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Abstract

The limited capacity of the brain to retain information in working memory has
been well-known and studied for decades, yet the root of this limitation remains
unclear. Here we built sensory-cognitive neural network models of working mem-
ory that perform tasks using raw visual stimuli. Contrary to intuitions that
working memory capacity limitation stems from memory or cognitive constraints,
we found that pre-training the sensory region of our models with natural images
imposes sufficient constraints on models to exhibit a wide range of human-like
behaviors in visual working memory tasks designed to probe capacity. Examining
the neural mechanisms in our model reveals that capacity limitation mainly arises
in a bottom-up manner. Our models offer a principled and functionally grounded
explanation for the working memory capacity limitation without parameter fit-
ting to behavioral data or much hyperparameter tuning. This work highlights
the importance of developing models with realistic sensory processing even when
investigating memory and other high-level cognitive phenomena.
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1 Introduction

Working memory allows us to temporarily retain information and make complex
decisions beyond reflexive responses to stimuli [1]. One enduring puzzle in cognitive
neuroscience is the seemingly limited capacity of working memory [2, 3]. For instance,
in a classical visual working memory paradigm [4], a subject is shown a set of colored
squares, and after a brief delay, presented with another set that is either identical or
has one of the squares with changed color. Humans’ or other animals’ performance
in detecting the color change declines markedly as the number of colored squares (set
size) increases – a phenomenon known as the set size effect. It remains perplexing that
our ability to perform this straightforward task is so restricted, despite the potential
involvement of billions of neurons in the brain.

Numerous studies over the past decades have led to phenomenological models that
accurately fit and predict human behavior in several dominant (visual) working mem-
ory paradigms [4–10]. Yet, the fundamental question about the origin of the working
memory capacity limitation remains a puzzle. We propose that a comprehensive theory
of working memory capacity limitation should satisfy the following three desiderata.
It should (1) account for the wide range of behavioral patterns of humans and animals
in working memory tasks used to study capacity, (2) explain the neural mechanisms
underlying these limitation, and (3) offer a principled or functionally grounded expla-
nation for the observed limitation. In this study, we aim to develop models that fulfill
all three desiderata, a feat that existing models generally do not satisfy.

Two main classes of phenomenological models, discrete slot [4, 5, 7, 11] and contin-
uous resource [6, 8, 12] models, have been proposed to quantitatively explain human
behavior in working memory tasks used to probe capacity, particularly in the visual
domain. Slot models posit a limited number of discrete memory slots to hold stimuli.
“items” that are allocated slots will be remembered with high fidelity, while informa-
tion about stimuli without a slot is lost [7]. In contrast, resource models posit that
individuals possess continuous resources that can be flexibly divided among items [8].
The total amount of resources is limited and can be allocated to encode multiple
stimuli, resulting in varying degrees of memory fidelity. In addition, signal detection
models explain the set size effect by the decreasing signal-to-noise ratio when more
stimuli are in memory [9, 13]. Although accounting for detailed behavioral measure-
ments, these models are usually descriptive and do not give a principled answer to why
we have a particular capacity limitation. The number of slots, amount of resources, or
noise are fit to the behavioral data instead of being derived from a principled account.
Furthermore, it is hard to map the abstract psychological constructs in these models
to neural mechanisms. More recent models try to give a more normative account for
the limitation in terms of the trade-off between encoding precision and neural spiking
cost [10, 14, 15]. However, assumptions in these models, such as neural cost, are hard
to measure and validate in experiments.

Several neural mechanistic theories have been developed to explain the capacity
limitation of working memory [16–19]. For example, ring attractor models propose
that storing multiple items leads to interference between the attractors representing
each item, thereby limiting capacity [16]. Another class of theories posits that multi-
ple objects are encoded at different oscillation phases, and only a limited number of
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items are encoded at each cycle [18, 20]. However, the extent to which these neural
mechanistic models can explain a wide range of behavioral data in capacity-probing
tasks remains to be determined.

Functional accounts for the working memory capacity limitation have also been put
forth. These theories generally argue that the capacity limitation is either functionally
advantageous [21, 22] or a byproduct of another function, such as flexibility [17, 23]
or predicting the future [23]. In addition, research in child development suggests that
capacity limitation may be beneficial for language acquisition [24]. However, how these
insights could be applied to build models of working memory to explain behavioral
and neural data is mostly unexplored.

To bridge the gap between varying perspectives on working memory capacity lim-
itations, it is crucial to examine the fundamental units used for measuring capacity.
Working memory capacity is often measured in basic units of “items” [3], and resources
or slots are also allocated to “items” [7, 8]. However, the definition of an “item” in real-
world scenarios remains unclear. Previous models of working memory capacity often
assume that stimuli are already disentangled and encoded into individual features or
items, with little explanation of how this process occurs. Understanding working mem-
ory limitations necessitates a deeper exploration of realistic sensory processing, which
previous models have largely overlooked. Previous models generally fail to account for
the potential impact of realistic sensory processing, as they often use simplified sen-
sory representations as inputs to the memory system. Moreover, these oversimplified
assumptions restrict the applicability of these models across a broad range of tasks
since each new task requires the creation of new encoding assumptions. Furthermore,
these assumptions are inapplicable to working memory tasks involving realistic objects
[25].

To investigate the long-standing puzzle of working memory capacity limitations, we
bypass the assumptions of basic units (“items”) of working memory by constructing
models that perform working memory tasks using raw sensory inputs in pixel space.
Capitalizing on advancements in modeling the ventral visual stream [26–28] and fronto-
parietal regions [29, 30], we develop sensory-cognitive neural network models that
combine a visual system and a cognitive system. Distinct from previous models of
working memory, our approach introduces a new class of models without explicit
assumptions of limited slots, resources, or noise. In our models, we found that the
combination of two parsimonious design principles - naturalistic sensory constraints
and functional training objectives of working memory tasks - produces models that
match a broad spectrum of behavioral data related to capacity limitations. Our model
presents a normative and functionally grounded explanation that elucidates both the
behavioral and neural aspects of visual working memory, fulfilling all three previously
mentioned model desiderata.

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.30.534982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534982
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Image-computable sensory-cognitive models of visual working memory. (a) The inputs to our
models are temporal sequences of images. Our image-computable model can be applied to arbitrary
stimuli in raw pixel space, ranging from natural images (top) to abstract visual stimuli used in
psychology or neuroscience experiments (bottom). (b) Schematics of the models we constructed.
The models comprise two parts, the sensory system, and the cognitive/memory system. The sensory
system is modeled by a CNN that receives an image as input and generates an output (a sensory
embedding) at each time step. The cognitive/memory system is modeled by an RNN, which receives
the sensory embedding and its own recurrent input at each time step to generate the behavioral
output. The cognitive/memory system also generates top-down feature and spatial modulation to
the sensory system [31]. The two-system model could be trained using different schemes. (Top) The
entire model can be trained end-to-end on a working memory task. (Bottom) The sensory system can
be pre-trained on other tasks and fixed before the cognitive/memory system is trained on a working
memory task. The colors here indicate training objectives. (c) Our models generate a sequence of
outputs, such as decision variables or motor outputs, depending on the tasks it is trained to perform.

2 Results

2.1 Image-computable sensory-cognitive models of visual
working memory

We developed neural network models that perform visual working memory tasks
closely resembling those commonly used in human and animal experiments, using raw
visual stimuli in pixel space (Fig.1a). Each model consists of two primary components:
the sensory system and the cognitive system (Fig.1b). The sensory system, which emu-
lates the ventral visual stream, is modeled using a convolutional neural network (CNN)
[26–28]. The cognitive system, representing the prefrontal and/or parietal regions, is
modeled using a recurrent neural network (RNN). RNNs are widely used to model
neural dynamics and geometry in cognitive regions of the brain [29, 30, 32]. The CNN
processes visual inputs, while the RNN supports short-term memory throughout the
delay period. Additionally, the RNN generates top-down attentional modulation to the
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CNN. This attentional modulation enhances model performance; however, removing
it does not alter the central claims of this paper.

In a single trial, the model sequentially receives a series of images, including blank
images for the delay period, and generates a sequence of behavioral outputs. At each
time step in a trial, the image is input into the CNN, and its output is subsequently
fed into the RNN, along with the previous RNN hidden state. The RNN sends top-
down feedback to modulate the CNN processing at the next time step. The behavioral
output is derived from the RNN’s hidden units (Fig.1c). Depending on the specific
task, the output may be a binary decision or continuous variables indicating saccades
or other movements.

Various training schemes for the models can be used. One approach involves
training the entire sensory-cognitive model “end-to-end” using supervised learning to
perform a specific working memory task. Alternatively, the sensory region could be
pre-trained on different tasks using natural images [33, 34], including image classifica-
tion tasks [35] using labeled images or (contrastive) self-supervised learning tasks [36]
without using labels. After this pre-training, the sensory region is frozen, and the rest
of the model is trained to perform the cognitive task using supervised learning.

2.2 Naturalistic pre-trained models exhibit human-like
capacity limitation in change detection tasks

Fig. 2 Naturalistic pre-trained models exhibit human-like capacity limitation in the change detection
task. (a) A schematic of the change detection task. (b) Three example trials with different numbers of
stimuli (set size 3, 5, 10). (c) The performance of end-to-end trained and sensory pre-trained models
on change detection task with different set sizes. (d) Human performance on change detection task,
from ref. [4]. (e) The hit rate and false alarm rate of model decisions in the change detection task at
different set sizes. (f) the same analysis but for behavioral data, from ref. [37]. (g) ROC analysis of
model decisions in change detection at different set sizes. (h) The same analysis, but for behavioral
data, from ref. [13]. (i) The proportion of reporting a change in our model varies with the change
magnitude at different set sizes. (j) The same analysis, but for behavioral data, from ref. [37].
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Seminal studies investigating the visual working memory capacity have employed
the change detection paradigm [4, 13]. During the sample period of these tasks, human
or animal subjects are presented with an array of stimuli, such as colored squares or
oriented bars. Following a brief delay period, during which the stimuli disappear, the
same array of stimuli is displayed again during the test period. However, unbeknownst
to the subjects, some stimuli may change color or orientation. The subjects’ task is
to report whether a change has occurred. Human performance in detecting changes
rapidly declines as the number of stimuli to be remembered increases, a phenomenon
known as the set size effect. This effect supports the notion of limited working memory
capacity, as humans cannot hold an arbitrary number of stimuli in mind.

We trained our models to perform the change detection task using images with
varying numbers of colored squares (Fig.2a). The models are trained through super-
vised learning to determine at the end of each trial whether a color change has
occurred. When both the CNN and RNN are trained end-to-end on this task, our
models exhibit super-human performance, achieving near-perfect accuracy regardless
of the tested set size (Fig.2c). This finding suggests that the sensory-cognitive model
architecture studied here possesses the capacity to perform the task almost flawlessly,
surpassing human ability.

However, we observed strikingly different results when imposing naturalistic con-
straints on our models. Modern computational models of the ventral visual stream rely
on convolutional neural networks (CNNs) trained on large-scale natural image tasks
[27, 28]. After pre-training the sensory regions of our models with similar procedures
and freezing the sensory region during change detection task training, our models’ per-
formance closely aligns with that of humans [4]. Detection accuracy rapidly declines as
set size increases, indicating a limited capacity (Fig.2c,d). We will further discuss the
differences between end-to-end trained and sensory pre-trained models in subsequent
sections.

In addition to the set size effect, our sensory pre-trained models match a wide
range of experimental findings in change detection tasks. We analyzed the hit rate and
false alarm rate of our model decisions, and found that as the set size increases the
hit rate decreases and false alarm rate increases (Fig.2e), consistent with human data
[37] (Fig.2f). We recorded our model’s decision confidence and performed Receiver
Operating Characteristic (ROC) analysis, revealing smoothly increasing ROC curves
within each set size (Fig.2g). This result is similar to human data [13], and is seen
as a key support for the resource models (Fig.2h). In another experiment, we varied
the color change magnitude in trials with a change, finding that the proportion of
reporting a change increases with the change magnitude and the slope of the increase
declines with the set size (Fig.2i), again mirroring human behavior [37] (Fig.2j).

These results indicate that naturalistic sensory pre-training imposes a strong
and robust constraint on our models, leading them to exhibit human-like capacity
limitations, aligning with a wide range of experimental findings.

2.3 Capacity limitation in delayed estimation tasks

In this section, we demonstrate that naturalistic pre-trained models exhibit human-
like capacity limitations in another widely-studied task paradigm: delayed estimation
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Fig. 3 Naturalistic pre-trained models exhibit human-like capacity limitation in the delayed esti-
mation task. (a) A schematic of the delayed estimation task. (b) The report error distribution with
different set sizes from the the sensory pre-trained model. (c) The same analysis with behavioral
data, from ref. [8]. (d) The standard deviation of the report error distribution (Recall SD) at different
set sizes in sensory pre-trained and end-to-end trained models. The report error is measured as the
angular difference between the reported color and ground-truth color in the color ring. (e) The same
analysis with behavioral data, from ref. [8]. (f) The precision of report (reciprocal of the standard
deviation of the report distribution) decreases with set size in the sensory pre-trained model. This
trend can be fit by a power law function. (g) The same analysis with behavioral data, from ref. [6].
(h) The residual of report error distribution from the sensory pre-trained model. The residual is the
report error distribution subtracted by a mixture of von Mises and uniform distribution fitted to the
same distribution. (i) The same analysis with behavioral data, from ref. [38]. (j) The model report
precision of an item cued or un-cued by a prospective prioritizing cue with different cue validity. (k)
Analyses of behavioral data reveal that the cued stimulus have higher precision compared to uncued
stimuli, from ref. [8]. (l) The report error distribution of the sensory pre-trained model grouped by
different model confidence levels when the set size is fixed at 6. (m) The same analysis with behav-
ioral data, from ref. [39]. (n) The report distribution of sensory pre-trained model centered around
non-target distractors. (o) Non-target report distribution when the set size is 4 in behavioral data,
from ref. [6].

tasks [5, 13]. These tasks provide a more detailed assessment of working memory
content compared to the change detection task, which only requires binary decisions
from subjects. In one example of delayed estimation tasks (Fig.3a), subjects observe
an array of stimuli, such as colored squares, during the sample period. Following a
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brief delay, one stimulus location is cued, and subjects must report the color of the
cued stimulus in a continuous space based on their retained memory. Experimental
findings reveal that humans’ report errors increase rapidly as the number of stimuli
(set size) increases [8], indicating a capacity limitation in working memory.

Consistent with our findings in change detection tasks, end-to-end trained models
exhibit near-perfect performance with very low error, even when the set size is large
(blue curve, Fig.3d). This again indicates that our model architecture possesses the
capacity to perform the task far beyond human capabilities. In contrast, sensory pre-
trained models display rapidly increasing report error with set size, similar to human
behavioral data [8] (Fig.3b-e). Although report precision decreases with set size in
both end-to-end trained and sensory pre-trained models, only that of the sensory pre-
trained model can be accurately fit by a power-law function (Fig.3f), as seen in human
data [6] (Fig.3g).

In addition to the set size effect, we found our sensory pre-trained model accounts
for a wide range of other experimental findings in delayed estimation tasks, many of
which have been essential to the debate between slot and resource models. The human
report error distribution in delayed estimation tasks is characterized by a unique shape,
distinct from the von Mises distribution, featuring a sharper peak and flatter tails [38].
Our model can also explain this unique shape (Fig.3b). When the error distribution
of our models is fitted with a mixture of von Mises and uniform distributions, the
residual between the distribution and the fit resembles human data [38] (Fig.3h,i).

In some versions of the delayed estimation task, a prioritizing cue appears before
the sample period, indicating that one of the stimuli has a higher probability of being
probed later. Humans exhibit enhanced memory precision for the cued item at the cost
of precision for the uncued items [40], and this effect increases with cue validity. This
is seen as support for a rational allocation of limited continuous resources for working
memory. Our sensory pre-trained models demonstrate similar behavior [8] (Fig.3j,k).

Our models also account for behavioral findings where subjects report their con-
fidence during memory reports. In our sensory pre-trained model, when we require
the model to report a confidence rating (see Methods), the error distribution widens
when confidence is lower, even when the set size is fixed (Fig.3l), consistent with
experimental findings [39] (Fig.3m).

Another well-known phenomenon in delayed estimation tasks is the feature bind-
ing error or swap error. Experimental subjects occasionally report the feature of a
distractor stimulus instead of the cued stimulus [6]. The root of this swap error is not
well understood and poses challenges for even the most recent visual working memory
models, which often have overly simplified stimulus encoding assumptions. Our sen-
sory pre-trained models exhibit swap errors (Fig.3n,o), opening the door for further
investigation of the underlying mechanisms of this error.

In summary, our results demonstrate that naturalistic sensory pre-trained models
account for a wide range of experimental findings in delayed estimation tasks.
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Fig. 4 Limiting model size or adding noise to model do not lead to human-like capacity limitation
in end-to-end trained models. (a) Two different ways to add noise to the model. Input noise is
applied to the images as inputs to the CNN. Recurrent noise is applied to recurrent units of the
RNN. (b) Change detection performance of end-to-end trained models with different CNN or RNN
sizes. Number inside parentheses indicate sizes of the model: (number of CNN channels, number
of RNN hidden units). End-to-end models are slightly offset for visualization purpose. (c) Change
detection performance using end-to-end trained models with different levels of input (sensory) noise.
Each curve indicates the performance at one noise level. Darker colors indicate higher noise level
(from light to dark, standard deviation of the random normal noise: 0.1, 0.3, 0.5). Inputs noise are
added to the input images. The open error bars here indicate standard errors, and closed error bars
on other figures indicate standard deviation (SD). (d) The same as (c). but with different levels of
recurrent (memory) noise added to the RNN. Darker colors indicate higher noise level (from light to
dark, standard deviation of the random normal noise: 0, 0.03, 0.06, 0.1). (e-g) The same as in (b-d),
but for the delayed estimation task. The curves here show the standard deviation (Recall SD) of the
report error distribution at different set sizes.

2.4 Constraints other than naturalistic sensory pre-training do
not lead to human-like capacity limitation

In sensory pre-trained models, the connection weights in the sensory neural network
are established during pre-training and remain fixed when trained on working memory
tasks. Sensory pre-training can be viewed as a form of constraint imposed on end-
to-end trained models. It is possible that introducing other constraints to end-to-end
trained models could also result in human-like capacity limitations. Therefore, we
investigated the effect of other constraints, such as limiting the model size and adding
sensory or memory noise.

In the change detection task, we reduced the number of channels in the CNN
or the number of hidden units in the RNN of the end-to-end trained models. We
found these size constraints have modest impact on the performance of the end-to-end
trained models. End-to-end models still perform much better than humans and have
no human-like set size effect even with a significantly smaller model size (Fig.4b). This
result suggests that the model architecture we used has ample capacity to perform the
task almost perfectly when trained end-to-end on the task.

Sensory or memory noise is an important factor that results in capacity limitations
in many previous models of working memory [13, 14]. To investigate whether noise
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in our model can also lead to human-like capacity limitation, we added various levels
of sensory or memory noise to end-to-end models during evaluation on the change
detection task (Fig.4c,d) or the delayed estimation task (Fig.4f,g). The sensory noise
is added to each input image, and the memory noise is added to the recurrent units
of the RNN. When sensory noise is added to the model, performance on the change
detection task decreases and the report error increases almost uniformly regardless
of set size (Fig.4c,f). When memory noise is added, the performance on both tasks
still show strong uniform decreases. Although we see signs of set size effect in these
conditions (Fig.4d,g), the performance on these tasks does not resemble behavioral
data seen in Fig.2 and Fig.3.

In summary, human-like capacity limitation cannot be easily obtained by adding
many other constraints to our end-to-end trained models, such as limited model size
or sensory and memory noise. Our results suggest that naturalistic pre-training may
be an essential constraint for models to exhibit human-like capacity limitation.

2.5 Robustness to hyperparameters and model architectures

Fig. 5 Robustness of human-like capacity limitation to hyperparameters and different model archi-
tectures. (a) Change detection performance of sensory pre-trained models with different CNN width
and RNN size. Number inside parentheses indicate sizes of the model: (number of CNN channels,
number of RNN hidden units). (b) Change detection performance of models with larger CNNs that
receives 224 by 224 sized images and pre-trained on ImageNet. (c) The same as (b), but for models
with randomly initialized CNN weights. (d) Change detection performance of models with different
sensory pre-training paradigms.

The size of neural network models is typically critical in determining their capacity.
It is possible that the human-like set size effect in our sensory pre-trained models
trivially results from specific model size hyperparameters. To investigate whether the
observed set size effect in sensory pre-trained models is robust to hyperparameters, we
varied the width of the CNNs or the number of units in the RNNs in these models. We
discovered that the set size effect in naturalistic pre-trained models is robust to the
model size once the model size exceeds a small threshold (Fig.5a). We further examined
models with other CNN architectures pre-trained with images from ImageNet [34]
with a larger input size (224x224 pixels). These models also demonstrate a decrease
in performance when we increase the set size, although the magnitude of the decline
is smaller (Fig.5b). The performance of models with randomly initialized versions of
these CNNs does not show an apparent set size effect (Fig.5c).
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We further investigated other pre-training paradigms for the sensory regions. Con-
trastive self-supervised learning can be used to train CNNs using unlabeled images,
and has been shown to result in CNNs that capture visual responses of monkeys
[27] and mice [41]. Our models also exhibit the set size effect when the CNNs are
pre-trained on natural images with contrastive learning (Fig.5d). However, when the
sensory region is pre-trained to recognize handwritten digits or merely randomly ini-
tialized, the models’ performance is much closer to chance performance, and the set
size effect is weaker (Fig.5d).

These results indicate that each of the separate factors—model architecture, train-
ing objective, and training data—is in itself insufficient to explain the human-like set
size effect. The human-like set size effect only occurs when we combine pre-training
the convolutional network on naturalistic images with the appropriate objective.

2.6 Bottom-up capacity limitation from sensory constraints

Fig. 6 Neural mechanisms of capacity limitations in our models. (a) fMRI BOLD signal amplitude
in parietal regions when different number of stimuli are presented, from ref. [8]. (b) Overall activation
in the second convolutional layers of the CNN in our model when presented with different number
of stimuli. (c) Accuracy of decoding a change or no-change in the change detection task using neural
activities at different layers in our model. ResBlock 1,2,3 mean the first, second, and third convolu-
tional blocks in the CNN, ResNet means the CNN output to the RNN. (d-g) The neural state space
encoding for one color patch at the presence of 0, 1, 2, and 3 distractors.

Behavioral models of visual working memory capacity frequently depend on
abstract constructs such as slots, resources, or noise. However, the neural substrates
corresponding to these constructs remain largely unidentified. In this paper, we offer a
preliminary analysis of neural activity in our models, aiming to potentially illuminate
the neural mechanisms underlying capacity limitations.

A commonly used marker for working memory-related activity in humans is
contralateral-delay activity. Studies suggest that the amplitude of this delay activity
correlates with the number of items remembered, reaching a plateau when more than
three or four stimuli are presented in a single trial [42]. Experiments analyzing fMRI
data have demonstrated that BOLD signals initially increase and then plateau as more
items are presented [43]. We recorded average neural activation in the CNNs of our
sensory pre-trained models and found that neural activation in the middle layer of the
sensory CNN exhibits similar trends to those observed in neural data (Fig.6a,b).
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Neurophysiological data obtained from monkeys performing working memory tasks
imply that interference between representations of multiple items, occurring in a
bottom-up manner, may serve as one potential mechanism underlying capacity limita-
tion [44]. To further explore the cause of capacity limitation in our sensory pre-trained
models, we examined the detectability of changes at various layers within our mod-
els. Specifically, we computed the neural activity of our model in response to both
the sample stimulus (an array of colored squares) and the test stimulus. We then
trained linear decoders to determine whether a change exists between the sample and
test stimuli, using neural activities from different model layers. Our findings reveal
that in the early sensory layers, neural activity retains sufficient information for the
linear decoder to nearly perfectly detect potential changes, irrespective of set size.
As we progress through the sensory hierarchy towards the cognitive region, informa-
tion about change or no-change gradually diminishes (Fig.6c). These results suggest
that capacity limitation in our model arises in a bottom-up manner, consistent with
electrophysiological observations.

To gain a deeper understanding of the nature of the interference, we conducted a
state space analysis on the neural activities. Our analysis revealed that as more distrac-
tors are added, the neural manifold encoding a single color patch shrinks (Fig.6d-g).
This implies that interference between multiple items results in the shrinkage of rep-
resentation for each item, potentially underpinning the increased error observed when
multiple items are retained in memory.

2.7 Capacity limitation with sequentially presented stimuli

Fig. 7 Capacity limitation in working memory tasks with sequentially presented stimuli. (a) A
schematic of the delayed estimation task where stimuli are presented sequentially. (b) The standard
deviation of the report error distribution (recall SD) of a sensory pre-trained model and an end-to-end
trained model in this task. (c) The performance of sensory pre-trained models with varying numbers
of hidden units in the RNN. (d) The recall SD of stimuli at different rank orders in the stimulus
sequence, across various set sizes.

In most working memory tasks involving multiple items, the items can be presented
either simultaneously or sequentially. Our previous results were obtained when mul-
tiple items (colored squares) were presented simultaneously. We found that capacity
limitation arises in a bottom-up fashion through interference building up already in
the sensory layers. However, when items are presented sequentially, no sensory inter-
ference exists in the feedforward CNN we studied. It remains unclear whether capacity

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.30.534982doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534982
http://creativecommons.org/licenses/by-nc-nd/4.0/


limitation may still be observed in our models. Consequently, we explored a version
of the delayed estimation task in which stimuli were presented sequentially (Fig.7a).

We found that the report error of the sensory pre-trained models increases rapidly
with set size (Fig.7b), demonstrating a form of set-size effect and, therefore, capacity
limitation. However, unlike the case of simultaneous presentation, the capacity lim-
itation is only observed when the number of units in the RNN is relatively low. As
more units are added to the RNN, the working memory capacity of the model easily
surpasses human capacity and appears to increase without bound (Fig.7c). Another
prominent effect in sequentially presented delayed estimation tasks is the recency
effect, in which the last stimulus in a sequence is remembered with higher accuracy
than other stimuli when probed. However, an analysis of our model’s report error
distribution does not reveal such a recency effect (Fig.7d).

These results suggest that, in tasks with sequentially presented stimuli, con-
straining the RNN may be necessary to explain the observed capacity limitation in
behavioral data. We can select a particular RNN size (∼ 100) that results in the set
size effect seen in behavioral data; however, this is not a realistic constraint, as millions
of parietal and prefrontal neurons in mammalian brains may be involved in working
memory tasks. Given the results in sequentially presented tasks, further investiga-
tion into specific constraints on model architecture or training objectives, particularly
focusing on the cognitive/memory region, is needed to fully explain the nature of
capacity limitations.

3 Discussion

In this study, we developed a new kind of computational model for visual working
memory by combining CNNs and RNNs. Our models consider more realistic sen-
sory encoding and can process raw sensory stimuli in pixel space. Without explicit
assumptions of slots or resources, we discovered capacity limitations resulting from
pre-training the sensory region of our model on naturalistic tasks using real-world
images. These sensory pre-trained models account for a wide range of experimental
findings in change detection and delayed estimation tasks. Additionally, our neural
network models enable us to analyze neural activities to elucidate the neural mech-
anisms underlying capacity limitations. We found that capacity limitations in our
model occur in a bottom-up fashion and are likely due to interference between mul-
tiple items in the sensory system. Our modeling results demonstrate that sensory
pre-training imposes sufficient constraints on the model to account for a broad range
of experimental findings.

Our results suggest two broader implications. First, even when studying memory
or other high-level cognitive tasks, it may be crucial to construct models that account
for realistic sensory processing rather than employing oversimplified stimulus repre-
sentations, as many memory phenomena are likely tightly linked to the specific sensory
domain. Second, when building neural network models of the brain, it is essential to
consider different neural systems with potentially distinct objectives and architectures
instead of a monolithic model trained end-to-end on a single objective.
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The importance of realistic sensory processing in working memory models has been
explored in a limited fashion recently. Schurgin and colleagues have pointed out the
importance of considering the perceptual similarity in the space of colors or faces used
for working memory task [9]. Hedayati and colleagues proposed a variational autoen-
coder model formed by CNNs and trained on images as a computational model for
working memory [45]. Using CNNs allow the model to remember familiar items using
neural representation from higher layers of the visual hierarchy while remembering
novel items using lower-level representation. However, the rich and detailed impact
of sensory processing on visual working memory capacity limitation has not been
characterized before.

Phenomenological models, such as the slot-based [7], resource-based [8], and sig-
nal detection models [9, 13], have demonstrated superior quantitative fits for human
behavior in working memory experiments. In contrast, our model only provides a qual-
itative match to human behavior. It remains to be seen whether the network can yield
a quantitatively precise match by adjusting selected parameters, such as noise level or
model size.

Despite this limitation, our model presents several fundamental advantages. In
addition to offering potential neural mechanistic accounts, as expected of a neural
network model, our model gives a principled and functionally grounded account for
the working memory capacity limitation. Consider the recent model based on signal
detection theory [9], which provides a superior and parsimonious fit to human error
patterns in the delayed estimation task. This theory explains the set size effect by
fitting different memory strength parameters to various set sizes. However, it needs to
explain why memory strength should decay rapidly, rather than more gradually, with
increasing set size. Our model proposes that the strong working memory limitation
arises from a fundamental “mismatch” between the objectives of the working memory
and visual system and the tasks employed to assess working memory.

From an evolutionary perspective, the working memory system’s purpose is pre-
sumably to temporarily store and manipulate critical information that informs future
actions, both external (movement) and internal (attention). The essential information
to be stored and manipulated is likely in the form of complex objects or concepts
rather than the colors of arbitrary patches. Consistent with this hypothesis, colors
are better remembered when they are part of meaningful objects [46], and human’s
working memory performance is higher for real-world objects [25].

Although our modeling results align qualitatively with a wide range of experi-
mental findings, some of our results do not provide a detailed match to behavioral
observations. For instance, in the original change detection study, human performance
remains high until it suddenly drops at 3-4 items [4]. Our modeling results do not
reproduce this sudden drop at a specific set size. The detailed performance profile
might depend on the particular experimental conditions of the original study, such
as the colors used, the size of the color patches, or the extent of the color change.
Our reproduction of the task aims to capture the essential features of those tasks, but
the experimental conditions are not identical. Instead of seeking precise quantitative
matches to experimental data, our objective here is to identify parsimonious design
principles that lead to a wide range of qualitative matches to data.
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Contrasting our simultaneous and sequential presentation results reveals that the
root of capacity limitation may be multi-faceted. In a simultaneous presentation task,
the capacity limitation likely arises from the interference of multiple stimuli in the
sensory system. However, in sequential presentation experiments, humans or animals
can encode each item without distractors but still exhibit limited working memory
capacity. In other experiments, even when the stimuli are presented simultaneously,
subjects have ample time to focus on each item individually but still exhibit capacity
limitations. Although we observed set size in sequential experiments by constraining
RNN size to a few dozens of neurons, it is still puzzling why humans or other animals
have a small capacity while having billions of neurons. Future works need to be done to
gain a more principled understanding of capacity limitation in sequential presentation.

As for what causes capacity limitation in sequential tasks, we have two specu-
lations. First, more constraints on the RNN memory model may be required. For
example, the RNN may need to be pre-trained on ethologically motivated tasks as
well [47], such as video predictions. Or some other regularization on the activation or
connection weights of the RNN may be needed [32]. Second, we may consider alter-
native model architectures. Experimental evidence from human neuroimaging and
non-human physiological studies suggests that working memory is stored in a dis-
tributed fashion across cognitive regions and the sensory hierarchy used to process
ongoing sensory information [48, 49]. Consequently, interferences may still exist within
the sensory hierarchy even when stimuli are encoded sequentially. Sensory-cognitive
networks that support working memory with a feedback loop between the visual and
cognitive systems may be essential to explore these questions. Besides long-range feed-
back loops, the visual system may need local recurrent processing, modeled through
convolutional recurrent neural networks [50].

Methods

Code sharing

The code for model, task, and data analysis will be made available at: https://github.
com/metaconsciousgroup/multisyswm.

Neural network models

Our models primarily consist of a Convolutional Neural Network (CNN) and a Recur-
rent Neural Network (RNN). The CNN processes raw images as input, and the
penultimate layer serves as input to the RNN. The behavioral output is readout from
the hidden units of the RNN. In some models, the RNN provides top-down modulation
to the CNN. The entire model receives a sequence of images as input and generate a
corresponding temporally dependent sequence of output simultaneously. In the change
detection task, the output is a score variable indicating a binary decision of change
or no-change. In the delayed estimation task, the output are two numbers indicating
the horizontal and vertical coordinate of the reported location. When the confidence
is needed to be reported, models with an additional output indicating the standard
deviation of the reported position is used. For simplicity, we assume the horizontal
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and vertical coordinate have the same standard deviation. All models are implemented
using the PyTorch library.

In most of our experiments, we employed a 20-layer ResNet convolutional neu-
ral network, following the design in [51]. This network architecture was designed
to process 32 × 32 sized images, such as those from the CIFAR10 dataset. Our
specific implementation is adapted from the PyTorch library implementation found
at: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py. For
Fig. 5c, we utilized pre-trained ResNet-18 or ResNet-50 to process larger images with
dimensions of 224 × 224. These models are trained on the ImageNet dataset. The
weights of these models are downloaded from the PyTorch library.

The RNN component of our model is based on the Continuous Time RNN (CT-
RNN) architecture. This kind of recurrent neural network is based on the differential
equations used to model spike rate in biological neurons and are commonly used in
neuroscience to better capture realistic neural dynamics. The update rule at each time
step is:

τ
dr

dt
= −r(t) + f(Wrr(t) +Wxx(t) + br)

In the discrete form, it is:

r(t+ 1) = r(t)

(
1− ∆t

τ

)
+

∆t

τ
f(Wrr(t) +Wxx(t) + br)

Here r(t) is a vector of the firing rate of the hidden units at time step t, Wr is the
hidden weight matrix, Wx is the input weight matrix, br is the bias. ∆t and τ are time
constants. Here we used ∆t

τ = 0.1. f() is the non-linear activation function. Here we
used tanh nonlinearity.

Top-down modulation is incorporated into the model using the Convolutional Block
Attention Module (CBAM) [31] approach. At each time step, the RNN generate a
feature modulation vector and a spatial modulation vector that are then applied to
the CNN activation in the next time step. The modulation is applied to the second
convolutional layer in the last ResNet block of each of the 3 layer. The CNN activation
is multiplied by the modulation vector and then passed to the next layer.

Tasks

All of our tasks uses a sequences of images as input, intended to mimic the tasks used
in human or animal experiments.

Change detection task. A single trial of the change detection task has three periods,
sample, delay, and test. In the sample period, the stimulus is an image with several
colored patches on a gray background. The image has the dimension of 32 × 32 and
each color patch has the dimension of 5 × 5. The positions of the colored patched
are sampled randomly while avoiding overlap between different patches. The colors of
these patches are sampled randomly from a set of 6 distinct colors, or sampled from
a continuous color ring when we need to vary the magnitude of the color change. The
color ring is in the CIE L*a*b color space, centered at L = 54, a = 21.5, and b = 11.5,
with a radius of 49. In the delayed period, the color patches disappear and a blank
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gray image is used as the input. In the test period, the same image in the sample
period is used as input, but 50% of the time, the color of one of the patch could be
changed to another randomly sampled color. The model need to remember the sample
stimulus and use that information to make a decision of on whether there is a change
of color or not.

Delayed estimation task. A single trial of the delayed estimation has three periods,
sample, delay, cue/report. In the sample period, similar to the change detection task,
the stimulus is an image with several randomly sampled colored patches on a gray
background. The colors are sampled from the color ring mentioned before. The patches
disappear in the delay period. In the cue/report period, a black patch appears in the
same location as one of the colored patches shown during the sample period, indicating
the model need to report the color of that cued patch. The model generate a response
to report the color of the cued patch on a continuous color ring. The report output is
the horizontal and vertical coordinate of the color on the color ring. The ground-truth
color coordinate in the report ring is the same as the ring used to sample the colors.

Delayed estimation task with prioritizing cues. This task is similar to the above-
mentioned delayed estimation task, except that an additional cue appears before the
sample period, indicating that one of the squares is more likely to be probed later.

Delayed estimation task with sequential presentation. This task is similar to the
above-mentioned delayed estimation task, except that there is a longer sample period.
Each colored square is presented one-by-one to the model instead of being presented
simultaneous.

Model Training

Models are trained with gradient decent with Adam optimizer implemented by the
PyTorch library.

Sensory Pre-training. For models that involves sensory pre-training, the CNN part
of the model is first trained on a sensory task. In classification pre-training, the 20 layer
ResNet is trained on image classification on the CIFAR10 dataset, which contains 10
categories of natural images. For Fig 5c, we used ImageNet pre-trained ResNet-18 and
ResNet-50 downloaded from the Torchvision library. In contrastive pre-training, we
follow the contrastive pre-training pipeline in [36] and trained the CNN using images
from the CIFAR10 dataset. The code for contrastive pre-training is adapted from
https://github.com/sthalles/SimCLR.

Supervised task training. After sensory pre-training, we drop the last layer of the
CNN and connect the penultimate layer to the RNN. Then the entire model, including
parameters used to generate attention modulation, is trained on the working memory
task using supervised learning to minimize the error between output of the model
and ground truth. Separate models are trained for the change detection task and the
delayed estimation task. In the change detection task, the loss is the Binary Cross
Entropy between the target and the input probabilities. In the delayed estimation task,
the loss is the mean squared error between the model output and the ground truth.

In sensory pre-trained models, the weights of CNN is fixed during supervised task
training. In end-to-end trained models, the weights of CNN are randomly initialized
and are trained with the RNN together on the task.
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Analysis of Behavioral and Neural Data

Change detection task. For ROC analysis in the change detection task, the model
output score of the binary decision is recorded and used to perform the analysis. In the
delayed estimation task, we recorded the model output error and fitted a mixture of
von Mises and uniform distribution to the error distribution, as in [38]. The residual is
calculated in the following ways. First, we pool all the error at different size to generate
an overall report error distribution. Then, we subtract the best fitting mixture from
the report error distribution.
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