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Abstract 13 

Sponges pump water to filter feed and for diffusive oxygen uptake. In doing so, trace DNA fragments 14 

from a multitude of organisms living around them are trapped in their tissues. Here we show that 15 

the environmental DNA retrieved from archived marine sponge specimens can reconstruct the fish 16 

communities at the place of sampling and discriminate North Atlantic assemblages according to 17 

biogeographic region (from Western Greenland to Svalbard), depth habitat (80-1600m), and even 18 

the level of protection in place. Given the cost associated with ocean biodiversity surveys, we argue 19 

that targeted and opportunistic sponge samples – as well as the specimens already stored in 20 

museums and other research collections – represent an invaluable trove of biodiversity information 21 

that can significantly extend the reach of ocean monitoring. 22 

 23 

Keywords  24 

Environmental DNA, biodiversity, marine monitoring, sponges, metabarcoding, extended specimen 25 

 26 

1. Introduction 27 

The worrying and widespread trend of ocean biodiversity loss that typifies the Anthropocene calls 28 

for increasingly powerful and accurate approaches to expose the nuances of this loss, understand its 29 

main drivers, and inform mitigation strategies. One such recent scientific advance has been 30 

8environmental DNA9 (eDNA) analysis, an approach by which collecting DNA fragments shed by 31 

organisms in their habitat, allows researchers to generate biodiversity data at unprecedented scales 32 
1 and granularity 2, redefining the way we observe and understand ocean life.  33 

Biological research collections are critical for eDNA analyses. Apart from expanding DNA taxonomic 34 

reference databases from tissues 3, they also provide untapped genomic insights that have become 35 

more accessible with the advancement of molecular techniques 4. Metabarcoding in particular 36 

allows for ecological insights, such as detecting multi-decadal community shifts from eDNA in 37 

ethanol-preserved ichthyoplankton samples 5, or tracking micro-evolutionary changes in the gut 38 

microbiome of 100-year-old fish specimens 6. These are prime applications of the extended 39 

specimen concept 7, that is, a novel, comprehensive approach to biodiversity collections that 40 
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extends beyond the mere physical object to potentially limitless further uses that become possible 41 

owing to new efforts, such as digitization, and new attitudes towards phenotypic description 8, 9.  42 

Filter-feeding marine sponges (phylum: Porifera) were recently found to act as natural eDNA 43 

samplers, able to retain eDNA fragments reflective of their surrounding communities 10. Sponges are 44 

ideal extended specimens, in that exploring beyond the host DNA provides an understanding of the 45 

environment from which the sponge was collected. Experimental studies subsequently found that 46 

sponge species differ in their ability to retain eDNA, with some species likely to trap DNA for longer 47 

intervals than what is usually observed in water samples 11,12. Given the urgent need to measure 48 

trajectories of biodiversity changes, we explored whether this sponge natural sampler approach 49 

could characterise fish assemblages across the North Atlantic, by leveraging sponge specimens 50 

previously collected for other scientific purposes from vulnerable and underexplored deep-sea 51 

habitats. 52 

 53 

2. Results 54 

We detected natural sampler DNA (nsDNA) from three sponge species (Geodia barretti, Geodia 55 

hentscheli, and Phakellia ventilabrum) (N = 54, retained from 64 samples sequenced – see Methods) 56 

across varied benthic habitats in the North Atlantic (Figure 1). The specimens were between 3-10 57 

years old, spanning the continental shelf down to the bathyal slope (~80-1900 m), and cover large 58 

biogeographic regions such as the Northeast Atlantic, North American Boreal, and Norwegian-Arctic 59 

Seas (Figure 1B, 1C, 1D) 13 (Supplemental Table 1). We amplified a fish-specific 12S mitochondrial 60 

rRNA marker (tele02) 14 from the previously extracted total DNA of the sponge specimens, and 61 

sequenced the targeted amplicons on an Illumina iSeq 100, resulting in 5,269,740 raw reads. After 62 

quality filtering (see Methods), we retained 4,565,067 reads for downstream analyses (Supplemental 63 

Table 2), resulting with a median of 12,992 reads per sample (N = 74) (Supplemental Figure 1), 64 

including controls (N = 10) and samples that were later removed (N = 10) for having low reads 65 

(mostly G. hentscheli).  66 

(a) Vertebrate Biodiversity  67 

The sponges yielded 142 eukaryote MOTUs, resulting in 125 non-human, contaminant free, marine 68 

MOTUs, which could be identified confidently to at least the taxonomic rank of class. Among these 69 

we detected 119 fish MOTUs of which 65 were identified to species level at ≥99% identity, excluding 70 

contaminants (Supplemental Table 2, 3). The following species were removed from downstream 71 

analysis: our positive control (the tropical freshwater catfish Pangasianodon hypophthalmus), two 72 

species (ie. Amphiprion ocellaris, Pomacanthus imperator) from a different project processed at a 73 

similar time 12, and one Indo-Pacific fish heavily traded as seafood (Nemipterus zysron). The fish 74 

MOTUs, spread over the classes Actinopterygii and Chondrichthyes, comprised 28 orders, 54 families 75 

and 94 genera. A sand sea star (Astropecten irregularis) common in deep sea benthos was also 76 

detected, while sponge DNA was never detected and likely not amplified, due to their phylogenetic 77 

distance from vertebrates. We also removed domestic animals (e.g. Sus scrofa, Bos taurus) and 78 

terrestrial mammals such as caribou (Rangifer tarandus), native to the Northern Hemisphere, whose 79 

putatively leached DNA was found in a G. barretti specimen from the Davis straight, west of 80 

Greenland. After these removals, we detected five 8bonus9 non-fish vertebrate species, including 81 

three marine mammals (harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin 82 

(Lagenorhynchus acutus), and Bryde9s whale (Balaenoptera brydei) detected in both the west and 83 
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east North Atlantic) as well as two seabirds (pelagic cormorant (Phalacrocorax pelagicus) and 84 

glaucous gull (Larus hyperboreus)).  85 

(b) Biogeography and depth-associated Fish assemblages  86 

Fish communities significantly differed between biogeographic regions of the North Atlantic (R2 = 87 

0.16, p < 0.001, Figure 2A, Supplemental Table 4). Beta diversity was examined through Non-metric 88 

Multi-Dimensional Scaling (NMDS) of a Jaccard dissimilarity matrix of teleosts and elasmobranchs 89 

detected across sponge samples, comprising of only MOTUs identified to the species level (though 90 

the same pattern resulted when including genus level detections, Supplemental Figure 2), and by 91 

permutational multivariate analysis of variance (PERMANOVA) testing. Sponge samples appeared 92 

broadly grouped into the biogeographic regions previously determined from global distribution data 93 

of marine taxa 13, emphasizing the effectiveness of sponge nsDNA to capably distinguish between 94 

marine realms (Figure 2A). Pairwise comparisons of beta-diversity revealed that all regions 95 

significantly differed, with the North American Boreal region showing greater divergence from both 96 

the Northeast Atlantic (R2 = 0.14, p < 0.001) and the Norwegian-Arctic Seas (R2 = 0.13, p < 0.001), 97 

compared to the divergence observed between the regions located in the eastern North Atlantic (R2 98 

= 0.06, p = 0.025) (Supplemental Table 4).  99 

Latitude, depth and sampling year were all significant correlates of fish beta-diversity. Depth had the 100 

strongest correlation (R2 = 0.58, p < 0.001) followed by latitude (R2 = 0.35, p < 0.001) and year (R2 = 101 

0.17, p = 0.018) (Supplemental Table 4). We attribute the weaker correlation with sampling year to 102 

be a by-product of the different regions being sampled in separate years. Depth was plotted as a 103 

smooth surface over the NMDS ordination plane (Figure 2A), particularly highlighting how the 104 

composition of the Northeast Atlantic sites correspond with shallower continental shelf depths, 105 

while the North American Boreal samples follow the gradient of the slope into bathypelagic depths. 106 

Species richness approached saturation among all depth ranges from which sponges were sampled, 107 

but more robustly in shallower groups (80-200 m) that had a greater sample size. Fish species 108 

richness progressively decreased with depth, except between 1200-1400 m depth, which had a 109 

higher richness than the 800-1200 m samples, but also had a greater sample size (Figure 2B). 110 

To further test the extent to which sponge nsDNA data could be used to distinguish between more 111 

fine-scale fish assemblages, the P. ventilabrum samples from the Northeast Atlantic were analysed 112 

as a subset (N = 23) to compare similar habitats and to control for any possible bias introduced by 113 

using different sponge species. We observed variance across samples collected in areas with 114 

differing levels of marine protection. Species richness appeared to be higher in marine protected 115 

area (MPA) sites, and communities detected in MPAs significantly differed from those outside MPAs 116 

(R2 = 0.09, p = 0.026) (Figure 2C, 2D). The same subset of sponges was also tested for significant 117 

differences in teleost and elasmobranch beta-diversity between various P. ventilabrum aggregations 118 

(Figure 2C); however, none of the pairwise comparisons among aggregations were significant after 119 

correcting the p-values for multiple testing (Supplemental Table 5). This was likely due to low 120 

replication within each of the several locations (e.g., Sula reef, Shetland Shelf) being compared.  121 

(c) Fish detections and indicator species analysis 122 

Greenland halibut (Reinhardtius hippoglossoides), beaked redfish (Sebastes mentella), and megrim 123 

(Lepidorhombus whiffiagonis) were detected in almost all 54 samples (i.e., 52, 51, and 50 samples, 124 

respectively) (Figure 3, Supplemental Table 3). Other frequently detected species included Atlantic 125 

mackerel (Scomber scombrus), greater argentine (Argentina silus) and poor cod (Trisopterus 126 
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minutus) (i.e., 48, 46, and 44 samples, respectively), all of which are known to be abundant 127 

organisms in pelagic and demersal habitats of the North Atlantic.  128 

While the 12S marker was designed to pick up teleost fish, six cartilaginous fish (class: 129 

Chondrichthyes) were also detected. Three chimaeras, the closest living relatives to sharks and rays, 130 

were detected, including the rabbit fish (Chimaera monstrosa) which was detected in 17 samples. 131 

Two elasmobranchs were from the family Rajidae: the shagreen ray (Leucoraja fullonica) which is 132 

IUCN red-listed as vulnerable and the blue skate (Dipturus batis) which is critically endangered, were 133 

both detected in the Northeast Atlantic (Figure 3). 134 

Indicator value species analysis conducted across biogeographic regions and depth ranges (Figure 135 

4A, 4B) detected eight species as biogeographic indicators, and 16 species as depth layer indicators, 136 

with seven species identified as indicators for both region and depth (Supplemental Table 5). 137 

Indicator values (A, B, stat) were calculated using presence-absence data to conservatively interpret 138 

detections. <A= is the estimate probability that samples are associated to a region or depth layer if 139 

the indicator species has been detected in the sample (i.e., specificity or predictive value). <B= is the 140 

estimate probability of detecting the indicator species in a region or depth layer (i.e., sensitivity). 141 

<Stat= is the indicator value index which suggests the strength of the indicator species association 142 

and encompasses both <A= and <B= values.  143 

Many species of commercial value had strong significant associations for both region and depth 144 

range. Norway pout (Trisopterus esmarkii) was positively associated with the Northeast Atlantic and 145 

Norwegian-Arctic Seas (stat = 0.857, p < 0.0001) (Figure 4A) and had a strong association with depths 146 

ranging from 80-800 m (stat = 0.903, p < 0.0001), such that there was high specificity (A = 1) or 147 

likelihood that a Norway pout detection occurred in habitats shallower than 800 m depth (Figure 4B, 148 

Supplemental Table 6). Pollock (Pollachius virens) shared the same region and depth associations as 149 

Norway pout, although to a lesser strength. Atlantic cod (Gadus morhua) also showed clear 150 

associations with the eastern Atlantic between 80-800 m (Figure 4A, 4B).  Roughhead grenadier 151 

(Macrourus berglax) and blacksmelt (Bathylagus euroyops) had a strong association with the North 152 

American Boreal with grenadier having a higher likelihood of detection (B = 0.738) than blacksmelt 153 

(B = 0.603). Both species were associated to depths between 800 and 1600 m (Figure 4B). 154 

The indicator species analysis was repeated with the P. ventilabrum subset (N = 23) of the Northeast 155 

Atlantic data to identify indicator species of MPA sites. Four species were significant indicators of 156 

MPA sites (Figure 4C). These species included the moray wolf eel (Lycenchelys muraena), Atlantic 157 

eelpout (Lycodes terraenovae), Arctic telescope (Protomyctophum arcticum) and Vahl9s eelpout 158 

(Lycodes vahlii), all of which had high specificity (A = 0.999, 0.999, 1.0, and 1.0, respectively) to 159 

MPAs. The moray wolf eel and the Atlantic eelpout both shared the highest association with MPAs 160 

(stat(s) = 0.756, p < 0.05) (Supplemental Table 6).  161 

 162 

3. Discussion 163 

The retrieval of fish sequences from sponge specimens previously collected for other monitoring 164 

purposes provides perhaps the most attractive demonstration to date of the role of sponges as 165 

practical, cost-effective, universal natural DNA samplers for aquatic biodiversity studies. We 166 

confidently detected at least 65 teleost and elasmobranch species that could be used to distinguish 167 

fish assemblages and identify indicator species associated with depth and biogeographic regions 168 

within the North Atlantic. 169 
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Congruent with what we know about sponge nsDNA ex situ 12, some sponge species appeared to 170 

perform better than others. The original experimental design considered 93 sponge specimens; 171 

however, only 64 of them were selected for sequencing because they showed amplification of the 172 

desired target DNA region (i.e., bands on agarose gels). After bioinformatic quality control, DNA 173 

information from 54 individual sponges was retained. Of the 34 G. hentscheli samples attempted, 174 

only 17 were sequenced and nine were kept after rarefaction. Sample loss occurred, although to a 175 

lesser degree, also for G. barretti (i.e. 33 attempted, 21 sequenced, 19 kept). P. ventilabrum resulted 176 

instead in a 100% success rate (N = 26), followed by G. barretti (58%) and G. hentscheli (26%). 177 

Curiously, P. ventilabrum likely has higher pumping rates and lower microbial abundance than the 178 

Geodia species 15,16. It is possible that higher microbial abundance could contribute to increased 179 

rates of eDNA decay within sponges due to decomposition by bacteria 15 and less need to derive 180 

energy from the uptake of dissolved organic carbon 17. Given these observed coincidences, 181 

relationships between sponge physiology and nsDNA efficacy would be an exciting area for further 182 

investigation. 183 

High DNA sampling efficiency in some sponge species (i.e. P. ventilabrum) is an obvious advantage 184 

for biomonitoring, yet the percent success rate of the tetractinellid (Geodia) sponges was 185 

comparable to or even better than other organisms that have been tested as natural DNA samplers. 186 

For example, various leech species have been used to detect prey DNA, with vertebrate detection 187 

rates ranging from 9% to 80% of attempted specimens 18. Similarly, when gut contents of the 188 

European brown shrimp (Crangon crangon), a generalist scavenger, were analysed with DNA 189 

metabarcoding to reconstruct estuarine fish assemblages 19, up to eight stomachs had to be pooled, 190 

per DNA extraction, to constitute a sufficient sample. Extraction pooling could represent an 191 

appropriate methodological solution for favourable and widespread sponge species with moderate 192 

amplification success, such as G. hentscheli (i.e. 26%).  193 

The detected fish communities significantly differed between biogeographic regions of the North 194 

Atlantic (Figure 2A), and depth was identified as the most important variable in shaping beta-195 

diversity (Supplemental Table 4). Several fish species seemed to be more associated with either the 196 

west or east North Atlantic. Thickback sole (Microchirus virens) was unique to the Northeast Atlantic; 197 

saithe (Pollachius virens) and Norway pout (Trispoterus esmarkii) were present in the east Atlantic 198 

far more than the North American Boreal. Seven species, most of commercial value, were identified 199 

as significant indicators of both region and depth. Fishes known to be deep-sea adapted were indeed 200 

significantly associated with greater depths, for instance, Rakery beaconlamp (Lampanyctus 201 

macdonaldi) from 800-1600 m and small-eyed rabbitfish (Hydrolagus affinis) from 1200-1600 m. 202 

Moreover, the mesopelagic silvery lightfish (Maurolicus muelleri) was significantly associated with all 203 

sampled depth layers, except for 200-500 m, suggesting that the nsDNA signal detected their flexible 204 

migratory behaviour 20. Interestingly, Atlantic cod (Gadus morhua) was associated with the same 205 

region and depth range as the silvery pout (Gadiculus argenteus), which could be indicative of their 206 

known predator-prey relationship 21.  207 

Fish assemblages under different MPA status were distinguishable within the subset of P. 208 

ventilabrum specimens from the Northeast Atlantic, and greater species richness was observed in 209 

specimens from MPAs (Figure 2C, 2D). Indicator species associated with MPAs were mostly benthic, 210 

such as the moray wolf eel (Lycenchelys muraena), which prey on crustaceans and other 211 

invertebrates that take refuge in sponge grounds 22. Atlantic eelpout (Lycodes terraenovae) and 212 

Vahl9s eelpout (Lycodes vahlii) were also indicators and known to eat sponge remains and 213 

cryptofaunal organisms such as brittle stars 23. Lycodes sp. have also been found to correlate 214 

positively with high sponge biomass 24. Differences between the sponge aggregations were strong 215 
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(R2 = 0.52) though when pairwise comparisons were made, only one pair, the Faroe Shetland Sponge 216 

Belt and Rockall Bank, was identified as a potential driver of the difference. While the significant 217 

difference between MPA status was modest (R2 = 0.09), with adequate samples sizes and targeted 218 

rather than opportunistic sampling, sponge nsDNA shows promise for more fine-scale biodiversity 219 

surveying.   220 

Environmental DNA analysis is an emerging tool for deep-sea biodiversity 25–27 and ecological studies 221 
28–30, yet eDNA is less abundant in the deep-sea, such that larger volumes of water are needed to 222 

attain representative samples, and the manual labour required to filter those samples in situ can 223 

become a limitation 31. Furthermore, remote, deep-sea habitats are expensive to reach in the first 224 

place, so leveraging of natural samplers in this context represents a major boost for large scale 225 

ocean exploration and monitoring. For instance, the specimens in this study had previously been 226 

used to understand sponge phylogenetics and connectivity of deep-sea environments 32,33. The deep 227 

sea and high seas are subject to threats such as overfishing 34, deep-sea mining 35, climate change 228 

and pollution 36. Sponges are habitat-forming organisms 37 that provide shelter for cryptic animals, 229 

thereby also attracting larger more mobile predators 38, and as such playing a fundamental role in 230 

the structure and functioning of marine ecosystems. Now, the wealth of environmental, biological 231 

and molecular data that can be comprehensively obtained from sponges significantly expands their 232 

broader value in marine ecology and conservation. 233 

 234 

4. Methods 235 

(a) Specimen Selection 236 

Three sponge species: Phakellia ventilabrum, N = 26 (order Bubarida); Geodia barretti, N = 21 and 237 

Geodia hentscheli, N = 17 (order Tetractinellida) from various North Atlantic sponge grounds were 238 

selected for sequencing (N = 64 of which 54 were analysed for the study – see Statistical Analysis), all 239 

collected previously for the SponGES project (www.deepseasponges.org), which ran until 2020 240 

(Supplemental Table 1). The sponges were stored in 100% EtOH which was replaced at least once to 241 

maintain a high percentage of EtOH, since the water retained by the sponges can significantly dilute 242 

the preservative. The sponge DNA had been extracted between 6 and 36 months after sampling 243 

using the Qiagen DNeasy Blood and Tissue Kit (Hilden, Germany), optimal for sponge nsDNA 244 

extraction 39 and were stored at the Natural History Museum at -80°C until being transported to -245 

20°C freezers at Liverpool John Moores University. These samples have now been deposited in the 246 

Natural History Museum collections under voucher numbers found in Supplemental Table 1. 247 

(b) Library Preparation and Sequencing  248 

DNA extracts were diluted with molecular grade water to between 30-50 ng/µl. DNA was amplified 249 

using PCR with the Tele02 primers 14. The forward sequence Tele02-F (59-AAACTCGTGCCAGCCACC-250 

39) and the reverse sequence Tele02-R (39-GGGTATCTAATCCCAGTTTG-59), were used to target a 167 251 

bp fragment of the mitochondrial 12S rRNA gene. PCRs were prepared to a total volume of 20 μl for 252 

each sample and included 10 μl of 2X MyFi Mix (Meridian Bioscience), 1 μl of each forward and 253 

reverse primer, 0.16 μl Bovine Serum Albumin (Thermo Fisher Scientific), 5.84 μl molecular grade 254 

water, and 2 μl of diluted DNA extract. The samples were amplified in triplicate across two libraries 255 

using the following conditions: 95°C for 10 min, followed by 35 cycles of 95°C for 30 s, 60°C for 45 s, 256 

72°C for 30 s, and finishing at 72°C for 5 min followed by a 4°C hold. Negative controls (N = 5) and 257 

positive controls (N = 5), which were molecular grade water and a single fish species not present in 258 

the North Atlantic (iridescent catfish Pangasionodon hypopthalmus) respectively, underwent PCR 259 
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alongside the samples. PCR triplicates were pooled and visualized on a 2% agarose gel (150 ml 1X 260 

TBE buffer with 3 g agarose powder) stained with 1.5 μl SYBRsafe dye. PCR products were 261 

individually purified using a double-size selection in 1:1 and 0.6:1 ratio of Mag-Bind® Total Pure NGS 262 

magnetic beads (Omega Bio-Tek) to PCR product. Products were visualised on an agarose gel again 263 

to assure purity (i.e., target length bands on agarose gels were visible with minimal to no other 264 

bands present). Purified PCR products were quantified using a Qubit dsDNA HS Assay kit (Invitrogen), 265 

and pooled equimolar into their corresponding libraries (i.e., pooled samples each contained unique 266 

8-bp dual barcodes). Pooled libraries were imaged on a Tape Station 4200 (Agilent) to check the 267 

purity of the libraries. The libraries were then purified based on the Tape Station results, double-size 268 

selecting the target fragment using magnetic beads as explained before. A unique adapter sequence 269 

was ligated to each library using the NEXTFLEX® Rapid DNA-Seq Kit for Illumina (PerkinElmer) 270 

following the manufacturer protocol. After adapter ligation, the libraries were again imaged on the 271 

Tape Station and purified with magnetic beads, this time with a 0.8:1 ratio of beads to sample, as per 272 

the NEXTFLEX® Rapid DNA-Seq Kit instructions. The dual-indexed libraries were then quantified by 273 

qPCR using the NEBNext® Library Quant Kit for Illumina (New England Biolabs). The libraries were 274 

pooled at equimolar concentrations having a final molarity of 50 pM with a 10% PhiX spike-in. The 275 

libraries were sequenced at Liverpool John Moores University on an Illumina iSeq100 using iSeq i1 276 

Reagent v2 (300 cycles). 277 

(c) Bioinformatics Pipeline  278 

The sequences were quality controlled through the following series of steps using Python v2 within 279 

the OBITOOLS 1.2.11 40 package. The raw sequences were trimmed to a length of 150 bp using the 280 

command 8obicut9 to remove low-quality bases from the ends which were determined from the 281 

output of the 8fastqc9 command. The trimmed reads were then merged using 8illuminapairedend9, 282 

from which any paired-end alignments with low (<40) quality scores were removed. The remaining 283 

paired-end alignments were demultiplexed using 8ngsfilter9, filtered by length (130 - 190 bp) and 284 

dereplicated using 8obiuniq9. Chimeras were removed de novo using the programme VSEARCH 285 

version 2.4.3 41. The remaining sequences were then clustered using the programme SWARM v2 42 286 

with 8d-value9 = 3. Taxonomy was assigned using the Bayesian LCA-based taxonomic classification 287 

method (BLCA) 43. We first created a database using 'ecoPCR' from OBITOOLS with the Tele02 288 

primers against the EMBL database (release version r143). This database was combined with a 289 

trained BLCA custom database containing fish species, specifically Teleosts and Elasmobranchs, 290 

(custom database file can be found here: https://github.com/eneave/Trapped-DNA-fragments-in-291 

marine-sponges-Neave-et-al-2023). The workflow of BLCA was followed and can be found at: 292 

https://github.com/qunfengdong/BLCA. This resulted in taxonomic assignments where each level 293 

(i.e., family, genus) was associated with a percent probability of correct assignment. Analyses were 294 

carried out with taxonomies that had a ≥ 99% probability of correct assignment (i.e., species 295 

referenced in this study had a ≥99% identity at the species level and 100% identity at all higher levels 296 

of assignment). 297 

(d) Statistical Analysis 298 

All downstream analyses were done using R version 4.1.3 44. The MOTUs were decontaminated by 299 

removing the highest number of reads of a contaminant present in either the PCR positive control or 300 

PCR negative control from all samples (Supplemental Figure 3). Ten samples that had less than 100 301 

reads were removed from the dataset based on a rarefaction curve suggesting species saturation 302 

after 100 reads (Supplemental Figure 1). Using the R package vegan v 2.5.7 45, beta-diversity was 303 

examined through multi-dimensional scaling of a Jaccard dissimilarity matrix of teleosts and 304 

elasmobranchs detected from each sponge, comprising of only MOTUs identified to the species 305 
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level. We tested the homogeneity among the group dispersions of biogeographic regions using the 306 

functions 8betadisper8and 8anova8, then tested for significant differences in beta-diversity between 307 

regions by permutational multivariate analysis of variance (PERMANOVA) using the function 308 

8adonis8. The same tests were repeated for the P. ventilabrum subset of the Northeast Atlantic. 309 

Pairwise comparisons of the biogeographic groups and population groups were performed, and p-310 

values were corrected with the Benjamini-Hochberg method 46. Correlations of fish assemblages 311 

with latitude, sampling depth, and sampling year were tested for using the function 8envfit8. All tests 312 

on beta-diversity were done on Jaccard dissimilarity matrices and underwent 1000 permutations. 313 

The 8accumcomp8 function from the BiodiversityR package v 2.14.2.1 47 was used to create species 314 

accumulation curves. Using the R package indicspecies v 1.7.12 48, an indicator value species analysis 315 

and multilevel pattern analysis was done using the function 8multipatt8 with IndVal.g method on the 316 

same Jaccard dissimilarity matrix of species for sampling depth ranges, biogeographic regions and 317 

MPA status in the Northeast Atlantic with P. ventilabrum samples. Tests underwent 10,000 318 

permutations. All figures were generated using the R packages tidyverse v 1.3.1 and ggplot2 v 3.4.0 319 
49,50. All raw data and code can be found through the links in the data accessibility statement. 320 

 321 

Figure Captions 322 

Figure 1. Maps showing locations of sponge specimen retrieval. Depth is indicated by the colour bar 323 

and sponge species is indicated by the shape of the points. A Panel showing the North Atlantic study 324 

area. B Panel showing the Northeast Atlantic region. C Panel showing the North American Boreal 325 

Atlantic region. D Panel showing the Norwegian-Arctic Seas Atlantic region. Sponge specimens in B, 326 

C and D are jittered for visibility and labelled 1-30 (Northeast Atlantic), 31-49 (North American 327 

Boreal) and 50-54 (Norwegian-Arctic Seas). 328 

Figure 2. Plots conveying alpha and beta diversity from species-level teleost and elasmobranch 329 

detections. A Non-metric Multi-Dimensional Scaling (NMDS) plot of a Jaccard dissimilarity species 330 

matrix, where points are coloured by North Atlantic region and size indicates species richness. Depth 331 

is plotted as a surface, where each line denotes a 20 m interval. B Fish species accumulation curve, 332 

grouped by depth range. C NMDS plot of a Jaccard dissimilarity species matrix of P. ventilabrum 333 

samples from the Northeast Atlantic region. Points are coloured by MPA status and shapes 334 

represent different sponge aggregations. D Fish species accumulation curve of the P. ventilabrum 335 

samples from the Northeast Atlantic region, grouped by MPA status. 336 

Figure 3. Bubble plot showing teleost, elasmobranch and mammal species detected, where the size 337 

of the bubble indicates the proportional read counts of that species represented in a sample. 338 

Samples are listed at the bottom, where the number refers to the labels in Figure 1 and the 339 

abbreviations refer to the sponge species (Gb = Geodia barretti, Gh = Geodia hentscheli, and Pv = 340 

Phakellia ventilabrum). The bubbles are coloured by the depth at which the sponge specimen was 341 

sampled. The panels separate the sponge specimens by the three biogeographic regions and are 342 

coloured accordingly: Green = Northeast Atlantic, Orange = North American Boreal, and Pink = 343 

Norwegian-Arctic Seas (Same colour scheme as Figure 2A). 344 

Figure 4. Violin dot plots of log-transformed read counts, highlighting identified indicator species. A 345 

Violin dot plot of indicator species associated with biogeographic regions. B Violin dot plot of the top 346 

eight indicator species associated with depth. C Violin dot plot of indicator species associated with 347 

MPA status. 348 

 349 
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Data accessibility 350 

The raw data files can be accessed here: https://doi.org/10.5281/zenodo.7740858. The code used to 351 

process the data can be found in the following GitHub repository: 352 

https://github.com/eneave/Trapped-DNA-fragments-in-marine-sponges-Neave-et-al-2023. 353 
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