

The genomic architecture of a continuous color polymorphism in the European barn owl (*Tyto alba*)

Tristan Cumér^{1*Δ}, Ana Paula Machado^{1Δ}, Luis M. San-Jose^{2Δ}, Anne-Lyse Ducrest¹, Céline Simon¹, Alexandre Roulin^{1†}, Jérôme Goudet^{1,3*†}

* Corresponding authors

Δ co-first authors – sorted alphabetically

† co-senior authors

Contact details for corresponding author: Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland. Email:

Building, University of Lausanne, CH-1015 Lausanne, Switzerland. Email: mlabey@unil.ch

tristan.cumer@unil.ch; Jerome.goudet@unil.ch

1 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

2 Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III

Paul Sabatier, Toulouse, France

3 Swiss Institute of Bioinformatics, Lausanne, Switzerland

Orcid

Tristan Cumér - 0000-0002-0276-7462

Ana Paula Machado - 0000-0003-2115-7237

Luis M. San-Jose - 0000-0003-1351-4679

Anne-lyse Ducrest - 0000-0001-6412-276

Alexandre Roulin - 0000-0003-1940-6927

Jérôme Goudet - 0000-0002-5318-7601

28 **Abstract**

29

30 The maintenance of color polymorphism in populations has fascinated evolutionary
31 biologists for decades. Studies of color variation in wild populations often focus on discrete
32 color traits exhibiting simple inheritance patterns, while studies on continuously varying
33 traits remain rare. Here, we studied the continuous white to rufous color polymorphism in
34 the European barn owl (*Tyto alba*). Using a Genome Wide Association approach on whole-
35 genome data of 75 barn owls sampled across Europe, we identified, in addition to a
36 previously known *MC1R* mutation, two regions involved in this color polymorphism. We
37 show that the combination of the three explains 80.37% (95% credible interval 58.45 to
38 100%) of the color variation. Among the two newly identified regions, the one on the sexual
39 chromosome (Z) shows a large signal of differentiation in the Swiss population when
40 contrasting individuals with different morph but the same *MC1R* genotype. We suggest it
41 may play a role in the sexual dimorphism observed locally in the species. These results,
42 uncovering two new genomic regions, provide keys to better understand the molecular
43 bases of the color polymorphism as well as the mechanisms responsible for its maintenance
44 in the European barn owl at both continental and local scales.

45

46

47 **Key words**

48

49 QTL mapping; Color polymorphism; Selection; Melanin

50 **Introduction**

51
52 Color polymorphism, and the mechanisms that allow its maintenance in populations, have
53 fascinated evolutionary biologist for decades. Pioneer studies in wild populations, such as
54 Kettlewell's studies [1] on the action of natural selection on the black and pale morphs of
55 the peppered moth, *Biston betularia*, or Endler's studies [2] on the joint role of sexual and
56 natural selection on explaining color variation in guppies, *Poecilia reticulata*, have shaped
57 our understanding of the evolution and maintenance of color polymorphism. For practical
58 reasons, research on animal coloration has continued and flourished mainly on humans [3–
59 5] and model systems (i.e. mice [6,7], or domestic animals [8,9]), and has been more
60 recently extended to non-model species, with a handful of studies on birds [10,11],
61 mammals [12,13], butterflies [14] and amphibians [15]. Moreover, many of these studies
62 took advantage of color traits exhibiting relatively simple discrete variation and inheritance
63 patterns thus often contrasting clearly distinctive (eco)morphs [11–15]. It is however known
64 that many color traits vary continuously between two extreme values (for instance, human
65 skin color [16]), and that the expression of these traits can be determined by genetic factors
66 (for example, color in the arctic Fox [13]), by the environment (for instance the flamingo
67 color acquired through their food [17]) or by the interaction of genetic and environmental
68 factors (such as human skin color, determined by genetics [3–5] and exposition to UVs [16]).
69 Thus, our current understanding of the genetics basis of animal coloration is limited to a
70 handful of well-studied systems, and rarely accounts for the continuous character of the
71 color variation. Further work is therefore needed to better characterize the molecular basis
72 of the color diversity observed in many species.

73

74 Barn owls (Tytonidae) represent an ideal system to study continuous color variation
75 between individuals and populations. These cosmopolitan birds represent an extraordinary
76 example of phenotypic variation, with plumage color clines across continents found in at
77 least seven *Tyto* clades [18]. Among them, the color cline in Europe is the most pronounced,
78 with individuals ranging from white in the south to dark rufous in the north of its
79 distribution [19]. Previous studies have shown that this melanin-based coloration is
80 associated with reproductive success and feeding rate [20], habitat choice [21], diet [22]
81 wing morphology and stomach content while flying [23,24], as well as dispersal ability
82 [25,26]. The association between the color and a wide variety of traits may be induced by
83 the strong pleiotropy of the melanocortin system controlling numerous traits [27], among
84 which the production of eu/pheo-melanin pigments responsible for the coloration of the
85 barn owl [28,29]. The rufous color variation of the barn owl is known to be strongly
86 heritable (h^2 of the ventral body side color of owls ranging from 0.57 to 0.84; [30]). A
87 diallelic mutation (*V126I*) in the melanocortin-1 receptor gene (*MC1R*) explains a large
88 proportion of the phenotypic variance in reddish coloration [31], with individuals
89 homozygous for the *MC1R* allele with a valine at position 126 (allele denoted *MC1R-white*,
90 genotype *MC1Rvv* below) being whitish to light rufous, and individuals with at least one

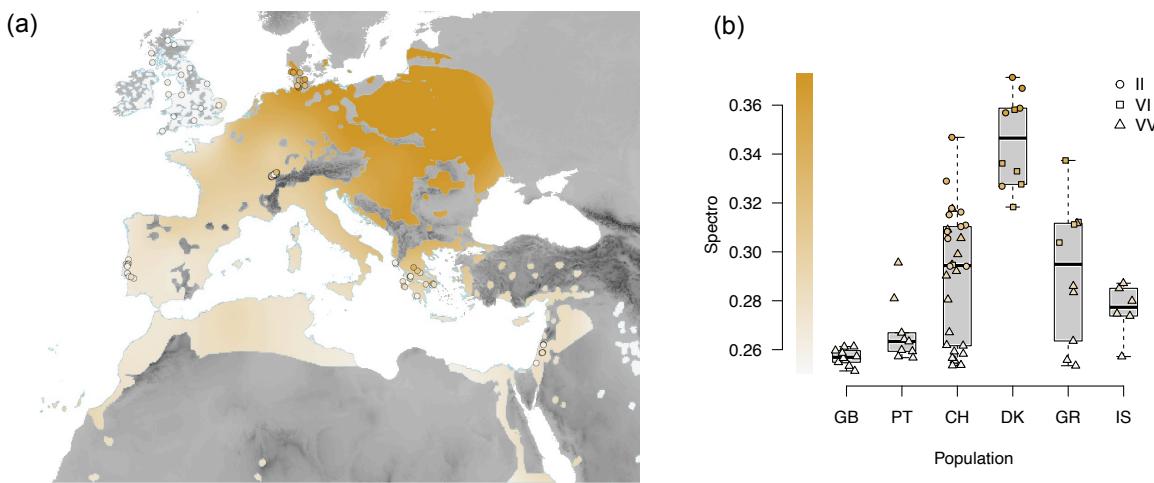
91 isoleucine being rufous (allele denoted *MC1R-rufous*, genotypes *MC1R_V* and *MC1R_H* below).
92 Interestingly, a recent study reconstructing the demographic and colonization history of the
93 barn owl in Europe showed that the color cline is not specific to a lineage [32], de-coupling
94 the color and the neutral history of the populations.
95
96 Considering the association between the amount of rufous coloration and several biotic and
97 abiotic factors, combined with its unknown evolutionary origin, the question of the
98 mechanisms underlying the maintenance of this polymorphism remains elusive. So far,
99 three non-mutually exclusive mechanisms have been proposed. First, color itself may be a
100 primary target of local adaptation at continental scale, favoring the rufous form in the north
101 and whitish form in the south. We [19,33,34] previously hypothesized that the clinal
102 variation in coloration may be maintained by natural selection, since phenotypic
103 differentiation between populations across the European cline is much more pronounced
104 than neutral genetic differentiation. A role of foraging has been suggested in this context
105 [22], possibly because a whitish plumage reflects moonlight which induces fear in their prey
106 [35]. This local adaptation hypothesis is further supported by the higher frequency of the
107 isoleucine *MC1R* variant in northern population while it is nearly absent in southern
108 populations [19]. Second, at local scale, density-dependent selection on the different
109 morphs may maintain the polymorphism in the populations. Kvalnes et al. [31] pointed that
110 rufous females were selected for at low densities, while whitish ones were favored at high
111 densities. Thus, the fluctuation of population density could cause the selection for rufous or
112 whitish form, allowing for the maintenance of the polymorphism. Finally, a sexually
113 antagonist selection may also be acting in the populations: a recent study pointed that dark
114 melanic females (i.e., harboring a rufous plumage with many black spots located at the tip
115 of ventral body feathers) were sexually mature earlier than lighter melanic females while
116 lighter melanic males (i.e., harboring a whitish plumage with few black spots located at the
117 tip of ventral body feathers) were sexually mature earlier than darker melanic males [36].
118 Combined with the fact that individuals that matured faster produced a larger number of
119 fledglings per year than individuals that matured slower [36], these results suggested that a
120 light melanic plumage is beneficial in males and a dark melanic plumage in females and
121 indicate that sexually antagonist selection may be at play in maintaining this polymorphism.
122 Finally, a potential epistatic effect of the *MC1R-rufous*, masking the expression of other
123 variants responsible of the variation of color between individuals carrying the *MC1R-white*
124 allele, may also play a role in maintaining the polymorphism by hiding some variants from
125 selection [37].
126 Thus, conclusive evidence for the selective targets and agents establishing the European
127 barn owl color polymorphism and cline is still amiss. Identifying the gene(s) underlying barn
128 owl plumage coloration and their effects is a first step to unravel the molecular basis of this
129 polymorphism.
130

131 In the present study, we investigated the genomic basis of color polymorphism in the
132 European barn owl. By exploiting whole genome data of 75 barn owl individuals (*T. alba*)
133 from 6 different populations / localities from Europe and the Middle East, combined with
134 spectrophotometric data on their coloration; we (i) identified major Quantitative Trait Loci
135 (QTL), (ii) studied the levels of variation explained by these QTL variants, (iii) discuss the
136 potential functional role of these loci in the melanic pathway and in building up associations
137 between the coloration and other phenotypic traits through pleiotropy and (iv) discuss how
138 our findings could be used to better understand the mechanisms responsible of the
139 maintenance of the color polymorphism in the European barn owl.

140 **Results & Discussion**

141

142 *Genomic and phenotypic landscape of the European barn owl (*Tyto alba*)*


143

144 We sampled European barn owls from the western Palearctic, whose coloration varies from
145 white in the south (in the Iberian Peninsula (Portugal - PT), Great Britain (GB) and Levant
146 (Israel - IS)) to dark rufous in the north (especially in Denmark (DK)), with populations in-
147 between (Switzerland (CH) and Greece (GR)) displaying a high color diversity (figure 1a). We
148 conducted whole genome sequencing of 75 individuals from these populations, yielding to a
149 total of 5,112,936 SNPs after filtering. Neutral PCA supported genetic differentiation of the
150 populations (see also [32]), with the first axis separating the Levant lineage (IS) from the rest
151 of the populations, and the second axis isolating the Iberian individuals (PT) samples from
152 the rest of the European populations (Figure S2).

153 *MC1R* genotype of these samples was consistent with the color of the individuals, with
154 solely the Valine allele (V) in population with a white phenotype, and the Isoleucine allele (I)
155 present in all populations with rufous individuals, and an increased frequency in the
156 northern population, with only *MC1R_{VI}* or *MC1R_{VV}* individuals in DK (figure 1b). These results
157 are also in line with the known repartition of this allele at the European scale [19].

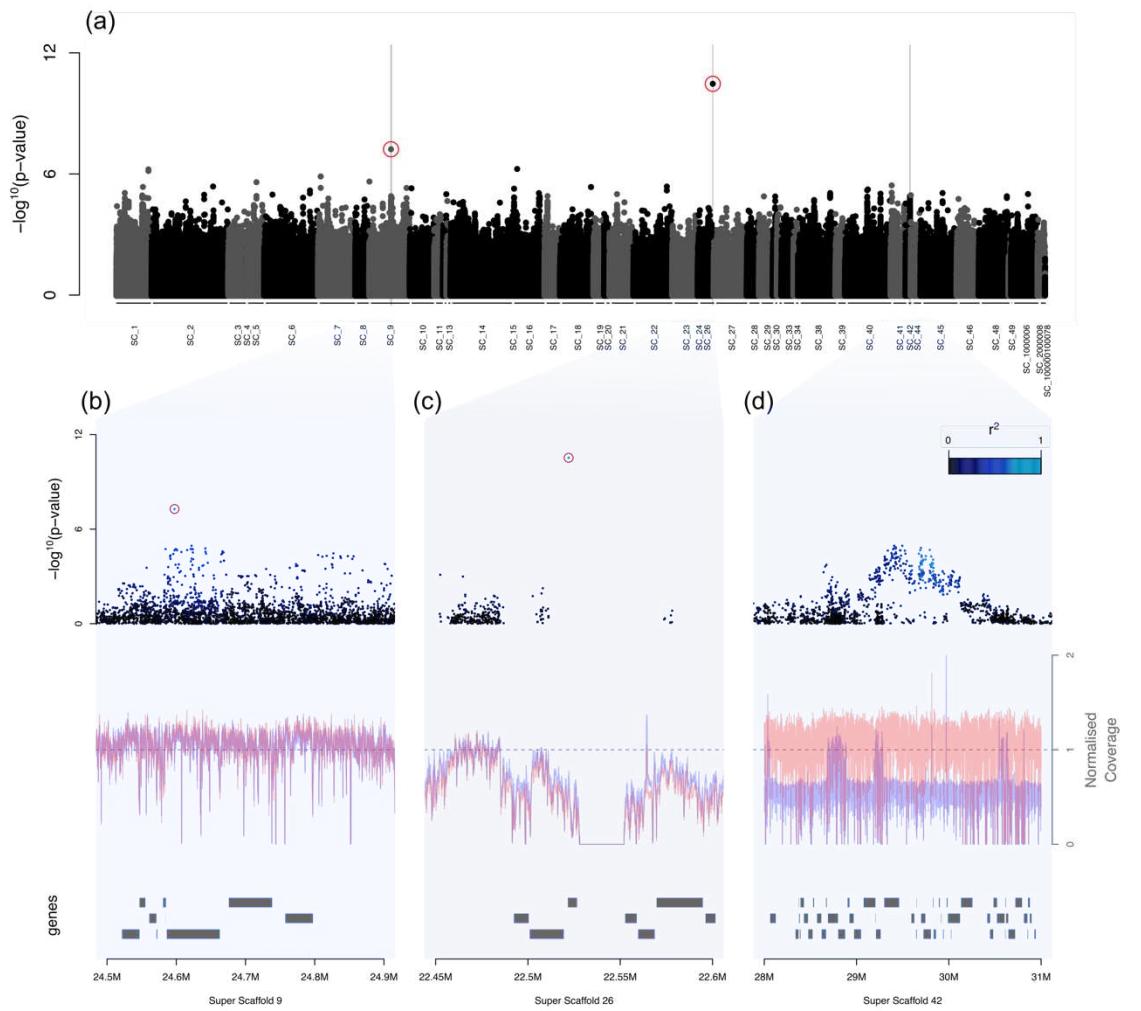
158

159

160

161

162 **Figure 1 – Distribution of the colour phenotype of the barn owl in the western Palearctic. (a)**
163 the color gradient (interpolated using the Kriging algorithm) displaying gradient of color
164 from white to rufous barn owl in the Western Palearctic. Each dot on the map correspond to
165 one individual, coloured accordingly to its own color. (b) Boxplot presenting the variation of
166 the color of the individuals in the different populations sampled. Each dot correspond to
167 one individual, with the shape matching the *MC1R* genotype and coloured accordingly to its
168 own color.


169

170 *Genome Wide Association identifies a new autosomal region associated with the*
171 *rufous color*

172
173 We used a Genome Wide Association (GWA) approach to identify SNPs associated with the
174 coloration of barn owls (Figure 2). Overall, the inflation factor was low (1.05) and most of
175 the points aligned along the 1:1 line in the qq-plot (Figure S4), meaning that the inclusion of
176 the relatedness matrix in the model allowed us to control for population stratification. This
177 GWA identified two outlying SNPs at the genome-wide significance level.

178 The highest one was located at the *MC1R* locus (hereafter *MC1R variant*, G->A, location:
179 Super-Scaffold 26, pos 22,522,039), with an association score of 5.703e-11 (fig 2a and 2c,
180 value below the Bonferroni's significance threshold: 0.05 * 5112936 tests = 9.779117e-09).
181 This variant was the one at the *MC1R* gene that we previously discovered using a candidate
182 gene approach [29]. The signal in the region was however surprising. Indeed, if the variant
183 itself showed a high association with the color, the signal was not expanded by linkage
184 disequilibrium to the surrounding variants, all showing a relatively low association with the
185 coloration. This might be due to the low R^2 with the SNP of interest (Figure 2c) as well as the
186 lower coverage in the region (see coverage fluctuation in panel 2c) probably influenced by
187 the high GC content of the regions [29], making the region poorly sequenced, which may
188 also explain the low number and sparse repartition of the SNPs in the region.

189 The second highly associated variant was present at the *MATN2* gene (hereafter, *MATN2*
190 *variant*, A->G, location: Super-Scaffold 9, pos 24,597,481). It had an association score of
191 8.813e-08 (fig 2a and 2b) above the Bonferroni's significance threshold (9.779117e-09) and
192 it could be potentially a type 2 error. However, this SNPs clearly deviated from the 1:1 line
193 of the qq-plot (Figure S4). Moreover, the randomization tests supported that our GWA was
194 not prone to type 2 error signals, with the absence of association as strong as the one
195 observed with the *MATN2* variant in any bootstrap (Figure S5, see *Contribution of multiple*
196 *loci to the color polymorphism* section for details). The strongest signal in the region came
197 from an intronic region of the *MATN2* gene, but also a cluster of SNPs in linkage
198 disequilibrium, showing a tendency to be associated with the color of the barn owl. We also
199 observed a (non-significant) signal of differentiation of multiple SNPs near the *MTDH* gene,
200 located 160kbp downstream the *MATN2* variant.

201
202

203 **Figure 2** – Genome Wide Association study between the genotypes of the Barn Owl and
204 their colour. (a) $-\log_{10}(p\text{-value})$ from the primary test of association with color for each
205 SNPs along the genome. Alternation of colors depict the successive Super-Scaffolds (SC_). The
206 two red circles surround significant SNPs presenting a deviation from the 1:1 line of the qq-
207 plot (Sup Fig XXX). Grey bars highlight regions of interest presented in panels (b), (c) and (d).
208 (b, c, d) Zooms on different region of the genome displaying a strong signal of association
209 with the color. Dots represent the association test for each SNP in the region of interest.
210 Color of the dots depict their association with the focal SNP within each region (respectively
211 the *MATN2* variant, the *MC1R* variant and the *Z* variant). Red circles surround the two
212 outlier SNPs in the GWAS. Red and blue line represent the mean normalized coverage for
213 males and females respectively, while the dashed line represent the expected normalized
214 coverage. Rectangles bellow represent the genes annotated in the different regions.

215 *Stratified design in the Swiss population pinpoints a region on the Z chromosome*

216

217 Previous studies suggested a major role of *MC1R* in the color determinism, and particularly
218 that the allele inducing a whiter plumage coloration (Valine allele - *MC1R-white*) permits the
219 expression of further genetic variation for coloration contrarily to the alternative allele
220 (Isoleucine allele - *MC1R-rufous*), which may epistatically mask the effect of other genetic
221 variation [37]. Because such an expected epistatic effect can hinder QTL discovery, we
222 narrowed down our analysis to consider only the 30 Swiss individuals. This population was
223 chosen as it is one of the populations with the highest variation in coloration (Figure 1b) and
224 there is no apparent genetic structure at the whole genome scale that can be associated
225 with coloration or the *MC1R* variant [32]. Indeed, a neutral PCA shows no differentiation
226 according to coloration nor *MC1R* genotype within the Swiss population (Figure S3). Whole
227 genome F_{IS} for the Swiss population is 0.005, and whole genome F_{ST} between *MC1R_{VV}* and
228 *MC1R_{II}* in Switzerland is 0.0002, which is consistent with an absence of substructure.
229 Because of the smaller sample size, we based this GWA on F_{ST} scans rather than a mixed
230 model approach as conducted above for the complete set of samples. We first scanned for
231 highly differentiated genomic regions between the whiter ($BC < .28 - n = 10$) and more
232 Rufous ($BC > .28 - n = 18$) phenotypes without considering the *MC1R* genotype. This first
233 scan showed no strong signal of differentiation along the genome (Figure S6).

234 We then focused on the 20 Swiss barn owls carrying only the *MC1R-white* allele (i.e *MC1R_{VV}*
235 individuals), as this variant should permit other genetic variants to have measurable effects
236 on plumage coloration [37]. We scanned for highly differentiated genomic regions between
237 the whiter ($BC < .28 - n = 10$) and more rufous ($BC > .28 - n = 8$) *MC1R_{VV}* owls, which revealed
238 one highly differentiated region ($F_{ST} > 0.8$) harbored on the sex chromosome (Figures S7a and
239 S7b). The association of sex-linked variants to plumage coloration is expected given previous
240 quantitative genetic studies allocating substantial color variation to sex chromosomes in this
241 population [30].

242 For downstream analyses, we selected the top variant from this region as representative for
243 the genotype at this locus (hereafter called *Z variant*, G->A, location: Super-Scaffold 42, pos
244 29,829,678). In the GWA, this SNP is non-significant but a cluster of SNPs in linkage
245 disequilibrium in this region, shows a tendency to be associated with the color (Fig 1d)). This
246 region includes multiple genes (Table S2), and among them *CHRBp* (LOC104362934), located
247 68,665 bp downstream from the *Z variant*.

248

249 *Contribution of multiple loci to the color polymorphism*

250

251 In order to estimate the contribution of each of the three *loci* identified above (*MATN2*
252 *variant*, the *MC1R variant* and the *Z variant*) to barn owl coloration, we fitted an animal
253 model allowing to also estimate the fraction of additive genetic variance that remains
254 unexplained (Figure 3b). The *MC1R locus* had the largest effect on coloration (proportion of
255 variance explained: 0.69, 95% credible interval, CrI: 0.42 -0. 0.93), in line with previous

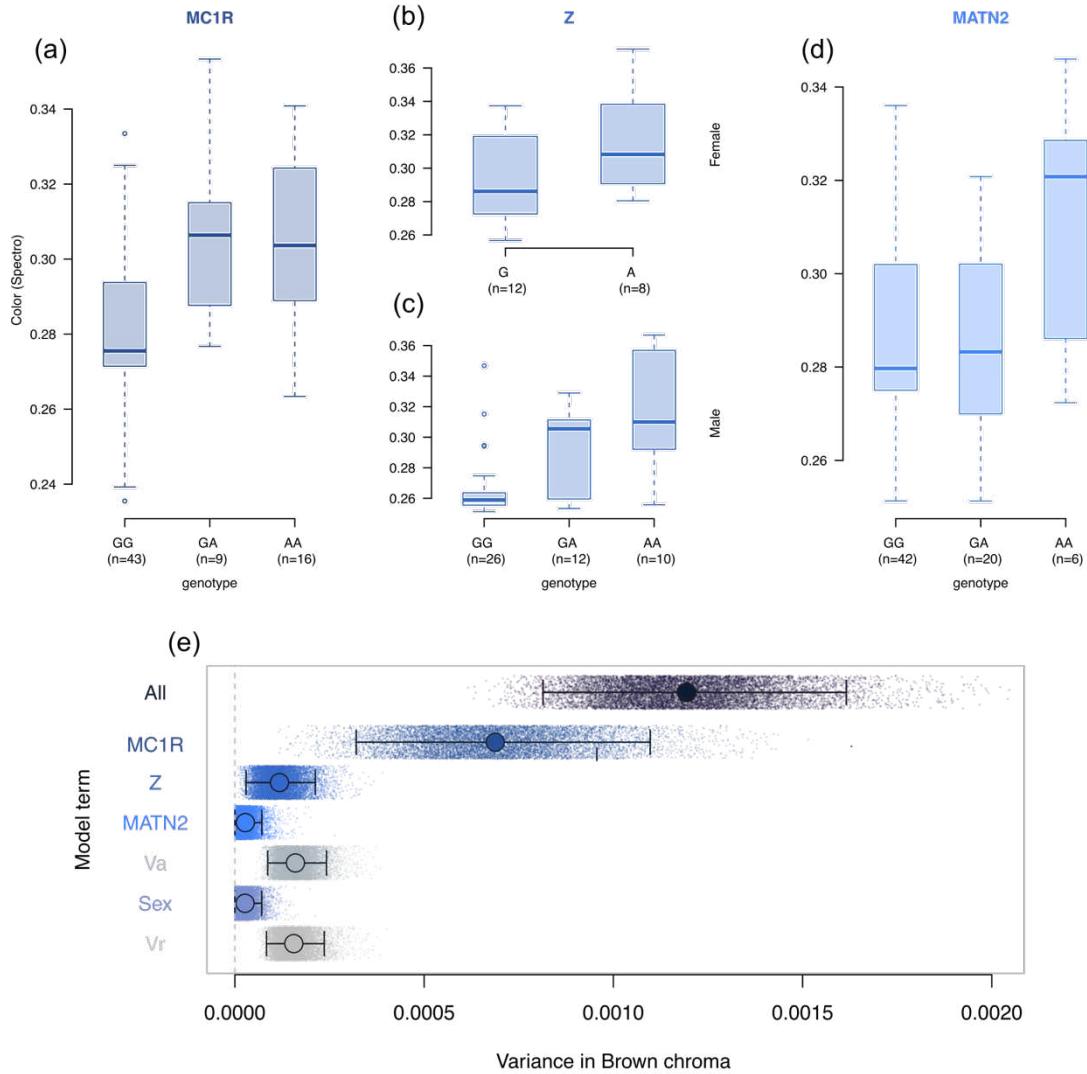
256 studies focused on a large sampling of Swiss individuals [29,31]. The Z locus had a smaller,
257 yet non-negligible effect on coloration (0.09, 95% CrI: 0.03-0.17), while the *MATN2* locus
258 had a small effect with the lower 95% CrI close to zero (0.02, 95% CrI: <0.01-0.06).

259 Moreover, DIC values did not support that including the effect of the *MATN2* locus has a
260 substantial impact on explaining color variation ($\Delta\text{DIC} = 0.69$), contrary to the other *loci*
261 ($\Delta\text{DIC}_{MC1R} = 54.66$, $\Delta\text{DIC}_{Z\text{ locus}} = 22.03$). We thus remain cautious about the role of the
262 *MATN2* locus in barn owl coloration, despite the clear signal in the GWA. Further
263 investigation including more individuals should allow us to verify the association of the
264 *MATN2* locus and barn owl coloration.

265 We also detected that a non-negligible amount of color variation (0.12, 95% CrI: 0.07-0.19)
266 can still be attributed to genetic variants yet to be discovered. These variants are likely to
267 have a smaller effect on coloration than the variants highlighted in this study. Despite the
268 remaining work to clarify more deeply the genetic architecture sustaining coloration in the
269 barn owl, our study find supports for a rather oligogenic structure with few variants of
270 major effect (particularly the *MC1R* locus).

271

272 *Dominance, additive effect, linkage and epistasis*


273

274 The relation between the genotypes at these three loci and the phenotype (Fig 3a-d)
275 informs us about the dominance interactions between alleles within these loci. For both
276 *MC1R* and *MATN2*, heterozygotes seem to have similar trait value to one of the
277 homozygotes, thus suggesting dominance of one of the alleles over the other. The direction
278 of the dominance is however in opposite direction, with a dominance of the rufous allele at
279 the *MC1R* locus and a dominance of the whitish allele at the *MATN2* locus. On the other
280 hand, the Z locus seems to harbor an additive effect between the two alleles in male diploid
281 individuals at this locus, with heterozygous individuals displaying an intermediate
282 phenotype relatively to the two other homozygotes.

283 The association between different markers and a trait may be due to physical linkage
284 between them along a chromosome [38]. The three loci we identified are located on
285 independent scaffolds of the assembly of the barn owl (Super-Scaffold 9, 26 and 42 for the
286 *MATN2*, *MC1R* and the Z variant respectively). The location of these regions in other birds'
287 genomes assembled at chromosome level, shows that they are also located in distinct
288 chromosomes (Table S3). These results, consistent with the known conserved synteny of
289 bird genomes [39], support an independence of these three markers. The correlation
290 between *MC1R* and *MATN2* may thus be due to selection in the northern environment for
291 the darker rufous phenotype described by Burri et al. [19]. Considering the contribution of
292 the different alleles of the tree markers to the trait (see *Contribution of multiple loci to the*
293 *color polymorphism* section for details), as well as their different dominance and additive
294 effects within locus, the combined genotype of the individuals at these loci might be
295 sufficient to give a broad panel of color if the effect of the different loci is additive, without
296 taking into account interactions between loci (such as epistasis). The existence of such

297 effects, already hypothesized in the literature [37] could even amplify the number of
298 possible phenotypes. However, the sampling size of this study limits our ability to measure
299 such interactions. Further investigations with an expanded dataset would allow us to
300 measure how these three loci interact to build the red coloration.

301

302
303

304 **Figure 3** – Estimation of the contribution of the different loci to the trait. (a, b, c, d) Boxplot
305 of the relation between the genotype at the different locus and the phenotype of the
306 individuals: (a) *MC1R variant*, (b) *Z variant* for females, (c) *Z variant* for males and (d)
307 *MATN2 variant*. (e) Results of the animal model including the genotype to the 3 loci and the
308 sex of the individuals as fixed predictors. The matrix of relatedness was used as random
309 factor to estimate *Va*. Plain circles depict the variance explained by each term of the model.
310 Credible intervals are presented by the black lines.

311

312

313 *Potential role of newly discovered loci to melanin pathway*

314

315 Eumelanin and pheomelanin are the two main pigments responsible of variation in
316 coloration in the barn owl [40]. The synthesis of either one or the other of these pigments
317 from the same precursor (tyrosine) relies on a series of reactions that are catalyzed by
318 specific melanogenic enzymes (TYR, TYRP1, TYRP2), regulated by the MITF transcription
319 factor. MITF activity is itself regulated by several signaling pathways that can impact
320 coloration (including MAPK, WNT, PKC, and cAMP) [41]. *MTDH*, a gene located nearby the
321 *MATN2* *variant*, has been connected to both MAPK and WNT pathways, notably by down
322 regulating the ERK1/2 signaling [42]. Although the molecular implications of *MTDH* in
323 coloration are still barely understood, variation affecting this gene may interfere with the
324 regulation of MITF, and thus impact the color of the individuals.

325

326 Among the pathways regulating MITF, the cAMP pathway is activated by the binding of α -
327 MSH (melanocyte-stimulating hormone) to MC1R, triggering the synthesis of melanin [41].
328 This gene carrying the non-synonymous *MC1R* *variant* was already linked to coloration in
329 the barn owl [29] and it has been largely discussed in the literature given its central role in
330 melanin synthesis. The peptidic hormone α -MSH (which binds to MC1R) is produced
331 through the cleavage of the Pro-opiomelanocortin protein, encoded by the *POMC* gene,
332 whose transcription can be activated by the binding of CRH (corticotropin-stimulating
333 hormone) to its receptor CRHR1 [43]. The *Z* *variant* we found in association with barn owl
334 coloration is in the vicinity of the *CRHBP* gene, which codes the inhibitor of CRH: the CRH
335 binding protein (CRHBP) and may have a potential impact on *POMC* expression and thereby
336 on coloration. The interest of a color variant directly impacting *POMC* expression is that it
337 may also affect the expression of other traits, given the known pleiotropic effects of the
338 melanocortin system [27]. CRH as well as POMC derived hormones participate are main
339 regulators of the stress response [43], which has been previously linked to color variation in
340 the barn owl as well as in other vertebrate species [44]. Thus, further research on the
341 molecular basis of color variation in the barn owl may offer new insights to understand how
342 associations among distinct phenotypes evolves.

343

344 *Maintenance of color polymorphism in the European barn owl*

345

346 Considering the association between polymorphism in melanic coloration and several
347 physiological, behavioral and ecological traits [20-26], combined with its unknown
348 evolutionary origin [32], the question of the mechanisms underlying the maintenance of this
349 polymorphism remains elusive. The three non-mutually exclusive mechanisms proposed so
350 far implies that (i) coloration plays a role in local adaptation at a large European continental
351 scale, favoring darker forms in the north and lighter forms in the south [19,33,34], possibly
352 related to differential foraging strategies and success according to the coloration [22,35]; (ii)
353 coloration is under frequency dependent selection on the different morphs maintain the

354 polymorphism within some populations (i.e. Switzerland or Greece), with darker individuals
355 selected for at low densities and lighter individuals favored at high densities [31]; as well as
356 (iii) sexually antagonist selection favoring darker females (harboring a darker plumage and
357 many black spots located at the tip of ventral body feathers) and lighter males (harboring a
358 lighter plumage and few black spots) in the same polymorphic populations [36]. The
359 knowledge of these new genomic regions associated with the color allows us to establish
360 strategies to further test these hypotheses.

361 For instance, the local adaptation hypothesis could be tested in the future by measuring
362 traces of selection in these genomic regions. Digging into the specific history of the genomic
363 regions associated with coloration would also allow us to reconstruct its evolutionary
364 history at the continental scale and compare it with the neutral history of the populations.
365 Testing the two other hypotheses (namely the frequency dependent selection and the
366 sexually antagonist selection) will require the combination of both genomic and fitness data.
367 The frequency dependent selection should leave traces at the genomic level. Indeed, since
368 darker individuals seems to be selected for at low densities, rufous variants seem to have a
369 higher fitness the less common they are [31], making it a potential case of negative
370 frequency dependent selection. Such negative frequency dependent selection is thus
371 expected to retain polymorphism in the population [45]. This frequency dependent
372 selection may also be tracked by monitoring the variation of the fitness of the individuals
373 carrying the different alleles according to their frequencies though time.

374 The sexually antagonist selection hypothesis could also be tested by looking at the
375 correlation of genomic regions associated with the color also with fitness traits depending
376 on the sex of the individual [46]. At the genomic level, such sexually antagonistic selection
377 generates intra-locus sexual conflict that is thought to be resolved through the evolution of
378 sexual chromosomes [47]. This last hypothesis is thus reinforced by the association between
379 a locus on the Z chromosome and the color. Considering that the two coloration extremes
380 are under opposite selection in the two sexes, the fittest males at a given generation (i.e.,
381 lighter melanic males, with GG genotype at the *Z variant*) are *de facto* sons of less fit
382 mothers (with a G genotype), while the fittest females (darker) inherited their A allele from
383 a less fit father (either AG or AA).

384

385 **Conclusion**

386

387 This study shed light on the molecular basis of the color polymorphism of the barn owl. By
388 applying methods often limited to model species, we identified three regions acting on the
389 determinism of the plumage coloration of the European barn owl, constituting a first step to
390 understand the molecular basis of this polymorphism. This information helps us to
391 understand the genetic architecture of this trait, giving insight into the potential molecular
392 pathways involved, as well as providing some first clues to disentangle the role played by
393 different forces in maintaining the color polymorphism. Further analyses, to identify causal
394 mutations, explore the history of loci involved in the coloration, as well as their link with

395 evolution through time at population scale, should allow us to better characterize the
396 maintenance of the color polymorphism in the barn owl.
397 At a phylogeographic scale, several (sub)species of the Tytonidae family exhibit plumage
398 color clines across continents, and it would be worth looking into these loci in other
399 populations and investigate whether these regions are also involved in their color variations.
400 Finally, considering the strong pleiotropy of the melanocortin system, it will be interesting
401 to investigate the potential role on the loci identified in this study on other traits of this
402 fascinating nocturnal raptor. At a broader scale, this study emphasizes the power of
403 quantitative genetics to reveal the molecular basis of polymorphic traits, and thus provide
404 an opportunity to better characterize the relation of the triptych genotype - phenotype -
405 environment, thus building bridges between the ecology and the evolution of species in the
406 wild.

407 **Material and Methods**

408

409 **Sampling design, Sequencing and SNPs calling**

410

411 *Sampling*

412

413 In order to cover the phenotypic range of the color of the barn owl in Europe, we retrieved
414 the whole genomes sequences of 55 samples from 6 Western Palearctic localities from
415 Machado et al.2021 and Cumer et al. 2021 (Table S1): 9 individuals from Portugal (PT), 10
416 from Denmark (DK), 10 from Grand Britain (GB), 10 from Greece (GR) 6 individuals from
417 Israel (IS), and 10 individuals from Switzerland (CH).

418 The sampling was extended with individuals from Switzerland (CH), a population with a wide
419 range of color variation. On top of the 10 previously described individuals, 20 more were
420 sequenced for this study. These complementary individuals were selected to be mostly
421 homozygous for the MC1R genotype (either VV or II) and preferably males (based on the
422 sexing described in [37]) in order to reduce the effect of differential color between sexes
423 (described by [19]). MC1R_{VV} samples were also selected to cover wide range of color
424 variation. In the final dataset, the Swiss population was represented by 30 individuals
425 including 18 MC1R_{VV} or 11 MC1R_{II} and 1 MC1R_{VI} individuals. Among the MC1R_{VV} 10 were
426 considered as white and 8 rufous (brown chroma of the reflectance spectra <0.28 and >0.28
427 respectively, see *Phenotypic measurement* section of the Material and Methods for details,
428 Table S1).

429

430 *DNA extraction and Sequencing*

431

432 For these extra 20 individuals, we followed a similar library preparation and sequencing
433 protocol as described in [48]. In brief, genomic DNA was extracted using the DNeasy Blood
434 & Tissue kit (Qiagen, Hilden, Germany), and individually tagged. 100bp TruSeq DNA PCR-free
435 libraries (Illumina) were prepared according to manufacturer's instructions. Whole-genome
436 resequencing was performed on multiplexed libraries with Illumina HiSeq 2500 PE high-
437 throughput sequencing at the Lausanne Genomic Technologies Facility (GTF, University of
438 Lausanne, Switzerland).

439

440 *SNPs calling*

441

442 The bioinformatics pipeline used to obtain analysis-ready SNPs for the dataset including the
443 75X individuals was adapted from the Genome Analysis Toolkit (GATK) Best Practices [49] to
444 a non-model organism following the developers' instructions, as in [48]. In brief, raw reads
445 were trimmed with Trimomatic v.0.36 [50] and aligned to the reference barn owl genome
446 [51] with BWA-MEM v.0.7.15 [52]. Base quality score recalibration (BQSR) was performed
447 using high-confidence calls obtained in [32] and following the procedure described in [51].

448 Genotype calls were then filtered for analyses using a hard-filtering approach as proposed
449 for non-model organisms, using GATK and VCFtools v0.1.14 [53]. Calls were removed if they
450 presented: low individual quality per depth ($QD < 5$), extreme coverage ($800 > DP > 2000$) or
451 mapping quality ($MQ < 40$ and $MQ > 70$), extreme hetero or homozygosity ($ExcessHet > 20$
452 and $InbreedingCoeff > 0.9$) and high read strand bias ($FS > 60$ and $SOR > 3$). We then
453 removed calls for which up to 5% of genotypes had low quality ($GQ < 20$) and extreme
454 coverage ($GenDP < 10$ and $GenDP > 40$). We then filtered to retain only bi-allelic loci,
455 yielding a dataset of 10608379 SNPs. For downstream analyses, SNPs were finally filtered
456 for a minor allele frequency higher or equal to 0.05, yielding to a final dataset of 5,112,936
457 SNPs.

458

459 **Phenotypic information**

460

461 *Sex determination based on WGS data*

462

463 Individual sex was controlled using whole genome information. Mean SNP coverage for
464 autosome (Super Scaffold 1) and Z chromosome (Super Scaffold 42) [51] were extracted
465 using vcfTools v0.1.14 [53]. Comparison of both mean coverages allowed to identify two
466 distinct group of individuals, with a ratio close to one for male and 0.5 for female (Figure S1,
467 individual sex based on WGS is reported in Table S1)

468

469 *Phenotypic measurement*

470

471 Pheomelanin-based color, homogenous on barn owl breast feathers, was measured as the
472 brown chroma of the reflectance spectra (see [33] and [48] for details). Briefly, the brown
473 chroma represents the ratio of the red part of the spectrum (600–700 nm) to the complete
474 visible spectrum (300–700 nm), with higher values indicating larger amounts of reddish
475 pigments on the feathers. The reflectance of four points of the top of three overlapping
476 breast feathers was measured using a S2000 spectrophotometer (Ocean Optics) and a dual
477 deuterium and halogen 2000 light source (Mikropackan, Mikropack). An individual's brown
478 chroma score was obtained as the average of these points. This method correlates with
479 observational assessments using colour chips ($r = -0.78$, $p < .0001$) [54] and has high
480 repeatability (97.6%) [33].

481

482

483 **Neutral diversity, population structure and phenotypic distribution**

484

485 *GRM, Kinship Matrix and PCA*

486

487 Individual-based relatedness (β) [55] and inbreeding coefficient was calculated with the
488 package *SNPRelate* [56] in R (v4.2.2, [57]), with all 75 individuals. In order to avoid

489 redundant signal from linked SNPs, rare (MAF<0.05) alleles were discarded and we trimmed
490 the dataset to only retain SNPs with a r2 lower than 0.4, computed at 500kb max, using the
491 *LD.thin()* function from the *gaston* package [58], yielding to a total of 1'033'866 SNPs. The
492 kinship matrix was then transformed into GRM using the *kinship2grm()* function from
493 *hierfstat* package [59]. Two Principal Component Analyses (PCA), including either all
494 individuals or only the 30 Swiss individuals, were also performed with the package
495 *SNPRelate* [56] on the same datasets.

496

497

498 **Identification of genomic regions associated with the color**

499

500 *GWAS on European samples*

501

502 To test for association between genotypes and the color of the 75 European individuals, we
503 used the average information restricted maximum likelihood (AI-REML) algorithm,
504 implemented in the *association.test()* function in the *gaston* package [58]. The model
505 included the sex of the individuals as covariate, the Genetic Relationship Matrix (GRM) as
506 random effect, accounting for population structure and cryptic relatedness. We used the
507 Wald test to assess the strength of the association between SNPs and phenotypes. P-values
508 of the test were then compared with a p-values of 0.05 adjusted according to Bonferroni
509 [60] and we visually assessed the deviation of the SNPs from the 1:1 line on a qq-plot.

510

511 To validate the association between the color and the genotypes, we repeated the GWA
512 while randomly shuffling phenotypes between individuals. If the GWA has identified real
513 QTL, we would not expect SNPs in randomized tests to deviate from the 1:1 line nor exceed
514 the p-values of 0.05 adjusted according to Bonferroni threshold set above. Across our ten
515 randomized analyses, we did not find any SNP above the Bonferroni threshold nor deviating
516 above the 1:1 plot (Figure S5).

517

518 *Contrast in the Swiss population*

519

520 In order to detect other loci involved in the coloration of the barn owl, we ran pairwise FST
521 using the *snpgdsFst()* function in *SNPRelate* package [56]. Scans contrasted (i) rufous (i.e.
522 Spectro > 0.28; n=20) and white (i.e. Spectro < 0.28; n= 10) individuals in the 30 swiss panel
523 and (ii) rufous (i.e. Spectro > 0.28; n= 8) and white (i.e. Spectro < 0.28; n= 10) MC1R_{VV} Swiss
524 individuals.

525

526 **Syntheny between Assemblies**

527

528 To measure the potential linkage between the markers associated with the color in the
529 previous sections, we looked at the position of the genes surrounding the variants in

530 different bird genomes assembled at chromosome level, namely the chicken (*Gallus gallus*,
531 GCA_000002315.5, [61]), the collared flycatcher (*Ficedula albicollis*, GCA_000247815.2, [62])
532 and the golden eagle (*Aquila chrysaetos chrysaetos*, GCA_900496995.4, [63]). Results are
533 presented in the Table S3.

534

535

536 **Variance partition among the color QTLs**

537

538 To estimate the part of variation in coloration associated to the different *loci* identified
539 during previous steps as well as the remaining unexplained additive genetic variance (V_a),
540 we fitted an animal model using the *R* package *MCMCglmm* (version 2.34, *R* version 4.1.1)
541 [64]. In this model, we included the fixed effect of the genotype of individuals at the three
542 different *loci* as dosage and sex as fixed predictors. The same matrix of relatedness as the
543 one used in the GWAS was fed to the models to estimate V_a . Models ran for 103000
544 iterations, with a burn-in of 3000 and a thinning interval of 10 (effective sampling was \geq
545 9384 for all model terms). We calculated the proportion of variance (and the associated
546 95% credible intervals) as the mean of the posterior distribution of each term (including the
547 residuals, V_r) relative to the sum of the posterior distribution of all terms (i.e., the total
548 phenotypic variance).

549

550

551 **Acknowledgements**

552

553 This work was supported by the Swiss National Science Foundation with grants 31003A-
554 138180 & 31003A_179358 to JG and 31003A_173178 to AR.

555

556 **Data Accessibility**

557

558 The raw Illumina reads for the whole-genome sequenced individuals are available in
559 BioProject PRJNA700797, BioProject PRJNA727977 and BioProject PRJNA925445.

560

561 **Author Contribution**

562

563 TC, APM, LSJ, AR, JG designed this study; LSJ produced whole-genome resequencing libraries
564 with the help of CS; APM mapped the reads and called the variants; TC conducted the
565 analyses with the help of LSJ and suggestions from JG; TC led the writing of the manuscript
566 with input from JG and all co-authors.

567

568 **References**

- 569
- 570 1. Kettlewell HBD. 1955 Selection experiments on industrial melanism in the Lepidoptera.
571 *Heredity* **9**, 323–342. (doi:10.1038/hdy.1955.36)
- 572 2. Endler JA. 1983 Natural and sexual selection on color patterns in poeciliid fishes. *Environ*
573 *Biol Fish* **9**, 173–190. (doi:10.1007/BF00690861)
- 574 3. Han J *et al.* 2008 A Genome-Wide Association Study Identifies Novel Alleles Associated
575 with Hair Color and Skin Pigmentation. *PLOS Genetics* **4**, e1000074.
576 (doi:10.1371/journal.pgen.1000074)
- 577 4. Liu F *et al.* 2015 Genetics of skin color variation in Europeans: genome-wide association
578 studies with functional follow-up. *Hum Genet* **134**, 823–835. (doi:10.1007/s00439-015-
579 1559-0)
- 580 5. Crawford NG *et al.* 2017 Loci associated with skin pigmentation identified in African
581 populations. *Science* **358**, eaan8433. (doi:10.1126/science.aan8433)
- 582 6. Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG,
583 Cone RD. 1993 Pigmentation phenotypes of variant extension locus alleles result from
584 point mutations that alter MSH receptor function. *Cell* **72**, 827–834. (doi:10.1016/0092-
585 8674(93)90572-8)
- 586 7. Steiner CC, Weber JN, Hoekstra HE. 2007 Adaptive Variation in Beach Mice Produced by
587 Two Interacting Pigmentation Genes. *PLOS Biology* **5**, e219.
588 (doi:10.1371/journal.pbio.0050219)
- 589 8. Weich K, Affolter V, York D, Rebhun R, Grahn R, Kallenberg A, Bannasch D. 2020 Pigment
590 Intensity in Dogs is Associated with a Copy Number Variant Upstream of KITLG. *Genes*
591 **11**, 75. (doi:10.3390/genes11010075)
- 592 9. Gebreselassie G, Liang B, Berihulay H, Islam R, Abied A, Jiang L, Zhao Z, Ma Y. 2020
593 Genomic mapping identifies two genetic variants in the MC1R gene for coat colour
594 variation in Chinese Tan sheep. *PLoS One* **15**, e0235426.
595 (doi:10.1371/journal.pone.0235426)
- 596 10. Poelstra JW *et al.* 2014 The genomic landscape underlying phenotypic integrity in the
597 face of gene flow in crows. *Science* **344**, 1410–1414. (doi:10.1126/science.1253226)
- 598 11. Aguillon SM, Walsh J, Lovette IJ. 2021 Extensive hybridization reveals multiple coloration
599 genes underlying a complex plumage phenotype. *Proceedings of the Royal Society B:
600 Biological Sciences* **288**, 20201805. (doi:10.1098/rspb.2020.1805)
- 601 12. Hager ER *et al.* 2022 A chromosomal inversion contributes to divergence in multiple
602 traits between deer mouse ecotypes. *Science* **377**, 399–405.
603 (doi:10.1126/science.abg0718)

- 604 13. Tietgen L *et al.* 2021 Fur colour in the Arctic fox: genetic architecture and consequences
605 for fitness. *Proceedings of the Royal Society B: Biological Sciences* **288**, 20211452.
606 (doi:10.1098/rspb.2021.1452)
- 607 14. Menzi F, Keller I, Reber I, Beck J, Brenig B, Schütz E, Leeb T, Drögemüller C. 2016
608 Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss
609 of pigmentation. *Sci Rep* **6**, 28438. (doi:10.1038/srep28438)
- 610 15. Rodríguez A, Mundy NI, Ibáñez R, Pröhl H. 2020 Being red, blue and green: the genetic
611 basis of coloration differences in the strawberry poison frog (*Oophaga pumilio*). *BMC
612 Genomics* **21**, 1–16. (doi:10.1186/s12864-020-6719-5)
- 613 16. Costin G-E, Hearing VJ. 2007 Human skin pigmentation: melanocytes modulate skin
614 color in response to stress. *The FASEB Journal* **21**, 976–994. (doi:10.1096/fj.06-6649rev)
- 615 17. Chiale MC *et al.* 2021 The color of greater flamingo feathers fades when no cosmetics
616 are applied. *Ecol Evol* **11**, 13773–13779. (doi:10.1002/ece3.8041)
- 617 18. Roulin A, Wink M, Salamin N. 2009 Selection on a eumelanistic ornament is stronger in the
618 tropics than in temperate zones in the worldwide-distributed barn owl. *J Evol Biol* **22**,
619 345–354. (doi:10.1111/j.1420-9101.2008.01651.x)
- 620 19. Burri R, Antoniazza S, Gaigher A, Ducrest A-L, Simon C, The European Barn Owl Network,
621 Fumagalli L, Goudet J, Roulin A. 2016 The genetic basis of color-related local adaptation
622 in a ring-like colonization around the Mediterranean: GENETICS OF CIRCUM-
623 MEDITERRANEAN COLOR ADAPTATION. *Evolution* **70**, 140–153. (doi:10.1111/evo.12824)
- 624 20. Roulin A, Dijkstra C, Riols C, Ducrest A-L. 2001 Female- and male-specific signals of
625 quality in the barn owl: Female- and male-specific signals of quality. *Journal of
626 Evolutionary Biology* **14**, 255–266. (doi:10.1046/j.1420-9101.2001.00274.x)
- 627 21. Dreiss AN, Antoniazza S, Burri R, Fumagalli L, Sonnay C, Frey C, Goudet J, Roulin A. 2012
628 Local adaptation and matching habitat choice in female barn owls with respect to
629 melanic coloration: Colour polymorphism and matching habitat choice. *Journal of
630 Evolutionary Biology* **25**, 103–114. (doi:10.1111/j.1420-9101.2011.02407.x)
- 631 22. Roulin A. 2004 Covariation between plumage colour polymorphism and diet in the Barn
632 Owl *Tyto alba*: Plumage colour polymorphism and diet in the Barn Owl. *Ibis* **146**, 509–
633 517. (doi:10.1111/j.1474-919x.2004.00292.x)
- 634 23. Charter M, Peleg O, Leshem Y, Roulin A. 2012 Similar patterns of local barn owl
635 adaptation in the Middle East and Europe with respect to melanic coloration: PATTERNS
636 OF LOCAL BARN OWL ADAPTATION. *Biological Journal of the Linnean Society* **106**, 447–
637 454. (doi:10.1111/j.1095-8312.2012.01863.x)
- 638 24. Charter M, Leshem Y, Izhaki I, Roulin A. 2015 Pheomelanin-based colouration is
639 correlated with indices of flying strategies in the Barn Owl. *J Ornithol* **156**, 309–312.
640 (doi:10.1007/s10336-014-1129-6)

- 641 25. van den Brink V, Dreiss AN, Roulin A. 2012 Melanin-based coloration predicts natal
642 dispersal in the barn owl, *Tyto alba*. *Animal Behaviour* **84**, 805–812.
643 (doi:10.1016/j.anbehav.2012.07.001)
- 644 26. Roulin A. 2013 Ring recoveries of dead birds confirm that darker pheomelanic Barn Owls
645 disperse longer distances. *J Ornithol* **154**, 871–874. (doi:10.1007/s10336-013-0949-0)
- 646 27. Ducrest A-L, Keller L, Roulin A. 2008 Pleiotropy in the melanocortin system, coloration
647 and behavioural syndromes. *Trends Ecol Evol* **23**, 502–510.
648 (doi:10.1016/j.tree.2008.06.001)
- 649 28. Roulin A, Almasi B, Rossi-Pedruzzi A, Ducrest A-L, Wakamatsu K, Miksik I, Blount JD,
650 Jenni-Eiermann S, Jenni L. 2008 Corticosterone mediates the condition-dependent
651 component of melanin-based coloration. *Animal Behaviour* **75**, 1351–1358.
652 (doi:10.1016/j.anbehav.2007.09.007)
- 653 29. San-Jose LM, Ducrest A-L, Ducret V, Béziers P, Simon C, Wakamatsu K, Roulin A. 2015
654 Effect of the MC1R gene on sexual dimorphism in melanin-based colorations. *Molecular
655 Ecology* **24**, 2794–2808. (doi:10.1111/mec.13193)
- 656 30. Roulin A, Jensen H. 2015 Sex-linked inheritance, genetic correlations and sexual
657 dimorphism in three melanin-based colour traits in the barn owl. *Journal of Evolutionary
658 Biology* **28**, 655–666. (doi:10.1111/jeb.12596)
- 659 31. Kvalnes T, Sæther B-E, Engen S, Roulin A. 2022 Density-dependent selection and the
660 maintenance of colour polymorphism in barn owls. *Proceedings of the Royal Society B:
661 Biological Sciences* **289**, 20220296. (doi:10.1098/rspb.2022.0296)
- 662 32. Cumér T *et al.* 2022 Landscape and Climatic Variations Shaped Secondary Contacts amid
663 Barn Owls of the Western Palearctic. *Molecular Biology and Evolution* **39**, msab343.
664 (doi:10.1093/molbev/msab343)
- 665 33. Antoniazza S, Burri R, Fumagalli L, Goudet J, Roulin A. 2010 Local adaptation maintains
666 Clinal variation in melanin-based coloration of European barn owl (*Tyto alba*). *Evolution*
667 (doi:10.1111/j.1558-5646.2010.00969.x)
- 668 34. Antoniazza S, Kanitz R, Neuenschwander S, Burri R, Gaigher A, Roulin A, Goudet J. 2014
669 Natural selection in a postglacial range expansion: the case of the colour cline in the
670 European barn owl. *Molecular Ecology* **23**, 5508–5523. (doi:10.1111/mec.12957)
- 671 35. San-Jose LM *et al.* 2019 Differential fitness effects of moonlight on plumage colour
672 morphs in barn owls. *Nat Ecol Evol* **3**, 1331–1340. (doi:10.1038/s41559-019-0967-2)
- 673 36. Béziers P, Roulin A. 2021 Sexual maturity varies with melanin plumage traits in the barn
674 owl. *Journal of Avian Biology* **52**, jav.02715. (doi:10.1111/jav.02715)
- 675 37. San-Jose LM, Ducret V, Ducrest A-L, Simon C, Roulin A. 2017 Beyond mean allelic effects:
676 A locus at the major color gene MC1R associates also with differing levels of phenotypic

- 677 and genetic (co)variance for coloration in barn owls. *Evolution* **71**, 2469–2483.
678 (doi:10.1111/evo.13343)
- 679 38. Chebib J, Guillaume F. 2021 Pleiotropy or linkage? Their relative contributions to the
680 genetic correlation of quantitative traits and detection by multitrait GWA studies.
681 *Genetics* **219**, iyab159. (doi:10.1093/genetics/iyab159)
- 682 39. Ellegren H. 2010 Evolutionary stasis: the stable chromosomes of birds. *Trends in Ecology
& Evolution* **25**, 283–291. (doi:10.1016/j.tree.2009.12.004)
- 684 40. Roulin A, Dijkstra C. 2003 Genetic and environmental components of variation in
685 eumelanin and phaeomelanin sex-trait in the barn owl. *Heredity* **90**, 359–364.
686 (doi:10.1038/sj.hdy.6800260)
- 687 41. D'Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. 2016 Signaling Pathways in
688 Melanogenesis. *International Journal of Molecular Sciences* **17**, 1144.
689 (doi:10.3390/ijms17071144)
- 690 42. Dhiman G *et al.* 2019 Metadherin: A Therapeutic Target in Multiple Cancers. *Front Oncol*
691 **9**, 349. (doi:10.3389/fonc.2019.00349)
- 692 43. Slominski A, Zbytek B, Semak I, Sweatman T, Wortsman J. 2005 CRH stimulates POMC
693 activity and corticosterone production in dermal fibroblasts. *Journal of
694 Neuroimmunology* **162**, 97–102. (doi:10.1016/j.jneuroim.2005.01.014)
- 695 44. San-Jose LM, Roulin A. 2018 Toward Understanding the Repeated Occurrence of
696 Associations between Melanin-Based Coloration and Multiple Phenotypes. *The
697 American Naturalist* **192**, 111–130. (doi:10.1086/698010)
- 698 45. Brisson D. 2018 Negative Frequency-Dependent Selection Is Frequently Confounding.
699 *Frontiers in Ecology and Evolution* **6**.
- 700 46. Ruzicka F *et al.* 2020 The search for sexually antagonistic genes: Practical insights from
701 studies of local adaptation and statistical genomics. *Evolution Letters* **4**, 398–415.
702 (doi:10.1002/evl3.192)
- 703 47. Dagilis AJ, Sardell JM, Josephson MP, Su Y, Kirkpatrick M, Peichel CL. 2022 Searching for
704 signatures of sexually antagonistic selection on stickleback sex chromosomes.
705 *Philosophical Transactions of the Royal Society B: Biological Sciences* **377**, 20210205.
706 (doi:10.1098/rstb.2021.0205)
- 707 48. Machado AP *et al.* 2021 Unexpected post-glacial colonisation route explains the white
708 colour of barn owls (*Tyto alba*) from the British Isles. *Mol Ecol* , mec.16250.
709 (doi:10.1111/mec.16250)
- 710 49. Van der Auwera GA *et al.* 2013 From FastQ data to high confidence variant calls: the
711 Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* **43**, 11.10.1–
712 11.10.33. (doi:10.1002/0471250953.bi1110s43)

- 713 50. Bolger AM, Lohse M, Usadel B. 2014 Trimmomatic: a flexible trimmer for Illumina
714 sequence data. *Bioinformatics* **30**, 2114–2120. (doi:10.1093/bioinformatics/btu170)
- 715 51. Machado AP *et al.* 2021 Unexpected post-glacial colonisation route explains the white
716 colour of barn owls (*Tyto alba*) from the British Isles. *bioRxiv* ,
717 2021.04.23.441058. (doi:10.1101/2021.04.23.441058)
- 718 52. Li H, Durbin R. 2009 Fast and accurate short read alignment with Burrows-Wheeler
719 transform. *Bioinformatics* **25**, 1754–1760. (doi:10.1093/bioinformatics/btp324)
- 720 53. Danecek P *et al.* 2011 The variant call format and VCFtools. *Bioinformatics* **27**, 2156–
721 2158. (doi:10.1093/bioinformatics/btr330)
- 722 54. Dreiss AN, Roulin A. 2010 Age-related change in melanin-based coloration of Barn owls
723 (*Tyto alba*): females that become more female-like and males that become more male-
724 like perform better. *Biological Journal of the Linnean Society* **101**, 689–704.
725 (doi:10.1111/j.1095-8312.2010.01503.x)
- 726 55. Weir BS, Goudet J. 2017 A Unified Characterization of Population Structure and
727 Relatedness. *Genetics* **206**, 2085–2103. (doi:10.1534/genetics.116.198424)
- 728 56. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 2012 A high-performance
729 computing toolset for relatedness and principal component analysis of SNP data.
730 *Bioinformatics* **28**, 3326–3328. (doi:10.1093/bioinformatics/bts606)
- 731 57. Team RC. 2020 *R: A language and environment for statistical computing (3.5.
732 1)[Computer software]*. R Foundation for Statistical Computing.
- 733 58. Dandine-Roulland C, Perdry H. 2017 Manipulation of genetic data (SNPs). Computation
734 of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed
735 model (AIREML). *Hum Hered* **18**, 1–29.
- 736 59. Goudet J, Jombart T, Kamvar ZN, Archer E, Hardy O. 2021 hierfstat: Estimation and Tests
737 of Hierarchical F-Statistics.
- 738 60. Bonferroni CE. 1936 *Teoria statistica delle classi e calcolo delle probabilità*. Seeber.
- 739 61. Bellott DW *et al.* 2017 Avian W and mammalian Y chromosomes convergently retained
740 dosage-sensitive regulators. *Nat Genet* **49**, 387–394. (doi:10.1038/ng.3778)
- 741 62. Ellegren H *et al.* 2012 The genomic landscape of species divergence in *Ficedula*
742 flycatchers. *Nature* **491**, 756–760. (doi:10.1038/nature11584)
- 743 63. In press. The genome sequence of the European golden ... | Wellcome Open Research.
744 See <https://wellcomeopenresearch.org/articles/6-112/v1> (accessed on 29 March 2023).
- 745 64. Hadfield JD. 2010 MCMC Methods for Multi-Response Generalized Linear Mixed
746 Models: The MCMCglmm R Package. *Journal of Statistical Software* **33**, 1–22.
747 (doi:10.18637/jss.v033.i02)

