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Abstract24

1. Social network analysis of animal societies allows scientists to test hypotheses about social25

evolution, behaviour, dynamical processes, and transmission events such as the spread of26

disease. However, the accuracy of estimated social network metrics depends on the proportion27

of individuals sampled, actual sample size, and frequency of observations. Robustness of28

network metrics derived from a sample has thus far been examined through various simulation29

studies. However, simulated data do not necessarily reflect the nuances of real empirical data.30

2. We used some of the largest available GPS telemetry relocation datasets from five species of31

ungulates characterised by different behavioural and ecological traits and living in distinct32

environmental contexts to study the bias and robustness of social network metrics. We33

introduced novel statistical methods to quantify the uncertainty in network metrics obtained from34

a partial population suited to autocorrelated data such as telemetry relocations. We analysed35

how social network metrics respond to down-sampling from the observed data and applied36

pre-network data permutation techniques, a bootstrapping approach, correlation, and regression37

analyses to assess the stability of network metrics when based on samples of a population.38

3. We found that global network metrics like density remain robust when the sample size is39

lowered, whereas some local network metrics, such as eigenvector centrality, are entirely40

unreliable when a large proportion of the population is not monitored. We show how to41

construct confidence intervals around the point estimates of these metrics representing the42

uncertainty as a function of the number of nodes in the network.43

4. Our uncertainty estimates enable the statistical comparison of social network metrics under44

different conditions, such as analysing daily and seasonal changes in the density of a network.45

Despite the striking differences in the ecology and sociality among the five different ungulate46

species, the various social network metrics behave similarly under downsampling, suggesting47

that our approach can be applied to a wider range of species across vertebrates. Our methods48

can guide methodological decisions about animal social network research (e.g., sampling design49

and sample sizes) and allow more accurate ecological inferences from the available data.50

51

Keywords - bootstrapping, correlation, GPS-based radiotelemetry, network metrics, permuta-52
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tions, social network analysis, sub-sampling, uncertainty53

Introduction54

Social network analysis (SNA) has proved to be a valuable toolkit for biologists to understand di-55

verse interactions among animal communities and their effect on the environment (James et al.,56

2009; Sosa et al., 2021a; Kulahci et al., 2016). SNA also helps in understanding how environmental57

factors influence the structure of animal communities (Hock and Fefferman, 2011; Krause et al.,58

2016, 2010; Albery et al., 2021) and informs how minor changes at the individual level propagate59

changes in the overall behaviour of the population (Aplin et al., 2012; Farine et al., 2015; Shimada60

and Sueur, 2014) which in turn, contributes to informing epidemiological models, implementing61

customized measures for disease control, designing wildlife conservation policies, and resource62

allocation (Egan et al., 2023; Silk et al., 2017). The term SNA is used to refer to the analysis of63

network data, for which there is an expanding set of statistical models and inferential procedures64

(see Salter-Townshend et al. (2012) for an introduction). Under this definition, the observed in-65

teractions between individuals are taken as fact and the goal is to summarise the data and make66

various inferences from it about the structure of the population of individuals and perhaps also67

of the behaviour of each individual. However, the term SNA may more broadly refer to the algo-68

rithmic construction of interactions data from direct observations of individuals, followed by the69

application of these bespoke SNA based methods. It is therefore important to clarify since the70

beginning that in our paper we demonstrate some key considerations that should be made in71

both the construction and analysis of animal social networks (Croft et al., 2008;Whitehead, 2008;72

Krause et al., 2007; Lusseau et al., 2008) with a focus on assessing the reliability and robustness73

of the more commonly reported network metrics, as calculated on interactions data constructed74

from observations of individuals.75

One of the fundamental requirements for performing social network analysis on animals is that76

a substantial portion of individuals in the population is uniquely identified and observed for a suf-77

ficient period (Farine and Whitehead, 2015). Recent advances in Global positioning system (GPS)78

telemetry technology have led to a significant boost in animal tracking and enabled wildlife ecol-79

ogists to monitor and map minute details of animal movements, including those of highly cryptic80

species (Smith and Pinter-Wollman, 2021; Cagnacci et al., 2010; Crofoot, 2021; Webber and Wal,81

2019). However, deploying GPS devices can be expensive. Commercial wildlife devices cost thou-82
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sands of dollars each, depending on the study species and required features. Even the recent83

low-priced solutions cost more than $100 per collar (Foley and Sillero-Zubiri, 2020), which restricts84

the number of individuals monitored simultaneously. In addition to this, issues in marking all in-85

dividuals of a population include constraints on the human effort required (which is also costly),86

geographical constraints of someor all individuals in the populationwhere capturemethods donot87

work, personality traits of individuals as some individuals are capture-shy (Biro and Dingemanse,88

2009), and ethical and other issues raised by some stakeholder.89

Therefore, data representing a large sample size is a significant limitation, especially while90

analysing social networks (He et al., 2022). This is a concern as the relations among the members91

obtained from a sample of GPS-tracked individuals under represent their complete set of relation-92

ships (Croft et al., 2008). Furthermore, missing individuals from the samplemay strongly influence93

the sampled individuals’ social measures. Thus, relational data could be expected to respondmore94

unreliably to sampling from a population than other data types (Silk et al., 2015). The relational95

nature of network data also causes it to violate the assumptions of independence that underlies96

most of the parametric statistical tests (Farine and Whitehead, 2015) and creates an additional97

challenge in using a sample of individuals to make inferences about the population.98

It is therefore crucial that animal social network studies consider the robustness of current99

methodological approaches to data rarefaction and randomization, as both the collected data and100

analytical methods are prone to biases inflicted by specifics of sampling protocols or the species101

under study (Sosa et al., 2021a). Networks constructed using a random subset of population are102

termed as partial networks (Silk et al., 2015). The effect of using partial networks on the proper-103

ties of individual metrics in animal social network analysis has received so far little attention (Croft104

et al., 2008; Perkins et al., 2009; Cross et al., 2012; Silk et al., 2015) and to date, there are no es-105

tablished methods for estimating if a partial network is a good representation of the real social106

structure (Farine and Strandburg-Peshkin, 2015), and the associated level of uncertainty (Bonnell107

and Vilette, 2021). Previous research has been primarily focused on the impact of missing nodes108

on social network structure, suggesting that the network statistics derived from partial data are109

biased estimators of the overall network topology (Bliss et al., 2014). Thus, understanding how110

network statistics scale with sampling regime is important. Some preliminary work has been con-111

ducted to determine scaling methods, predict true network statistics from a partial knowledge of112

nodes, links or weights of a network, and eventually validate the results on simulated networks113
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and twitter reply networks (Bliss et al., 2014)). Another simulation study (Silk et al., 2015) has fur-114

ther highlighted the importance of understanding consequences of missing random nodes from a115

complete animal social network. Specifically, the networks have been simulated following a typical116

fluid fission fusion social system to determine the precision and accuracy of measures of individ-117

ual social positions based on incomplete knowledge. On the contrary of what expected, Silk et al.118

(2015) found that in social networks based on fluid social interactions precise inferences about indi-119

vidual social position can be derived even when not all individuals in a population are identifiable.120

Despite the importance of such findings, since then research has not progressed in this field. In121

particular, there is the necessity to understand the level of confidence, and associated bias, with122

whom the current methods adopted to estimate partial network from subsampled populations123

actually catch the structure of the real-world animal social network (Farine and Whitehead, 2015;124

Sosa et al., 2021b; Silk et al., 2015).125

Our paper aims to present methods that can assess the sufficiency (i.e., based on estimated126

bias and uncertainty) of the available data sample to perform social network analysis and obtain127

a measure of accuracy for global and node-level network metrics (Farine and Whitehead, 2015).128

Our approach is particularly suited (but not limited) to telemetry relocations considering their au-129

tocorrelated structure (Boyce et al., 2010). For this, we present a four-step paradigm applied to130

GPS telemetry observations of five species of ungulates with very different ecology and living in131

heterogeneous ecosystems.132

1. The first step is to determine if the network structure obtained from the available sample of133

GPS observations captures any non-random aspects of the association. For this, we generate134

null networks by permuting a pre-network data stream. If a specific network metric does not135

meet this requirement, it should be discarded by researchers in their specific study case.136

2. The second step is to assess how the bias in the network summary statistics varies with a137

decrease in the proportion of individuals sampled. Sub-sampling from the observed network138

helps estimate the extent of uncertainty in the network summary statistics and provides an139

idea of the robustness of the available sample.140

3. The third step is to explore how different the network properties would have been if the re-141

searchers had tagged a completely different set of individuals from the population. This is142

achieved by applying a bootstrapping technique on the subsamples of the observed network.143
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We also assess uncertainty by obtaining confidence intervals around the values of observed144

network statistics with the help of bootstrapping, which is also critical when it comes to com-145

paring networks (e.g., daily or seasonal changes in sociality, or between two populations of146

the same species.)147

4. The fourth and final step is to check how the node-level network metrics are affected by the148

proportion of individuals present in the sample. We use correlation and regression analyses149

to assess the robustness of node-level characteristics.150

We conclude our paper by outlining the methods described above and provide a step-wise151

protocol for ecologists on the application of these on their datasets. We have recently published152

a companion R software package aniSNA (Kaur, 2023), which serves as a ready-made toolkit for153

ecologists to apply the methods described in this paper in their animal social network studies.154

Materials and Methods155

Data156

We collated high-frequency GPS telemetry relocations’ datasets from five species of ungulates,157

namely caribou (Rangifer tarandus), elk (Cervus canadensis), mule deer (Odocoileus hemionus), pronghorn158

(Antilocapra americana), and roe deer (Capreolus capreolus) belonging to four different geographi-159

cal regions (Table 1). These large datasets consist of observations from a proportion of individuals160

sampled from the population and contain a unique animal identity number, date, time, and spatial161

coordinates of the observations.162

Table 1. Summary of the data available for five species of ungulates monitored using satellite telemetry in

North America and Europe.
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Associations and Network Construction163

Identifying Associations from Raw GPS data164

Weobtained network structure from the raw data streamby identifying associations between each165

pair. We considered a pair of individuals in the sample to be associating if the two animals were166

observedwithin smetres fromeach other andwithin a time frame of tminutes. The value of spatial167

threshold s can be chosen by applying a statistical approach to the observed data. He et al. (2022)168

suggest one such approach could be to use the first mode from the distribution of inter-individual169

distances as it likely represents socially associating individuals. The temporal threshold t is dictated170

by the fix rates in telemetry data. For example, GPS collars on animals send signals consisting171

of spatial coordinates after a predetermined time interval. These signals can be received a few172

seconds (up to a few minutes) before or after the expected time. Therefore, temporal thresholds173

should be chosen in such a way that it accounts for this flexibility. Researchers should generally174

pick a threshold based on their device accuracy, species ecology, and research question.175

Association Index and Network Formation176

An association index was calculated through a modified version of Simple Ratio Index (Farine and177

Whitehead, 2015) for GPS telemetry observations. He et al. (2022) argue that for GPS data, an ob-178

servation of individual A without individual B is only informative if B is observed elsewhere simul-179

taneously. Therefore, the denominator of the original formula should only include observations180

where GPS data are simultaneously available for both individuals. The modified index used in the181

analysis is as follows:182

𝑥𝐴𝐵

𝑥𝐴𝐵 + 𝑦𝐴𝐵

where,183

𝑥𝐴𝐵− No. of times when A and B are observed associating184

𝑦𝐴𝐵−No. of times A and B are observed within the temporal threshold but not associating185

The value of the index ranged between 0 and 1, where 0 indicated that the two animals were186

never observed together and 1 indicated that they were always observed together. The individuals187

sampled from the population form the network nodes, and an association between pairs account188

for the edges in the networks. Each edge in the network had a weight attribute that signified the189
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association strength calculated by the modified Simple Ratio Index described above. In this way,190

we obtained the network structures corresponding to each species from their raw GPS observa-191

tions which also represent the complete set of relationships among the individuals tagged for each192

species.193

194

Analysis195

To assess the properties of the networks, we used standard metrics common in animal social net-196

work analysis (Table 2). The local network summary statistics which provided individual level in-197

formation included degree (Shimada and Sueur, 2014), strength (Pike et al., 2008), betweenness198

centrality (Kanngiesser et al., 2011; Aplin et al., 2012), eigenvector centrality (Kulahci et al., 2016;199

Aplin et al., 2012) and local clustering coefficient (Pike et al., 2008; Shimada and Sueur, 2014). Den-200

sity (Ozella et al., 2021), transitivity, and diameter are the global network metrics and provide a201

summary of the overall network and behaviour of the individuals as a whole. We also calculated202

the mean of each node’s degree (mean degree (Shimada and Sueur, 2014)) and strength (mean203

strength) and used those as global network properties.204

Table 2. Network metrics used in the analyses
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1. Pre-network data permutations205

To assess if the interactions captured by the observed sample were genuinely caused by social206

preferences, we generated null models. Null models were constructed to account for non-social207

factors that lead to the co-occurrence of animals. In animal social network analysis, null models208

are broadly classified in two ways: network permutations and pre-network permutations (Farine,209

2017). Network permutations are performedafter the network is generated from thedata, whereas210

pre-network permutations are performed on the data stream before generating networks from it.211

GPS telemetry observations generate data in the form of autocorrelated streams. In the permuted212

versions of the data, we wanted to maintain this autocorrelation structure of each individual’s213

movements but randomize the contacts. Therefore, we obtained pre-network datastream permu-214

tations as suggested by Spiegel et al. (2016), and Farine (2017). For each individual in the study, the215

tracks followed by them on each day were segmented. Then the dates on which those tracks were216

followed were shuffled for each individual. This methodology of permuting the pre-network data217

stream ensured unaffected home ranges of animals in the permuted data, but whom they came218

in contact with was now randomized in the null model. This also preserved the autocorrelated219

structure of individual tracks to ensure realistic animal movements.220

For each species, we obtained 1000 permuted versions of the raw data stream, giving rise to221

1000 network structures. Then, we calculated global network summary statistics for each of those222

networks and obtained a null distribution of values. We then compared the observed network223

properties to the distribution of null values, which helped determine the metrics that capture non-224

random aspects of the observed network.225

2. Analysing sub-samples of the observed network226

We randomly sub-sampled 𝑚 nodes from the observed network of𝑁 nodes where 𝑚 < 𝑁 without227

replacement. All the associations among the sampled nodes were preserved, and the rest were228

dropped. This resulted in a network structure that would have been obtained if originally just these229

𝑚 individuals had been tagged from the population. In this way, we drew 100 samples of size 𝑚230

where the value of 𝑚 ranged from 10% to 90% of the total nodes forming each network for five231

species. We recorded the values of global network metrics of density, mean strength, transitivity,232

and diameter and obtained a distribution of the values. We assessed the bias in the values of233

network metrics obtained from this sub-network compared to the original network. Performing234
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this procedure across five species and for different values of𝑚 revealed the robust networkmetrics235

that should be adopted for social network studies on the available samples.236

We also applied a sub-sampling approach on the permuted networks to determine under what237

sampling level the observed networks start to resemble the random networks. We sub-sampled238

nodes from 1000 permuted network versions without replacement at different levels ranging from239

10% to 90%. Four global network metrics were calculated for each permuted version, and each240

level and their distribution were plotted along with the distribution of sub-sampled versions of the241

original network. This visualisation provided an estimate of the minimum amount of subsampling242

required to ensure that the network differed significantly from a random network for that species243

and the environment.244

3.Bootstrapped confidence intervals245

Assuming a researcher has chosen a set of network metrics appropriately, it is prudent to consider246

not only the point estimate derived from their data but also the uncertainty associated with it. In247

order to create confidence intervals to facilitate the comparison of different networks (e.g., differ-248

ing sampled individuals from the same population or the same individuals’ networks computed at249

different times), we adapted the Bootstrap algorithms of Snijders and Borgatti (1999). Similar to250

the algorithms used in SOCPROG (Whitehead, 2009) and UCINET (Borgatti et al., 2014), this algo-251

rithm sampled nodes in the network with replacement for each of B=1000 Bootstrap replications.252

In each replication, edges between two different resampled nodes were retained, whereas edges253

between the same node resampled twice were sampled uniformly at random from the set of all254

original edges. Therefore, each bootstrap replication network comprised the same number of255

nodes (animals) as the original network; however, some of the original nodes were absent, some256

were present once, and some more than once.257

Bootstrapping has been used to infer uncertainty in animal social networks (see Lusseau et al.258

(2008), Whitehead (2008)), however bootstrapping social network data should only be used care-259

fully as zero edges (which could result from unobserved associations rather than two animals not260

associating at all) are resampled as zeros across all replications (Farine and Carter, 2022). We,261

therefore, began by assessing whether such algorithms were appropriate for constructing confi-262

dence intervals for our chosen global network metrics. In particular, we wished to ensure that263

the confidence intervals were not too narrow, as this would lead to false positives in comparing264
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networks i.e. finding statistically significant differences where there may be none and therefore265

having an inflated Type 1 error rate. For example, consider a scenario in which two ecologists inde-266

pendently sample a random subset of individuals from the same population of animals. They then267

construct two social networks and compute networkmetrics, along with confidence intervals using268

some statistical methods. If they compare their results and obtain statistically significant results269

(e.g., via a t-test) and conclude that the two social structures are different, they have made a Type270

1 error because, the two samples come from the same population and should therefore not ap-271

pear statistically significantly different. Any differences are due to the random subsampling of the272

individuals, but the social structure of the population is the same. We, therefore, wish to confirm273

that our proposed bootstrapping approach does not exhibit such problematic behaviour (i.e., that274

analyses based on two subsamples from the same population yield test statistics and p-values con-275

sistent with the null hypothesis that the samples arise from populations that have the same social276

structure as indexed with the various network metrics.) To this end, we began by combining the277

Bootstrap algorithmwith the sub-sampling analysis. See Appendix 1: Assessment of bootstrapping278

algorithm for results showing correct calibration under the null hypothesis. Then, to examine how279

uncertainty relates to sample size, we obtained confidence intervals using the bootstrapped sam-280

ples for each network metric and recorded their width. Finally, we repeated this process ten times281

and calculated the mean width of the ten confidence intervals against the number of individuals282

in the network.283

4. Correlation analysis between node level metrics of partial and full networks284

To assess the accuracy of the node level metrics inferred from a given sample, we looked at the285

correlation between the values of the metrics in the observed sample, and a smaller sub-sample286

of the empirical data as suggested by Silk et al. (2015). First, we calculated node-level metrics of287

degree, strength, betweenness, clustering coefficient, and eigenvector centrality for each node in288

the observed network. Then we sub-sampled nodes from the observed network at 10%, 30%, 50%,289

70%, and 90% levels without replacement and calculated node level metrics for each sub-sample.290

Finally, we calculated the correlation coefficient between the metric values of the nodes in the291

observed and partial networks. The process was repeated 10 times at each level of sub-sampling,292

and the mean and the standard deviation were recorded from the 10 correlation coefficients at293

each level.294
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Lastly, we run a regression analysis (Silk et al., 2015) to assess how the values of node-level295

metrics for partial networks relate to their values in thewhole network (See Appendix 2: Regression296

analysis between node level metrics of sub-sampled and observed networks in Appendix).297

Results298

Association Index and Network Formation299

Spatial threshold is selected to be 10 meters for mule deer sample and 15 meters for rest of the300

species samples. The temporal threshold is arbitrarily chosen to be 7 minutes and accounts for301

delays in signal reception by the GPS devices. For example, if a GPS unit records a location at 09:57302

AM, the observations recorded until 10:04 AM will be evaluated for potential interactions. Table 3303

shows the values of network summary statistics for each of the five species. Themule deer sample304

has the highest mean degree and very high mean strength suggesting a dense social network. The305

elk sample has a maximum diameter with a value of 9 which implies that it will take a maximum306

of 9 steps to reach from any individual to another in the elk network. The pronghorn sample has307

the maximum transitivity and mean local clustering coefficient, depicting that any two associates308

of a pronghorn are likely to be associated to each other. Figure 1 shows the network structures309

obtained for all five species.310

Table 3. Summary statistics for the networks obtained from the five species. Order of a network represents

the number of individuals tagged in the sample with mule deer sample having the greatest order and caribou

sample having the smallest order.

1. Pre network data permutations311

Pronghorn and roe deer samples capture non-random aspects of the population very well, and312

for all network metrics, the observed values are significantly different (p < 0.001) from the distri-313

bution of permuted network values (Figure 2). Also, for all five species, the mean strength of the314

observed network are higher than the permuted networks (Figure 2). This indicates that all these315
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Figure 1. Network structures for the five large herbivores analysed in this study. Each node is an animal, and

an edge between two nodes indicates that they have interacted at least once. Note how the pronghorn

network is denser than the roe deer network despite having an approximately equal number of nodes. Also,

a clear partition in the caribou network can be seen.

samples capture higher association rates than would be expected from a random network under316

similar assumptions. Researchers dealing with specific study cases and species should not use317

those network metrics whose observed value lies within the distribution of null values as those do318

not capture non-random aspects of associations (e.g., transitivity in caribou.)319

2. Subsampling320

Performing sub-sampling on the observed samples of networks at various levels revealed the net-321

workmetrics density and transitivity asmost stable (Figure 3.) The uncertainty in these twometrics322

is comparatively low, even when just 30% of the individuals are present in the sub-sample. Their323

distribution is centered on the true values, and this allows to estimate bias if the proportion of324

sampled individuals is known. Transitivity at a sub-sampling level of 10% becomes unreliable for325

caribou, pronghorn, and roe deer, implying that this metric is a poor measure when the sampling326

proportion is very small. The bias in mean strength values follows a linear pattern when the sub-327

sampled proportion is reduced from 90% to 10% for all five species. The linear pattern suggests328

that it is possible to correct the bias for mean strength from the sample if the proportion is known.329

This linear increasemust, however, plateau as we approach a census of the population (Bliss et al.,330

2014). The network’s diameter, similar tomean strength, also follows a staircase patternwith lower-331
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Figure 2. The rows correspond to the five species, while the columns correspond to four standard network

metrics. Each plot represents the distribution of network metric values obtained from 1000 permuted

versions of the species network. Observed network metric values are quoted at each plot’s top right corner.

The color of the observed value (black or red) represents their relative position to the distribution of null

values, indicating the extent of non-randomness of the observed metric. The values which are farther from

the peak of distribution are displayed in color red and represent that the observed sample captures the

non-random aspect well. For example, the observed value of mean strength is high with respect to the

distribution of mean strength values from the permuted versions of the data for all five species. This means

that all the samples successfully capture non-random interactions between the individuals. The network

metrics whose observed value lie within the null distributed values represent that those metric values are not

any different from a randomly generated network, such as the density of caribou.
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ing sub-sampling levels. However, it does not follow a linear pattern for all five species and tends to332

plateau. Diameter and mean strength are directly affected by the number of nodes present in the333

sample. Therefore, care should be taken while using these metrics when the sampling proportion334

is unknown.335

We performed subsampling on 1000 permuted versions of the network along with the subsam-336

pling on the observed network. The side-by-side visualisation of the network metrics distribution337

(Figure 4) enabled us to identify the sampling level at which a subsampled network begin to re-338

semble a random network. The plots reveal that for caribou, elk, and mule deer, network metrics339

density, transitivity, and diameter distribution are identical to that of a null network at all subsam-340

pling levels. Nevertheless, mean strength distribution tends to increasingly overlap the distribu-341

tion of subsamples from the null network when the level of sub-sampling is lower than 90%. For342

pronghorn, the distribution of all the network metrics obtained from subsamples of the observed343

network is higher than the values obtained from the subsamples of the null networks at all sam-344

pling levels. For roe deer, this is only true for mean strength. The distribution of values for density345

and transitivity tends to overlap the null distribution at 50% and 30% levels, respectively.346
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Figure 3. Effect of sub-sampling on four global network metrics. The horizontal red line in each plot

represents the metric value in the observed network. The boxplots denote the distribution of network metric

values obtained from the observed networks by taking 100 sub-samples at each sampling level. The size of the

boxes in the boxplots of a network metric with respect to the sample size represents the extent of uncertainty

in that network metric. For example, density has smaller boxes when as low as 10% of the nodes are selected.

In contrast, the box size for transitivity is large, representing that density is more stable than transitivity. The

extent of deviation of the box position from the horizontal red line depicts the bias in the calculated values of

the network metric. The values of mean strength become biased as the sample sizes are lowered. This is

because mean strength values are directly affected by the number of nodes present in the network.
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Figure 4. Sub-sampling of permuted networks. The grey boxplots are obtained by calculating network metric

values on 1000 permuted versions. The non-grey boxplots are the ones that we obtained in Figure 3. The

horizontal red line in each plot represents the observed metric value. Comparing the subsamples of the

observed network with those of permuted networks identifies the sample proportion where the non-random

aspects of the observed network start looking similar to those of random networks. For example, the mean

strength of caribou subsamples in the observed network starts to overlap with the distribution of permuted

subsamples at 70% level and becomes almost identical at 10% level. On the other hand, the mean strength

distribution of pronghorn subsamples remains higher than those of permuted subsamples distribution at as

low as 10% level.
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3. Bootstrapping Confidence Intervals347

To investigate the extent of uncertainty in the values of network metrics, we used bootstrapping348

technique to obtain confidence Intervals and plot their width against the sample size (Figure 5349

(a)). Confidence intervals can be calculated for any network metric at any sample size. For the350

network metric density and transitivity, the mean width of the confidence intervals increased with351

decreasing sample size for all five species. Mean width of density remained comparatively low for352

as few as 50 samples but began to increase below that value for all five species. For transitivity, the353

width remained less than 0.2 when at least 100 individuals are tagged for all the species, except for354

roe deer. The minimum width for roe deer is 0.4, even when all the individuals in the sample are355

considered. At smaller sample sizes, mean width approaches 1 for all the five species, which is the356

maximum value transitivity can attain for any network. Therefore, to check that these confidence357

intervals are not too wide and increase the likelihood of Type 1 errors, we have compared two non-358

overlapping sub-samples from the observed sample to check for significant results (See Appendix359

1: Assessment of bootstrapping algorithm ). We have ensured that the bootstrapping algorithm360

does not generate spurious statistically significant results.361

For mean strength and diameter, the width of confidence intervals does not increase with a362

decrease in the sample size. This is because the values of these metrics are directly affected by the363

number of nodes in the network e.g., say there are N nodes in the network, the possible degrees364

of a node can be anywhere between 0 and N-1; however, if we remove M (< N) nodes from the365

network, the new possible value for the degree will lie between 0 and (N-1)-M, which results in366

a narrower width of the confidence intervals. Therefore it can be helpful to consider the scaled367

versions of thesemetricswhere they are scaled by the number of nodes in the network (Figure 5 (b)).368

The scaled versions of these metrics follow a similar pattern to transitivity and density. The width369

of confidence intervals increases with a decrease in the number of individuals sampled. Some370

fluctuation in this pattern is observed for the density and scaled diameter for some species, when371

the sample size is low (e.g., roe deer sample.) Depending on the selection of nodes in the sub-372

sample, the value of the diameter in the sub-sampled network can reach extreme values at each373

level of sub-sampling.374
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(a) Unscaled Metrics

(b) Scaled versions of mean strength and diameter

Figure 5. The plots show the mean widths of 95% confidence intervals obtained from bootstrapped

sub-samples of a network. The mean widths of density and transitivity increase with lower sample size, which

indicates increasing uncertainty around the point estimate of the network metrics. However, the pattern is

reversed for mean strength and diameter because the values for these two metrics are directly affected by

the number of nodes present in the network. Therefore, we consider scaled versions of these two metrics

where the number of nodes at each level scales the values.

4. Correlation Analysis375

The correlation of all network metrics between the sub-sampled and observed network declined376

as the proportion of sub-sampled nodes in the network decreased (Figure 6). However, the pattern377

and rate of decline are different across network metrics. Degree remains well correlated for mule378

deer when as few as 10% of nodes are sub-sampled. Mean correlation coefficients of strength,379

betweenness, and clustering coefficient decline almost linearly with a decrease in the sub-sampling380

proportion, with slightly more variance in caribou values than mule deer values. For both species,381

the values for eigenvector centrality became unreliable with high variability even when 90% of the382

individuals are present in the sub-sample in most of the sub-sampled networks, suggesting that it383

is a poor measure to use.384
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Figure 6. The plots show the correlation of local network metrics between the nodes of sub-sampled and

observed networks. The black line in the plots indicates the mean correlation coefficient value between the

local metrics of nodes present in the sub-sampled network. The colored region depicts the standard

deviation of the correlation values at each sampling level. For example, degree value remains highly

correlated with comparatively low standard deviation, even at lower sampling levels.
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Box 1. Instructions for Ecologists

1. Define the network edges by choosing a sensible distance threshold based on the

research question, species sociality, and information obtained from the data (see sec-

tion Identifying Associations from Raw GPS data for more details.)

2. Check if the interactions captured by the sample are non-randomwith the help of net-

work permutations. Networkmetrics can be deemed suitable after assessingwhether

they capture non-random associations via network permutations.

3. Identify stable networkmetrics concerning the species and the available sample using

sub-sampling from the observed data.

4. Identify the minimum sampling effort required to determine the network properties

that are different froma randomly generated network by comparing the sub-sampled

networks from permuted data sets with the sub-samples of the observed data.

5. Obtain confidence intervals around the point estimates of network metrics using the

bootstrapping algorithm, which also takes care of the autocorrelated structure of

telemetry relocation data. The width of confidence intervals can also be analysed

for lowering sample sizes.

6. To assess which local network metric remains least affected with lowering sample

sizes, obtain a correlation coefficient between the node level metrics from the ob-

served sample and the same nodes from the sub-sample. The local network metrics

with a high correlation (>0.7) are expected to be more stable and should be chosen

for further analysis as they are more likely to represent the position of individuals in

the network, similar to their position in the full population.
385

Discussion386

Using the four-step paradigm on GPS telemetry observations for five species of ungulates, we387

assessed the stability of global and local network metrics and obtained measures of uncertainty388

around the point estimates that can be used to obtain reliable inferences about the structure of389

a social network. First, using data permutations, we found whether the data collected captured390

the non-random aspects in all or some of the network metrics: this was entirely true in roe deer,391

for instance, whereas in other species such as elk the data collected were able to capture non-392
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random associations only with edge density andmean strength. This is a key step in our approach,393

because at this stage the researcher can make the decisions on whether using such metrics in394

their study case. Differences among the species in the way metrics responded to permutations395

analysis most likely reflect different sampling regimes and designs rather than the ecology of the396

different species. Second, sub-sampling from the observed sample revealed density as the most397

unbiased measure of animal networks with low uncertainty, even at small sub-sampling propor-398

tions. Third, we introduced bootstrapping techniques for animal social networks, which allowed399

us to compute confidence intervals around the point estimates of the network measures. Density400

and scaled version of mean strength emerged as two of the most robust network metrics. Fourth401

and last, correlation analysis between the node level metrics of the observed network and the sub-402

sampled network highlighted the network metric degree to be most correlated with the observed403

network metric values, even at 40% of sub-sampling levels. This means that if the information404

about sampling proportion is available, the relative degree of each individual can be used to es-405

timate the true degree distribution. Users can take advantage of the functions in the R package,406

aniSNA (Kaur, 2023) to undertake such an analysis of their data. We summarise the steps that407

should be taken to perform this analysis in Box 1. Instructions for Ecologists.408

Despite being a commonly used tool to understand animal ecology (Hock and Fefferman, 2011;409

Krause et al., 2010; Robitaille et al., 2019; Silk et al., 2017; Sosa et al., 2021a,b), social network410

analysis can be challenging when applied to real-life datasets (Castles et al., 2014; Farine, 2015).411

(Castles et al., 2014) performed tests to demonstrate a distinction between networks built using412

different interaction and proximity techniques. Similar tests performed by Farine (2015) illustrated413

that the conclusions by Castles et al. (2014) cannot be generalized across species. A researcher’s414

choices during the data collection and the analytical stage affect the networks produced. There-415

fore, the inferences generated may not reflect true characteristics and can be highly sensitive to416

these decisions (Ferreira et al., 2020; Castles et al., 2014). Furthermore, the information available417

about the sampling protocols may be incomplete or may not be available at all. However, this418

does not imply that social network analysis should not be conducted on such data. It is prime to419

use statistical methods that would help extract as much information as possible, along with details420

about the uncertainties due to partial data and sampling strategies. Performing permutations to421

randomize autocorrelated GPS data stream (Farine, 2017; Spiegel et al., 2016) is a first step to422

distinguish the best network metrics that capture the non-random aspects of social interactions.423
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Different networkmetrics capture different aspects of the network; somenetworksmay havemore424

non-random elements than others, depending on the species’ sociality and the sampling strategies425

adopted to collect the data. The analyses helped highlighting the network metrics that distinctively426

capture these non-random aspects. Based on these analyses, we recommend using the network427

metric mean strength as an assessment metric to identify if the captured interactions are signifi-428

cant enough to generate reliable analysis results. Apart from the four network metrics we chose429

to work with, it is helpful to run this analysis on multiple network metrics that seem suitable given430

the research question (e.g., coefficient of the variation of edge weights.) Once a network metric is431

chosen by the user, further analysis of the available dataset can be carried out to answer the re-432

search question. Researchers should keep inmind that our approach is particularly suited (but not433

limited) to autocorrelated telemetry relocation, although its use could be expanded to more rar-434

efied observational data (e.g., low frequency observations of individually recognizable individuals435

in a population.)436

Caution should be taken while reporting the values of social network metrics when the sample437

size is small relative to the population (Lusseau et al., 2008; Farine and Strandburg-Peshkin, 2015).438

As a general rule, the smaller the sample size, the more considerable uncertainty can be expected439

in the observed values. However, some network metrics remain unbiased despite significant un-440

certainty, whereas others would become biased as the sample size decreases. Sub-sampling from441

the observed sample and permuted versions of the network revealed helpful information regard-442

ing the stability of certain metrics and the proportion of individuals required to ensure a non-null443

network. For the samples we used, density and transitivity emerged as themore stable metrics, re-444

maining unbiased when as low as 10% and 30% of the individuals were sub-sampled, respectively.445

Network metrics such as the mean strength became biased as we lowered the number of nodes446

in the sub-network. However, it was well characterised by a linear relationship which eventually447

plateaued. The choice of individuals in the sub-sample greatly affected some networkmetrics such448

as diameter. However, it always tends to plateau when the proportion of sampled individuals goes449

up. Sub-sampling from permuted versions of the data and comparing it with the distribution of450

sub-samples from the observed network revealed the minimum sub-sampling level required to451

ensure a non-null network structure. Davis et al. (2018) investigated the effect of sampling effort452

on the accuracy of social network analysis and concluded that increased sampling intensity may453

not always increased the accuracy of network measures especially when the sampling regime is454
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already very intense.455

Reporting the values of social network metrics point estimates is not enough especially when456

a large proportion of individuals in the population is not monitored. It becomes equally impor-457

tant to communicate uncertainty around those estimates (Whitehead, 2008; Lusseau et al., 2008).458

We presented bootstrapping as a powerful approach to evaluate confidence intervals around the459

point estimates of network metrics from the observed data. Bootstrapping enabled us to assess460

the extent of variation in the network metrics if a different set of individuals was sampled from461

the population. However, caution should be taken while computing the confidence intervals for462

those global network metrics, which are directly affected by the network’s number of nodes, such463

as mean strength. In such cases, the values should be scaled by the number of nodes present464

in the sample. The network metrics of density and scaled mean strength are those having low465

uncertainties, even at small sample sizes.466

Past studies have tried to uncover how the values of node-level metrics are affected when the467

sample sizes are lowered (Silk et al., 2015; Franks et al., 2010; Costenbader and Valente, 2003).468

Our work expands on the findings by Silk et al. (2015) by performing the correlation and regres-469

sion analyses between the local metric values of the nodes in the entire sample to the values of470

the same nodes in a smaller sub-sample. With correlation analysis at various subsampling levels,471

we determined how the correlation rate decreases as the sub-sample size is lowered. Out of the472

five node level metrics that we tested, degree seemed to work better, with high correlation even473

at low sample proportions. Also, we recommend not using eigenvector centrality based on a pop-474

ulation subsample as the metric being a higher-order statistic lacks robustness and, therefore, is475

highly sensitive to the selected nodes. This observation agrees with the simulation study by Silk476

et al. (2015). We conclude that care should be taken while comparing the metric values between477

nodes when a small proportion is tagged from the population. Indeed, the social network positions478

captured by a small sample may not reflect the actual positions in the network in such cases.479

The goal of this paper was not to make inferences about the network characteristics of an480

entire population but to analyse how different network metrics scale under downsampling. As481

a matter of fact, despite we had access to large telemetry samples from five different species,482

they represent a subset of an unknown population with unknown size. The methods discussed483

here can help pinpoint useful social network metrics that remain robust when trying to answer a484

particular research question. Thosemetrics that suffer data thinning and become unstable should485
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not be used with telemetry data, which is typically used to monitor a small proportion of the actual486

population. Also, we useddata frommultiple species of large herbivoreswith very different ecology487

and characteristics, including migratory/ non-migratory and from very social to solitary species.488

During the analysis, we voluntarily disregarded the ecology of the species, because our goal was489

not to perform inter-species comparisons andmake inferences on their respective social networks490

but to determine which social network metrics perform well/poorly across the species.491

Despite our a priori disregard of the ecology of the five species for the reasons stated above,492

we found interesting differences among them which deserve to be discussed here. Firstly, the493

fact that the data collected from a more solitary species such as roe deer (See Table 3) better cap-494

ture the non-randomness of the association compared to more gregarious species such as elk495

suggests that sample size (in proportion to the actual population size) should be higher in more496

gregarious species. In addition, sampling regimes can affect the social network patterns and re-497

lated ecological inference. For example, a high-density value of the roe deer network as compared498

to the distribution of null networks could be due to the fact that the sampling was done across six499

spatially separated capture sites (within 10 x 10 km). This results in very low density values when500

the data is permuted across these six clusters (Figure 7). Instead, the mule deer’s initial locations501

(Figure 7) show that the network is already very dense. In the permuted versions of the raw data,502

the number of random interactions is similar to the number of observed interactions, resulting in503

observed network density value similar to the density of permuted versions of data. In other words,504

the sampling strategy (location of the capture sites) may affect the spread of individuals and the505

density of the respective network structures, therefore researchers need to focus on the ecological506

interpretation of their social network results after having taken into account of the possible bias507

introduced by sampling strategies.508

Numerous papers have examined the conceptual properties of centrality measures to assist509

animal social network researchers in selecting the most meaningful and valid measure for their510

research question and the available data (Farine and Strandburg-Peshkin, 2015; Franz and Nunn,511

2009; Frantz et al., 2009; Borgatti et al., 2006). The performance of network centrality measures512

under various sampling regimes and the species sociality could vary to a great extent (Costen-513

bader and Valente, 2003; Gile and Handcock, 2006; Dawson et al., 2019) and our work confirms514

this. Future work involves analysing the effects of observation frequency on the accuracy of net-515

work metrics. For example, it could help to understand if it is better to observe individuals for a516
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Figure 7. Plot of the initial locations for the individuals belonging to five species in the study. The distribution

of these locations explains some of the differences in the values of network metrics. For example, the initial

capture locations of mule deer are spatially very close, which is also reflected in the network metric values of

the final network of associations. As a result, the mule deer network has the highest mean strength and

mean degree (Table 3). In contrast, the roe deer network has the lowest mean strength and mean degree,

explained by their six spatially separated capture sites.

longer duration with low temporal resolution or a shorter duration with high temporal resolution.517

In our analysis, sub-sampling on the observed samples is done randomly. However, this aligns518

differently from the sampling strategies adopted in real life. Smith and Morgan (2016) investigate519

the effects on estimates of key network statistics when central nodes are more/less likely to be520

missing. Application of our methods to determine how the network metrics scale when a different521

sampling strategy is adopted would be valuable (e.g., whether it is better to sample entire groups,522

or focus on greater sampling frequency of individuals). Another vital direction forward is to assess523

the methods presented in this paper to be tested on the GPS telemetry data of the entire pop-524

ulation. If data on the whole population is available (e.g., a fenced one), it will be interesting to525

perform these methods on a subset of that and test if the predictions align with the true values.526

Along with all of the advantages to understand animal ecology, SNA presents certain challenges527

that hinder ecologists from using it to its full extent. We addressed a few of those challenges in this528

paper and introduced a four-step paradigm to assess the suitability of available data for SNA and529
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extract information for further analysis. Themethods are also provided as easy-to-use functions in530

an R package aniSNA (Kaur, 2023). This package allows ecologists to directly apply these statistical531

techniques and obtain easily interpretable plots to provide statistical evidence for choosing a par-532

ticular network metric or the choice of individuals tagged for the study. The fact that researchers533

can compute 95% confidence intervals around their point estimates unleashes new research op-534

portunities, such as tackling specific hypotheses. For instance, researchers can estimate network535

metrics in a sample population when it is disturbed by human presence to be compared to when it536

is not disturbed, and the ability to assess the overlap of respective 95% confidence intervals would537

allow making inference on the effect of human disturbance on sociality. Likewise, this approach538

can be used to compare social networks within and across populations as a function of tempera-539

tures, presence of predators, or different wildlife management strategies, unleashing a range of540

ecological questions using SNA and related statistical tools.541

Animal welfare542

1. Elk in SW Alberta, Canada, were captured (animal care protocol no. 536-1003 AR University543

of Alberta) during the winters of 2007–2011 using helicopter net-gunning.544

2. Pronghorn in southcentralWyoming, USA, were captured, handled, andmonitored according545

to protocols approved by Wyoming Game and Fish Department (Chapter 33-923 Permit) and546

University ofWyoming Institutional Animal Care andUseCommittee (protocol 20131028JB00037).547

3. All animal capture and handling protocols were approved by theWyoming Game and Fish De-548

partment (Chapter 33-937) and an Institutional Animal Care andUse Committee at theUniver-549

sity ofWyoming (20131111KM00040, 20151204KM00135, 20170215KM00260, 20200302MK00411).550

4. Roe deer in Aurignac, France, were captured (prefectural order from the Toulouse Administra-551

tive Authority to capture andmonitor wild roe deer and agreement no. A31113001 approved552

by the Departmental Authority of Population Protection) during the winters of 2005-2012 us-553

ing drive netting.554
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Appendix 1: Assessment of bootstrapping algorithm733

We Bootstrapped two different subsamples of a social network at each subsampling percentage.734

Given that the subsampleswere taken from the samepopulation, any significant differences should735

be attributed to overly confident Bootstrapped intervals and non-significant results were to be ex-736

pected. We repeatedly sampled pairs of networks at each subsampling level and computed the737

p-value for a significant difference between the two network metrics, as determined using a two-738

tailed t-test as per Snijders and Borgatti (1999) (See 3.Bootstrapped confidence intervals for739

more details.) If the subsampled networks do indeed provided noisy estimates of the network740

metric calculated across the population and the Bootstrap algorithm did not return intervals that741
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were too narrow, the B Bootstrapped p-values would not contain more than approximately 𝛼B742

values less than 𝛼 (for any significance level 𝛼). Indeed, the p-values would ideally be uniformly743

distributed between 0 and 1. We do not perform tests of our bootstrapping approach with regard744

to power / Type 2 errors because, as with all hypothesis tests, the power to correctly identify real745

differences in network metrics between two different social networks depends not only on sample746

size but also on the magnitude of the differences. The larger the sample size and the larger the747

true difference, the greater the power to identify that the networks differ.748

For all the network metrics, p-values for difference between two samples is non-significant for749

all the five species (Figure 8) which indicates that our bootstrapping approach is not overly sensi-750

tive i.e. return too many false positive results when used to compare the network metrics of two751

networks.752

Appendix 0 Figure 8. Mean of P Values for the difference in network metrics values for two non overlapping

sub-samples of the observed sample. The two non-overlapping sub-samples are bootstrapped 1000 times

and p-values are computed for to check for the significance of difference. This process is replicated 10 times

to obtain mean of p values. The red dotted line in each plot corresponds to value 0.1 on the y-axis. All the

mean p-values lie well above this dotted line.
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Appendix 2: Regression analysis betweennode levelmetrics of sub-sampled753

and observed networks754

While analyzing local node level metrics from a partially sampled network, it is useful to know the755

extent by which the position of an individual in the population controls its position in the sampled756

network and how this control depends on the choice of individuals in the sample or density of the757

population.758

To answer this, we perform regression analysis such that the values of node-level metrics in759

the sub-sampled networks are regressed on the values of those nodes in the observed network.760

As in the correlation analysis, the individuals are further sub-sampled to analyse the effect. Sub-761

sampling is done at 10%, 30%, 50%, 70% and 90% levels and is repeated 10 times at each level. The762

mean slope of regression is calculated for the five network metrics of degree, strength, between-763

ness, clustering coefficient and eigenvector centrality at each level for each run of the simulation.764

The slope of regression describes how the value of network metrics calculated in each partial net-765

work relates to its value in real network as per Silk et al. (2015).766

The slope of regression is plotted against sampling proportion (Figure 9) The accuracy of node-767

level metrics from partial networks is highly dependent on the metric being used. In agreement768

with the results of the simulation study by Silk et al. (2015), the accuracy of localmeasures of degree769

and strength decrease linearly in direct proportion to the proportion of individuals subsampled. In770

contrast, the accuracy of eigenvector centrality does not depend on that proportion in any of the771

networks except for elk network. The value of the slope of regression for betweenness decreased772

non-linearly for four of the species that have low num ber of individuals tagged and followed a773

near-linear pattern for mule deer that has high number of individuals observed. The accuracy of774

the clustering coefficient did not decrease till the level of identified individuals was as low as 50%775

but declined rapidly at different levels after that for each of the species.776

Silk et al. (2015) suggests that the strong relationship between the proportion of individuals777

sampled and the accuracywithwhich localmeasures (degree and strength) predict the actual value778

of an individual’s centrality is notable. This implies that it is possible to correct for this effect if the779

proportion of sampled individuals in a population is known.780
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Appendix 0 Figure 9. Regression analysis of local network metrics between the nodes of partial and

observed network. In each plot, X-axis denotes the proportion of nodes in the sub-sample and Y-axis shows

the corresponding value of the slope of regression calculated by regressing the local network metrics of

sub-sampled nodes and observed network nodes.
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