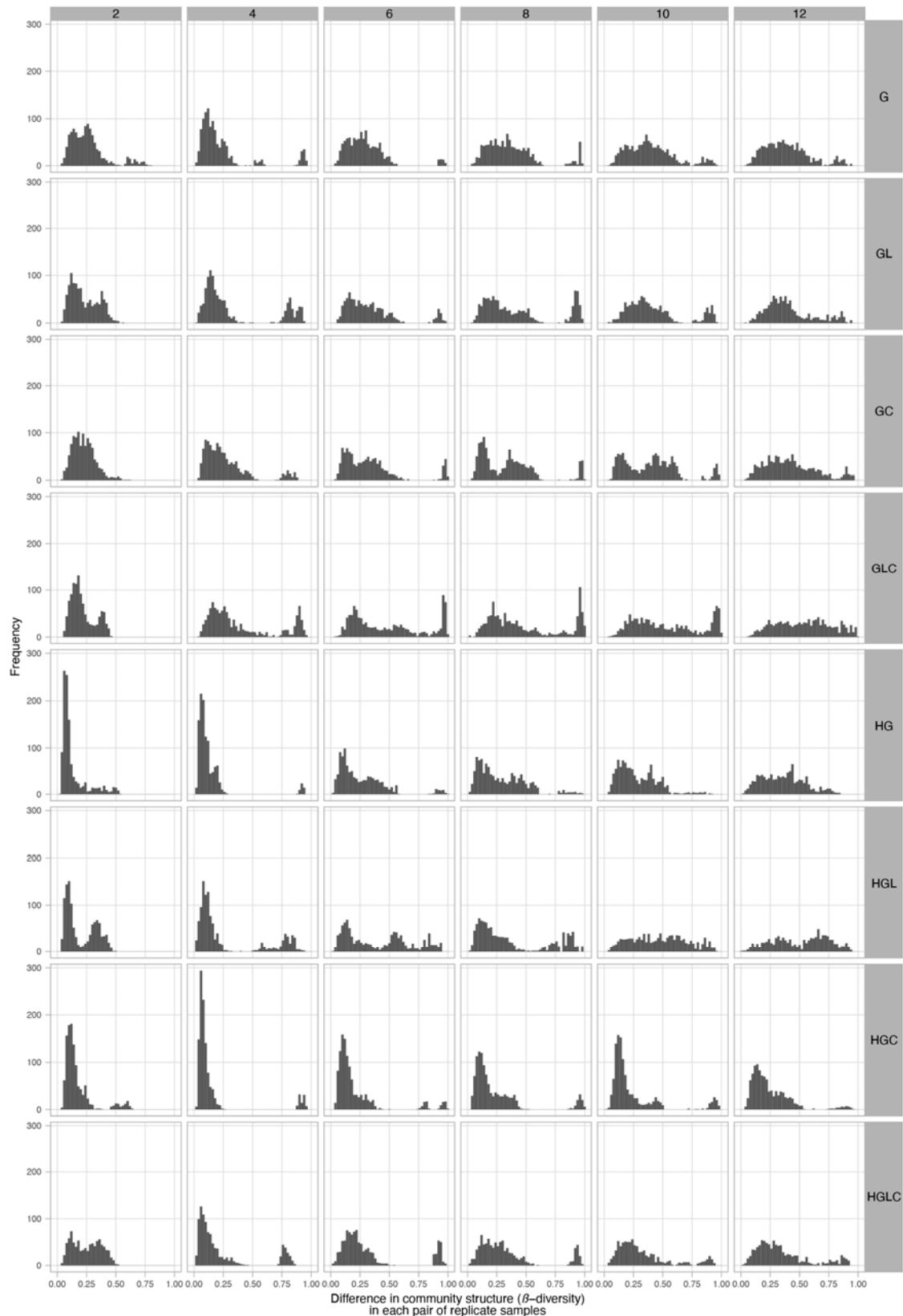
665



666

667

668 **Fig. 5 | Time-series changes in community structure.** For each replicate community in each
669 experimental treatment, time-series changes in ASV-level community structure are shown
670 with arrows on the NMDS surface defined in Figure 3C.
671

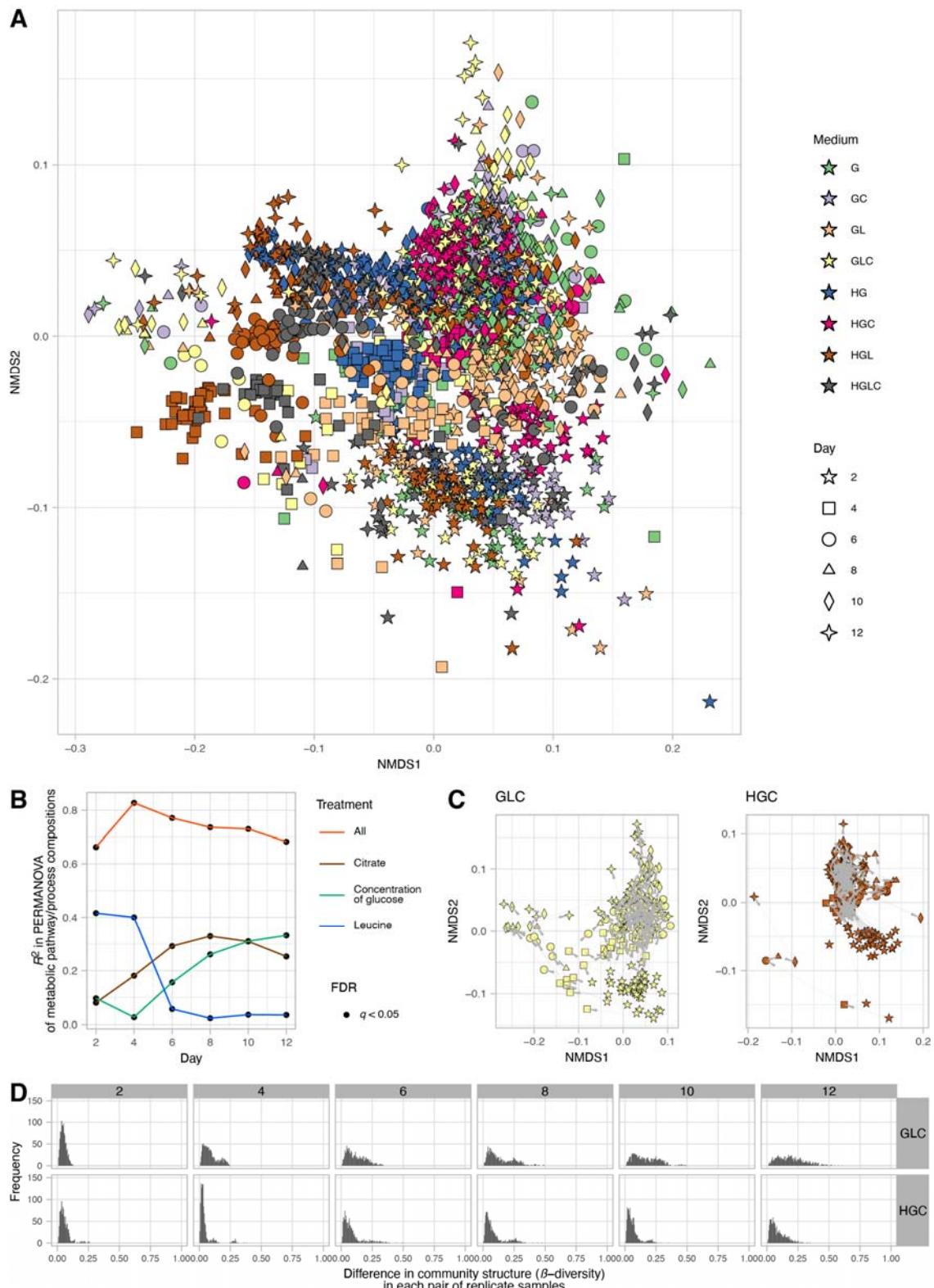


672

673

674 **Fig. 6 | Histograms of community structural differentiation.** For each experimental
675 treatment, difference in ASV-level community structure (Bray-Curtis β -diversity) between
676 replicate communities is shown as a histogram for each day. The numbers shown at the top of
677 the histograms refer to the time points (days). The bi-modal or multi-modal distributions
678 within these histograms suggest the presence of alternative community states.

679



680

681

682 **Fig. 7 | Functional profiles of the microbiomes. A** Overview of functional compositions.

683 Based on a phylogenetic inference of metabolic pathway compositions (a reference-genome

684 analysis of constituent bacteria based on PICRUSTs2), community samples are plotted on a
685 NMDS surface (stress = 0.125). **B** Dependence of community functional profiles on medium
686 conditions. In each PERMANOVA model of metabolic pathway compositions, glucose
687 concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the
688 presence/absence of citrate (df = 1) was included as the explanatory variable. An additional
689 model including all the medium conditions and interactions between them (df = 7) was
690 examined as well. The coefficient of determination (R^2) is shown for each day. **C** Time-series
691 changes in community functional profiles. The results on two experimental treatments
692 (Medium GLC and HGC) are shown. See Fig. S13 for full results. **D** Histograms of
693 community functional differentiation. The results on two experimental treatments (Medium
694 GLC and HGC) are shown. See Fig. S14 for full results.

695