

Assessing bias and robustness of social network metrics using GPS based radio-telemetry data

Prabhleen Kaur^{1*}, Simone Ciuti², Federico Ossi³, Francesca Cagnacci^{3, 4}, Nicolas Morellet⁵, Anne Loison⁶, Kamal Atmeh⁷, Philip McLoughlin⁸, Adele K. Reinking⁹, Jeffrey L. Beck¹⁰, Anna C. Ortega^{11, 12}, Matthew Kauffman^{12, 13}, Mark S. Boyce¹⁴, Michael Salter-Townshend^{1*}

*For correspondence:

prabhleen.kaur.ucd@gmail.com;
michael.salter-townshend@ucd.ie

Present address: ⁵School of Mathematics and Statistics, University College Dublin, Ireland

⁸ School of Mathematics and Statistics, University College Dublin; ²Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Sciences, University College Dublin; ³Animal Ecology Unit, Research and Innovation Center (CRI), Fondazione Edmund Mach, Italy; ⁴NBFC, National Biodiversity Future Center, Palermo 90133, Italy; ¹²Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, Auzeville Tolosane, France; ⁶ Alpine Ecology Laboratory, Savoie Mont Blanc University, Chambéry, France; ⁷Biometrics and evolutionary biology laboratory, Claude Bernard University Lyon 1,France; ⁸Department of Biology, University of Saskatchewan, Canada; ⁹Cooperative Institute for Research in the Atmosphere, Colorado State University, United States; ¹⁰Department of Ecosystem Science and Management, University of Wyoming, Laramie, USA; ¹¹Program in Ecology, University of Wyoming; Laramie, WY 82071 USA; ¹²Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071 USA; ¹³U.S. Geological Survey; ¹⁴Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada

23

24 **Abstract**

25 1. Social network analysis of animal societies allows scientists to test hypotheses about social
26 evolution, behaviour, dynamical processes, and transmission events such as the spread of
27 disease. However, the accuracy of estimated social network metrics depends on the proportion
28 of individuals sampled, actual sample size, and frequency of observations. Robustness of
29 network metrics derived from a sample has thus far been examined through various simulation
30 studies. However, simulated data do not necessarily reflect the nuances of real empirical data.

31 2. We used some of the largest available GPS telemetry relocation datasets from five species of
32 ungulates characterised by different behavioural and ecological traits and living in distinct
33 environmental contexts to study the bias and robustness of social network metrics. We
34 introduced novel statistical methods to quantify the uncertainty in network metrics obtained from
35 a partial population suited to autocorrelated data such as telemetry relocations. We analysed
36 how social network metrics respond to down-sampling from the observed data and applied
37 pre-network data permutation techniques, a bootstrapping approach, correlation, and regression
38 analyses to assess the stability of network metrics when based on samples of a population.

39 3. We found that global network metrics like density remain robust when the sample size is
40 lowered, whereas some local network metrics, such as eigenvector centrality, are entirely
41 unreliable when a large proportion of the population is not monitored. We show how to
42 construct confidence intervals around the point estimates of these metrics representing the
43 uncertainty as a function of the number of nodes in the network.

44 4. Our uncertainty estimates enable the statistical comparison of social network metrics under
45 different conditions, such as analysing daily and seasonal changes in the density of a network.
46 Despite the striking differences in the ecology and sociality among the five different ungulate
47 species, the various social network metrics behave similarly under downsampling, suggesting
48 that our approach can be applied to a wider range of species across vertebrates. Our methods
49 can guide methodological decisions about animal social network research (e.g., sampling design
50 and sample sizes) and allow more accurate ecological inferences from the available data.

51

52 **Keywords** - bootstrapping, correlation, GPS-based radiotelemetry, network metrics, permuta-

53 tions, social network analysis, sub-sampling, uncertainty

54 Introduction

55 Social network analysis (SNA) has proved to be a valuable toolkit for biologists to understand di-
56 verse interactions among animal communities and their effect on the environment (*James et al.*,
57 *2009; Sosa et al., 2021a; Kulahci et al., 2016*). SNA also helps in understanding how environmental
58 factors influence the structure of animal communities (*Hock and Fefferman, 2011; Krause et al.*,
59 *2016, 2010; Albery et al., 2021*) and informs how minor changes at the individual level propagate
60 changes in the overall behaviour of the population (*Aplin et al., 2012; Farine et al., 2015; Shimada*
61 *and Sueur, 2014*) which in turn, contributes to informing epidemiological models, implementing
62 customized measures for disease control, designing wildlife conservation policies, and resource
63 allocation (*Egan et al., 2023; Silk et al., 2017*). The term SNA is used to refer to the analysis of
64 network data, for which there is an expanding set of statistical models and inferential procedures
65 (see *Salter-Townshend et al. (2012)* for an introduction). Under this definition, the observed in-
66 teractions between individuals are taken as fact and the goal is to summarise the data and make
67 various inferences from it about the structure of the population of individuals and perhaps also
68 of the behaviour of each individual. However, the term SNA may more broadly refer to the algo-
69 rithmic construction of interactions data from direct observations of individuals, followed by the
70 application of these bespoke SNA based methods. It is therefore important to clarify since the
71 beginning that in our paper we demonstrate some key considerations that should be made in
72 both the construction and analysis of animal social networks (*Croft et al., 2008; Whitehead, 2008;*
73 *Krause et al., 2007; Lusseau et al., 2008*) with a focus on assessing the reliability and robustness
74 of the more commonly reported network metrics, as calculated on interactions data constructed
75 from observations of individuals.

76 One of the fundamental requirements for performing social network analysis on animals is that
77 a substantial portion of individuals in the population is uniquely identified and observed for a suf-
78 ficient period (*Farine and Whitehead, 2015*). Recent advances in Global positioning system (GPS)
79 telemetry technology have led to a significant boost in animal tracking and enabled wildlife ecol-
80 ogists to monitor and map minute details of animal movements, including those of highly cryptic
81 species (*Smith and Pinter-Wollman, 2021; Cagnacci et al., 2010; Crofoot, 2021; Webber and Wal*,
82 *2019*). However, deploying GPS devices can be expensive. Commercial wildlife devices cost thou-

83 sands of dollars each, depending on the study species and required features. Even the recent
84 low-priced solutions cost more than \$100 per collar (*Foley and Sillero-Zubiri, 2020*), which restricts
85 the number of individuals monitored simultaneously. In addition to this, issues in marking all in-
86 dividuals of a population include constraints on the human effort required (which is also costly),
87 geographical constraints of some or all individuals in the population where capture methods do not
88 work, personality traits of individuals as some individuals are capture-shy (*Biro and Dingemanse,*
89 *2009*), and ethical and other issues raised by some stakeholder.

90 Therefore, data representing a large sample size is a significant limitation, especially while
91 analysing social networks (*He et al., 2022*). This is a concern as the relations among the members
92 obtained from a sample of GPS-tracked individuals under represent their complete set of relation-
93 ships (*Croft et al., 2008*). Furthermore, missing individuals from the sample may strongly influence
94 the sampled individuals' social measures. Thus, relational data could be expected to respond more
95 unreliably to sampling from a population than other data types (*Silk et al., 2015*). The relational
96 nature of network data also causes it to violate the assumptions of independence that underlies
97 most of the parametric statistical tests (*Farine and Whitehead, 2015*) and creates an additional
98 challenge in using a sample of individuals to make inferences about the population.

99 It is therefore crucial that animal social network studies consider the robustness of current
100 methodological approaches to data rarefaction and randomization, as both the collected data and
101 analytical methods are prone to biases inflicted by specifics of sampling protocols or the species
102 under study (*Sosa et al., 2021a*). Networks constructed using a random subset of population are
103 termed as partial networks (*Silk et al., 2015*). The effect of using partial networks on the proper-
104 ties of individual metrics in animal social network analysis has received so far little attention (*Croft*
105 *et al., 2008; Perkins et al., 2009; Cross et al., 2012; Silk et al., 2015*) and to date, there are no es-
106 tablished methods for estimating if a partial network is a good representation of the real social
107 structure (*Farine and Strandburg-Peshkin, 2015*), and the associated level of uncertainty (*Bonnell*
108 *and Vilette, 2021*). Previous research has been primarily focused on the impact of missing nodes
109 on social network structure, suggesting that the network statistics derived from partial data are
110 biased estimators of the overall network topology (*Bliss et al., 2014*). Thus, understanding how
111 network statistics scale with sampling regime is important. Some preliminary work has been con-
112 ducted to determine scaling methods, predict true network statistics from a partial knowledge of
113 nodes, links or weights of a network, and eventually validate the results on simulated networks

114 and twitter reply networks (*Bliss et al., 2014*). Another simulation study (*Silk et al., 2015*) has fur-
115 ther highlighted the importance of understanding consequences of missing random nodes from a
116 complete animal social network. Specifically, the networks have been simulated following a typical
117 fluid fission fusion social system to determine the precision and accuracy of measures of individ-
118 ual social positions based on incomplete knowledge. On the contrary of what expected, *Silk et al.*
119 (*2015*) found that in social networks based on fluid social interactions precise inferences about indi-
120 vidual social position can be derived even when not all individuals in a population are identifiable.
121 Despite the importance of such findings, since then research has not progressed in this field. In
122 particular, there is the necessity to understand the level of confidence, and associated bias, with
123 whom the current methods adopted to estimate partial network from subsampled populations
124 actually catch the structure of the real-world animal social network (*Farine and Whitehead, 2015*;
125 *Sosa et al., 2021b; Silk et al., 2015*).

126 Our paper aims to present methods that can assess the sufficiency (i.e., based on estimated
127 bias and uncertainty) of the available data sample to perform social network analysis and obtain
128 a measure of accuracy for global and node-level network metrics (*Farine and Whitehead, 2015*).
129 Our approach is particularly suited (but not limited) to telemetry relocations considering their au-
130 tocorrelated structure (*Boyce et al., 2010*). For this, we present a four-step paradigm applied to
131 GPS telemetry observations of five species of ungulates with very different ecology and living in
132 heterogeneous ecosystems.

- 133 1. The first step is to determine if the network structure obtained from the available sample of
134 GPS observations captures any non-random aspects of the association. For this, we generate
135 null networks by permuting a pre-network data stream. If a specific network metric does not
136 meet this requirement, it should be discarded by researchers in their specific study case.
- 137 2. The second step is to assess how the bias in the network summary statistics varies with a
138 decrease in the proportion of individuals sampled. Sub-sampling from the observed network
139 helps estimate the extent of uncertainty in the network summary statistics and provides an
140 idea of the robustness of the available sample.
- 141 3. The third step is to explore how different the network properties would have been if the re-
142 searchers had tagged a completely different set of individuals from the population. This is
143 achieved by applying a bootstrapping technique on the subsamples of the observed network.

144 We also assess uncertainty by obtaining confidence intervals around the values of observed
145 network statistics with the help of bootstrapping, which is also critical when it comes to com-
146 paring networks (e.g., daily or seasonal changes in sociality, or between two populations of
147 the same species.)

148 4. The fourth and final step is to check how the node-level network metrics are affected by the
149 proportion of individuals present in the sample. We use correlation and regression analyses
150 to assess the robustness of node-level characteristics.

151 We conclude our paper by outlining the methods described above and provide a step-wise
152 protocol for ecologists on the application of these on their datasets. We have recently published
153 a companion R software package [aniSNA \(Kaur, 2023\)](#), which serves as a ready-made toolkit for
154 ecologists to apply the methods described in this paper in their animal social network studies.

155 Materials and Methods

156 Data

157 We collated high-frequency GPS telemetry relocations' datasets from five species of ungulates,
158 namely caribou (*Rangifer tarandus*), elk (*Cervus canadensis*), mule deer (*Odocoileus hemionus*), pronghorn
159 (*Antilocapra americana*), and roe deer (*Capreolus capreolus*) belonging to four different geographi-
160 cal regions (Table 1). These large datasets consist of observations from a proportion of individuals
161 sampled from the population and contain a unique animal identity number, date, time, and spatial
162 coordinates of the observations.

Table 1. Summary of the data available for five species of ungulates monitored using satellite telemetry in North America and Europe.

Species Name	Area of Observation	Centroid (Lat, Lon)	Number of Animals Observed	Total number of Observations	Duration of observation	Fix Rate
Caribou	Saskatchewan, Canada	(57.14489, -104.3752)	94 (F:94, M:0)	304,607	03/2014 to 03/2018	Every 5 hours
Elk	Rocky Mountains, Alberta, Canada	(49.52496, -114.3014)	171 (F:111, M:60)	856,241	01/2007 to 03/2013	Every 2 hours
Mule Deer	Red Desert, Wyoming, US	(42.24222, -109.2664)	263 (F:256, M:7)	1,458,043	03/2014 to 06/2021	Every 1-2 hours
Pronghorn	Red Desert, Wyoming, US	(41.60466, -107.9531)	159 (F:159, M:0)	896,401	11/2013 to 10/2016	Every 2 hours
Roe Deer	Aurignac, France	(43.28552, 0.8809104)	147 (F:81, M:66)	419,165	01/2005 to 12/2012	Every 10 minutes

163 Associations and Network Construction

164 Identifying Associations from Raw GPS data

165 We obtained network structure from the raw data stream by identifying associations between each
166 pair. We considered a pair of individuals in the sample to be associating if the two animals were
167 observed within s metres from each other and within a time frame of t minutes. The value of spatial
168 threshold s can be chosen by applying a statistical approach to the observed data. *He et al. (2022)*
169 suggest one such approach could be to use the first mode from the distribution of inter-individual
170 distances as it likely represents socially associating individuals. The temporal threshold t is dictated
171 by the fix rates in telemetry data. For example, GPS collars on animals send signals consisting
172 of spatial coordinates after a predetermined time interval. These signals can be received a few
173 seconds (up to a few minutes) before or after the expected time. Therefore, temporal thresholds
174 should be chosen in such a way that it accounts for this flexibility. Researchers should generally
175 pick a threshold based on their device accuracy, species ecology, and research question.

176 Association Index and Network Formation

177 An association index was calculated through a modified version of Simple Ratio Index (*Farine and*
178 *Whitehead, 2015*) for GPS telemetry observations. *He et al. (2022)* argue that for GPS data, an ob-
179 servation of individual A without individual B is only informative if B is observed elsewhere sim-
180 taneously. Therefore, the denominator of the original formula should only include observations
181 where GPS data are simultaneously available for both individuals. The modified index used in the
182 analysis is as follows:

$$\frac{x_{AB}}{x_{AB} + y_{AB}}$$

183 where,

184 x_{AB} – No. of times when A and B are observed associating

185 y_{AB} – No. of times A and B are observed within the temporal threshold but not associating

186 The value of the index ranged between 0 and 1, where 0 indicated that the two animals were
187 never observed together and 1 indicated that they were always observed together. The individuals
188 sampled from the population form the network nodes, and an association between pairs account
189 for the edges in the networks. Each edge in the network had a weight attribute that signified the

190 association strength calculated by the modified Simple Ratio Index described above. In this way,
191 we obtained the network structures corresponding to each species from their raw GPS observa-
192 tions which also represent the complete set of relationships among the individuals tagged for each
193 species.

194

195 **Analysis**

196 To assess the properties of the networks, we used standard metrics common in animal social net-
197 work analysis (Table 2). The local network summary statistics which provided individual level in-
198 formation included degree (*Shimada and Sueur, 2014*), strength (*Pike et al., 2008*), betweenness
199 centrality (*Kanngiesser et al., 2011; Aplin et al., 2012*), eigenvector centrality (*Kulahci et al., 2016*;
200 *Aplin et al., 2012*) and local clustering coefficient (*Pike et al., 2008; Shimada and Sueur, 2014*). Den-
201 sity (*Ozella et al., 2021*), transitivity, and diameter are the global network metrics and provide a
202 summary of the overall network and behaviour of the individuals as a whole. We also calculated
203 the mean of each node's degree (mean degree (*Shimada and Sueur, 2014*)) and strength (mean
204 strength) and used those as global network properties.

Table 2. Network metrics used in the analyses

Metric	Local or Global Network Metric	What does the metric measure ?
Degree	Local	The number of connections an individual has in the network. Higher degree means more gregariousness.
Strength	Local	The combined weight (i.e., frequency or duration) of all of an individual's connections in a network. It is also called weighted degree.
Betweenness Centrality	Local	The number of times an individual occurs on the shortest path between two other individuals in the network.
Eigenvector Centrality	Local	A measure of influence in the network that takes into account second-order connections.
Local Clustering Coefficient	Local	A measure of likelihood that the connections of an individual are also connected.
Density	Global	The proportion of completed edges in the network.
Transitivity	Global	The amount of clustering in the network, calculated as a function of completed triangles relative to possible triangles.
Diameter	Global	The shortest distance between the two most distant individuals in the network.
Mean Degree	Global	Average number of connections of an individual in the network.
Mean Strength	Global	Average strength of an individual in the network.

205 1. Pre-network data permutations

206 To assess if the interactions captured by the observed sample were genuinely caused by social
207 preferences, we generated null models. Null models were constructed to account for non-social
208 factors that lead to the co-occurrence of animals. In animal social network analysis, null models
209 are broadly classified in two ways: network permutations and pre-network permutations (*Farine*,
210 *2017*). Network permutations are performed after the network is generated from the data, whereas
211 pre-network permutations are performed on the data stream before generating networks from it.
212 GPS telemetry observations generate data in the form of autocorrelated streams. In the permuted
213 versions of the data, we wanted to maintain this autocorrelation structure of each individual's
214 movements but randomize the contacts. Therefore, we obtained pre-network datastream permu-
215 tations as suggested by *Spiegel et al. (2016)*, and *Farine (2017)*. For each individual in the study, the
216 tracks followed by them on each day were segmented. Then the dates on which those tracks were
217 followed were shuffled for each individual. This methodology of permuting the pre-network data
218 stream ensured unaffected home ranges of animals in the permuted data, but whom they came
219 in contact with was now randomized in the null model. This also preserved the autocorrelated
220 structure of individual tracks to ensure realistic animal movements.

221 For each species, we obtained 1000 permuted versions of the raw data stream, giving rise to
222 1000 network structures. Then, we calculated global network summary statistics for each of those
223 networks and obtained a null distribution of values. We then compared the observed network
224 properties to the distribution of null values, which helped determine the metrics that capture non-
225 random aspects of the observed network.

226 2. Analysing sub-samples of the observed network

227 We randomly sub-sampled m nodes from the observed network of N nodes where $m < N$ without
228 replacement. All the associations among the sampled nodes were preserved, and the rest were
229 dropped. This resulted in a network structure that would have been obtained if originally just these
230 m individuals had been tagged from the population. In this way, we drew 100 samples of size m
231 where the value of m ranged from 10% to 90% of the total nodes forming each network for five
232 species. We recorded the values of global network metrics of density, mean strength, transitivity,
233 and diameter and obtained a distribution of the values. We assessed the bias in the values of
234 network metrics obtained from this sub-network compared to the original network. Performing

235 this procedure across five species and for different values of m revealed the robust network metrics
236 that should be adopted for social network studies on the available samples.

237 We also applied a sub-sampling approach on the permuted networks to determine under what
238 sampling level the observed networks start to resemble the random networks. We sub-sampled
239 nodes from 1000 permuted network versions without replacement at different levels ranging from
240 10% to 90%. Four global network metrics were calculated for each permuted version, and each
241 level and their distribution were plotted along with the distribution of sub-sampled versions of the
242 original network. This visualisation provided an estimate of the minimum amount of subsampling
243 required to ensure that the network differed significantly from a random network for that species
244 and the environment.

245 **3. Bootstrapped confidence intervals**

246 Assuming a researcher has chosen a set of network metrics appropriately, it is prudent to consider
247 not only the point estimate derived from their data but also the uncertainty associated with it. In
248 order to create confidence intervals to facilitate the comparison of different networks (e.g., differ-
249 ing sampled individuals from the same population or the same individuals' networks computed at
250 different times), we adapted the Bootstrap algorithms of *Snijders and Borgatti (1999)*. Similar to
251 the algorithms used in SOCOPROG (*Whitehead, 2009*) and UCINET (*Borgatti et al., 2014*), this algo-
252 rithm sampled nodes in the network with replacement for each of B=1000 Bootstrap replications.
253 In each replication, edges between two different resampled nodes were retained, whereas edges
254 between the same node resampled twice were sampled uniformly at random from the set of all
255 original edges. Therefore, each bootstrap replication network comprised the same number of
256 nodes (animals) as the original network; however, some of the original nodes were absent, some
257 were present once, and some more than once.

258 Bootstrapping has been used to infer uncertainty in animal social networks (see *Lusseau et al.*
259 (*2008*), *Whitehead (2008)*), however bootstrapping social network data should only be used care-
260 fully as zero edges (which could result from unobserved associations rather than two animals not
261 associating at all) are resampled as zeros across all replications (*Farine and Carter, 2022*). We,
262 therefore, began by assessing whether such algorithms were appropriate for constructing confi-
263 dence intervals for our chosen global network metrics. In particular, we wished to ensure that
264 the confidence intervals were not too narrow, as this would lead to false positives in comparing

265 networks i.e. finding statistically significant differences where there may be none and therefore
266 having an inflated Type 1 error rate. For example, consider a scenario in which two ecologists inde-
267 pendently sample a random subset of individuals from the *same* population of animals. They then
268 construct two social networks and compute network metrics, along with confidence intervals using
269 some statistical methods. If they compare their results and obtain statistically significant results
270 (e.g., via a t-test) and conclude that the two social structures are different, they have made a Type
271 1 error because, the two samples come from the same population and should therefore not ap-
272 pear statistically significantly different. Any differences are due to the random subsampling of the
273 individuals, but the social structure of the population is the same. We, therefore, wish to confirm
274 that our proposed bootstrapping approach does not exhibit such problematic behaviour (i.e., that
275 analyses based on two subsamples from the same population yield test statistics and p-values con-
276 sistent with the null hypothesis that the samples arise from populations that have the same social
277 structure as indexed with the various network metrics.) To this end, we began by combining the
278 Bootstrap algorithm with the sub-sampling analysis. See Appendix 1: Assessment of bootstrapping
279 algorithm for results showing correct calibration under the null hypothesis. Then, to examine how
280 uncertainty relates to sample size, we obtained confidence intervals using the bootstrapped sam-
281 ples for each network metric and recorded their width. Finally, we repeated this process ten times
282 and calculated the mean width of the ten confidence intervals against the number of individuals
283 in the network.

284 **4. Correlation analysis between node level metrics of partial and full networks**

285 To assess the accuracy of the node level metrics inferred from a given sample, we looked at the
286 correlation between the values of the metrics in the observed sample, and a smaller sub-sample
287 of the empirical data as suggested by *Silk et al. (2015)*. First, we calculated node-level metrics of
288 degree, strength, betweenness, clustering coefficient, and eigenvector centrality for each node in
289 the observed network. Then we sub-sampled nodes from the observed network at 10%, 30%, 50%,
290 70%, and 90% levels without replacement and calculated node level metrics for each sub-sample.
291 Finally, we calculated the correlation coefficient between the metric values of the nodes in the
292 observed and partial networks. The process was repeated 10 times at each level of sub-sampling,
293 and the mean and the standard deviation were recorded from the 10 correlation coefficients at
294 each level.

295 Lastly, we run a regression analysis (*Silk et al., 2015*) to assess how the values of node-level
296 metrics for partial networks relate to their values in the whole network (See Appendix 2: Regression
297 analysis between node level metrics of sub-sampled and observed networks in Appendix).

298 **Results**

299 **Association Index and Network Formation**

300 Spatial threshold is selected to be 10 meters for mule deer sample and 15 meters for rest of the
301 species samples. The temporal threshold is arbitrarily chosen to be 7 minutes and accounts for
302 delays in signal reception by the GPS devices. For example, if a GPS unit records a location at 09:57
303 AM, the observations recorded until 10:04 AM will be evaluated for potential interactions. Table 3
304 shows the values of network summary statistics for each of the five species. The mule deer sample
305 has the highest mean degree and very high mean strength suggesting a dense social network. The
306 elk sample has a maximum diameter with a value of 9 which implies that it will take a maximum
307 of 9 steps to reach from any individual to another in the elk network. The pronghorn sample has
308 the maximum transitivity and mean local clustering coefficient, depicting that any two associates
309 of a pronghorn are likely to be associated to each other. Figure 1 shows the network structures
310 obtained for all five species.

Table 3. Summary statistics for the networks obtained from the five species. Order of a network represents the number of individuals tagged in the sample with mule deer sample having the greatest order and caribou sample having the smallest order.

Species Name	Order (Nodes)	Size (Edges)	Mean Degree	Mean Strength	Mean Betweenness	Mean Eigenvector Centrality	Mean Local Clustering Coefficient	Density	Transitivity	Diameter
Caribou	94	309	6.57	0.048	32.95	0.021	0.64	0.070	0.576	8
Elk	171	696	8.14	0.028	147.38	0.042	0.65	0.047	0.555	9
Mule Deer	263	1582	12.03	0.767	367.78	0.014	0.48	0.045	0.353	8
Pronghorn	159	660	8.30	0.111	40.02	0.021	0.71	0.053	0.679	6
Roe Deer	147	130	1.77	0.020	4.86	0.017	0.59	0.012	0.479	6

311 **1. Pre network data permutations**

312 Pronghorn and roe deer samples capture non-random aspects of the population very well, and
313 for all network metrics, the observed values are significantly different ($p < 0.001$) from the distri-
314 bution of permuted network values (Figure 2). Also, for all five species, the mean strength of the
315 observed network are higher than the permuted networks (Figure 2). This indicates that all these

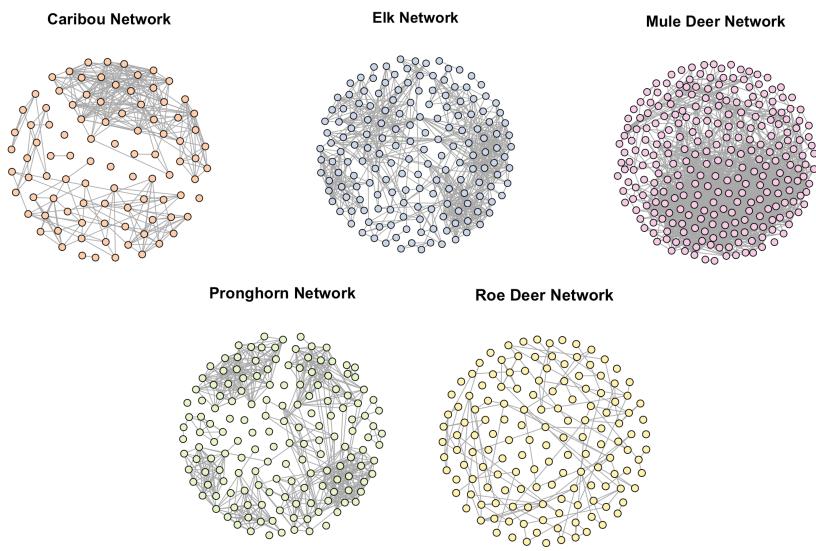


Figure 1. Network structures for the five large herbivores analysed in this study. Each node is an animal, and an edge between two nodes indicates that they have interacted at least once. Note how the pronghorn network is denser than the roe deer network despite having an approximately equal number of nodes. Also, a clear partition in the caribou network can be seen.

³¹⁶ samples capture higher association rates than would be expected from a random network under
³¹⁷ similar assumptions. Researchers dealing with specific study cases and species should not use
³¹⁸ those network metrics whose observed value lies within the distribution of null values as those do
³¹⁹ not capture non-random aspects of associations (e.g., transitivity in caribou.)

³²⁰ **2. Subsampling**

³²¹ Performing sub-sampling on the observed samples of networks at various levels revealed the net-
³²² work metrics density and transitivity as most stable (Figure 3.) The uncertainty in these two metrics
³²³ is comparatively low, even when just 30% of the individuals are present in the sub-sample. Their
³²⁴ distribution is centered on the true values, and this allows to estimate bias if the proportion of
³²⁵ sampled individuals is known. Transitivity at a sub-sampling level of 10% becomes unreliable for
³²⁶ caribou, pronghorn, and roe deer, implying that this metric is a poor measure when the sampling
³²⁷ proportion is very small. The bias in mean strength values follows a linear pattern when the sub-
³²⁸ sampled proportion is reduced from 90% to 10% for all five species. The linear pattern suggests
³²⁹ that it is possible to correct the bias for mean strength from the sample if the proportion is known.
³³⁰ This linear increase must, however, plateau as we approach a census of the population (*Bliss et al.*,
³³¹ 2014). The network's diameter, similar to mean strength, also follows a staircase pattern with lower-

Figure 2. The rows correspond to the five species, while the columns correspond to four standard network metrics. Each plot represents the distribution of network metric values obtained from 1000 permuted versions of the species network. Observed network metric values are quoted at each plot's top right corner. The color of the observed value (black or red) represents their relative position to the distribution of null values, indicating the extent of non-randomness of the observed metric. The values which are farther from the peak of distribution are displayed in color red and represent that the observed sample captures the non-random aspect well. For example, the observed value of mean strength is high with respect to the distribution of mean strength values from the permuted versions of the data for all five species. This means that all the samples successfully capture non-random interactions between the individuals. The network metrics whose observed value lie within the null distributed values represent that those metric values are not

332 ing sub-sampling levels. However, it does not follow a linear pattern for all five species and tends to
333 plateau. Diameter and mean strength are directly affected by the number of nodes present in the
334 sample. Therefore, care should be taken while using these metrics when the sampling proportion
335 is unknown.

336 We performed subsampling on 1000 permuted versions of the network along with the subsam-
337 pling on the observed network. The side-by-side visualisation of the network metrics distribution
338 (Figure 4) enabled us to identify the sampling level at which a subsampled network begin to re-
339 semble a random network. The plots reveal that for caribou, elk, and mule deer, network metrics
340 density, transitivity, and diameter distribution are identical to that of a null network at all subsam-
341 pling levels. Nevertheless, mean strength distribution tends to increasingly overlap the distribu-
342 tion of subsamples from the null network when the level of sub-sampling is lower than 90%. For
343 pronghorn, the distribution of all the network metrics obtained from subsamples of the observed
344 network is higher than the values obtained from the subsamples of the null networks at all sam-
345 pling levels. For roe deer, this is only true for mean strength. The distribution of values for density
346 and transitivity tends to overlap the null distribution at 50% and 30% levels, respectively.

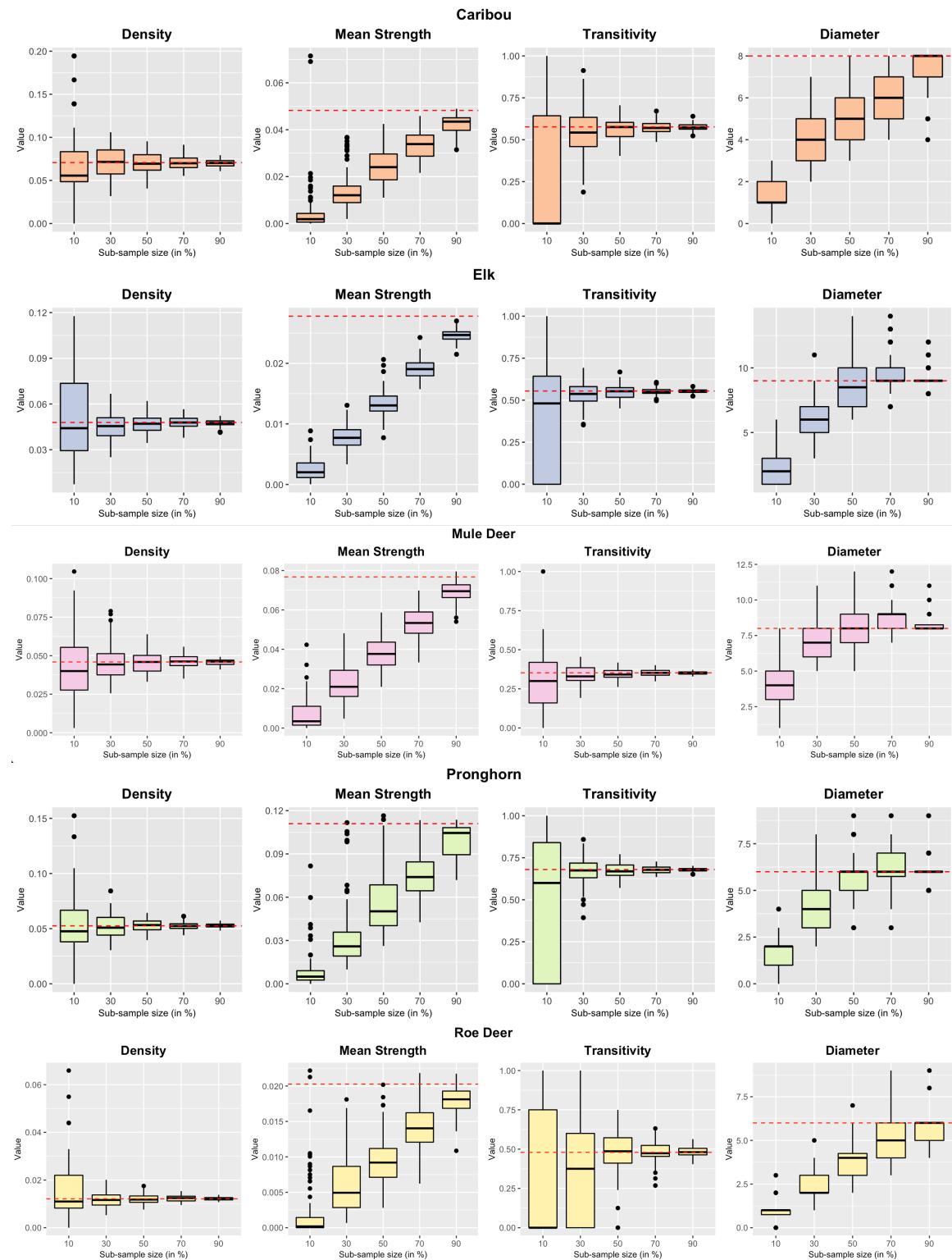


Figure 3. Effect of sub-sampling on four global network metrics. The horizontal red line in each plot represents the metric value in the observed network. The boxplots denote the distribution of network metric values obtained from the observed networks by taking 100 sub-samples at each sampling level. The size of the boxes in the boxplots of a network metric with respect to the sample size represents the extent of uncertainty in that network metric. For example, density has smaller boxes when as low as 10% of the nodes are selected. In contrast, the box size for transitivity is large, representing that density is more stable than transitivity. The extent of deviation of the box position from the horizontal red line depicts the bias in the calculated values of the network metric. The values of mean strength become biased as the sample sizes are lowered. This is

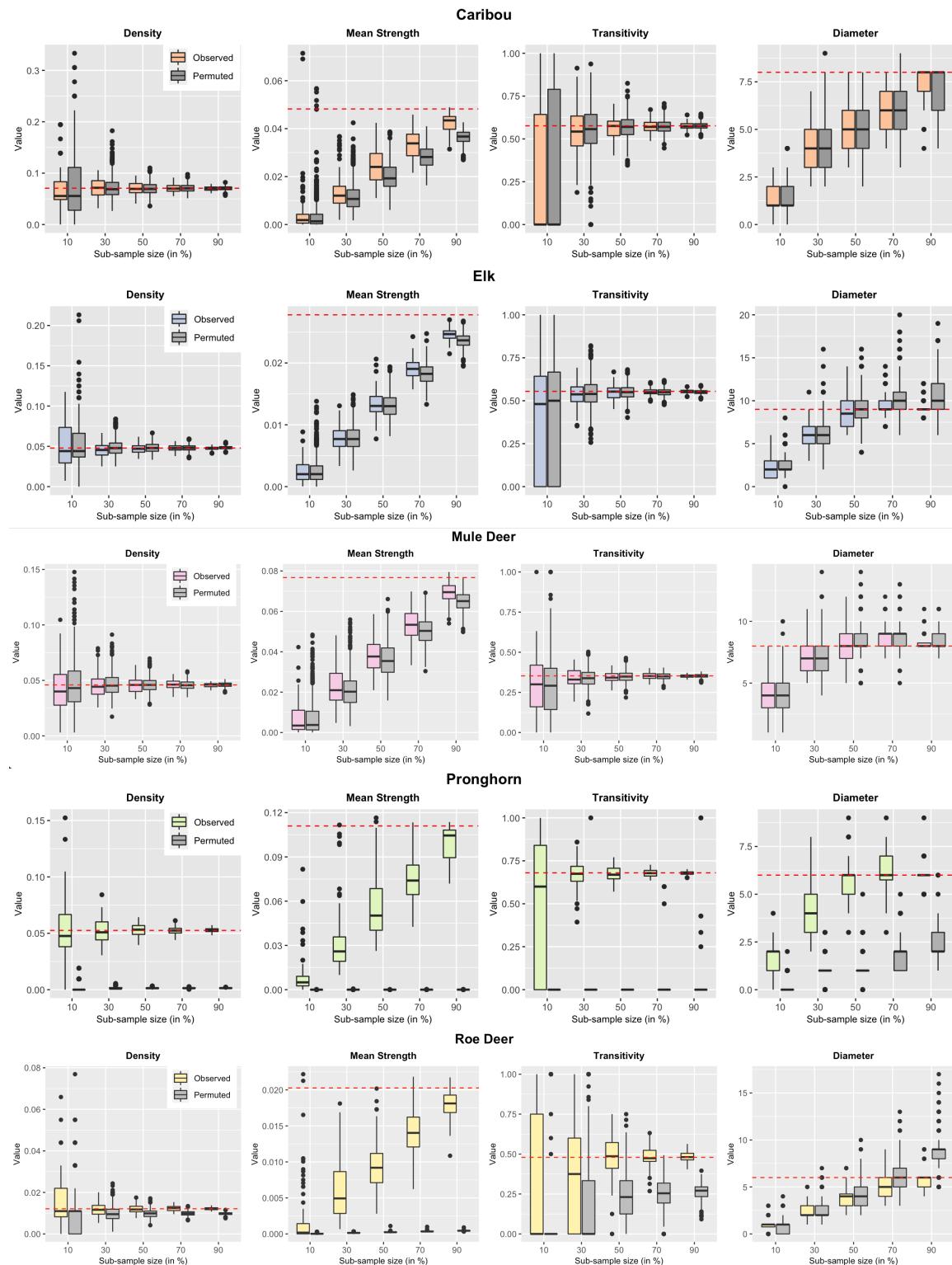
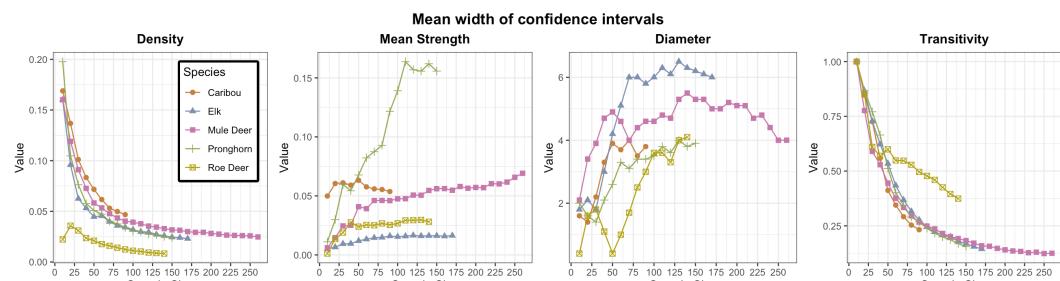


Figure 4. Sub-sampling of permuted networks. The grey boxplots are obtained by calculating network metric values on 1000 permuted versions. The non-grey boxplots are the ones that we obtained in Figure 3. The horizontal red line in each plot represents the observed metric value. Comparing the subsamples of the observed network with those of permuted networks identifies the sample proportion where the non-random aspects of the observed network start looking similar to those of random networks. For example, the mean strength of caribou subsamples in the observed network starts to overlap with the distribution of permuted subsamples at 70% level and becomes almost identical at 10% level. On the other hand, the mean strength distribution of pronghorn subsamples remains higher than those of permuted subsamples distribution at as

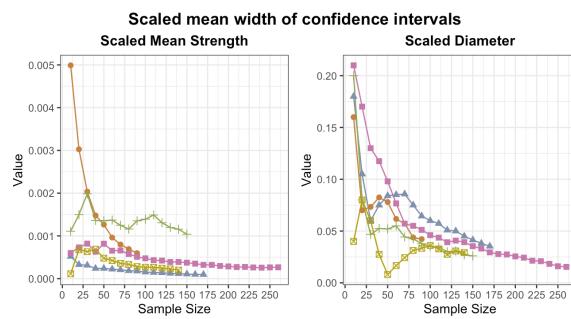
347 3. Bootstrapping Confidence Intervals

348 To investigate the extent of uncertainty in the values of network metrics, we used bootstrapping
349 technique to obtain confidence Intervals and plot their width against the sample size (Figure 5
350 (a)). Confidence intervals can be calculated for any network metric at any sample size. For the
351 network metric density and transitivity, the mean width of the confidence intervals increased with
352 decreasing sample size for all five species. Mean width of density remained comparatively low for
353 as few as 50 samples but began to increase below that value for all five species. For transitivity, the
354 width remained less than 0.2 when at least 100 individuals are tagged for all the species, except for
355 roe deer. The minimum width for roe deer is 0.4, even when all the individuals in the sample are
356 considered. At smaller sample sizes, mean width approaches 1 for all the five species, which is the
357 maximum value transitivity can attain for any network. Therefore, to check that these confidence
358 intervals are not too wide and increase the likelihood of Type 1 errors, we have compared two non-
359 overlapping sub-samples from the observed sample to check for significant results (See Appendix
360 1: Assessment of bootstrapping algorithm). We have ensured that the bootstrapping algorithm
361 does not generate spurious statistically significant results.

362 For mean strength and diameter, the width of confidence intervals does not increase with a
363 decrease in the sample size. This is because the values of these metrics are directly affected by the
364 number of nodes in the network e.g., say there are N nodes in the network, the possible degrees
365 of a node can be anywhere between 0 and $N-1$; however, if we remove M ($< N$) nodes from the
366 network, the new possible value for the degree will lie between 0 and $(N-1)-M$, which results in
367 a narrower width of the confidence intervals. Therefore it can be helpful to consider the scaled
368 versions of these metrics where they are scaled by the number of nodes in the network (Figure 5 (b)).
369 The scaled versions of these metrics follow a similar pattern to transitivity and density. The width
370 of confidence intervals increases with a decrease in the number of individuals sampled. Some
371 fluctuation in this pattern is observed for the density and scaled diameter for some species, when
372 the sample size is low (e.g., roe deer sample.) Depending on the selection of nodes in the sub-
373 sample, the value of the diameter in the sub-sampled network can reach extreme values at each
374 level of sub-sampling.



(a) Unscaled Metrics



(b) Scaled versions of mean strength and diameter

Figure 5. The plots show the mean widths of 95% confidence intervals obtained from bootstrapped sub-samples of a network. The mean widths of density and transitivity increase with lower sample size, which indicates increasing uncertainty around the point estimate of the network metrics. However, the pattern is reversed for mean strength and diameter because the values for these two metrics are directly affected by the number of nodes present in the network. Therefore, we consider scaled versions of these two metrics where the number of nodes at each level scales the values.

375 4. Correlation Analysis

376 The correlation of all network metrics between the sub-sampled and observed network declined
377 as the proportion of sub-sampled nodes in the network decreased (Figure 6). However, the pattern
378 and rate of decline are different across network metrics. Degree remains well correlated for mule
379 deer when as few as 10% of nodes are sub-sampled. Mean correlation coefficients of strength,
380 betweenness, and clustering coefficient decline almost linearly with a decrease in the sub-sampling
381 proportion, with slightly more variance in caribou values than mule deer values. For both species,
382 the values for eigenvector centrality became unreliable with high variability even when 90% of the
383 individuals are present in the sub-sample in most of the sub-sampled networks, suggesting that it
384 is a poor measure to use.

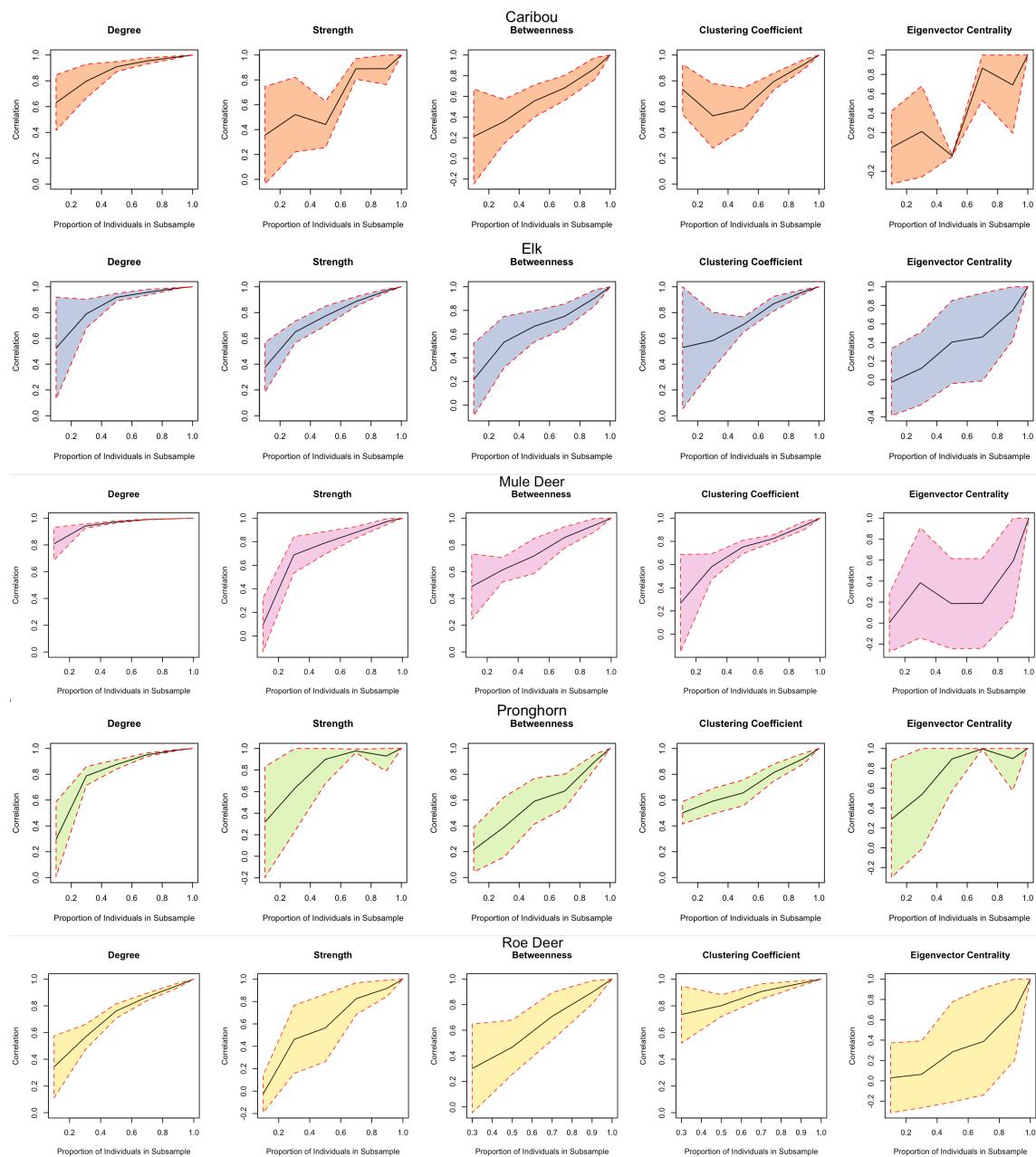


Figure 6. The plots show the correlation of local network metrics between the nodes of sub-sampled and observed networks. The black line in the plots indicates the mean correlation coefficient value between the local metrics of nodes present in the sub-sampled network. The colored region depicts the standard deviation of the correlation values at each sampling level. For example, degree value remains highly correlated with comparatively low standard deviation, even at lower sampling levels.

Box 1. Instructions for Ecologists

1. Define the network edges by choosing a sensible distance threshold based on the research question, species sociality, and information obtained from the data (see section Identifying Associations from Raw GPS data for more details.)
2. Check if the interactions captured by the sample are non-random with the help of network permutations. Network metrics can be deemed suitable after assessing whether they capture non-random associations via network permutations.
3. Identify stable network metrics concerning the species and the available sample using sub-sampling from the observed data.
4. Identify the minimum sampling effort required to determine the network properties that are different from a randomly generated network by comparing the sub-sampled networks from permuted data sets with the sub-samples of the observed data.
5. Obtain confidence intervals around the point estimates of network metrics using the bootstrapping algorithm, which also takes care of the autocorrelated structure of telemetry relocation data. The width of confidence intervals can also be analysed for lowering sample sizes.
6. To assess which local network metric remains least affected with lowering sample sizes, obtain a correlation coefficient between the node level metrics from the observed sample and the same nodes from the sub-sample. The local network metrics with a high correlation (>0.7) are expected to be more stable and should be chosen for further analysis as they are more likely to represent the position of individuals in the network, similar to their position in the full population.

385

386 Discussion

387 Using the four-step paradigm on GPS telemetry observations for five species of ungulates, we
388 assessed the stability of global and local network metrics and obtained measures of uncertainty
389 around the point estimates that can be used to obtain reliable inferences about the structure of
390 a social network. First, using data permutations, we found whether the data collected captured
391 the non-random aspects in all or some of the network metrics: this was entirely true in roe deer,
392 for instance, whereas in other species such as elk the data collected were able to capture non-

393 random associations only with edge density and mean strength. This is a key step in our approach,
394 because at this stage the researcher can make the decisions on whether using such metrics in
395 their study case. Differences among the species in the way metrics responded to permutations
396 analysis most likely reflect different sampling regimes and designs rather than the ecology of the
397 different species. Second, sub-sampling from the observed sample revealed density as the most
398 unbiased measure of animal networks with low uncertainty, even at small sub-sampling propor-
399 tions. Third, we introduced bootstrapping techniques for animal social networks, which allowed
400 us to compute confidence intervals around the point estimates of the network measures. Density
401 and scaled version of mean strength emerged as two of the most robust network metrics. Fourth
402 and last, correlation analysis between the node level metrics of the observed network and the sub-
403 sampled network highlighted the network metric degree to be most correlated with the observed
404 network metric values, even at 40% of sub-sampling levels. This means that if the information
405 about sampling proportion is available, the relative degree of each individual can be used to es-
406 timate the true degree distribution. Users can take advantage of the functions in the R package,
407 *aniSNA* (Kaur, 2023) to undertake such an analysis of their data. We summarise the steps that
408 should be taken to perform this analysis in Box 1. Instructions for Ecologists.

409 Despite being a commonly used tool to understand animal ecology (Hock and Fefferman, 2011;
410 Krause et al., 2010; Robitaille et al., 2019; Silk et al., 2017; Sosa et al., 2021a,b), social network
411 analysis can be challenging when applied to real-life datasets (Castles et al., 2014; Farine, 2015).
412 (Castles et al., 2014) performed tests to demonstrate a distinction between networks built using
413 different interaction and proximity techniques. Similar tests performed by Farine (2015) illustrated
414 that the conclusions by Castles et al. (2014) cannot be generalized across species. A researcher's
415 choices during the data collection and the analytical stage affect the networks produced. There-
416 fore, the inferences generated may not reflect true characteristics and can be highly sensitive to
417 these decisions (Ferreira et al., 2020; Castles et al., 2014). Furthermore, the information available
418 about the sampling protocols may be incomplete or may not be available at all. However, this
419 does not imply that social network analysis should not be conducted on such data. It is prime to
420 use statistical methods that would help extract as much information as possible, along with details
421 about the uncertainties due to partial data and sampling strategies. Performing permutations to
422 randomize autocorrelated GPS data stream (Farine, 2017; Spiegel et al., 2016) is a first step to
423 distinguish the best network metrics that capture the non-random aspects of social interactions.

424 Different network metrics capture different aspects of the network; some networks may have more
425 non-random elements than others, depending on the species' sociality and the sampling strategies
426 adopted to collect the data. The analyses helped highlighting the network metrics that distinctively
427 capture these non-random aspects. Based on these analyses, we recommend using the network
428 metric mean strength as an assessment metric to identify if the captured interactions are signifi-
429 cant enough to generate reliable analysis results. Apart from the four network metrics we chose
430 to work with, it is helpful to run this analysis on multiple network metrics that seem suitable given
431 the research question (e.g., coefficient of the variation of edge weights.) Once a network metric is
432 chosen by the user, further analysis of the available dataset can be carried out to answer the re-
433 search question. Researchers should keep in mind that our approach is particularly suited (but not
434 limited) to autocorrelated telemetry relocation, although its use could be expanded to more rar-
435 efied observational data (e.g., low frequency observations of individually recognizable individuals
436 in a population.)

437 Caution should be taken while reporting the values of social network metrics when the sample
438 size is small relative to the population (*Lusseau et al., 2008; Farine and Strandburg-Peshkin, 2015*).

439 As a general rule, the smaller the sample size, the more considerable uncertainty can be expected
440 in the observed values. However, some network metrics remain unbiased despite significant un-
441 certainty, whereas others would become biased as the sample size decreases. Sub-sampling from
442 the observed sample and permuted versions of the network revealed helpful information regard-
443 ing the stability of certain metrics and the proportion of individuals required to ensure a non-null
444 network. For the samples we used, density and transitivity emerged as the more stable metrics, re-
445 maining unbiased when as low as 10% and 30% of the individuals were sub-sampled, respectively.

446 Network metrics such as the mean strength became biased as we lowered the number of nodes
447 in the sub-network. However, it was well characterised by a linear relationship which eventually
448 plateaued. The choice of individuals in the sub-sample greatly affected some network metrics such
449 as diameter. However, it always tends to plateau when the proportion of sampled individuals goes
450 up. Sub-sampling from permuted versions of the data and comparing it with the distribution of
451 sub-samples from the observed network revealed the minimum sub-sampling level required to
452 ensure a non-null network structure. *Davis et al. (2018)* investigated the effect of sampling effort
453 on the accuracy of social network analysis and concluded that increased sampling intensity may
454 not always increased the accuracy of network measures especially when the sampling regime is

455 already very intense.

456 Reporting the values of social network metrics point estimates is not enough especially when
457 a large proportion of individuals in the population is not monitored. It becomes equally impor-
458 tant to communicate uncertainty around those estimates (*Whitehead, 2008; Lusseau et al., 2008*).
459 We presented bootstrapping as a powerful approach to evaluate confidence intervals around the
460 point estimates of network metrics from the observed data. Bootstrapping enabled us to assess
461 the extent of variation in the network metrics if a different set of individuals was sampled from
462 the population. However, caution should be taken while computing the confidence intervals for
463 those global network metrics, which are directly affected by the network's number of nodes, such
464 as mean strength. In such cases, the values should be scaled by the number of nodes present
465 in the sample. The network metrics of density and scaled mean strength are those having low
466 uncertainties, even at small sample sizes.

467 Past studies have tried to uncover how the values of node-level metrics are affected when the
468 sample sizes are lowered (*Silk et al., 2015; Franks et al., 2010; Costenbader and Valente, 2003*).
469 Our work expands on the findings by *Silk et al. (2015)* by performing the correlation and regres-
470 sion analyses between the local metric values of the nodes in the entire sample to the values of
471 the same nodes in a smaller sub-sample. With correlation analysis at various subsampling levels,
472 we determined how the correlation rate decreases as the sub-sample size is lowered. Out of the
473 five node level metrics that we tested, degree seemed to work better, with high correlation even
474 at low sample proportions. Also, we recommend not using eigenvector centrality based on a pop-
475 ulation subsample as the metric being a higher-order statistic lacks robustness and, therefore, is
476 highly sensitive to the selected nodes. This observation agrees with the simulation study by *Silk*
477 *et al. (2015)*. We conclude that care should be taken while comparing the metric values between
478 nodes when a small proportion is tagged from the population. Indeed, the social network positions
479 captured by a small sample may not reflect the actual positions in the network in such cases.

480 The goal of this paper was not to make inferences about the network characteristics of an
481 entire population but to analyse how different network metrics scale under downsampling. As
482 a matter of fact, despite we had access to large telemetry samples from five different species,
483 they represent a subset of an unknown population with unknown size. The methods discussed
484 here can help pinpoint useful social network metrics that remain robust when trying to answer a
485 particular research question. Those metrics that suffer data thinning and become unstable should

486 not be used with telemetry data, which is typically used to monitor a small proportion of the actual
487 population. Also, we used data from multiple species of large herbivores with very different ecology
488 and characteristics, including migratory/ non-migratory and from very social to solitary species.
489 During the analysis, we voluntarily disregarded the ecology of the species, because our goal was
490 not to perform inter-species comparisons and make inferences on their respective social networks
491 but to determine which social network metrics perform well/poorly across the species.

492 Despite our a priori disregard of the ecology of the five species for the reasons stated above,
493 we found interesting differences among them which deserve to be discussed here. Firstly, the
494 fact that the data collected from a more solitary species such as roe deer (See Table 3) better cap-
495 ture the non-randomness of the association compared to more gregarious species such as elk
496 suggests that sample size (in proportion to the actual population size) should be higher in more
497 gregarious species. In addition, sampling regimes can affect the social network patterns and re-
498 lated ecological inference. For example, a high-density value of the roe deer network as compared
499 to the distribution of null networks could be due to the fact that the sampling was done across six
500 spatially separated capture sites (within 10 x 10 km). This results in very low density values when
501 the data is permuted across these six clusters (Figure 7). Instead, the mule deer's initial locations
502 (Figure 7) show that the network is already very dense. In the permuted versions of the raw data,
503 the number of random interactions is similar to the number of observed interactions, resulting in
504 observed network density value similar to the density of permuted versions of data. In other words,
505 the sampling strategy (location of the capture sites) may affect the spread of individuals and the
506 density of the respective network structures, therefore researchers need to focus on the ecological
507 interpretation of their social network results after having taken into account of the possible bias
508 introduced by sampling strategies.

509 Numerous papers have examined the conceptual properties of centrality measures to assist
510 animal social network researchers in selecting the most meaningful and valid measure for their
511 research question and the available data (*Farine and Strandburg-Peshkin, 2015; Franz and Nunn,*
512 *2009; Frantz et al., 2009; Borgatti et al., 2006*). The performance of network centrality measures
513 under various sampling regimes and the species sociality could vary to a great extent (*Costen-*
514 *bader and Valente, 2003; Gile and Handcock, 2006; Dawson et al., 2019*) and our work confirms
515 this. Future work involves analysing the effects of observation frequency on the accuracy of net-
516 work metrics. For example, it could help to understand if it is better to observe individuals for a

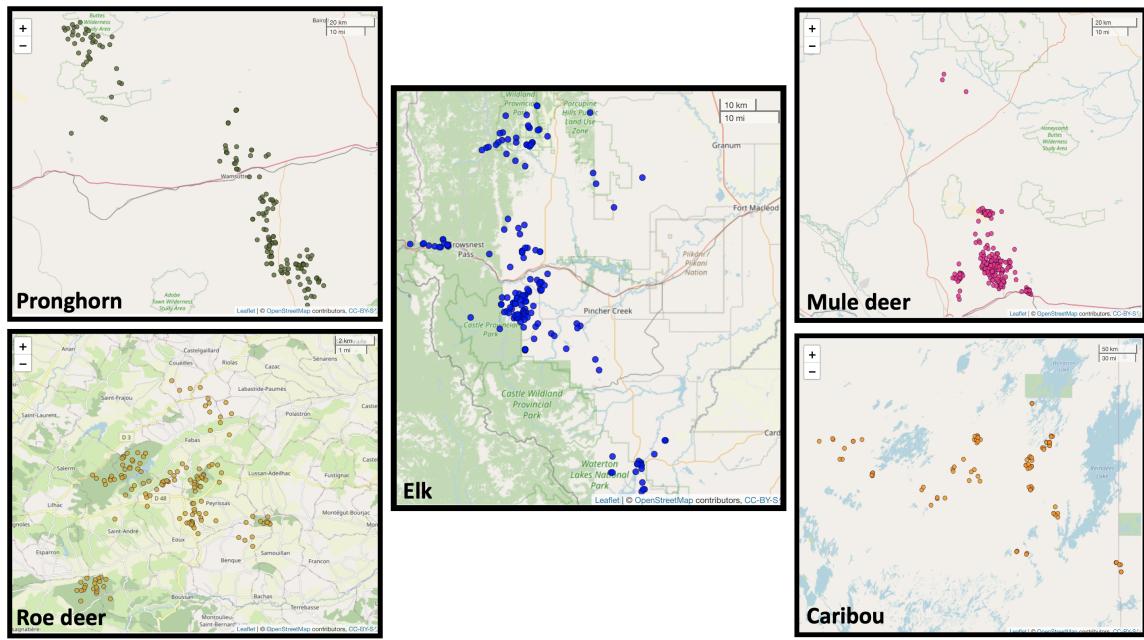


Figure 7. Plot of the initial locations for the individuals belonging to five species in the study. The distribution of these locations explains some of the differences in the values of network metrics. For example, the initial capture locations of mule deer are spatially very close, which is also reflected in the network metric values of the final network of associations. As a result, the mule deer network has the highest mean strength and mean degree (Table 3). In contrast, the roe deer network has the lowest mean strength and mean degree, explained by their six spatially separated capture sites.

longer duration with low temporal resolution or a shorter duration with high temporal resolution.

In our analysis, sub-sampling on the observed samples is done randomly. However, this aligns differently from the sampling strategies adopted in real life. *Smith and Morgan (2016)* investigate the effects on estimates of key network statistics when central nodes are more/less likely to be missing. Application of our methods to determine how the network metrics scale when a different sampling strategy is adopted would be valuable (e.g., whether it is better to sample entire groups, or focus on greater sampling frequency of individuals). Another vital direction forward is to assess the methods presented in this paper to be tested on the GPS telemetry data of the entire population. If data on the whole population is available (e.g., a fenced one), it will be interesting to perform these methods on a subset of that and test if the predictions align with the true values.

Along with all of the advantages to understand animal ecology, SNA presents certain challenges that hinder ecologists from using it to its full extent. We addressed a few of those challenges in this paper and introduced a four-step paradigm to assess the suitability of available data for SNA and

530 extract information for further analysis. The methods are also provided as easy-to-use functions in
531 an R package [aniSNA](#) (Kaur, 2023). This package allows ecologists to directly apply these statistical
532 techniques and obtain easily interpretable plots to provide statistical evidence for choosing a par-
533 ticular network metric or the choice of individuals tagged for the study. The fact that researchers
534 can compute 95% confidence intervals around their point estimates unleashes new research op-
535 portunities, such as tackling specific hypotheses. For instance, researchers can estimate network
536 metrics in a sample population when it is disturbed by human presence to be compared to when it
537 is not disturbed, and the ability to assess the overlap of respective 95% confidence intervals would
538 allow making inference on the effect of human disturbance on sociality. Likewise, this approach
539 can be used to compare social networks within and across populations as a function of tempera-
540 tures, presence of predators, or different wildlife management strategies, unleashing a range of
541 ecological questions using SNA and related statistical tools.

542 Animal welfare

543 1. Elk in SW Alberta, Canada, were captured (animal care protocol no. 536-1003 AR University
544 of Alberta) during the winters of 2007–2011 using helicopter net-gunning.
545 2. Pronghorn in southcentral Wyoming, USA, were captured, handled, and monitored according
546 to protocols approved by Wyoming Game and Fish Department (Chapter 33-923 Permit) and
547 University of Wyoming Institutional Animal Care and Use Committee (protocol 20131028JB00037).
548 3. All animal capture and handling protocols were approved by the Wyoming Game and Fish De-
549 partment (Chapter 33-937) and an Institutional Animal Care and Use Committee at the Univer-
550 sity of Wyoming (20131111KM00040, 20151204KM00135, 20170215KM00260, 20200302MK00411).
551 4. Roe deer in Aurignac, France, were captured (prefectural order from the Toulouse Administra-
552 tive Authority to capture and monitor wild roe deer and agreement no. A31113001 approved
553 by the Departmental Authority of Population Protection) during the winters of 2005–2012 us-
554 ing drive netting.

555 Acknowledgments

556 1. We thank Damien Farine for thoughtful discussions during the research collaboration at the
557 University of Zurich and providing useful feedback on the manuscript. We also thank Kim-
558 berly Conteddu for suggesting improvements on the [aniSNA](#) package.

559 2. This publication has emanated from research conducted with the financial support of Science
560 Foundation Ireland under Grant number 18/CRT/6049. For the purpose of Open Access, the
561 author has applied a CC BY public copyright licence to any Author Accepted Manuscript ver-
562 sion arising from this submission.

563 3. Elk study: We thank the Natural Sciences and Engineering Research Council of Canada (NSERC-
564 CRD), Shell Canada Limited, Alberta Conservation Association (Grant Eligible Conservation
565 Fund), Alberta Sustainable Resource Development, Safari Club International, Alberta Parks
566 and Parks Canada for funding and support.

567 4. Pronghorn study: We thank Anadarko Petroleum Corporation, Black Diamond Minerals LLC,
568 British Petroleum North America, Devon Energy, Linn Energy, Memorial Resource Develop-
569 ment, Samson Resources, Warren Resources Incorporated, the Bureau of Land Management-
570 Rawlins Field Office, Wyoming Game and Fish Department, Wyoming Governor's Big Game
571 License Coalition, and the University of Wyoming (Department of Ecosystem Science and Man-
572 agement, Office of Academic Affairs, and Wyoming Reclamation and Restoration Center) for
573 funding and support.

574 5. Any use of trade, firm, or product names is for descriptive purposes only and does not imply
575 endorsement by the U.S. Government.

576 6. Mule deer study : Funding was provided by the Bureau of Land Management, Hunter Legacy
577 100 Fund, Knobloch Family Foundation, Muley Fanatic Foundation, National Science Foun-
578 dation, Pew Charitable Trusts, Safari Club International Foundation, Sitka Ecosystem Grant,
579 Teton Conservation District, The Nature Conservancy, Wyoming Game and Fish Department,
580 Wyoming Governor's Big Game License Coalition, and the U.S. Geological Survey.

581 7. Roe deer study: We thank the local hunting associations, the Fédération Départementale
582 des Chasseurs de la Haute-Garonne for allowing us to work in the Comminges, as well as all
583 coworkers and volunteers for help collecting data.

584 8. Caribou study: We thank the Natural Sciences and Engineering Research Council (Canada)
585 and our industry partners in a Collaborative Research and Development Grant, Environment
586 and Climate Change Canada, Canada Western Economic Diversification, the Saskatchewan
587 Mining Association, and the Government of Saskatchewan.

588 Author Contributions

589 Prabhleen Kaur and Michael Salter-Townshend conceived the ideas and designed the methodol-
590 ogy with the help of Simone Ciuti. Prabhleen Kaur analysed the data and wrote the manuscript,
591 edited by Michael Salter-Townshend and Simone Ciuti. Adele K. Reinking, Anna C.Ortega, Anne
592 Loison, Federico Ossi, Francesca Cagnacci, Jeffrey L.Beck, Kamal Atmeh, Mark S. Boyce, Matthew
593 Kauffman, Nicolas Morellet, Philip McLoughlin provided the data and contributed to the revision
594 of the manuscript. All authors contributed critically to the drafts and gave final approval for publi-
595 cation.

596 Conflict of Interest

597 The authors declare no conflict of interest.

598 References

599 **Albery GF**, Morris A, Morris S, Pemberton JM, Clutton-Brock TH, Nussey DH, Firth JA. Multiple spatial be-
600 haviours govern social network positions in a wild ungulate. *Ecology Letters*. 2021 4; 24:676–686. doi:
601 [10.1111/ele.13684](https://doi.org/10.1111/ele.13684).

602 **Aplin LM**, Farine DR, Morand-Ferron J, Sheldon BC. Social networks predict patch discovery in a wild population
603 of songbirds. *Proceedings of the Royal Society B: Biological Sciences*. 2012; 279:4199–4205. doi: [10.1098/rspb.2012.1591](https://doi.org/10.1098/rspb.2012.1591).

604 **Biro PA**, Dingemanse NJ. Sampling bias resulting from animal personality. *Trends in Ecology and Evolution*.
605 2009; 24(2):66–67. doi: [10.1016/j.tree.2008.11.001](https://doi.org/10.1016/j.tree.2008.11.001).

606 **Bliss CA**, Danforth CM, Dodds PS. Estimation of Global Network Statistics from Incomplete Data. *PLoS
607 ONE*. 2014 Oct; 9(10):e108471. <https://dx.plos.org/10.1371/journal.pone.0108471>, doi: [10.1371/journal.pone.0108471](https://doi.org/10.1371/journal.pone.0108471).

608 **Bonnell TR**, Vilette C. Constructing and analysing time-aggregated networks: The role of bootstrapping, per-
609 mutation and simulation. *Methods in Ecology and Evolution*. 2021 1; 12:114–126. doi: [10.1111/2041-210X.13351](https://doi.org/10.1111/2041-210X.13351).

610 **Borgatti SP**, Carley KM, Krackhardt D. On the robustness of centrality measures under conditions of imperfect
611 data. *Social Networks*. 2006 5; 28:124–136. doi: [10.1016/j.socnet.2005.05.001](https://doi.org/10.1016/j.socnet.2005.05.001).

612 **Borgatti SP**, Everett MG, Freeman LC. In: Alhajj R, Rokne J, editors. *UCINET* New York, NY: Springer New York;
613 2014. p. 2261–2267. https://doi.org/10.1007/978-1-4614-6170-8_316, doi: [10.1007/978-1-4614-6170-8_316](https://doi.org/10.1007/978-1-4614-6170-8_316).

617 **Boyce MS**, Pitt J, Northrup JM, Morehouse AT, Knopff KH, Cristescu B, Stenhouse GB. Temporal autocorrelation
618 functions for movement rates from Global Positioning System Radiotelemetry Data. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2010; 365(1550):2213–2219. doi: [10.1098/rstb.2010.0080](https://doi.org/10.1098/rstb.2010.0080).

620 **Cagnacci F**, Boitani L, Powell RA, Boyce MS. Animal ecology meets GPS-based radiotelemetry: A perfect storm
621 of opportunities and challenges. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2010
622 7; 365:2157–2162. doi: [10.1098/rstb.2010.0107](https://doi.org/10.1098/rstb.2010.0107).

623 **Castles M**, Heinsohn R, Marshall HH, Lee AEG, Cowlishaw G, Carter AJ. Social networks created with different
624 techniques are not comparable. . 2014 7; <https://espace.library.uq.edu.au/view/UQ:686940>.

625 **Costenbader E**, Valente TW. The stability of centrality measures when networks are sampled. *Social Networks*.
626 2003 10; 25:283–307. doi: [10.1016/S0378-8733\(03\)00012-1](https://doi.org/10.1016/S0378-8733(03)00012-1).

627 **Crofoot MC**. "Next-Gen" Tracking in Primatology : Opportunities and Challenges. In: Dolins FL, editor. *Spatial
628 Analysis in Field Primatology : Applying GIS at Varying Scales* Cambridge: Cambridge University Press; 2021.p.
629 42–63.

630 **Croft DP**, James R, Krause J. Exploring Animal Social Networks:. Princeton University Press; 2008. <https://www.degruyter.com/document/doi/10.1515/9781400837762/html>, doi: [10.1515/9781400837762](https://doi.org/10.1515/9781400837762).

632 **Cross PC**, Creech TG, Ebinger MR, Heisey DM, Irvine KM, Creel S. Wildlife contact analysis: Emerging
633 methods, questions, and challenges. *Behavioral Ecology and Sociobiology*. 2012 10; 66:1437–1447. doi:
634 [10.1007/s00265-012-1376-6](https://doi.org/10.1007/s00265-012-1376-6).

635 **Davis GH**, Crofoot MC, Farine DR. Estimating the robustness and uncertainty of animal social networks using
636 different observational methods. *Animal Behaviour*. 2018 7; 141:29–44. doi: [10.1016/j.anbehav.2018.04.012](https://doi.org/10.1016/j.anbehav.2018.04.012).

637 **Dawson DE**, Farthing TS, Sanderson MW, Lanzas C. Transmission on empirical dynamic contact networks is
638 influenced by data processing decisions. *Epidemics*. 2019 3; 26:32–42. doi: [10.1016/j.epidem.2018.08.003](https://doi.org/10.1016/j.epidem.2018.08.003).

639 **Egan ME**, Pepin KM, Fischer JW, Hygnstrom SE, VerCauteren KC, Bastille-Rousseau G. Social network analysis
640 of white-tailed deer scraping behavior: Implications for disease transmission. *Ecosphere*. 2023; 14(2). doi:
641 [10.1002/ecs2.4434](https://doi.org/10.1002/ecs2.4434).

642 **Farine DR**. Proximity as a proxy for interactions: Issues of scale in social network analysis. *Animal Behaviour*.
643 2015 6; 104:e1–e5. doi: [10.1016/j.anbehav.2014.11.019](https://doi.org/10.1016/j.anbehav.2014.11.019).

644 **Farine DR**. A guide to null models for animal social network analysis. *Methods in Ecology and Evolution*. 2017
645 10; 8:1309–1320. doi: [10.1111/2041-210X.12772](https://doi.org/10.1111/2041-210X.12772).

646 **Farine DR**, Aplin LM, Sheldon BC, Hoppitt W. Interspecific social networks promote information transmis-
647 sion in wild songbirds. *Proceedings of the Royal Society B: Biological Sciences*. 2015; 282. doi: [10.1098/rspb.2014.2804](https://doi.org/10.1098/rspb.2014.2804).

649 **Farine DR**, Carter GG. Permutation tests for hypothesis testing with animal social network data: Problems and
650 potential solutions. *Methods in Ecology and Evolution*. 2022 1; 13:144–156. doi: [10.1111/2041-210X.13741](https://doi.org/10.1111/2041-210X.13741).

651 **Farine DR**, Strandburg-Peshkin A. Estimating uncertainty and reliability of social network data using Bayesian
652 inference. *Royal Society Open Science*. 2015 9; 2. doi: [10.1098/rsos.150367](https://doi.org/10.1098/rsos.150367).

653 **Farine DR**, Whitehead H. Constructing, conducting and interpreting animal social network analysis. *Journal of
654 Animal Ecology*. 2015 9; 84:1144–1163. doi: [10.1111/1365-2656.12418](https://doi.org/10.1111/1365-2656.12418).

655 **Ferreira AC**, Covas R, Silva LR, Esteves SC, Duarte IF, Fortuna R, Theron F, Doutrelant C, Farine DR. How to make
656 methodological decisions when inferring social networks. *Ecology and Evolution*. 2020 9; 10:9132–9143. doi:
657 [10.1002/ece3.6568](https://doi.org/10.1002/ece3.6568).

658 **Foley CJ**, Sillero-Zubiri C. Open-source, low-cost modular GPS collars for monitoring and tracking wildlife. *Meth-
659 ods in Ecology and Evolution*. 2020 4; 11:553–558. doi: [10.1111/2041-210X.13369](https://doi.org/10.1111/2041-210X.13369).

660 **Franks DW**, Ruxton GD, James R. Sampling animal association networks with the gambit of the group. *Behav-
661 ioral Ecology and Sociobiology*. 2010 1; 64:493–503. doi: [10.1007/s00265-009-0865-8](https://doi.org/10.1007/s00265-009-0865-8).

662 **Frantz TL**, Cataldo M, Carley KM. Robustness of centrality measures under uncertainty: Examining the role
663 of network topology. *Computational and Mathematical Organization Theory*. 2009 12; 15:303–328. doi:
664 [10.1007/s10588-009-9063-5](https://doi.org/10.1007/s10588-009-9063-5).

665 **Franz M**, Nunn CL. Network-based diffusion analysis: a new method for detecting social learning. *Proceedings
666 of the Royal Society B: Biological Sciences*. 2009 May; 276(1663):1829–1836. <https://royalsocietypublishing.org/doi/10.1098/rspb.2008.1824>, doi: [10.1098/rspb.2008.1824](https://doi.org/10.1098/rspb.2008.1824).

668 **Gile K**, Handcock MS. Model-based Assessment of the Impact of Missing Data on Inference for Networks 1;
669 2006. www.stat.washington.edu/handcock.

670 **He P**, Klarevas-Irby JA, Papageorgiou D, Christensen C, Strauss ED, Farine DR. A guide to sampling design
671 for <scp>GPS</scp> -based studies of animal societies. *Methods in Ecology and Evolution*. 2022 10; <https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13999>, doi: [10.1111/2041-210X.13999](https://doi.org/10.1111/2041-210X.13999).

673 **Hock K**, Fefferman NH. Extending the role of social networks to study social organization and interaction
674 structure of animal groups. . 2011 7; <https://espace.library.uq.edu.au/view/UQ:337930>.

675 **James R**, Croft DP, Krause J. Potential banana skins in animal social network analysis. . 2009; <http://opus.bath.ac.uk/14182/>.

677 **Kanngiesser P**, Sueur C, Riedl K, Grossmann J, Call J. Grooming network cohesion and the role of individuals in
678 a captive chimpanzee group. *American Journal of Primatology*. 2011 8; 73:758–767. doi: [10.1002/ajp.20914](https://doi.org/10.1002/ajp.20914).

679 **Kaur P**. aniSNA: Statistical Network Analysis of Animal Social Networks; 2023, r package version 1.0.

680 **Krause J**, Croft DP, James R. Social network theory in the behavioural sciences: Potential applications. *Behavioral Ecology and Sociobiology*. 2007; 62(1):15–27. doi: 10.1007/s00265-007-0445-8.

682 **Krause J**, James R, Croft DP. Personality in the context of social networks. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2010 12; 365:4099–4106. doi: [10.1098/rstb.2010.0216](https://doi.org/10.1098/rstb.2010.0216).

684 **Krause S**, Wilson ADM, Ramnarine IW, Herbert-Read JE, Clément RJG, Krause J. Data from: Guppies occupy consistent positions in social networks: mechanisms and consequences. . 2016 7; <http://hdl.handle.net/10255/dryad.131794>.

687 **Kulahci IG**, Rubenstein DI, Bugnyar T, Hoppitt W, Mikus N, Schwab C. Social networks predict selective observation and information spread in ravens. *Royal Society Open Science*, Vol 3, Iss 7 (2016). 2016 7; <https://doi.org/10.1098/rsos.160256>, doi: [10.1098/rsos.160256](https://doi.org/10.1098/rsos.160256).

690 **Lusseau D**, Whitehead H, Gero S. Incorporating uncertainty into the study of animal social networks. *Animal Behaviour*. 2008; doi: [10.1016/j.anbehav.2007.10.029](https://doi.org/10.1016/j.anbehav.2007.10.029).

692 **Ozella L**, Price E, Langford J, Lewis KE, Cattuto C, Croft DP. Association networks and social temporal dynamics in ewes and lambs. . 2021; <http://hdl.handle.net/10871/127918>.

694 **Perkins SE**, Cagnacci F, Stradiotto A, Arnoldi D, Hudson PJ. Comparison of social networks derived from ecological data: Implications for inferring infectious disease dynamics. *Journal of Animal Ecology*. 2009; 78(5):1015–1022. doi: [10.1111/j.1365-2656.2009.01557.x](https://doi.org/10.1111/j.1365-2656.2009.01557.x).

697 **Pike TW**, Samanta M, Lindström J, Royle NJ. Behavioural phenotype affects social interactions in an animal network. . 2008; .

699 **Robitaille AL**, Webber QMR, Wal EV. Conducting social network analysis with animal telemetry data: Applications and methods using spatsoc. *Methods in Ecology and Evolution*. 2019; 10:1203–1211. doi: [10.1111/2041-210X.13215](https://doi.org/10.1111/2041-210X.13215).

702 **Salter-Townshend M**, White A, Gollini I, Murphy TB. Review of statistical network analysis: Models, algorithms, and software. *Statistical Analysis and Data Mining*. 2012 8; 5:243–264. doi: [10.1002/sam.11146](https://doi.org/10.1002/sam.11146).

704 **Shimada M**, Sueur C. The importance of social play network for infant or juvenile wild chimpanzees at Mahale Mountains National Park, Tanzania. ISSN: 0275-2565 ; EISSN: 1098-2345 ; *American Journal of Primatology* ; <https://halarchives-ouvertesfr/hal-01021479> ; *American Journal of Primatology*, Wiley, 2014, 76 (11), pp1025–1036 (101002/ajp22289). 2014; <https://hal.archives-ouvertes.fr/hal-01021479>.

708 **Silk MJ**, Croft DP, Delahay RJ, Hodgson DJ, Boots M, Weber N, McDonald RA. Using social network measures in wildlife disease ecology, epidemiology and management. . 2017; <http://hdl.handle.net/10871/25281>.

710 **Silk MJ**, Jackson AL, Croft DP, Colhoun K, Bearhop S, The consequences of unidentifiable individuals for the analysis of an animal social network. Academic Press; 2015. doi: [10.1016/j.anbehav.2015.03.005](https://doi.org/10.1016/j.anbehav.2015.03.005).

712 **Smith JA**, Morgan J. Network Sampling Coverage II: The Effect of Non-random Missing Data on Network Mea-
713 surement 1 Network Sampling Coverage II: The Effect of Non-random Missing Data on Network Measure-
714 ment; 2016. <http://www.elsevier.com/open-access/userlicense/1.0/1>.

715 **Smith JE**, Pinter-Wollman N. Observing the unwatchable: Integrating automated sensing, naturalistic observa-
716 tions and animal social network analysis in the age of big data. *Journal of Animal Ecology*. 2021; 90(1):62–75.

717 **Snijders TAB**, Borgatti SP. Non-Parametric Standard Errors and Tests for Network Statistics. *CONNECTIONS*.
718 1999; 22:161–70.

719 **Sosa S**, Jacoby DMP, Lihoreau M, Sueur C. Animal social networks: Towards an integrative framework embed-
720 ding social interactions, space and time. *British Ecological Society*; 2021. doi: [10.1111/2041-210X.13539](https://doi.org/10.1111/2041-210X.13539).

721 **Sosa S**, Sueur C, Puga-Gonzalez I. Network measures in animal social network analysis: Their strengths, lim-
722 its, interpretations and uses. *Methods in Ecology and Evolution*. 2021 1; 12:10–21. doi: [10.1111/2041-210X.13366](https://doi.org/10.1111/2041-210X.13366).

724 **Spiegel O**, Leu ST, Sih A, Bull CM. Socially interacting or indifferent neighbours? Randomization of movement
725 paths to tease apart social preference and spatial constraints. *Methods in Ecology and Evolution*. 2016 8;
726 7:971–979. doi: [10.1111/2041-210X.12553](https://doi.org/10.1111/2041-210X.12553).

727 **Webber QMR**, Wal EV. Trends and perspectives on the use of animal social network analysis in behavioural
728 ecology: a bibliometric approach. *Animal Behaviour*. 2019 3; 149:77–87. doi: [10.1016/j.anbehav.2019.01.010](https://doi.org/10.1016/j.anbehav.2019.01.010).

729 **Whitehead H**. *Analyzing Animal Societies Quantitative Methods for Vertebrate Social Analysis*; 2008. OCLC:
730 1004846468.

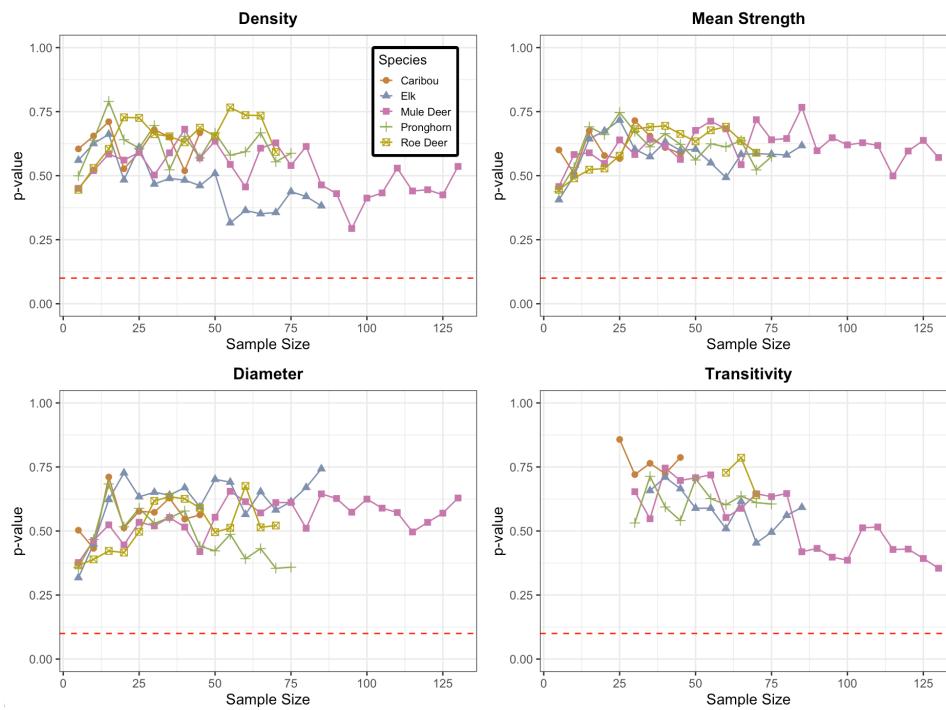
731 **Whitehead H**. SOCOPROG programs: Analysing animal social structures. *Behavioral Ecology and Sociobiology*.
732 2009 3; 63:765–778. doi: [10.1007/s00265-008-0697-y](https://doi.org/10.1007/s00265-008-0697-y).

733 **Appendix 1: Assessment of bootstrapping algorithm**

734 We Bootstrapped two different subsamples of a social network at each subsampling percentage.
735 Given that the subsamples were taken from the same population, any significant differences should
736 be attributed to overly confident Bootstrapped intervals and non-significant results were to be ex-
737 pected. We repeatedly sampled pairs of networks at each subsampling level and computed the
738 p-value for a significant difference between the two network metrics, as determined using a two-
739 tailed t-test as per **Snijders and Borgatti (1999)** (See **3.Bootstrapped confidence intervals** for
740 more details.) If the subsampled networks do indeed provided noisy estimates of the network
741 metric calculated across the population and the Bootstrap algorithm did not return intervals that

742 were too narrow, the B Bootstrapped p-values would not contain more than approximately α_B
743 values less than α (for any significance level α). Indeed, the p-values would ideally be uniformly
744 distributed between 0 and 1. We do not perform tests of our bootstrapping approach with regard
745 to power / Type 2 errors because, as with all hypothesis tests, the power to correctly identify real
746 differences in network metrics between two different social networks depends not only on sample
747 size but also on the magnitude of the differences. The larger the sample size and the larger the
748 true difference, the greater the power to identify that the networks differ.

749 For all the network metrics, p-values for difference between two samples is non-significant for
750 all the five species (Figure 8) which indicates that our bootstrapping approach is not overly sensi-
751 tive i.e. return too many false positive results when used to compare the network metrics of two
752 networks.



Appendix 0 Figure 8. Mean of P Values for the difference in network metrics values for two non overlapping sub-samples of the observed sample. The two non-overlapping sub-samples are bootstrapped 1000 times and p-values are computed for to check for the significance of difference. This process is replicated 10 times to obtain mean of p values. The red dotted line in each plot corresponds to value 0.1 on the y-axis. All the mean p-values lie well above this dotted line.

753 **Appendix 2: Regression analysis between node level metrics of sub-sampled**
754 **and observed networks**

755 While analyzing local node level metrics from a partially sampled network, it is useful to know the
756 extent by which the position of an individual in the population controls its position in the sampled
757 network and how this control depends on the choice of individuals in the sample or density of the
758 population.

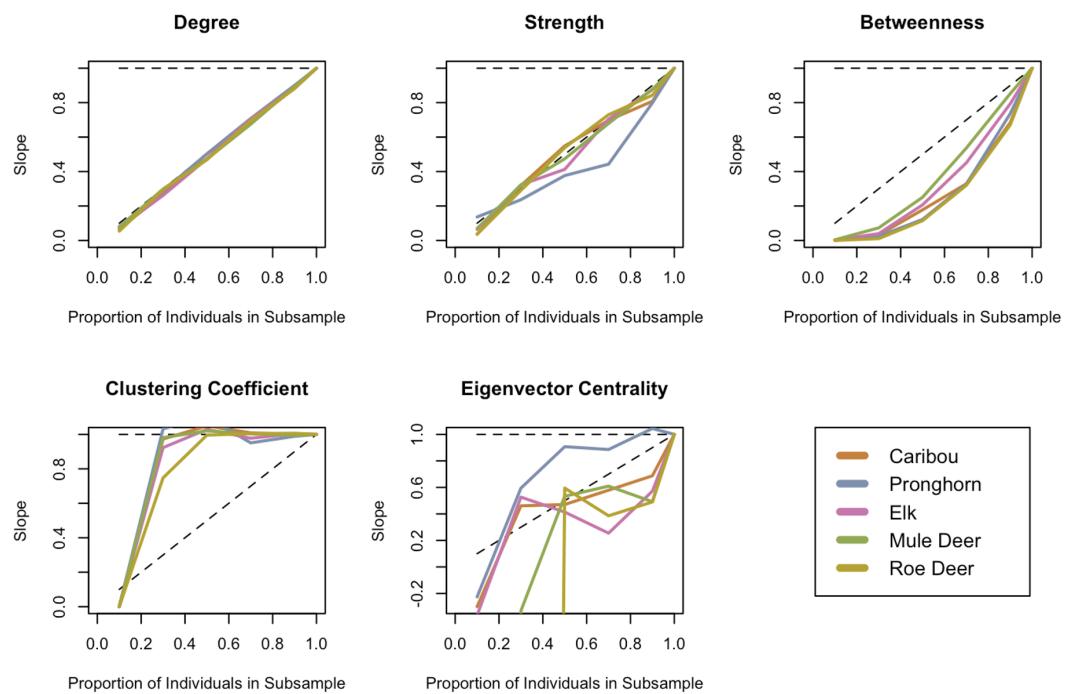
759 To answer this, we perform regression analysis such that the values of node-level metrics in
760 the sub-sampled networks are regressed on the values of those nodes in the observed network.

761 As in the correlation analysis, the individuals are further sub-sampled to analyse the effect. Sub-
762 sampling is done at 10%, 30%, 50%, 70% and 90% levels and is repeated 10 times at each level. The
763 mean slope of regression is calculated for the five network metrics of degree, strength, between-
764 ness, clustering coefficient and eigenvector centrality at each level for each run of the simulation.

765 The slope of regression describes how the value of network metrics calculated in each partial net-
766 work relates to its value in real network as per *Silk et al. (2015)*.

767 The slope of regression is plotted against sampling proportion (Figure 9) The accuracy of node-
768 level metrics from partial networks is highly dependent on the metric being used. In agreement
769 with the results of the simulation study by *Silk et al. (2015)*, the accuracy of local measures of degree
770 and strength decrease linearly in direct proportion to the proportion of individuals subsampled. In
771 contrast, the accuracy of eigenvector centrality does not depend on that proportion in any of the
772 networks except for elk network. The value of the slope of regression for betweenness decreased
773 non-linearly for four of the species that have low number of individuals tagged and followed a
774 near-linear pattern for mule deer that has high number of individuals observed. The accuracy of
775 the clustering coefficient did not decrease till the level of identified individuals was as low as 50%
776 but declined rapidly at different levels after that for each of the species.

777 *Silk et al. (2015)* suggests that the strong relationship between the proportion of individuals
778 sampled and the accuracy with which local measures (degree and strength) predict the actual value
779 of an individual's centrality is notable. This implies that it is possible to correct for this effect if the
780 proportion of sampled individuals in a population is known.



Appendix 0 Figure 9. Regression analysis of local network metrics between the nodes of partial and observed network. In each plot, X-axis denotes the proportion of nodes in the sub-sample and Y-axis shows the corresponding value of the slope of regression calculated by regressing the local network metrics of sub-sampled nodes and observed network nodes.