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Abstract

1. Social network analysis of animal societies allows scientists to test hypotheses about social
evolution, behaviour, dynamical processes, and transmission events such as the spread of
disease. However, the accuracy of estimated social network metrics depends on the proportion
of individuals sampled, actual sample size, and frequency of observations. Robustness of
network metrics derived from a sample has thus far been examined through various simulation
studies. However, simulated data do not necessarily reflect the nuances of real empirical data.
2. We used some of the largest available GPS telemetry relocation datasets from five species of
ungulates characterised by different behavioural and ecological traits and living in distinct
environmental contexts to study the bias and robustness of social network metrics. We
introduced novel statistical methods to quantify the uncertainty in network metrics obtained from
a partial population suited to autocorrelated data such as telemetry relocations. We analysed
how social network metrics respond to down-sampling from the observed data and applied
pre-network data permutation techniques, a bootstrapping approach, correlation, and regression
analyses to assess the stability of network metrics when based on samples of a population.

3. We found that global network metrics like density remain robust when the sample size is
lowered, whereas some local network metrics, such as eigenvector centrality, are entirely
unreliable when a large proportion of the population is not monitored. We show how to
construct confidence intervals around the point estimates of these metrics representing the
uncertainty as a function of the number of nodes in the network.

4. Our uncertainty estimates enable the statistical comparison of social network metrics under
different conditions, such as analysing daily and seasonal changes in the density of a network.
Despite the striking differences in the ecology and sociality among the five different ungulate
species, the various social network metrics behave similarly under downsampling, suggesting
that our approach can be applied to a wider range of species across vertebrates. Our methods
can guide methodological decisions about animal social network research (e.g., sampling design

and sample sizes) and allow more accurate ecological inferences from the available data.

Keywords - bootstrapping, correlation, GPS-based radiotelemetry, network metrics, permuta-
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tions, social network analysis, sub-sampling, uncertainty

Introduction
Social network analysis (SNA) has proved to be a valuable toolkit for biologists to understand di-
verse interactions among animal communities and their effect on the environment (James et al.,
2009; Sosa et al., 2021a; Kulahci et al., 2016). SNA also helps in understanding how environmental
factors influence the structure of animal communities (Hock and Fefferman, 2011; Krause et al.,
2016, 2010; Albery et al., 2021) and informs how minor changes at the individual level propagate
changes in the overall behaviour of the population (Aplin et al., 2012; Farine et al., 2015; Shimada
and Sueur, 2014) which in turn, contributes to informing epidemiological models, implementing
customized measures for disease control, designing wildlife conservation policies, and resource
allocation (Egan et al., 2023; Silk et al., 2017). The term SNA is used to refer to the analysis of
network data, for which there is an expanding set of statistical models and inferential procedures
(see Salter-Townshend et al. (2012) for an introduction). Under this definition, the observed in-
teractions between individuals are taken as fact and the goal is to summarise the data and make
various inferences from it about the structure of the population of individuals and perhaps also
of the behaviour of each individual. However, the term SNA may more broadly refer to the algo-
rithmic construction of interactions data from direct observations of individuals, followed by the
application of these bespoke SNA based methods. It is therefore important to clarify since the
beginning that in our paper we demonstrate some key considerations that should be made in
both the construction and analysis of animal social networks (Croft et al., 2008; Whitehead, 2008;
Krause et al., 2007; Lusseau et al., 2008) with a focus on assessing the reliability and robustness
of the more commonly reported network metrics, as calculated on interactions data constructed
from observations of individuals.

One of the fundamental requirements for performing social network analysis on animals is that
a substantial portion of individuals in the population is uniquely identified and observed for a suf-
ficient period (Farine and Whitehead, 2015). Recent advances in Global positioning system (GPS)
telemetry technology have led to a significant boost in animal tracking and enabled wildlife ecol-
ogists to monitor and map minute details of animal movements, including those of highly cryptic
species (Smith and Pinter-Wollman, 2021; Cagnacci et al., 2010; Crofoot, 2021; Webber and Wal,

2019). However, deploying GPS devices can be expensive. Commercial wildlife devices cost thou-
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sands of dollars each, depending on the study species and required features. Even the recent
low-priced solutions cost more than $100 per collar (Foley and Sillero-Zubiri, 2020), which restricts
the number of individuals monitored simultaneously. In addition to this, issues in marking all in-
dividuals of a population include constraints on the human effort required (which is also costly),
geographical constraints of some or all individuals in the population where capture methods do not
work, personality traits of individuals as some individuals are capture-shy (Biro and Dingemanse,
2009), and ethical and other issues raised by some stakeholder.

Therefore, data representing a large sample size is a significant limitation, especially while
analysing social networks (He et al., 2022). This is a concern as the relations among the members
obtained from a sample of GPS-tracked individuals under represent their complete set of relation-
ships (Croft et al., 2008). Furthermore, missing individuals from the sample may strongly influence
the sampled individuals’ social measures. Thus, relational data could be expected to respond more
unreliably to sampling from a population than other data types (Silk et al., 2015). The relational
nature of network data also causes it to violate the assumptions of independence that underlies
most of the parametric statistical tests (Farine and Whitehead, 2015) and creates an additional
challenge in using a sample of individuals to make inferences about the population.

It is therefore crucial that animal social network studies consider the robustness of current
methodological approaches to data rarefaction and randomization, as both the collected data and
analytical methods are prone to biases inflicted by specifics of sampling protocols or the species
under study (Sosa et al., 2021a). Networks constructed using a random subset of population are
termed as partial networks (Silk et al., 2015). The effect of using partial networks on the proper-
ties of individual metrics in animal social network analysis has received so far little attention (Croft
et al., 2008; Perkins et al., 2009; Cross et al., 2012; Silk et al., 2015) and to date, there are no es-
tablished methods for estimating if a partial network is a good representation of the real social
structure (Farine and Strandburg-Peshkin, 2015), and the associated level of uncertainty (Bonnell
and Vilette, 2021). Previous research has been primarily focused on the impact of missing nodes
on social network structure, suggesting that the network statistics derived from partial data are
biased estimators of the overall network topology (Bliss et al., 2014). Thus, understanding how
network statistics scale with sampling regime is important. Some preliminary work has been con-
ducted to determine scaling methods, predict true network statistics from a partial knowledge of

nodes, links or weights of a network, and eventually validate the results on simulated networks
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and twitter reply networks (Bliss et al., 20714)). Another simulation study (Silk et al., 2015) has fur-
ther highlighted the importance of understanding consequences of missing random nodes from a
complete animal social network. Specifically, the networks have been simulated following a typical
fluid fission fusion social system to determine the precision and accuracy of measures of individ-
ual social positions based on incomplete knowledge. On the contrary of what expected, Silk et al.
(2015) found that in social networks based on fluid social interactions precise inferences about indi-
vidual social position can be derived even when not all individuals in a population are identifiable.
Despite the importance of such findings, since then research has not progressed in this field. In
particular, there is the necessity to understand the level of confidence, and associated bias, with
whom the current methods adopted to estimate partial network from subsampled populations
actually catch the structure of the real-world animal social network (Farine and Whitehead, 2015;
Sosa et al., 2021b; Silk et al., 2015).

Our paper aims to present methods that can assess the sufficiency (i.e., based on estimated
bias and uncertainty) of the available data sample to perform social network analysis and obtain
a measure of accuracy for global and node-level network metrics (Farine and Whitehead, 2015).
Our approach is particularly suited (but not limited) to telemetry relocations considering their au-
tocorrelated structure (Boyce et al., 2010). For this, we present a four-step paradigm applied to
GPS telemetry observations of five species of ungulates with very different ecology and living in

heterogeneous ecosystems.

1. The first step is to determine if the network structure obtained from the available sample of
GPS observations captures any non-random aspects of the association. For this, we generate
null networks by permuting a pre-network data stream. If a specific network metric does not
meet this requirement, it should be discarded by researchers in their specific study case.

2. The second step is to assess how the bias in the network summary statistics varies with a
decrease in the proportion of individuals sampled. Sub-sampling from the observed network
helps estimate the extent of uncertainty in the network summary statistics and provides an
idea of the robustness of the available sample.

3. The third step is to explore how different the network properties would have been if the re-
searchers had tagged a completely different set of individuals from the population. This is

achieved by applying a bootstrapping technique on the subsamples of the observed network.
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144 We also assess uncertainty by obtaining confidence intervals around the values of observed
145 network statistics with the help of bootstrapping, which is also critical when it comes to com-
146 paring networks (e.g., daily or seasonal changes in sociality, or between two populations of
147 the same species.)

148 4. The fourth and final step is to check how the node-level network metrics are affected by the
140 proportion of individuals present in the sample. We use correlation and regression analyses
150 to assess the robustness of node-level characteristics.

151 We conclude our paper by outlining the methods described above and provide a step-wise

12 protocol for ecologists on the application of these on their datasets. We have recently published
153 @ companion R software package aniSNA (Kaur, 2023), which serves as a ready-made toolkit for

1.2 ecologists to apply the methods described in this paper in their animal social network studies.

1 Materials and Methods

1s¢ Data

157 We collated high-frequency GPS telemetry relocations’ datasets from five species of ungulates,

15 namely caribou (Rangifer tarandus), elk (Cervus canadensis), mule deer (Odocoileus hemionus), pronghorn
150 (Antilocapra americana), and roe deer (Capreolus capreolus) belonging to four different geographi-

10 Cal regions (Table 1). These large datasets consist of observations from a proportion of individuals

162 sampled from the population and contain a unique animal identity number, date, time, and spatial

162 coordinates of the observations.

Table 1. Summary of the data available for five species of ungulates monitored using satellite telemetry in

North America and Europe.

Species Area of Centroid Number of Total Duration of Fix Rate
Name Observation (Lat, Lon) Animals number of observation
Observed Observations
Caribou = Saskatchewan,  (57.14489, 94 304,607 03/2014 to Every 5 hours
Canada -104.3752) (F:94, M:0) 03/2018
Elk Rocky (49.52496 , 171 856,241 01/2007 to Every 2 hours
Mountains, -114.3014) = (F:111, M:60) 03/2013
Alberta, Canada
Mule Deer Red Desert, (42.24222, 263 1,458,043 03/2014 to Every 1-2 hours
Wyoming, US = -109.2664) = (F:256, M:7) 06/2021
Pronghorn  Red Desert, (41.60466 , 159 896,401 11/2013 to Every 2 hours
Wyoming, US = -107.9531) = (F:159, M:0) 10/2016
Roe Deer Aurignac, (43.28552, 147 419,165 01/2005 to Every 10 minutes
France 0.8809104 ) (F:81, M:66) 12/2012
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Associations and Network Construction

Identifying Associations from Raw GPS data

We obtained network structure from the raw data stream by identifying associations between each
pair. We considered a pair of individuals in the sample to be associating if the two animals were
observed within s metres from each other and within a time frame of t minutes. The value of spatial
threshold s can be chosen by applying a statistical approach to the observed data. He et al. (2022)
suggest one such approach could be to use the first mode from the distribution of inter-individual
distances as it likely represents socially associating individuals. The temporal threshold t is dictated
by the fix rates in telemetry data. For example, GPS collars on animals send signals consisting
of spatial coordinates after a predetermined time interval. These signals can be received a few
seconds (up to a few minutes) before or after the expected time. Therefore, temporal thresholds
should be chosen in such a way that it accounts for this flexibility. Researchers should generally

pick a threshold based on their device accuracy, species ecology, and research question.

Association Index and Network Formation

An association index was calculated through a modified version of Simple Ratio Index (Farine and
Whitehead, 2015) for GPS telemetry observations. He et al. (2022) argue that for GPS data, an ob-
servation of individual A without individual B is only informative if B is observed elsewhere simul-
taneously. Therefore, the denominator of the original formula should only include observations
where GPS data are simultaneously available for both individuals. The modified index used in the

analysis is as follows:

Xapt Yap

where,
x,p— No. of times when A and B are observed associating
vap—No. of times A and B are observed within the temporal threshold but not associating
The value of the index ranged between 0 and 1, where 0 indicated that the two animals were
never observed together and 1 indicated that they were always observed together. The individuals
sampled from the population form the network nodes, and an association between pairs account

for the edges in the networks. Each edge in the network had a weight attribute that signified the
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association strength calculated by the modified Simple Ratio Index described above. In this way,
we obtained the network structures corresponding to each species from their raw GPS observa-
tions which also represent the complete set of relationships among the individuals tagged for each

species.

Analysis

To assess the properties of the networks, we used standard metrics common in animal social net-
work analysis (Table 2). The local network summary statistics which provided individual level in-
formation included degree (Shimada and Sueur, 2014), strength (Pike et al., 2008), betweenness
centrality (Kanngiesser et al., 2011; Aplin et al., 2012), eigenvector centrality (Kulahci et al., 2016;
Aplin et al., 2012) and local clustering coefficient (Pike et al., 2008; Shimada and Sueur, 20714). Den-
sity (Ozella et al., 2021), transitivity, and diameter are the global network metrics and provide a
summary of the overall network and behaviour of the individuals as a whole. We also calculated
the mean of each node's degree (mean degree (Shimada and Sueur, 2014)) and strength (mean

strength) and used those as global network properties.

Table 2. Network metrics used in the analyses

Metric Local or Global What does the metric measure ?
Network Metric
Degree Local The number of connections an individual has in the network.
Higher degree means more gregariousness.

Strength Local The combined weight (i.e., frequency or duration) of all of an
individual’s connections in a network. It is also called weighted
degree.

Betweenness Local The number of times an individual occurs on the shortest path

Centrality between two other individuals in the network.

Eigenvector Local A measure of influence in the network that takes into account

Centrality second-order connections.

Local Clustering Local A measure of likelihood that the connections of an individual
Coefficient are also connected.
Density Global The proportion of completed edges in the network.
Transitivity Global The amount of clustering in the network, calculated as a
function of completed triangles relative to possible triangles.

Diameter Global The shortest distance between the two most distant
individuals in the network.

Mean Degree Global Average number of connections of an individual in the
network.
Mean Strength Global Average strength of an individual in the network.
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1. Pre-network data permutations

To assess if the interactions captured by the observed sample were genuinely caused by social
preferences, we generated null models. Null models were constructed to account for non-social
factors that lead to the co-occurrence of animals. In animal social network analysis, null models
are broadly classified in two ways: network permutations and pre-network permutations (Farine,
2017). Network permutations are performed after the network is generated from the data, whereas
pre-network permutations are performed on the data stream before generating networks from it.
GPS telemetry observations generate data in the form of autocorrelated streams. In the permuted
versions of the data, we wanted to maintain this autocorrelation structure of each individual's
movements but randomize the contacts. Therefore, we obtained pre-network datastream permu-
tations as suggested by Spiegel et al. (2016), and Farine (2017). For each individual in the study, the
tracks followed by them on each day were segmented. Then the dates on which those tracks were
followed were shuffled for each individual. This methodology of permuting the pre-network data
stream ensured unaffected home ranges of animals in the permuted data, but whom they came
in contact with was now randomized in the null model. This also preserved the autocorrelated
structure of individual tracks to ensure realistic animal movements.

For each species, we obtained 1000 permuted versions of the raw data stream, giving rise to
1000 network structures. Then, we calculated global network summary statistics for each of those
networks and obtained a null distribution of values. We then compared the observed network
properties to the distribution of null values, which helped determine the metrics that capture non-

random aspects of the observed network.

2. Analysing sub-samples of the observed network

We randomly sub-sampled m nodes from the observed network of N nodes where m < N without
replacement. All the associations among the sampled nodes were preserved, and the rest were
dropped. This resulted in a network structure that would have been obtained if originally just these
m individuals had been tagged from the population. In this way, we drew 100 samples of size m
where the value of m ranged from 10% to 90% of the total nodes forming each network for five
species. We recorded the values of global network metrics of density, mean strength, transitivity,
and diameter and obtained a distribution of the values. We assessed the bias in the values of

network metrics obtained from this sub-network compared to the original network. Performing
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this procedure across five species and for different values of m revealed the robust network metrics
that should be adopted for social network studies on the available samples.

We also applied a sub-sampling approach on the permuted networks to determine under what
sampling level the observed networks start to resemble the random networks. We sub-sampled
nodes from 1000 permuted network versions without replacement at different levels ranging from
10% to 90%. Four global network metrics were calculated for each permuted version, and each
level and their distribution were plotted along with the distribution of sub-sampled versions of the
original network. This visualisation provided an estimate of the minimum amount of subsampling
required to ensure that the network differed significantly from a random network for that species

and the environment.

3.Bootstrapped confidence intervals

Assuming a researcher has chosen a set of network metrics appropriately, it is prudent to consider
not only the point estimate derived from their data but also the uncertainty associated with it. In
order to create confidence intervals to facilitate the comparison of different networks (e.g., differ-
ing sampled individuals from the same population or the same individuals’ networks computed at
different times), we adapted the Bootstrap algorithms of Snijders and Borgatti (1999). Similar to
the algorithms used in SOCPROG (Whitehead, 2009) and UCINET (Borgatti et al., 2014), this algo-
rithm sampled nodes in the network with replacement for each of B=1000 Bootstrap replications.
In each replication, edges between two different resampled nodes were retained, whereas edges
between the same node resampled twice were sampled uniformly at random from the set of all
original edges. Therefore, each bootstrap replication network comprised the same number of
nodes (animals) as the original network; however, some of the original nodes were absent, some
were present once, and some more than once.

Bootstrapping has been used to infer uncertainty in animal social networks (see Lusseau et al.
(2008), Whitehead (2008)), however bootstrapping social network data should only be used care-
fully as zero edges (which could result from unobserved associations rather than two animals not
associating at all) are resampled as zeros across all replications (Farine and Carter, 2022). We,
therefore, began by assessing whether such algorithms were appropriate for constructing confi-
dence intervals for our chosen global network metrics. In particular, we wished to ensure that

the confidence intervals were not too narrow, as this would lead to false positives in comparing
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networks i.e. finding statistically significant differences where there may be none and therefore
having an inflated Type 1 error rate. For example, consider a scenario in which two ecologists inde-
pendently sample a random subset of individuals from the same population of animals. They then
construct two social networks and compute network metrics, along with confidence intervals using
some statistical methods. If they compare their results and obtain statistically significant results
(e.g., via a t-test) and conclude that the two social structures are different, they have made a Type
1 error because, the two samples come from the same population and should therefore not ap-
pear statistically significantly different. Any differences are due to the random subsampling of the
individuals, but the social structure of the population is the same. We, therefore, wish to confirm
that our proposed bootstrapping approach does not exhibit such problematic behaviour (i.e., that
analyses based on two subsamples from the same population yield test statistics and p-values con-
sistent with the null hypothesis that the samples arise from populations that have the same social
structure as indexed with the various network metrics.) To this end, we began by combining the
Bootstrap algorithm with the sub-sampling analysis. See Appendix 1: Assessment of bootstrapping
algorithm for results showing correct calibration under the null hypothesis. Then, to examine how
uncertainty relates to sample size, we obtained confidence intervals using the bootstrapped sam-
ples for each network metric and recorded their width. Finally, we repeated this process ten times
and calculated the mean width of the ten confidence intervals against the number of individuals

in the network.

4. Correlation analysis between node level metrics of partial and full networks

To assess the accuracy of the node level metrics inferred from a given sample, we looked at the
correlation between the values of the metrics in the observed sample, and a smaller sub-sample
of the empirical data as suggested by Silk et al. (2015). First, we calculated node-level metrics of
degree, strength, betweenness, clustering coefficient, and eigenvector centrality for each node in
the observed network. Then we sub-sampled nodes from the observed network at 10%, 30%, 50%,
70%, and 90% levels without replacement and calculated node level metrics for each sub-sample.
Finally, we calculated the correlation coefficient between the metric values of the nodes in the
observed and partial networks. The process was repeated 10 times at each level of sub-sampling,
and the mean and the standard deviation were recorded from the 10 correlation coefficients at

each level.
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Lastly, we run a regression analysis (Silk et al., 2015) to assess how the values of node-level
metrics for partial networks relate to their values in the whole network (See Appendix 2: Regression

analysis between node level metrics of sub-sampled and observed networks in Appendix).

Results

Association Index and Network Formation

Spatial threshold is selected to be 10 meters for mule deer sample and 15 meters for rest of the
species samples. The temporal threshold is arbitrarily chosen to be 7 minutes and accounts for
delays in signal reception by the GPS devices. For example, if a GPS unit records a location at 09:57
AM, the observations recorded until 10:04 AM will be evaluated for potential interactions. Table 3
shows the values of network summary statistics for each of the five species. The mule deer sample
has the highest mean degree and very high mean strength suggesting a dense social network. The
elk sample has a maximum diameter with a value of 9 which implies that it will take a maximum
of 9 steps to reach from any individual to another in the elk network. The pronghorn sample has
the maximum transitivity and mean local clustering coefficient, depicting that any two associates
of a pronghorn are likely to be associated to each other. Figure 1 shows the network structures
obtained for all five species.

Table 3. Summary statistics for the networks obtained from the five species. Order of a network represents

the number of individuals tagged in the sample with mule deer sample having the greatest order and caribou

sample having the smallest order.

Species Order Size Mean Mean Mean Mean Mean Local Density Transitivity Diameter

Name (Nodes) (Edges) Degree gtt i Clustering
Centrality Coefficient

Caribou 94 309 6.57 0.048 32.95 0.021 0.64 0.070 0.576 8

Elk 171 696 8.14 0.028 147.38 0.042 0.65 0.047 0.555 9

Mule Deer 263 1582 12.03  0.767 367.78 0.014 0.48 0.045 0.353 8

Pronghorn 159 660 8.30 0.111 40.02 0.021 0.71 0.053 0.679 6

Roe Deer 147 130 1.77 0.020 4.86 0.017 0.59 0.012 0.479 6

1. Pre network data permutations

Pronghorn and roe deer samples capture non-random aspects of the population very well, and
for all network metrics, the observed values are significantly different (p < 0.001) from the distri-
bution of permuted network values (Figure 2). Also, for all five species, the mean strength of the

observed network are higher than the permuted networks (Figure 2). This indicates that all these
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Figure 1. Network structures for the five large herbivores analysed in this study. Each node is an animal, and
an edge between two nodes indicates that they have interacted at least once. Note how the pronghorn
network is denser than the roe deer network despite having an approximately equal number of nodes. Also,

a clear partition in the caribou network can be seen.

samples capture higher association rates than would be expected from a random network under
similar assumptions. Researchers dealing with specific study cases and species should not use
those network metrics whose observed value lies within the distribution of null values as those do

not capture non-random aspects of associations (e.g., transitivity in caribou.)

2. Subsampling

Performing sub-sampling on the observed samples of networks at various levels revealed the net-
work metrics density and transitivity as most stable (Figure 3.) The uncertainty in these two metrics
is comparatively low, even when just 30% of the individuals are present in the sub-sample. Their
distribution is centered on the true values, and this allows to estimate bias if the proportion of
sampled individuals is known. Transitivity at a sub-sampling level of 10% becomes unreliable for
caribou, pronghorn, and roe deer, implying that this metric is a poor measure when the sampling
proportion is very small. The bias in mean strength values follows a linear pattern when the sub-
sampled proportion is reduced from 90% to 10% for all five species. The linear pattern suggests
that it is possible to correct the bias for mean strength from the sample if the proportion is known.
This linear increase must, however, plateau as we approach a census of the population (Bliss et al.,

2014). The network’s diameter, similar to mean strength, also follows a staircase pattern with lower-
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Figure 2. The rows correspond to the five species, while the columns correspond to four standard network
metrics. Each plot represents the distribution of network metric values obtained from 1000 permuted
versions of the species network. Observed network metric values are quoted at each plot's top right corner.
The color of the observed value (black or red) represents their relative position to the distribution of null
values, indicating the extent of non-randomness of the observed metric. The values which are farther from
the peak of distribution are displayed in color red and represent that the observed sample captures the
non-random aspect well. For example, the observed value of mean strength is high with respect to the
an
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ing sub-sampling levels. However, it does not follow a linear pattern for all five species and tends to
plateau. Diameter and mean strength are directly affected by the number of nodes present in the
sample. Therefore, care should be taken while using these metrics when the sampling proportion
is unknown.

We performed subsampling on 1000 permuted versions of the network along with the subsam-
pling on the observed network. The side-by-side visualisation of the network metrics distribution
(Figure 4) enabled us to identify the sampling level at which a subsampled network begin to re-
semble a random network. The plots reveal that for caribou, elk, and mule deer, network metrics
density, transitivity, and diameter distribution are identical to that of a null network at all subsam-
pling levels. Nevertheless, mean strength distribution tends to increasingly overlap the distribu-
tion of subsamples from the null network when the level of sub-sampling is lower than 90%. For
pronghorn, the distribution of all the network metrics obtained from subsamples of the observed
network is higher than the values obtained from the subsamples of the null networks at all sam-
pling levels. For roe deer, this is only true for mean strength. The distribution of values for density

and transitivity tends to overlap the null distribution at 50% and 30% levels, respectively.
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Figure 3. Effect of sub-sampling on four global network metrics. The horizontal red line in each plot

represents the metric value in the observed network. The boxplots denote the distribution of network metric

values obtained from the observed networks by taking 100 sub-samples at each sampling level. The size of the

boxes in the boxplots of a network metric with respect to the sample size represents the extent of uncertainty

in that network metric. For example, density has smaller boxes when as low as 10% of the nodes are selected.

In contrast, the box size for transitivity is large, representing that density is more stable than transitivity. The
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3. Bootstrapping Confidence Intervals

To investigate the extent of uncertainty in the values of network metrics, we used bootstrapping
technique to obtain confidence Intervals and plot their width against the sample size (Figure 5
(a)). Confidence intervals can be calculated for any network metric at any sample size. For the
network metric density and transitivity, the mean width of the confidence intervals increased with
decreasing sample size for all five species. Mean width of density remained comparatively low for
as few as 50 samples but began to increase below that value for all five species. For transitivity, the
width remained less than 0.2 when at least 100 individuals are tagged for all the species, except for
roe deer. The minimum width for roe deer is 0.4, even when all the individuals in the sample are
considered. At smaller sample sizes, mean width approaches 1 for all the five species, which is the
maximum value transitivity can attain for any network. Therefore, to check that these confidence
intervals are not too wide and increase the likelihood of Type 1 errors, we have compared two non-
overlapping sub-samples from the observed sample to check for significant results (See Appendix
1: Assessment of bootstrapping algorithm ). We have ensured that the bootstrapping algorithm
does not generate spurious statistically significant results.

For mean strength and diameter, the width of confidence intervals does not increase with a
decrease in the sample size. This is because the values of these metrics are directly affected by the
number of nodes in the network e.g., say there are N nodes in the network, the possible degrees
of a node can be anywhere between 0 and N-1; however, if we remove M (< N) nodes from the
network, the new possible value for the degree will lie between 0 and (N-1)-M, which results in
a narrower width of the confidence intervals. Therefore it can be helpful to consider the scaled
versions of these metrics where they are scaled by the number of nodes in the network (Figure 5 (b)).
The scaled versions of these metrics follow a similar pattern to transitivity and density. The width
of confidence intervals increases with a decrease in the number of individuals sampled. Some
fluctuation in this pattern is observed for the density and scaled diameter for some species, when
the sample size is low (e.g., roe deer sample.) Depending on the selection of nodes in the sub-
sample, the value of the diameter in the sub-sampled network can reach extreme values at each

level of sub-sampling.
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Figure 5. The plots show the mean widths of 95% confidence intervals obtained from bootstrapped
sub-samples of a network. The mean widths of density and transitivity increase with lower sample size, which
indicates increasing uncertainty around the point estimate of the network metrics. However, the pattern is
reversed for mean strength and diameter because the values for these two metrics are directly affected by
the number of nodes present in the network. Therefore, we consider scaled versions of these two metrics

where the number of nodes at each level scales the values.

4. Correlation Analysis

The correlation of all network metrics between the sub-sampled and observed network declined
as the proportion of sub-sampled nodes in the network decreased (Figure 6). However, the pattern
and rate of decline are different across network metrics. Degree remains well correlated for mule
deer when as few as 10% of nodes are sub-sampled. Mean correlation coefficients of strength,
betweenness, and clustering coefficient decline almost linearly with a decrease in the sub-sampling
proportion, with slightly more variance in caribou values than mule deer values. For both species,
the values for eigenvector centrality became unreliable with high variability even when 90% of the
individuals are present in the sub-sample in most of the sub-sampled networks, suggesting that it

isa poor measure to use.

19 of 36


https://doi.org/10.1101/2023.03.30.534779
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.30.534779; this version posted April 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Correlation

Correlation

Correlation

Correlation

Correlation

10

Caribou
Degree Strength Betweenness Clustering Coefficient Eigenvector Centrality
s s s s
© ©
I3 c © I3 e ©
§ § § §
5 ] 5 5 3
I3 2 ° I3 I3
8 S o 8 8 8
S
o
3
o
o o g
3 P o
T T T T T T T T T T T T T T T ° T T T T T T T T T T
02 04 06 08 1.0 0.2 0.4 06 08 1.0 02 04 06 0.8 1.0 0.2 0.4 06 08 1.0 02 04 06 08 1.0
Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample:
Degree Strength Betweenness Clustering Coefficient Eigenvector Centrality
s o S s
o
« =)
3
=]
©
s § o § 5§ <
5 5 5 5 S
3 3 < 3 3
g gz g g o
3 3 3 8 ©
o =3
8 3
o
o ° o <«
T T T T T ° T T T T T T T T T T © T T T T T < T T T T T
0.2 04 06 0.8 1.0 0.2 04 06 0.8 1.0 0.2 04 06 0.8 1.0 0.2 0.4 06 0.8 1.0 02 04 06 08 1.0
Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample
Mule Deer
Degree Strength Betweenness. Clustering Coefficient Eigenvector Centrality
s s s s
3 M 2
©
3 e °
s § 2 & 5§
5 5 5 53
£ - £ e £ .
8 8 2 s . 8 o
o ° =
o < = <
g 3 o
T T T T T T T T T T < T T T T T T T T T T T T T T T
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample
Pronghorn
Degree Strength Betweenness Clustering Coefficient Eigenvector Centrality
S S g S g o
© ©
3 ] ] 3
©
s 3 < < e ©
§ 5§ 2 5§ ¢ §
g 5 4 5 4 5 o
S o 8 3 s 3
3
°
o R . g
° o~
o o | s | <
T T T T T B T T T T T < T T T T T < T T T T T T T T T T
0.2 04 06 08 1.0 0.2 0.4 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0 02 04 0.6 08 1.0 0.2 04 0.6 0.8 1.0
Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample Proportion of Individuals in Subsample
Roe Deer
Degree Strength Betweenness Clustering Coefficient Eigenvector Centrality
2 2 R 2
- i o
3 ] < 41 S
©
i
c 8 PR e ol - e °
g g gsq- £ 5
s < k- s . 3
g3 g o [ g
S o 3 8 s (S
3 | c
S ’ o 3
S [ 3
g [ N
= [ ?
o sq s
g g
T T T T T ? T T T T T — T ———T——T——
02 04 06 08 10 02 04 06 08 10 03 04 05 06 07 08 09 10 03 04 05 05 07 08 09 10

Proportion of Individuals in Subsample

Proportion of Individuals in Subsample

Proportion of Individuals in Subsample

Proportion of Individuals in Subsample

Proportion of Individuals in Subsample

Figure 6. The plots show the correlation of local network metrics between the nodes of sub-sampled and

observed networks. The black line in the plots indicates the mean correlation coefficient value between the

local metrics of nodes present in the sub-sampled network. The colored region depicts the standard

deviation of the correlation values at each sampling level. For example, degree value remains highly

correlated with comparatively low standard deviation, even at lower sampling levels.
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Box 1. Instructions for Ecologists

1. Define the network edges by choosing a sensible distance threshold based on the
research question, species sociality, and information obtained from the data (see sec-
tion Identifying Associations from Raw GPS data for more details.)

2. Checkif the interactions captured by the sample are non-random with the help of net-
work permutations. Network metrics can be deemed suitable after assessing whether
they capture non-random associations via network permutations.

3. ldentify stable network metrics concerning the species and the available sample using
sub-sampling from the observed data.

4. |dentify the minimum sampling effort required to determine the network properties
that are different from a randomly generated network by comparing the sub-sampled
networks from permuted data sets with the sub-samples of the observed data.

5. Obtain confidence intervals around the point estimates of network metrics using the
bootstrapping algorithm, which also takes care of the autocorrelated structure of
telemetry relocation data. The width of confidence intervals can also be analysed
for lowering sample sizes.

6. To assess which local network metric remains least affected with lowering sample
sizes, obtain a correlation coefficient between the node level metrics from the ob-
served sample and the same nodes from the sub-sample. The local network metrics
with a high correlation (>0.7) are expected to be more stable and should be chosen
for further analysis as they are more likely to represent the position of individuals in

the network, similar to their position in the full population.

Discussion

Using the four-step paradigm on GPS telemetry observations for five species of ungulates, we
assessed the stability of global and local network metrics and obtained measures of uncertainty
around the point estimates that can be used to obtain reliable inferences about the structure of
a social network. First, using data permutations, we found whether the data collected captured
the non-random aspects in all or some of the network metrics: this was entirely true in roe deer,

for instance, whereas in other species such as elk the data collected were able to capture non-
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random associations only with edge density and mean strength. This is a key step in our approach,
because at this stage the researcher can make the decisions on whether using such metrics in
their study case. Differences among the species in the way metrics responded to permutations
analysis most likely reflect different sampling regimes and designs rather than the ecology of the
different species. Second, sub-sampling from the observed sample revealed density as the most
unbiased measure of animal networks with low uncertainty, even at small sub-sampling propor-
tions. Third, we introduced bootstrapping techniques for animal social networks, which allowed
us to compute confidence intervals around the point estimates of the network measures. Density
and scaled version of mean strength emerged as two of the most robust network metrics. Fourth
and last, correlation analysis between the node level metrics of the observed network and the sub-
sampled network highlighted the network metric degree to be most correlated with the observed
network metric values, even at 40% of sub-sampling levels. This means that if the information
about sampling proportion is available, the relative degree of each individual can be used to es-
timate the true degree distribution. Users can take advantage of the functions in the R package,
aniSNA (Kaur, 2023) to undertake such an analysis of their data. We summarise the steps that
should be taken to perform this analysis in Box 1. Instructions for Ecologists.

Despite being a commonly used tool to understand animal ecology (Hock and Fefferman, 2011;
Krause et al., 2010; Robitaille et al., 2019; Silk et al., 2017, Sosa et al., 2021a,b), social network
analysis can be challenging when applied to real-life datasets (Castles et al., 2014; Farine, 2015).
(Castles et al., 2014) performed tests to demonstrate a distinction between networks built using
differentinteraction and proximity techniques. Similar tests performed by Farine (2015) illustrated
that the conclusions by Castles et al. (2074) cannot be generalized across species. A researcher’s
choices during the data collection and the analytical stage affect the networks produced. There-
fore, the inferences generated may not reflect true characteristics and can be highly sensitive to
these decisions (Ferreira et al., 2020; Castles et al., 2014). Furthermore, the information available
about the sampling protocols may be incomplete or may not be available at all. However, this
does not imply that social network analysis should not be conducted on such data. It is prime to
use statistical methods that would help extract as much information as possible, along with details
about the uncertainties due to partial data and sampling strategies. Performing permutations to
randomize autocorrelated GPS data stream (Farine, 2017; Spiegel et al., 2016) is a first step to

distinguish the best network metrics that capture the non-random aspects of social interactions.
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Different network metrics capture different aspects of the network; some networks may have more
non-random elements than others, depending on the species’ sociality and the sampling strategies
adopted to collect the data. The analyses helped highlighting the network metrics that distinctively
capture these non-random aspects. Based on these analyses, we recommend using the network
metric mean strength as an assessment metric to identify if the captured interactions are signifi-
cant enough to generate reliable analysis results. Apart from the four network metrics we chose
to work with, it is helpful to run this analysis on multiple network metrics that seem suitable given
the research question (e.g., coefficient of the variation of edge weights.) Once a network metric is
chosen by the user, further analysis of the available dataset can be carried out to answer the re-
search question. Researchers should keep in mind that our approach is particularly suited (but not
limited) to autocorrelated telemetry relocation, although its use could be expanded to more rar-
efied observational data (e.g., low frequency observations of individually recognizable individuals
in a population.)

Caution should be taken while reporting the values of social network metrics when the sample
size is small relative to the population (Lusseau et al., 2008; Farine and Strandburg-Peshkin, 2015).
As a general rule, the smaller the sample size, the more considerable uncertainty can be expected
in the observed values. However, some network metrics remain unbiased despite significant un-
certainty, whereas others would become biased as the sample size decreases. Sub-sampling from
the observed sample and permuted versions of the network revealed helpful information regard-
ing the stability of certain metrics and the proportion of individuals required to ensure a non-null
network. For the samples we used, density and transitivity emerged as the more stable metrics, re-
maining unbiased when as low as 10% and 30% of the individuals were sub-sampled, respectively.
Network metrics such as the mean strength became biased as we lowered the number of nodes
in the sub-network. However, it was well characterised by a linear relationship which eventually
plateaued. The choice of individuals in the sub-sample greatly affected some network metrics such
as diameter. However, it always tends to plateau when the proportion of sampled individuals goes
up. Sub-sampling from permuted versions of the data and comparing it with the distribution of
sub-samples from the observed network revealed the minimum sub-sampling level required to
ensure a non-null network structure. Davis et al. (2018) investigated the effect of sampling effort
on the accuracy of social network analysis and concluded that increased sampling intensity may

not always increased the accuracy of network measures especially when the sampling regime is
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already very intense.

Reporting the values of social network metrics point estimates is not enough especially when
a large proportion of individuals in the population is not monitored. It becomes equally impor-
tant to communicate uncertainty around those estimates (Whitehead, 2008; Lusseau et al., 2008).
We presented bootstrapping as a powerful approach to evaluate confidence intervals around the
point estimates of network metrics from the observed data. Bootstrapping enabled us to assess
the extent of variation in the network metrics if a different set of individuals was sampled from
the population. However, caution should be taken while computing the confidence intervals for
those global network metrics, which are directly affected by the network’s number of nodes, such
as mean strength. In such cases, the values should be scaled by the number of nodes present
in the sample. The network metrics of density and scaled mean strength are those having low
uncertainties, even at small sample sizes.

Past studies have tried to uncover how the values of node-level metrics are affected when the
sample sizes are lowered (Silk et al., 2015; Franks et al., 2010; Costenbader and Valente, 2003).
Our work expands on the findings by Silk et al. (2015) by performing the correlation and regres-
sion analyses between the local metric values of the nodes in the entire sample to the values of
the same nodes in a smaller sub-sample. With correlation analysis at various subsampling levels,
we determined how the correlation rate decreases as the sub-sample size is lowered. Out of the
five node level metrics that we tested, degree seemed to work better, with high correlation even
at low sample proportions. Also, we recommend not using eigenvector centrality based on a pop-
ulation subsample as the metric being a higher-order statistic lacks robustness and, therefore, is
highly sensitive to the selected nodes. This observation agrees with the simulation study by Silk
et al. (2075). We conclude that care should be taken while comparing the metric values between
nodes when a small proportion is tagged from the population. Indeed, the social network positions
captured by a small sample may not reflect the actual positions in the network in such cases.

The goal of this paper was not to make inferences about the network characteristics of an
entire population but to analyse how different network metrics scale under downsampling. As
a matter of fact, despite we had access to large telemetry samples from five different species,
they represent a subset of an unknown population with unknown size. The methods discussed
here can help pinpoint useful social network metrics that remain robust when trying to answer a

particular research question. Those metrics that suffer data thinning and become unstable should
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not be used with telemetry data, which is typically used to monitor a small proportion of the actual
population. Also, we used data from multiple species of large herbivores with very different ecology
and characteristics, including migratory/ non-migratory and from very social to solitary species.
During the analysis, we voluntarily disregarded the ecology of the species, because our goal was
not to perform inter-species comparisons and make inferences on their respective social networks
but to determine which social network metrics perform well/poorly across the species.

Despite our a priori disregard of the ecology of the five species for the reasons stated above,
we found interesting differences among them which deserve to be discussed here. Firstly, the
fact that the data collected from a more solitary species such as roe deer (See Table 3) better cap-
ture the non-randomness of the association compared to more gregarious species such as elk
suggests that sample size (in proportion to the actual population size) should be higher in more
gregarious species. In addition, sampling regimes can affect the social network patterns and re-
lated ecological inference. For example, a high-density value of the roe deer network as compared
to the distribution of null networks could be due to the fact that the sampling was done across six
spatially separated capture sites (within 10 x 10 km). This results in very low density values when
the data is permuted across these six clusters (Figure 7). Instead, the mule deer’s initial locations
(Figure 7) show that the network is already very dense. In the permuted versions of the raw data,
the number of random interactions is similar to the number of observed interactions, resulting in
observed network density value similar to the density of permuted versions of data. In other words,
the sampling strategy (location of the capture sites) may affect the spread of individuals and the
density of the respective network structures, therefore researchers need to focus on the ecological
interpretation of their social network results after having taken into account of the possible bias
introduced by sampling strategies.

Numerous papers have examined the conceptual properties of centrality measures to assist
animal social network researchers in selecting the most meaningful and valid measure for their
research question and the available data (Farine and Strandburg-Peshkin, 2015; Franz and Nunn,
2009; Frantz et al., 2009; Borgatti et al., 2006). The performance of network centrality measures
under various sampling regimes and the species sociality could vary to a great extent (Costen-
bader and Valente, 2003; Gile and Handcock, 2006; Dawson et al., 2019) and our work confirms
this. Future work involves analysing the effects of observation frequency on the accuracy of net-

work metrics. For example, it could help to understand if it is better to observe individuals for a
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Figure 7. Plot of the initial locations for the individuals belonging to five species in the study. The distribution
of these locations explains some of the differences in the values of network metrics. For example, the initial
capture locations of mule deer are spatially very close, which is also reflected in the network metric values of
the final network of associations. As a result, the mule deer network has the highest mean strength and
mean degree (Table 3). In contrast, the roe deer network has the lowest mean strength and mean degree,

explained by their six spatially separated capture sites.

longer duration with low temporal resolution or a shorter duration with high temporal resolution.
In our analysis, sub-sampling on the observed samples is done randomly. However, this aligns
differently from the sampling strategies adopted in real life. Smith and Morgan (2016) investigate
the effects on estimates of key network statistics when central nodes are more/less likely to be
missing. Application of our methods to determine how the network metrics scale when a different
sampling strategy is adopted would be valuable (e.g., whether it is better to sample entire groups,
or focus on greater sampling frequency of individuals). Another vital direction forward is to assess
the methods presented in this paper to be tested on the GPS telemetry data of the entire pop-
ulation. If data on the whole population is available (e.g., a fenced one), it will be interesting to
perform these methods on a subset of that and test if the predictions align with the true values.
Along with all of the advantages to understand animal ecology, SNA presents certain challenges
that hinder ecologists from using it to its full extent. We addressed a few of those challenges in this

paper and introduced a four-step paradigm to assess the suitability of available data for SNA and
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extractinformation for further analysis. The methods are also provided as easy-to-use functions in
an R package aniSNA (Kaur, 2023). This package allows ecologists to directly apply these statistical
techniques and obtain easily interpretable plots to provide statistical evidence for choosing a par-
ticular network metric or the choice of individuals tagged for the study. The fact that researchers
can compute 95% confidence intervals around their point estimates unleashes new research op-
portunities, such as tackling specific hypotheses. For instance, researchers can estimate network
metrics in a sample population when it is disturbed by human presence to be compared to when it
is not disturbed, and the ability to assess the overlap of respective 95% confidence intervals would
allow making inference on the effect of human disturbance on sociality. Likewise, this approach
can be used to compare social networks within and across populations as a function of tempera-
tures, presence of predators, or different wildlife management strategies, unleashing a range of

ecological questions using SNA and related statistical tools.

Animal welfare
1. Elk in SW Alberta, Canada, were captured (animal care protocol no. 536-1003 AR University
of Alberta) during the winters of 2007-2011 using helicopter net-gunning.
2. Pronghornin southcentral Wyoming, USA, were captured, handled, and monitored according

to protocols approved by Wyoming Game and Fish Department (Chapter 33-923 Permit) and

University of Wyoming Institutional Animal Care and Use Committee (protocol 20131028)B00037).

3. All animal capture and handling protocols were approved by the Wyoming Game and Fish De-

partment (Chapter 33-937) and an Institutional Animal Care and Use Committee at the Univer-

sity of Wyoming (20131111KM00040, 20151204KM00135, 20170215KM00260, 20200302MK00411).

4. RoedeerinAurignac, France, were captured (prefectural order from the Toulouse Administra-
tive Authority to capture and monitor wild roe deer and agreement no. A31113001 approved
by the Departmental Authority of Population Protection) during the winters of 2005-2012 us-

ing drive netting.
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Appendix 1: Assessment of bootstrapping algorithm

We Bootstrapped two different subsamples of a social network at each subsampling percentage.
Given thatthe subsamples were taken from the same population, any significant differences should
be attributed to overly confident Bootstrapped intervals and non-significant results were to be ex-
pected. We repeatedly sampled pairs of networks at each subsampling level and computed the
p-value for a significant difference between the two network metrics, as determined using a two-
tailed t-test as per Snijders and Borgatti (1999) (See 3.Bootstrapped confidence intervals for
more details.) If the subsampled networks do indeed provided noisy estimates of the network

metric calculated across the population and the Bootstrap algorithm did not return intervals that
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were too narrow, the B Bootstrapped p-values would not contain more than approximately «B
values less than « (for any significance level «). Indeed, the p-values would ideally be uniformly
distributed between 0 and 1. We do not perform tests of our bootstrapping approach with regard
to power / Type 2 errors because, as with all hypothesis tests, the power to correctly identify real
differences in network metrics between two different social networks depends not only on sample
size but also on the magnitude of the differences. The larger the sample size and the larger the
true difference, the greater the power to identify that the networks differ.

For all the network metrics, p-values for difference between two samples is non-significant for
all the five species (Figure 8) which indicates that our bootstrapping approach is not overly sensi-

tive i.e. return too many false positive results when used to compare the network metrics of two

networks.
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Appendix 0 Figure 8. Mean of P Values for the difference in network metrics values for two non overlapping
sub-samples of the observed sample. The two non-overlapping sub-samples are bootstrapped 1000 times
and p-values are computed for to check for the significance of difference. This process is replicated 10 times
to obtain mean of p values. The red dotted line in each plot corresponds to value 0.1 on the y-axis. All the

mean p-values lie well above this dotted line.
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Appendix 2: Regression analysis between node level metrics of sub-sampled

and observed networks

While analyzing local node level metrics from a partially sampled network, it is useful to know the
extent by which the position of an individual in the population controls its position in the sampled
network and how this control depends on the choice of individuals in the sample or density of the
population.

To answer this, we perform regression analysis such that the values of node-level metrics in
the sub-sampled networks are regressed on the values of those nodes in the observed network.
As in the correlation analysis, the individuals are further sub-sampled to analyse the effect. Sub-
sampling is done at 10%, 30%, 50%, 70% and 90% levels and is repeated 10 times at each level. The
mean slope of regression is calculated for the five network metrics of degree, strength, between-
ness, clustering coefficient and eigenvector centrality at each level for each run of the simulation.
The slope of regression describes how the value of network metrics calculated in each partial net-
work relates to its value in real network as per Silk et al. (2015).

The slope of regression is plotted against sampling proportion (Figure 9) The accuracy of node-
level metrics from partial networks is highly dependent on the metric being used. In agreement
with the results of the simulation study by Silk et al. (2015), the accuracy of local measures of degree
and strength decrease linearly in direct proportion to the proportion of individuals subsampled. In
contrast, the accuracy of eigenvector centrality does not depend on that proportion in any of the
networks except for elk network. The value of the slope of regression for betweenness decreased
non-linearly for four of the species that have low num ber of individuals tagged and followed a
near-linear pattern for mule deer that has high number of individuals observed. The accuracy of
the clustering coefficient did not decrease till the level of identified individuals was as low as 50%
but declined rapidly at different levels after that for each of the species.

Silk et al. (2015) suggests that the strong relationship between the proportion of individuals
sampled and the accuracy with which local measures (degree and strength) predict the actual value
of an individual's centrality is notable. This implies that it is possible to correct for this effect if the

proportion of sampled individuals in a population is known.
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Appendix 0 Figure 9. Regression analysis of local network metrics between the nodes of partial and
observed network. In each plot, X-axis denotes the proportion of nodes in the sub-sample and Y-axis shows
the corresponding value of the slope of regression calculated by regressing the local network metrics of

sub-sampled nodes and observed network nodes.
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