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Abstract

The rise of viral variants with altered phenotypes presents a significant public health
challenge. In particular, the successive waves of COVID-19 have been driven by emerging
variants of interest (VOIs) and variants of concern (VOCs), which are linked to modifica-
tions in phenotypic traits such as transmissibility, antibody resistance, and immune escape.
Consequently, devising effective strategies to forecast emerging viral variants is critical for
managing present and future epidemics. Although current evolutionary prediction tools
mainly concentrate on single amino acid variants (SAVs) or isolated genomic changes, the
observed history of VOCs and the extensive epistatic interactions within the SARS-CoV-2
genome suggest that predicting viral haplotypes, rather than individual mutations, is vi-
tal for efficient genomic surveillance. However, haplotype prediction is significantly more
challenging problem, which precludes the use of traditional AI and Machine Learning ap-
proaches utilized in most mutation-based studies.

This study demonstrates that by examining the community structure of SARS-CoV-
2 spike protein epistatic networks, it is feasible to efficiently detect or predict emerging
haplotypes with altered transmissibility. These haplotypes can be linked to dense net-
work communities, which become discernible significantly earlier than their associated vi-
ral variants reach noticeable prevalence levels. From these insights, we developed HELEN
(Heralding Emerging Lineages in Epistatic Networks), a computational framework that
identifies densely epistatically connected communities of SAV alleles and merges them into
haplotypes using a combination of statistical inference, population genetics, and discrete
optimization techniques. HELEN was validated by accurately identifying known SARS-
CoV-2 VOCs and VOIs up to 10-12 months before they reached perceptible prevalence and
were designated by the WHO. For example, our approach suggests that the spread of the
Omicron haplotype or a closely related genomic variant could have been foreseen as early
as the start of 2021, almost a year before its WHO designation. Moreover, HELEN offers
greater scalability than phylogenetic lineage tracing methods, allowing for the analysis of
millions of available SARS-CoV-2 genomes. Besides SARS-CoV-2, our methodology can
be employed to detect emerging and circulating strains of any highly mutable pathogen
with adequate genomic surveillance data.
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1 Introduction

Understanding the predictability of evolution and the relative impact of random and determin-
istic factors in evolutionary processes is a fundamental problem in life sciences. This problem
gains an applied significance in the context of viruses and other pathogens, as even a modest
degree of predictability of pathogen evolution can enhance our ability to forecast and, therein,
control the spread of infectious diseases [1, 2, 3, 4].

The most evident example of importance of this problem is the case of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). The successive waves of COVID-19 are driven
by the emerging variants of interest (VOIs) or variants of concern (VOCs) that have been
associated with altered phenotypic features, including transmissibility [5, 6, 7, 8], antibody
resistance and immune escape [9, 10, 11, 12]. Each variant is defined as a phylogenetic lineage
characterized by a specific combination of single amino acid variants (SAVs) and/or indels ac-
quired over the course of SARS-CoV-2 evolution. For instance, lineages B.1.1.7 (alpha variant
by WHO classification) and B.1.617.2 (delta variant) are defined by distinct families of 7 SAVs
in the spike protein [13, 14], many of which have been linked to enhanced fitness compared to
preceding SARS-CoV-2 lineages [6, 7, 8, 15, 16, 13, 17].

Genomic epidemiology has been crucial for monitoring the emergence and spread of SARS-
CoV-2 variants since the start of the COVID-19 pandemic. SARS-CoV-2 genomes sampled
around the globe and produced using high-throughput sequencing technologies have been an-
alyzed by a plethora of phylogenetic, phylodynamic, and epidemiological models [18] to detect
spreading lineages and measure their reproductive numbers and other epidemiological charac-
teristics. However, these methods, powerful and valuable as they are, are primarily applied
retrospectively. In other words, they allow to detect growing lineages and measure their fitness
only when these lineages are already sufficiently prevalent. Moreover, existing phylogenetic
and phylodynamic approaches are computationally expensive. They must use subsampling,
simplifying assumptions, and heuristic algorithms without performance guarantees to handle
the vast amounts of available genomic data (e.g., more than 14 million sequences in the GI-
SAID database [19] at the time of submission of this paper). These considerations can impact
their power, accuracy, and reliability.

In contrast to retroactive detection, the task of early detection or forecasting involves the
proactive identification of SARS-CoV-2 genomic variants that have the potential to become
prevalent in the future. This problem is more challenging as it is intertwined with the fun-
damental question of whether viral evolution can be predicted or whether one can ”replay
the tape of life” for the global SARS-CoV-2 evolution, using the metaphor of S.J. Gould [20].
For viruses, the possibility of evolutionary predictions remains a topic of debate [21]. Nev-
ertheless, studies attempting to address the SARS-CoV-2 evolutionary forecasting problem
have emerged [3, 4, 22, 23, 24, 25]. Most of these studies have focused on the emergence of
individual mutations, with some methods assuming that mutations accumulate independently
or that the effects of their interactions can be averaged out over their genomic backgrounds
[3, 25].

Meanwhile, a number of studies have highlighted the significance of epistasis, i.e., the
non-additive phenotypic effects of combinations of mutations, for SARS-CoV-2 [26, 27, 28, 4,
29, 30]. Using various methodologies, including phylogenetic analysis [27, 30], direct coupling
analysis [4], and in vitro binding measurements [28], these studies suggest the existence of an
epistatic network that includes many genomic sites in the receptor-binding domain of the spike
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protein that is associated with increased binding affinity to angiotensin-converting enzyme 2
(ACE2) receptor [31, 32, 12]. Epistasis is closely linked to the complex structures of viral
fitness landscapes [33, 4, 34, 26], which determine the evolutionary trajectories of SARS-
CoV-2 lineages and contribute to the high non-linearity of its evolution, making forecasting
challenging. The emergence of new Variants of Concern, such as the lineage B.1.1.529 (Omicron
variant), is an example of such non-linear phenomena. Its rapid emergence does not align with
the gradual mutation accumulation hypothesis and is still a topic of debate, with hypothesized
origins including immune-suppressed hosts and reverse zoonosis [35].

Given the role of epistasis, it can be argued that selection often acts on combinations of
mutations, or haplotypes, rather than on individual mutations. Therefore, effective forecasting
should focus on viral haplotypes instead of solely on SAVs. However, predicting haplotypes
is a significantly more challenging problem than predicting individual SAVs – in particular,
simply due to the exponential increase in the number of possible haplotypes with genome
length. This complexity precludes the use of traditional approaches utilized in most mutation-
based studies, where a feature vector of epidemiological, evolutionary, and/or physicochemical
parameters is calculated for each SAV, and a statistical or machine learning model is trained
to predict SAV phenotypic effects. As a result, even studies that account for epistatic effects
usually focus on assessing the phenotypic effects of individual mutations [4].

This paper focuses on predicting haplotypes of SARS-CoV-2 using a novel approach based
on analyzing dense communities of the epistatic network of the spike protein. We demonstrate
that emerging haplotypes with altered phenotypes can be accurately predicted by leveraging
these communities and introduce HELEN (Heralding Emerging Lineages in Epistatic Net-
works) - a variant reconstruction framework that integrates graph theory, statistical inference,
and population genetics methods. HELEN was validated by accurately identifying known
SARS-CoV-2 VOCs and VOIs up to 10-12 months before they reached high prevalences and
were designated by the WHO. Importantly, the majority of predictions were derived from data
collected independently from different countries, further supporting their credibility. These re-
sults demonstrate that network density is a more precise, sensitive, and scalable measure than
lineage frequency, allowing for reliable early detection or prediction of potential variants of
concern before they become prevalent. For instance, our approach suggests that the spread of
the Omicron haplotype or a closely related genomic variant could have been predicted as early
as the beginning of 2021, almost a year before its designation as a VOC. Furthermore, the
computational complexity of our method depends on genome length rather than the number
of sequences, making it significantly faster than traditional phylogenetic methods for VOC
detection and enabling it to handle millions of currently available SARS-CoV-2 genomes.

Our approach to the early detection of viral haplotypes utilizes a certain methodological
similarity with the problem of inference of rare viral haplotypes from noisy sequencing data,
particularly when produced by long-read sequencing technologies like Oxford Nanopore and
PacBio. This problem has gained significant attention in recent years, with several new tools
appearing each year [36, 37, 38, 39, 40]. Some of these tools accurately infer rare haplotypes
with frequencies comparable to the sequencing noise level. In particular, several tools devel-
oped by the authors of this paper achieve such results by identifying and clustering statistically
linked groups of SNV alleles [37, 41, 42, 43]. Although this approach is not directly transferable
to haplotype prediction, it provided a foundation for this study.
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2 Methods

2.1 Construction of epistatic networks

Given a multiple sequence alignment consisting ofN genomes of length L, we define an epistatic
network G as a graph with nodes representing SAVs are two nodes being connected by an edge
whenever the corresponding non-reference alleles are simultaneously observed more frequently
than expected by chance.

To formalize this definition, we extend the idea proposed in our previous studies [42, 37].
Specifically, let U0, U1 and V0, V1 be the reference and SAV alleles at two particular genomic
positions U, V ∈ {1, ..., L}, respectively. Let further Etij and Otij be the expected and observed
counts of allele pairs (or 2-haplotypes) (Ui, Vj) at a time t.

We assume that viral evolution is driven by mutation and selection, where (a) 2-haplotypes
(Ui, Vj) have replicative fitnesses fij ; (b) allele transitions at positions U and V are random,
and transitions between alleles i and j happen at rates qUij , q

V
ij . Thus, expected 2-haplotype

counts can be described by the quasispecies model [44, 45] (or mutation-selection balance
model in the classical population genetics terms [46]) in the following form:

Etij =
∑

k,l=0,1

fklq
U
kiq

V
ljE

t−1
kl (1)

We do not make any assumptions about the rate values, except that the rate of allelic change
is smaller than the rate of no-change, i.e.

qUij < qUii , q
V
ij < qVii , i, j = 0, 1. (2)

We use the model (1) to devise a statistical test that decides whether the 2-haplotype
(U2, V2) is viable or its observed appearances can be plausibly explained by random mutations.
The proposed test is based on the following fact:

Theorem 1. Suppose that the 2-haplotype (U2, V2) is not viable, i.e. f11 = 0. Then

Et11 ≤
Et01 · Et10
Et00

(3)

Proof. The proof follows the same lines as the proof in [42]. Given that f11 = 0, we have

Et00 · Et11 =

 ∑
k,l=0,1

fklq
U
k0q

V
l0E

t−1
kl
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l1E
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kl
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t−1
00 Et−101 +

+(qU00q
V
00q

U
11q

V
01 + qU10q

V
00q

U
01q

V
01)f00f10E

t−1
00 Et−110 +

+(qU00q
V
10q

U
11q

V
01 + qU10q

V
00q
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11)f01f10E
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(4)

and
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Et01 · Et10 =
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(5)

It is easy to see that the terms in (4) and (5) except for the last ones are equal. Thus we
have

Et01 · Et10 − Et00 · Et11 =

= (qU00q
V
11q

U
11q

V
00 + qU10q

V
01q

U
01q

V
10 − qU00qV10qU11qV01 − qU10qV00qU01qV11)f01f10Et−101 Et−110 =

=

(
1− qU01q

U
10

qU00q
U
11

)(
1− qV01q

V
10

qV00q
V
11

)
qU00q

V
11q

U
11q

V
00f01f10E

t−1
01 Et−110 ≥ 0,

(6)

where the last inequality follows from (2). Thus, the inequality (3) holds.

We use Theorem 1 to approximately evaluate the probability of the event that there exist
a large number of genomes with the 2-haplotype (U1, V1) given that this 2-haplotype is not
viable. Considering the density of sampling and the number of available genomes, we assume
that observed and expected numbers of 2-haplotypes are close to each other. Then, by (3), the
value p = O10·O01

O00·N approximates the largest probability of observing a genome containing 2-
haplotypes (U1, V1) among N sequenced genomes given that f11 = 0. Then we can assume that
the number of such genomes X follows the binomial distribution B(N, p), and the probability
that X ≥ O11 can be calculated as

p(X ≥ O11|f11 = 0) = 1− FX(O11 − 1) = 1−
O11−1∑
i=0

(
N

i

)
pi(1− p)N−i, (7)

where FX is the cumulative distribution function of the bionomial distribution. We assume
that SAVs U1 and V1 are linked (i.e. adjacent in the epistatic network G), when the probability
(7) is low enough, i.e.

p(X ≥ O11|f11 = 0) ≤ ρ(
L
2

) , (8)

where ρ is a predefined p-value (in this study we used ρ = 0.05) and the denominator
(
L
2

)
is a

Bonferroni correction.

2.2 Sampling of connected k-subgraphs and estimation of density-based p-
values of viral haplotypes

In what follows, we will use the standard graph-theoretical notation: V (G) and E(G) are the
sets of vertices and edges of the graph G, respectively; NG(v) is the set of neighbors of a vertex
v in G; the subgraph of G induced by a subset S is denoted by G[S].

We use the statistical test (8) to construct temporal epistatic networks Gt for different time
points t using SARS-CoV-2 sequences sampled before or at the time t. These networks have
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the same set of vertices but different sets of edges. A viral haplotype thus can be associated
with a subset of vertices H ⊆ V (Gt) of a network Gt. The density of a haplotype H is thus
defined as the density of the subgraph of Gt induced by H, i.e.

dGt(H) =
|E(Gt[H])|
|H|

(9)

We hypothesize that viral haplotypes corresponding to potential VOCs and VOIs form
dense subgraphs of Gt. Below we describe how we verify and exploit this hypothesis.

The first step is to demonstrate statistical significance of our hypothesis by producing
density-based p-values of known VOC and VOI haplotypes H. The simplest way to assess these
p-values is to randomly sample subgraphs of Gt of the size |H| and calculate the proportion of
sampled subgraphs with the densities higher than that of H. However, SARS-CoV-2 temporal
epistatic interaction networks are relatively sparse, and thus many sampled subgraphs will
be a priori disconneced and, consequently, also sparse. As a result, such sampling scheme
is inherently biased towards assigning low p-values to haplotypes corresponding to connected
subgraphs and subgraphs with few connected components. Known VOCs and VOIs at most
time points have these properties, and thus their statistical significance could be overestimated.

To overcome this problem, we utilize more sophisticated randomized enumeration subgraph
sampling scheme based on the network motif sampling algorithm introduced in [47]. This
scheme uniformly samples only connected subgraphs and can be described as follows. Let us
assume that all vertices of Gt are labelled by the unique integers 1, ..., L. The sampling is
performed using a recursive backtracking algorithm that, starting from each vertex v ∈ V (Gt),
iteratively extends previously constructed connected subgraph S by adding a random new
vertex w from the set of allowed extensions W . After that, the set of allowed extensions is
updated by adding the neighbors of w that do not belong to the set of avoided extensions
X. The set of avoided extensions at each iteration contains the vertices that are neighbors
of vertices previously added to S and the vertices with labels larger than v. These allows to
avoid double-sampling [47]. Extension stops, when a subgraph of the given size k is produced.
Generation of k-subgraphs containing a given vertex v continues until the pre-defined sample
size is achieved. The entire sampling scheme is described by Algorithm 1.

Given the subgraph sample S∗ = {S1, ..., S|S∗|}, p-value of a haplotype H in the network
Gt is defined as

pGt(H) =
|{Sj ∈ S∗ : dGt(Sj) ≥ dGt(H)|

|S∗|
(10)

If, at some point, the subgraph induced by H is disconnected, we replace H with its
largest connected component. For each analyzed spike epistatic network Gt, the sampling was
performed until k = min{3000, ηGt(v)} subgraphs for each vertex v are generated, where ηGt(v)
is the total number of connected subgraphs containing v.

2.3 Inference of viral haplotypes as dense communities in epistatic networks

We propose to infer viral haplotypes as dense communities of epistatic networks. Community
detection is a well-established field of network science, with numerous algorithmic solutions
proposed over the last two decades [48, 49, 50]. Typically (though not always), the collection
of communities in a network is defined as a partition [51]. However, in the case of viral genomic
variants, there can be overlaps, as observed in known VOCs and VOIs. Additionally, most
existing algorithms are heuristics designed to scale to the sizes of extremely large networks
rather than to produce optimal solutions. S-gene epistatic networks, although containing
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Algorithm 1 Sampling of connected k-subgraphs without forbidden pairs

1: Input: graphs G, F , an integer k and the sample size per vertex M .
2: for v ∈ V (G) do
3: S ← {v}; W ← NG(v) \ (NF (v) ∪ {1, ..., v}); X ← NG(v) ∪NF (v) ∪ {1, ..., v}
4: global Mv = 0
5: call SampleSubgraph(v,S,W ,X)
6: end for

SampleSubgraph(S,W ,X,v)
7: if |S| = k then
8: output S, Mv ←Mv + 1 and return
9: end if

10: while W 6= ∅ and Mv ≤M do
11: sample a random vertex w ∈W and set W ←W \ {w}
12: S′ ← S ∪ {w}; W ′ ← (W ∪ (NG(v) \X)) \NF (w); X ′ ← X ∪NG(w) ∪NF (w)
13: call SampleSubgraph(v,S′,W ′,X ′)
14: end while

hundreds of vertices, are typically smaller than most networks studied in applied network
theory. Thus we use our own community detection approach, which extends our previously
developed methodology [37]. This approach uses exact algorithms rather than heuristics and
is tailored to account for the characteristics of viral data.

Firstly, we use a Linear Programming (LP) formulation [52] to find the densest subgraphs
of epistatic interaction networks Gt at each time point t. This formulation contains variables
xi for each vertex i ∈ V (Gt), variables yij for each edge ij ∈ E(Gt), and the following objective
function and constraints: ∑

ij∈E(Gt)

yij → max (11)

yij ≤ xi, yij ≤ xj , ij ∈ E(Gt) (12)

∑
i∈V (Gt)

xi ≤ 1 (13)

xi, yij ≥ 0, i ∈ V (Gt), ij ∈ E(Gt) (14)

Note that the variables xi, yij are continuous rather than integer since it can be shown
that the value of the optimal solution of the LP (11)-(14) and the maximum subgraph density
of Gt coincide [52]; furthermore, if U ⊆ V (Gt) is the vertex set of the densest subgraph, then
(xi = 1

|U | , i ∈ U ;xi = 0, i 6∈ U ; yij = 1
|U | , i, j ⊆ U ; yij = 0, i, j 6⊆ U) is the optimal solution of

(11)-(14). Thus, densest subgraphs of the networks Gt can be found in a polynomial time.
The single densest subgraph can, however, provide only a single haplotype per time point.

We need to generate multiple dense communities to infer multiple haplotypes that could cor-
respond to VOCs and VOIs. The approach to producing these communities is as follows. We
iterate through a given range of fixed subgraph sizes k ( k = kmax, kmax − 1, ..., kmin); at each
iteration, we generate a set Sk of up to nmax densest subgraphs of size k that are not contained
in subgraphs generated in the previous iterations. Here kmax,kmin and nmax are parameters of
the algorithm. However, finding the densest subgraph of a given size is an NP-hard problem
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[53, 54]. Therefore, for each value of k, we use the following Integer Linear Programming
formulation:

1

k

∑
ij∈E(Gt)

yij → max (15)

yij ≤ xi, yij ≤ xj , ij ∈ E(Gt) (16)

∑
i∈V (Gt)

xi = k (17)

∑
i∈V (Gt)\S

xi ≥ 1, S ∈
kmax⋃
k′=k+1

Sk′ (18)

xi, yij ∈ {0, 1}, i ∈ V (Gt), ij ∈ E(Gt) (19)

The problems (11)-(14) and (15)-(19) are solved using Gurobi [55]; for the latter we used
an option to continue the search until the pool of up to nmax optimal solutions is produced.

Now, let Ŝt = St, 1, ..., St,|Ŝt| be the set of generated densest subgraphs with sizes rang-
ing from kmin to kmax. This set does not necessarily have a one-to-one correspondence with
the true haplotypes due to two reasons. First, some haplotypes may consist of more than
kmax SAVs, so the generated subgraphs only cover parts of these haplotypes. Second, many
generated subgraphs overlap significantly, and thus most likely correspond to the same haplo-
types. To obtain full-length haplotypes, we employ an algorithmic pipeline described below.
Initially, we split the generated dense subgraphs into clusters such that each cluster ideally
corresponds to a single true haplotype. Then, we locate the corresponding haplotype for each
cluster by finding the densest core community in a subgraph induced by the union of elements
of that cluster. Figure 1 illustrates the pipeline, which we describe in detail in the following
Algorithm.

Algorithm 2: inference of viral haplotypes.
Input: the set of dense subgraphs Ŝt = {St,1, ..., St,|Ŝt|}
Output: the set of haplotypes Ht = {Ht,1, ...,Ht,|Ht|}.

1) Construct an intersection graph L(Ŝt), whose vertex set is Ŝt, and two vertices St,i and
St,j are adjacent, whenever |St,i ∩ St,j | ≥ min{|St,i|, |St,j |} − λ (by default λ = 1).

2) Partition L(Ŝt) into clusters Lt,1, ..., Lt,r:

2.1) Split L(Ŝt) into connected components and then subdivide each component into
(κ+ 1)-connected components, where κ denotes the vertex connectivity. To achieve
this, we use a modified version of the algorithm proposed by [56], which computes
the vertex connectivity and corresponding vertex cut as the smallest of (s, t)-cuts
between specifically chosen vertices of the graph. The algorithm computes these
(s, t)-cuts using network flow techniques [57]. We further augment this algorithm
by adding an extra step. Consider a pair of vertices (s, t) for which the minimal
vertex cut of size κs, t has been found, and P 1

s,t, ..., P
κs,t
s,t are the corresponding

internal vertex-disjoint (s, t)-paths (which can be found using network flows [57]
and whose existence is guaranteed by Menger’s theorem [58]). If a vertex s′ is
adjacent to the internal vertices of all of these paths, then we can exclude the
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pair (s′, t) from further consideration because κs′,t ≥ κs,t. This step significantly
accelerates the connectivity calculation for graphs with many high-degree vertices,
and the connected components of L(Ŝt) typically exhibit this property.

2.2) Suppose that Lt,1, ..., Lt,r′ are the components produced at the previous step. Fur-
ther subdivide each component Lt,i as follows: first, find an embedding of the
subgraph L(Ŝt)[Lt,i] into R3 using a force-directed graph drawing algorithm [59];
second, cluster the obtained embedded graph by a spectral clustering algorithm [60]
using the largest Laplacian eigenvalue gap to estimate the number of clusters.

Each cluster produced at steps 2.1)-2.2) is supposed to correspond to a single haplotype.

3) For every cluster Lt,i, we examine the induced subgraph Gt,i = Gt[
⋃
St,j∈Lt,i

St,j ], which
consists of the SAVs covered by the subgraphs that correspond to the vertices of Lt,i.

3.1) Suppose that Dt,i is the degree sequence of Gt,i. We cluster the elements of Dt,i

using the k-means algorithm and select the subset of vertices Ct,i that correspond to
the cluster with the largest mean value. The goal of this procedure is to identify the
”core” of Gt,i consisting of high-degree vertices. To choose the number of clusters
k, we use the gap statistics [61].

3.2) Find the densest subgraph Ht,i of Gt,i[Ci] using the LP formulation (11)-(14). If
the subgraph is large enough (by default |Ht,i| ≥ 5), then output Ht,i as an inferred
haplotype.

In addition to the set of haplotypes Ht, Algorithm 2 returns a support s(Ht,i) for each
inferred haplotype, that is defined as a relative number of elements (i.e. candidate dense

subgraphs) in the cluster Lt,i: s(Ht,i) =
|Lt,i|∑
j |Lt,j | .

The entire computational framework based on methods described in Subsections 2.1-2.3 is
called HELEN (Heralding Emerging Lineages in Epistatic Networks).

3 Results

3.1 Data

Genomic data and associated metadata analyzed in this study was obtained from GISAID
[19]. Our focus was on analyzing amino acid genomic variants of the SARS-CoV-2 spike
protein, which is used for identifying Variants of Concern (VOC) and Variants of Interest
(VOI) by standard genomic surveillance tools adopted by WHO [62]. We extracted the spike
protein alignment from the whole genome multiple sequence alignment, replacing ambiguous
characters with gaps, and focused solely on SAVs while ignoring long indels. In order to better
validate the predictive power of our approach, especially with respect to the Omicron lineage,
we analyzed only sequences sampled before November 1, 2021, approximately 1 month before
the designation of Omicron as the Variant of Concern by WHO). For defining VOCs and
VOIs, we used the notations and lists of SAVs established by WHO [63]: a variant defined by
SAVs at k fixed genomic positions was associated with a k-haplotype with minor alleles (with
respect to the standard Wuhan-Hu-1 (NC 045512.2) reference) at that positions. Variants
epsilon (B.1.427), iota (B.1.526) and zeta (P.2), defined by 3 − 4 SAV, were excluded due to
their short lengths.

The detection of epistatically linked pairs of SAVs and dense communities in epistatic net-
works is affected by the number of sequences. Thus we focused on data from countries with the
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Figure 1: HELEN (Heralding Emerging Lineages in Epistatic Networks): a computational framework for
inference of viral variants as dense communities in epistatic networks
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Figure 2: (a) Numbers of analyzed spike amino acid sequences per country. (b) Relative sizes of the largest and
second largest connected components of epistatic interaction networks over time. Solid and dashed lines depict
median and maximum/minimum values over 16 countries at each time point, respectively. (c) An example of
a giant component of an epistatic network for the USA on January 11, 2021. The vertices highlighted in green
correspond to SAVs of the Omicron variant (lineage B.1.1.529.1). Most of these SAVs form a dense community,
which was observed 320 days before the WHO designated the variant, emphasizing the key discovery and an
algorithmic concept in this study.

largest sample sizes, while maintaining geographic diversity. To do this, we selected two coun-
tries per continent (excluding Oceania) with the largest numbers of spike amino acid sequences
sampled over the considered time period: United Kingdom and Germany for Europe, USA and
Canada for North America, Brazil and Peru for South America, South Africa and Kenya for
Africa, and Japan and India for Asia. Additionally, we included Australia to represent Ocea-
nia and 5 extra countries with the largest samples, namely France, Denmark, Sweden, Spain,
and Italy. Sequences from the selected countries were identified using GISAID metadata and
analyzed separately. Thus, a total of 160 test cases (16 countries × 10 VOCs/VOIs) have been
considered. Fig. 2a shows the analyzed sample sizes, which were not distributed uniformly,
with the USA and United Kingdom accounting for approximately 64% of all sequences.

3.2 The structure of S-gene epistatic networks

We utilized the method outlined in Subsection 2.1 to construct epistatic networks for 16
countries at 37 uniformly distributed time points between May 1, 2020, and November 1, 2021
(with a 14-day difference between consecutive points). Initially, we evaluated basic properties
of these networks. We found that the majority of networks contained a single ”giant” connected
component that could include up to 70% of the vertices. Other connected components were
significantly smaller (p < 10−100, Kolmogorov-Smirnov test) and made up an average of 0.3%
of the network size (Fig. 2b). Most of these smaller components consisted of isolated vertices.

Epistatic networks of the S-gene have a tendency to gradually evolve towards becoming
scale-free, with a right-skewed power-law degree distribution. This type of network structure
is often a result of a preferential attachment process, where a new vertex joining the network
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has a higher probability of connecting to an existing vertex with a higher degree. Indeed, to
determine the best distribution fit for the observed degree distribution of the networks, we
fitted negative binomial, beta negative binomial, Poisson, Yule-Simon, Generalized Pareto,
and Pareto distributions, and compared their goodness of fit using the Bayesian Information
Criteria. We found that the Yule-Simon, Pareto, and generalized Pareto distributions, all
describing a power-law, provided the best fit for 50.3%, 21.1%, and 16.4% of networks, re-
spectively. Additionally, in all countries, the Yule-Simon distribution eventually became the
best fit for the latest networks, i.e., for all networks sampled after a specific date t∗ (with the
median date being January 11, 2021).

The aforementioned observations indicate that the temporal epistatic networks inferred
in this study have a sufficiently rich community structure [64, 65] that can be analyzed and
utilized to evaluate and forecast the SARS-CoV-2 evolutionary dynamics.

3.3 Dense communities in S-gene epistatic networks as indicators of variant
emergence

We analyzed communities within temporal epistatic networks in search for evidence in support
of the following hypotheses:

(H1) known VOCs/VOIs emerge as dense communities in temporal epistatic networks;

(H2) conversely, dense communities within temporal epistatic networks correspond to haplo-
types with altered phenotypes;

(H3) such communities can be detected before the corresponding lineages achieve significant
frequencies.

To validate the hypotheses (H1)-(H3), we used a two-pronged approach. First, we per-
formed a retrospective statistical analysis of densities of known VOCs and VOIs in temporal
epistatic networks. Second, we evaluated the ability to accurately infer haplotypes with altered
transmissibilities, both known and unknown, from collections of candidate dense communities.
We specifically assessed the promptness of identifying emerging viral haplotypes as dense com-
munities, by measuring so-called forecasting depth. This quantitative measure is defined as the
time between the first variant call and the occurrence of a specific epidemiological benchmark
event b. In this study, we used two benchmark events: the variant’s designation by WHO
(b = des) and the moment its prevalence reaches 1% (b = prev, similar benchmark was used in
[3]) 1. The value of FDb(h) can be positive or negative, thus indicating early or late prediction,
respectively.

It’s worth noting that the presence of a viral variant as a dense community within an
epistatic network does not necessarily indicate its circulation at that time. In the context of this
study’s model, this fact should be rather interpreted as an indication that the corresponding
SAVs are epistatically linked densely enough to suggest the variant’s viability. In particular,
detecting the variant as a dense community in a particular country at an early time point does
not necessarily mean that the variant originated there. As demonstrated below, while there
are instances where this is true, more often the variants are detected earlier in countries with
larger sample sizes that provide greater statistical power for inferring epistatic links.

1The event was assigned to the last time point, if the variant’s prevalence always stays below 1%
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3.3.1 VOCs/VOIs as communities in epistatic networks

To validate the hypotheses H1) and H3), we estimated density-based p-values of known VOCs
and VOIs for each country and each time point using the algorithm described in Subsection 2.2.
The algorithm produces uniform samples of connected communities of each temporal epistatic
network, and compares their densities with those of the VOCs/VOIs to calculate p-values.
As a result, for each country and each VOC/VOI we obtained a time series of p-values. The
series were adjusted by calculating FDR and applying Benjamini-Hochberg procedure [66].
The resulting time series of adjusted p-values are illustrated in Fig. 3A and Supplemental
Figs. S1-S10.

Our analysis of time series data showed that a significant proportion of cases exhibited
variant expansion either succeeding or concurrent with a decrease in density-based p-values. To
quantify this relationship, we employed sample cross-correlation [67] to measure the connection
between p-values and variant prevalences throughout the growth period of the variant. We
considered a range of positive and negative lags for prevalence series in relation to p-value
series and identified the optimal lag l∗ with the maximum absolute cross-correlation.

In 75% of all test cases, we detected a non-negative optimal lag and a medium-to-strong
statistically significant negative correlation between p-values and lagged prevalences (95% CI
for ρ: (−0.93,−0.41), 95% CI for l∗ (in days): (0, 140)). Focusing solely on VOCs, we observed
this effect in 86% of cases (95% CI for ρ: (−0.88,−0.37), 95% CI for l∗: (0, 140)).

We defined a variant as ”significantly dense” when its adjusted p-value falls below 0.05 and
at least 80% of its SAVs belong to the epistatic network’s giant component. In our analysis,
52% of VOCs/VOIs, analyzed separately for different countries, became significantly dense
at some moment of time. This percentage increased to 76% when only considering VOCs.
Moreover, these variants were identified as significantly dense at low cumulative frequencies
(median value µ = 4.2 · 10−4, Fig. 3d) and low prevalences (µ = 1.4 · 10−3, Fig. 3e).

We assessed forecasting depths, FDprev and FDdes, with respect to times when the variants
reached significant density. In general, VOCs/VOIs that achieved significant density tended to
do so early. In particular, such variants were identified before reaching 1% prevalence in 64%
of cases and before WHO designation times in 46% of cases. For early calls (i.e. given that
FDprev > 0 or FDdes > 0), the median forecasting depths were 120 and 78 days, respectively.

In genomic surveillance, decisions are typically made based on agglomerate information
from multiple countries. In this context, it is important to note that all Variants of Concern
(VOCs) and Variants of Interest (VOIs) have positive forecasting depths (FDprev) in at least
one country (Fig. 3a); the same applies to FDdes with the exception of the theta variant (Fig.
3b).

In particular, the Omicron variant (lineage B.1.1.529.1) becomes significantly dense in 7
countries as early as the beginning of 2021, with forecasting depths ranging from 199 to 319
days for FDdes and 165 to 285 days for FDprev. Notably, all predictions were made before
the actual Omicron haplotypes emerged, at a cumulative frequency of 0. The Delta variant
(B.1.617.2) serves as another example of multiple early predictions, as it becomes significantly
dense in ten countries (FDdes ∈ [15, 360] and FDprev ∈ [30, 375]).

Sample size seems to significantly impact the haplotype detection. A strong positive cor-
relation exists between the number of significantly dense VOCs/VOIs and the number of
sequences per country (ρ = 0.71, p < 0.01). Specifically, in the United States, which has the
highest number of sequences, all 10 variants reached significant density.
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Figure 3: Density-based adjusted p-values of VOCs/VOIs. (a) p-values (blue) and prevalences (red) of
8 VOCs and VOIs in the USA epistatic networks (refer to the Supplement for plots of all VOCs/VOIs across all
countries). Black, green, and magenta lines represent the times of VOC designation, achieving 1% prevalence,
and becoming significantly dense, respectively. (b) and (c): Forecasting depths (y-axis) in relation to the 1%
prevalence time and WHO designation time for each analyzed VOC/VOI across different countries. (d) and
(e): Cumulative frequencies and prevalences for VOCs/VOIs across various countries at the times when they
become significantly dense (in a logarithmic scale). Dashed lines at the bottom of the plot indicate that the
variants reached significant density at frequencies/prevalences of 0.

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.02.535277doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535277
http://creativecommons.org/licenses/by/4.0/


Figure 4: Comparison between VOCs and densest subnetworks of temporal epistatic net-
works (results for individual countries are shown in Fig. S11-S13). Each bar plot depicts the com-
parison results for a particular VOC; at each time point, bars correspond to the densest subgraphs
from different countries closest to that VOC, and the bar heights are equal to the respective f -scores.
Colored dashed lines mark times when the VOCs were designated by WHO.

3.3.2 Inference of viral variants as dense communities in epistatic networks

The most straightforward way to partially assess the validity of hypotheses H2) and H3) is
to retrieve the densest subnetworks of epistatic networks and compare them to known SARS-
CoV-2 variants. This task is made easier by the fact that finding the densest subgraphs, based
on our density definition, is a polynomially solvable problem (see Subsection 2.3). We used
the f -score as a metric for detection accuracy, which in our context is defined as:

Rt,i =
|Ct ∩ Vi|
|Vi|

, Pt,i =
|Ct ∩ Vi|
|Ct|

, Ft,i = 2
Rt,i · Pt,i
Rt,i + Pt,i

(20)

Here Rt,i, Pt,i and Ft,i are the recall, precision and f -score for the SAVs of the VOC Vi
found within the dense community Ct at the time t.

In total, 28% of densest communities were at least 80% identical to the known variants,
all of which were VOCs. Notably, 86% of these communities were identified before the VOCs
were officially designated by WHO, and 67% before the variants reached a 1% prevalence (Fig.
4 and Fig. S14). Furthermore, these communities emerged when the corresponding VOC
haplotypes had low cumulative frequencies (median value µf = 3.8 · 10−4, Fig. S14c) and
low prevalences (median value µp = 7.8 · 10−4, Fig. S14d). Every VOC was detected with at
least 0.8 accuracy in at least one country as early as 231, 111, 135, 285 and 319 days before
their designation times, and 255, 30, 255, 300 and 319 days before achieving 1% prevalences,
respectively (median values FDdes = 111 and FDprev = 60, Fig. 4 and Fig. S11-S14). The
most prominent example is the Omicron haplotype, which corresponds to 94 of the densest
subnetworks across six countries.

While the examination of the densest subnetworks lends support to hypotheses H2) and
H3), a more advanced algorithmic approach is essential for a comprehensive forecasting frame-
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work, as well as for stronger hypotheses confirmation. Indeed, generally, only a single densest
subnetwork can be constructed per time point, even though multiple haplotypes with altered
phenotypes might coexist at each specific moment. Additionally, we observed that, as epistatic
networks become denser over time, the densest subnetworks expand and may ultimately en-
compass several haplotypes, leading to decreased variant inference accuracy.

To overcome these problems, we developed a more complex algorithm for inferring viral
haplotypes as dense epistatic network communities (Subsection 2.3). Briefly, the algorithm
generates a pool of distinct dense subnetworks of varied sizes, partitions them into clusters, and
assemble a haplotype from each cluster using graph-theoretical techniques. For every assem-
bled haplotype, the algorithm also returns its support defined as the percentage of candidate
subnetworks corresponding to that haplotype. As before, we used a 80% f -score threshold to
declare variant detection.

The proposed algorithm demonstrated greater sensitivity in detecting known SARS-CoV-2
variants compared to the densest subgraph-based method (Fig. 5). Specifically, it identified
90% (9 out of 10) of the analyzed variants in at least one country, with the Theta variant
being the only exception. All Variants of Concern (VOCs) that were spreading during the
study period (Alpha, Beta, Gamma, and Delta variants) were detected in 12-16 (out of 16)
countries, while the Omicron variant was found in 6 countries.

A significant proportion of these detections were early, with 67% of VOCs/VOIs first
identified before reaching a 1% prevalence in their respective countries and 49% detected prior
to the WHO designation times. In absolute terms, this represents a 2-fold and 2.9-fold increase
in early detections compared to the densest subgraph-based method. When first detected, the
median variant frequency was µf = 4.8 ·10−4 (Fig. 5d) and the median variant prevalence was
µd = 2.2 · 10−3, Fig. 5e).

Concerning forecasting depths, 8 out of 10 known variants exhibited non-negative FDprev,
and 9 out of 10 showed non-negative FDdes in at least one country (Fig. 5b,c). Specifically,
all VOCs had positive forecasting depths and were detected as early as 231, 111, 150, 360,
and 319 days before their designation times and 255, 300, 255, 375, and 319 days before
reaching 1% prevalence, respectively (median values given the early prediction: FDdes = 108
and FDprev = 75).

While the forecasting results for VOIs were somewhat less remarkable, Lambda, Mu, Eta,
and Kappa variants were first identified as early as 124, 36, 5, and 23 days before WHO
designation and 195, -45, 210, and 0 days before attaining a prevalence of 1% (median values
given the early prediction: FDdes = 29.5 and FDprev = 195).

Similar to the case with significantly dense subgraphs, sample sizes, and geographic di-
versity influence variant detection. A strong positive correlation was observed between the
number of sequences per country and the number of variants with positive forecasting depths
(ρ = 0.80, p < 0.01 for FDdes and ρ = 0.69, p < 0.01 for FDprev). Some of the earliest
forecasts, although not all, were made in the countries of origin for specific variants: notably,
Beta, Gamma, and Lambda variants were detected in South Africa, Brazil, and Peru 111, 150,
and 124 days before their designation times (Fig. S15-S20).

To assess the precision of HELEN, it is important to consider that the true positive network
communities identified by the algorithm might not only correspond to known VOCs/VOIs but
also to variants exhibiting increased transmissibility that failed to become VOC/VOI due to
factors such as genetic drift or containment through public health measures before achieving
a high global prevalence. Consequently, we classify a haplotype v identified by HELEN at a
specific time as spreading, if v is a known VOC/VOI or if the prevalence of variants highly
similar to v has increased or will increase by a factor of 10 in the past or future. Note that
a similar fold-based criterion was employed to define spreading mutations in [3]. A variant
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Figure 5: (a) Summary of comparison between VOCs/VOIs and inferred haplotypes (results
for individual countries are shown on Fig. S15-S20). Each bar plot depicts the comparison results for a
particular VOC/VOI; at each time point, bars correspond to inferred haplotypes from different countries closest
to that VOC, and the bar heights are equal to the respective f -scores. Colored dashed lines mark times when
the VOCs were designated by WHO. (b) and (c): forecasting depths (y-axis) with respect to the 1%
prevalence time and WHO designation time for each analyzed VOCs/VOIs over different countries. (d) and
(e): cumulative frequencies and prevalences of VOCs/VOIs over different countries at first variant call
times (in logarithmic scale). Dashed lines at the bottom of the plot signify that the corresponding variants were
detected at cummulative frequencies or prevalences 0. (f) Precision of haplotype inference. Blue box plot:
summary statistics of matching similarity at each time point over different countries. Red: median matching
similarity over time.
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v′ is considered highly similar to v if it contains at least 80% of v’s SAVs; this definition
encompasses variants genetically close to v and their descendants.

We measure precision using the matching similarity metric, denoted as AI→S . This metric
evaluates the agreement between inferred haplotypes (I) and spreading haplotypes (S) by
taking into account haplotype support as a proxy for haplotype call confidence and measuring
the extent to which inferred haplotypes, weighted by their support (σi : i ∈ I), are matched by
their nearest spreading haplotypes. Formally, the matching similarity is the average f -score
for inferred haplotypes in relation to their closest spreading haplotypes:

AI→S =
∑
i∈I

σi max
s∈S

fi,s (21)

A similar measure, in the reverse form of a matching error, was used, e.g., in [37].
The summary statistics for matching similarity at each time point across different countries

is summarized in Fig. 5f. HELEN achieved a median matching similarity above 75% from
July 30, 2020, and above 85% - from December 27, 2020. Initially, there was a considerable
variation in matching accuracy among countries, but it noticeably declined by early 2021.
These observations are associated with the density dynamics of epistatic networks in different
countries, whereas the precision increases as more epistatically linked SAVs are identified.

3.4 Running time and scalability

The computational methods employed in this study are reasonably efficient and scale to mil-
lions of sequences. The largest dataset analyzed, consisting of approximately 1.66 · 106 USA
sequences sampled up to the final time point, provides an upper bound for the running times.
For this dataset, constructing the epistatic network took ∼ 1 hour, estimating the p-values of
10 VOCs/VOIs took ∼ 1.8 hours, and inferring viral haplotypes took ∼ 38.6 hours. These
computations were carried out on a workstation equipped with a 3GHz Intel Xeon E5 CPU
and 64GB of RAM.

4 Discussion.

This study explores the hypothesis that viral variants with higher transmissibility can be
associated with dense communities in epistatic networks. Specifically, we investigated this
idea in the context of SARS-CoV-2 spike protein genomic variants and found strong support
for it. Our results indicate that network density can serve as a dependable indicator for the
timely detection or prediction of emerging SARS-CoV-2 variants. As a result, we proposed
an accurate, interpretable, and scalable method that can anticipate emerging SARS-CoV-2
haplotypes several months in advance, leading to early detection and improved forecasting.

These results were obtained using a synthetic approach that combines methods from statis-
tics, combinatorial optimization, and population genetics. Firstly, we employed a sensitive
statistical test that relies on a quasispecies population genetics model to identify linked pairs
of SAVs that are jointly observed more often than expected if the corresponding 2-haplotype is
inviable. This method allowed us to construct epistatic networks with rich community struc-
tures, providing a foundation for meaningful network-based inference. Secondly, we validated
our hypothesis by estimating network density-based p-values of SARS-CoV-2 haplotypes. This
allowed us to identify haplotypes with low p-values as potential variants of concern and demon-
strate that known VOCs achieve low p-values significantly earlier than they reach frequencies
high enough to be detected using conventional methods. Lastly, we utilized these findings to
design an algorithm for the early detection of viral variants that identifies dense communities
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of SAV alleles and combines them into haplotypes. We demonstrate the efficacy of this algo-
rithm by retrospectively identifying known VOCs and VOIs with high accuracy up to 10-12
months before they reached high prevalence and were designated by the WHO.

Compared to traditional phylogenetic lineage tracing, the proposed methodology offers
several advantages. In particular, it can detect viral variants as dense communities at very
low frequencies or even when actual variant sequences are not sampled - the latter is possible
when there are sufficiently many well-covered variant’s SAV pairs. This feature is naturally
inherited from our prior methods [42, 37] for reconstructing intra-host viral populations from
noisy NGS data, which have demonstrated the ability to accurately detect viral haplotypes
with frequencies as low as the level of sequencing noise. Additionally, the computational
complexity of our network-based methods is a function of genome length rather than a sequence
number. For SARS-CoV-2 data, the number of available sequences in GISAID is up to 4
orders of magnitude larger than the number of amino acid positions in the SARS-CoV-2 s-
gene (∼ 1.5 · 107 sequences versus 1.27 · 103 amino acid positions). This feature makes the
proposed algorithms considerably more scalable than phylogenetic methods.

It is important to note that there are limitations to this study, as the comprehensive fore-
casting of viral evolution is inherently an intractable problem. While the proposed methods
have shown promising results, caution should be exercised when interpreting them. Our find-
ings by no means suggest that viral evolution is a deterministic process that can be predicted
using mechanistic models. Instead, they demonstrate how to identify several potential evo-
lutionary trajectories among exponentially many possibilities. These trajectories can guide
further investigation and prioritization of functional screening. Furthermore, our method is
based solely on genomic data, and its effectiveness could be enhanced by incorporating epi-
demiological and structural biology data and models. Additionally, our results highlight the
significance of robust and diverse sampling practices, as early detections were predominantly
made in countries with larger sample sizes, and some variants were only detected early in their
countries of origin.

The utilized epistasis model is another limitation of this study as it only considers the
epistatic interactions between SAV pairs (”second-order epistasis”). Although combinations
of mutations can have more complex and non-linear fitness effects involving higher orders
of epistasis, this model is justifiable for several reasons. Firstly, it is the minimal model that
enables the detection of multiple overlapping haplotypes, which is an improvement over the mu-
tation independence assumption used in other studies [3] that, in general, only allows ranking
and prioritization of mutations. Secondly, k-haplotypes with k ≥ 3 may not have sufficiently
high frequencies to be detected, thereby affecting the method’s predictive power. In contrast,
pairs are always covered by more sequences and can be detected earlier. Lastly, accounting
for higher-order combinations of mutations can increase the computational complexity of the
problem while the second-order model remains computationally tractable.

Finally, we believe that the methodology proposed in this study is not limited to SARS-
CoV-2 and can be extended to other pathogens. The high sensitivity of HELEN should make
it particularly suitable for detecting emerging and circulating strains of pandemic viruses, such
as HIV or Hepatitis C.

5 Data and materials availability

Code developed and used in this study, as well as generated secondary data, are available at
https://github.com/compbel/HELEN (DOI: 10.5281/zenodo.7768736).
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