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Abstract

Sponges pump water to filter feed and for diffusive oxygen uptake. In doing so, trace DNA fragments
from a multitude of organisms living around them are trapped in their tissues. Here we show that
the environmental DNA retrieved from archived marine sponge specimens can reconstruct the fish
communities at the place of sampling and discriminate North Atlantic assemblages according to
biogeographic region (from Western Greenland to Svalbard), depth habitat (80-1600m), and even
the level of protection in place. Given the cost associated with ocean biodiversity surveys, we argue
that targeted and opportunistic sponge samples — as well as the specimens already stored in
museums and other research collections — represent an invaluable trove of biodiversity information
that can significantly extend the reach of ocean monitoring.
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1. Introduction

The worrying and widespread trend of ocean biodiversity loss that typifies the Anthropocene calls
for increasingly powerful and accurate approaches to expose the nuances of this loss, understand its
main drivers, and inform mitigation strategies. One such recent scientific advance has been
‘environmental DNA’ (eDNA) analysis, an approach by which collecting DNA fragments shed by
organisms in their habitat, allows researchers to generate biodiversity data at unprecedented scales
! and granularity 2, redefining the way we observe and understand ocean life.

Biological research collections are critical for eDNA analyses. Apart from expanding DNA taxonomic
reference databases from tissues 3, they also provide untapped genomic insights that have become
more accessible with the advancement of molecular techniques %. Metabarcoding in particular
allows for ecological insights, such as detecting multi-decadal community shifts from eDNA in
ethanol-preserved ichthyoplankton samples °, or tracking micro-evolutionary changes in the gut
microbiome of 100-year-old fish specimens . These are prime applications of the extended
specimen concept ’, that is, a novel, comprehensive approach to biodiversity collections that
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extends beyond the mere physical object to potentially limitless further uses that become possible
owing to new efforts, such as digitization, and new attitudes towards phenotypic description &2,

Filter-feeding marine sponges (phylum: Porifera) were recently found to act as natural eDNA
samplers, able to retain eDNA fragments reflective of their surrounding communities °. Sponges are
ideal extended specimens, in that exploring beyond the host DNA provides an understanding of the
environment from which the sponge was collected. Experimental studies subsequently found that
sponge species differ in their ability to retain eDNA, with some species likely to trap DNA for longer
intervals than what is usually observed in water samples 12, Given the urgent need to measure
trajectories of biodiversity changes, we explored whether this sponge natural sampler approach
could characterise fish assemblages across the North Atlantic, by leveraging sponge specimens
previously collected for other scientific purposes from vulnerable and underexplored deep-sea
habitats.

2. Results

We detected natural sampler DNA (nsDNA) from three sponge species (Geodia barretti, Geodia
hentscheli, and Phakellia ventilabrum) (N = 54, retained from 64 samples sequenced — see Methods)
across varied benthic habitats in the North Atlantic (Figure 1). The specimens were between 3-10
years old, spanning the continental shelf down to the bathyal slope (¥80-1900 m), and cover large
biogeographic regions such as the Northeast Atlantic, North American Boreal, and Norwegian-Arctic
Seas (Figure 1B, 1C, 1D) *3 (Supplemental Table 1). We amplified a fish-specific 12S mitochondrial
rRNA marker (tele02) * from the previously extracted total DNA of the sponge specimens, and
sequenced the targeted amplicons on an Illumina iSeq 100, resulting in 5,269,740 raw reads. After
quality filtering (see Methods), we retained 4,565,067 reads for downstream analyses (Supplemental
Table 2), resulting with a median of 12,992 reads per sample (N = 74) (Supplemental Figure 1),
including controls (N = 10) and samples that were later removed (N = 10) for having low reads
(mostly G. hentscheli).

(a) Vertebrate Biodiversity

The sponges yielded 142 eukaryote MOTUs, resulting in 125 non-human, contaminant free, marine
MOTUs, which could be identified confidently to at least the taxonomic rank of class. Among these
we detected 119 fish MOTUs of which 65 were identified to species level at 299% identity, excluding
contaminants (Supplemental Table 2, 3). The following species were removed from downstream
analysis: our positive control (the tropical freshwater catfish Pangasianodon hypophthalmus), two
species (ie. Amphiprion ocellaris, Pomacanthus imperator) from a different project processed at a
similar time 2, and one Indo-Pacific fish heavily traded as seafood (Nemipterus zysron). The fish
MOTUs, spread over the classes Actinopterygii and Chondrichthyes, comprised 28 orders, 54 families
and 94 genera. A sand sea star (Astropecten irregularis) common in deep sea benthos was also
detected, while sponge DNA was never detected and likely not amplified, due to their phylogenetic
distance from vertebrates. We also removed domestic animals (e.g. Sus scrofa, Bos taurus) and
terrestrial mammals such as caribou (Rangifer tarandus), native to the Northern Hemisphere, whose
putatively leached DNA was found in a G. barretti specimen from the Davis straight, west of
Greenland. After these removals, we detected five ‘bonus’ non-fish vertebrate species, including
three marine mammals (harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin
(Lagenorhynchus acutus), and Bryde’s whale (Balaenoptera brydei) detected in both the west and
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84  east North Atlantic) as well as two seabirds (pelagic cormorant (Phalacrocorax pelagicus) and
85  glaucous gull (Larus hyperboreus)).

86  (b) Biogeography and depth-associated Fish assemblages

87 Fish communities significantly differed between biogeographic regions of the North Atlantic (R?=
88 0.16, p<0.001, Figure 2A, Supplemental Table 4). Beta diversity was examined through Non-metric
89 Multi-Dimensional Scaling (NMDS) of a Jaccard dissimilarity matrix of teleosts and elasmobranchs
90 detected across sponge samples, comprising of only MOTUs identified to the species level (though
91 the same pattern resulted when including genus level detections, Supplemental Figure 2), and by
92 permutational multivariate analysis of variance (PERMANOVA) testing. Sponge samples appeared
93 broadly grouped into the biogeographic regions previously determined from global distribution data
94 of marine taxa 3, emphasizing the effectiveness of sponge nsDNA to capably distinguish between
95 marine realms (Figure 2A). Pairwise comparisons of beta-diversity revealed that all regions

96  significantly differed, with the North American Boreal region showing greater divergence from both
97  the Northeast Atlantic (R>= 0.14, p < 0.001) and the Norwegian-Arctic Seas (R*=0.13, p < 0.001),

98  compared to the divergence observed between the regions located in the eastern North Atlantic (R?
99  =0.06, p=0.025) (Supplemental Table 4).

100 Latitude, depth and sampling year were all significant correlates of fish beta-diversity. Depth had the
101  strongest correlation (R?=0.58, p < 0.001) followed by latitude (R?=0.35, p < 0.001) and year (R?=
102  0.17, p = 0.018) (Supplemental Table 4). We attribute the weaker correlation with sampling year to
103 be a by-product of the different regions being sampled in separate years. Depth was plotted as a
104 smooth surface over the NMDS ordination plane (Figure 2A), particularly highlighting how the

105  composition of the Northeast Atlantic sites correspond with shallower continental shelf depths,
106  while the North American Boreal samples follow the gradient of the slope into bathypelagic depths.
107  Species richness approached saturation among all depth ranges from which sponges were sampled,
108  but more robustly in shallower groups (80-200 m) that had a greater sample size. Fish species

109  richness progressively decreased with depth, except between 1200-1400 m depth, which had a

110  higher richness than the 800-1200 m samples, but also had a greater sample size (Figure 2B).

111  To further test the extent to which sponge nsDNA data could be used to distinguish between more
112  fine-scale fish assemblages, the P. ventilabrum samples from the Northeast Atlantic were analysed
113  asasubset (N = 23) to compare similar habitats and to control for any possible bias introduced by
114  using different sponge species. We observed variance across samples collected in areas with

115  differing levels of marine protection. Species richness appeared to be higher in marine protected
116  area (MPA) sites, and communities detected in MPAs significantly differed from those outside MPAs
117  (R*=0.09, p = 0.026) (Figure 2C, 2D). The same subset of sponges was also tested for significant

118 differences in teleost and elasmobranch beta-diversity between various P. ventilabrum aggregations
119  (Figure 2C); however, none of the pairwise comparisons among aggregations were significant after
120 correcting the p-values for multiple testing (Supplemental Table 5). This was likely due to low

121 replication within each of the several locations (e.g., Sula reef, Shetland Shelf) being compared.

122 (c) Fish detections and indicator species analysis

123  Greenland halibut (Reinhardtius hippoglossoides), beaked redfish (Sebastes mentella), and megrim
124  (Lepidorhombus whiffiagonis) were detected in almost all 54 samples (i.e., 52, 51, and 50 samples,
125 respectively) (Figure 3, Supplemental Table 3). Other frequently detected species included Atlantic
126 mackerel (Scomber scombrus), greater argentine (Argentina silus) and poor cod (Trisopterus
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minutus) (i.e., 48, 46, and 44 samples, respectively), all of which are known to be abundant
organisms in pelagic and demersal habitats of the North Atlantic.

While the 12S marker was designed to pick up teleost fish, six cartilaginous fish (class:
Chondrichthyes) were also detected. Three chimaeras, the closest living relatives to sharks and rays,
were detected, including the rabbit fish (Chimaera monstrosa) which was detected in 17 samples.
Two elasmobranchs were from the family Rajidae: the shagreen ray (Leucoraja fullonica) which is
IUCN red-listed as vulnerable and the blue skate (Dipturus batis) which is critically endangered, were
both detected in the Northeast Atlantic (Figure 3).

Indicator value species analysis conducted across biogeographic regions and depth ranges (Figure
4A, 4B) detected eight species as biogeographic indicators, and 16 species as depth layer indicators,
with seven species identified as indicators for both region and depth (Supplemental Table 5).
Indicator values (A, B, stat) were calculated using presence-absence data to conservatively interpret
detections. “A” is the estimate probability that samples are associated to a region or depth layer if
the indicator species has been detected in the sample (i.e., specificity or predictive value). “B” is the
estimate probability of detecting the indicator species in a region or depth layer (i.e., sensitivity).
“Stat” is the indicator value index which suggests the strength of the indicator species association
and encompasses both “A” and “B” values.

Many species of commercial value had strong significant associations for both region and depth
range. Norway pout (Trisopterus esmarkii) was positively associated with the Northeast Atlantic and
Norwegian-Arctic Seas (stat = 0.857, p < 0.0001) (Figure 4A) and had a strong association with depths
ranging from 80-800 m (stat = 0.903, p < 0.0001), such that there was high specificity (A= 1) or
likelihood that a Norway pout detection occurred in habitats shallower than 800 m depth (Figure 4B,
Supplemental Table 6). Pollock (Pollachius virens) shared the same region and depth associations as
Norway pout, although to a lesser strength. Atlantic cod (Gadus morhua) also showed clear
associations with the eastern Atlantic between 80-800 m (Figure 4A, 4B). Roughhead grenadier
(Macrourus berglax) and blacksmelt (Bathylagus euroyops) had a strong association with the North
American Boreal with grenadier having a higher likelihood of detection (B = 0.738) than blacksmelt
(B = 0.603). Both species were associated to depths between 800 and 1600 m (Figure 4B).

The indicator species analysis was repeated with the P. ventilabrum subset (N = 23) of the Northeast
Atlantic data to identify indicator species of MPA sites. Four species were significant indicators of
MPA sites (Figure 4C). These species included the moray wolf eel (Lycenchelys muraena), Atlantic
eelpout (Lycodes terraenovae), Arctic telescope (Protomyctophum arcticum) and Vahl’s eelpout
(Lycodes vahlii), all of which had high specificity (A = 0.999, 0.999, 1.0, and 1.0, respectively) to
MPAs. The moray wolf eel and the Atlantic eelpout both shared the highest association with MPAs
(stat(s) = 0.756, p < 0.05) (Supplemental Table 6).

3. Discussion

The retrieval of fish sequences from sponge specimens previously collected for other monitoring
purposes provides perhaps the most attractive demonstration to date of the role of sponges as
practical, cost-effective, universal natural DNA samplers for aquatic biodiversity studies. We
confidently detected at least 65 teleost and elasmobranch species that could be used to distinguish
fish assemblages and identify indicator species associated with depth and biogeographic regions
within the North Atlantic.
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Congruent with what we know about sponge nsDNA ex situ 2, some sponge species appeared to
perform better than others. The original experimental design considered 93 sponge specimens;
however, only 64 of them were selected for sequencing because they showed amplification of the
desired target DNA region (i.e., bands on agarose gels). After bioinformatic quality control, DNA
information from 54 individual sponges was retained. Of the 34 G. hentscheli samples attempted,
only 17 were sequenced and nine were kept after rarefaction. Sample loss occurred, although to a
lesser degree, also for G. barretti (i.e. 33 attempted, 21 sequenced, 19 kept). P. ventilabrum resulted
instead in a 100% success rate (N = 26), followed by G. barretti (58%) and G. hentscheli (26%).
Curiously, P. ventilabrum likely has higher pumping rates and lower microbial abundance than the
Geodia species >1°, |t is possible that higher microbial abundance could contribute to increased
rates of eDNA decay within sponges due to decomposition by bacteria ** and less need to derive
energy from the uptake of dissolved organic carbon . Given these observed coincidences,
relationships between sponge physiology and nsDNA efficacy would be an exciting area for further
investigation.

High DNA sampling efficiency in some sponge species (i.e. P. ventilabrum) is an obvious advantage
for biomonitoring, yet the percent success rate of the tetractinellid (Geodia) sponges was
comparable to or even better than other organisms that have been tested as natural DNA samplers.
For example, various leech species have been used to detect prey DNA, with vertebrate detection
rates ranging from 9% to 80% of attempted specimens *&. Similarly, when gut contents of the
European brown shrimp (Crangon crangon), a generalist scavenger, were analysed with DNA
metabarcoding to reconstruct estuarine fish assemblages *°, up to eight stomachs had to be pooled,
per DNA extraction, to constitute a sufficient sample. Extraction pooling could represent an
appropriate methodological solution for favourable and widespread sponge species with moderate
amplification success, such as G. hentscheli (i.e. 26%).

The detected fish communities significantly differed between biogeographic regions of the North
Atlantic (Figure 2A), and depth was identified as the most important variable in shaping beta-
diversity (Supplemental Table 4). Several fish species seemed to be more associated with either the
west or east North Atlantic. Thickback sole (Microchirus virens) was unique to the Northeast Atlantic;
saithe (Pollachius virens) and Norway pout (Trispoterus esmarkii) were present in the east Atlantic
far more than the North American Boreal. Seven species, most of commercial value, were identified
as significant indicators of both region and depth. Fishes known to be deep-sea adapted were indeed
significantly associated with greater depths, for instance, Rakery beaconlamp (Lampanyctus
macdonaldi) from 800-1600 m and small-eyed rabbitfish (Hydrolagus affinis) from 1200-1600 m.
Moreover, the mesopelagic silvery lightfish (Maurolicus muelleri) was significantly associated with all
sampled depth layers, except for 200-500 m, suggesting that the nsDNA signal detected their flexible
migratory behaviour . Interestingly, Atlantic cod (Gadus morhua) was associated with the same
region and depth range as the silvery pout (Gadiculus argenteus), which could be indicative of their
known predator-prey relationship 2.

Fish assemblages under different MPA status were distinguishable within the subset of P.
ventilabrum specimens from the Northeast Atlantic, and greater species richness was observed in
specimens from MPAs (Figure 2C, 2D). Indicator species associated with MPAs were mostly benthic,
such as the moray wolf eel (Lycenchelys muraena), which prey on crustaceans and other
invertebrates that take refuge in sponge grounds 2. Atlantic eelpout (Lycodes terraenovae) and
Vahl’s eelpout (Lycodes vahlii) were also indicators and known to eat sponge remains and
cryptofaunal organisms such as brittle stars 2. Lycodes sp. have also been found to correlate
positively with high sponge biomass 2*. Differences between the sponge aggregations were strong
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(R?=0.52) though when pairwise comparisons were made, only one pair, the Faroe Shetland Sponge
Belt and Rockall Bank, was identified as a potential driver of the difference. While the significant
difference between MPA status was modest (R? = 0.09), with adequate samples sizes and targeted
rather than opportunistic sampling, sponge nsDNA shows promise for more fine-scale biodiversity
surveying.

Environmental DNA analysis is an emerging tool for deep-sea biodiversity 272 and ecological studies

28-30 yet eDNA is less abundant in the deep-sea, such that larger volumes of water are needed to
attain representative samples, and the manual labour required to filter those samples in situ can
become a limitation 3!. Furthermore, remote, deep-sea habitats are expensive to reach in the first
place, so leveraging of natural samplers in this context represents a major boost for large scale
ocean exploration and monitoring. For instance, the specimens in this study had previously been
used to understand sponge phylogenetics and connectivity of deep-sea environments 3233, The deep
sea and high seas are subject to threats such as overfishing **, deep-sea mining **, climate change
and pollution . Sponges are habitat-forming organisms 3’ that provide shelter for cryptic animals,
thereby also attracting larger more mobile predators %, and as such playing a fundamental role in
the structure and functioning of marine ecosystems. Now, the wealth of environmental, biological
and molecular data that can be comprehensively obtained from sponges significantly expands their
broader value in marine ecology and conservation.

4. Methods
(a) Specimen Selection

Three sponge species: Phakellia ventilabrum, N = 26 (order Bubarida); Geodia barretti, N =21 and
Geodia hentscheli, N = 17 (order Tetractinellida) from various North Atlantic sponge grounds were
selected for sequencing (N = 64 of which 54 were analysed for the study — see Statistical Analysis), all
collected previously for the SponGES project (www.deepseasponges.org), which ran until 2020
(Supplemental Table 1). The sponges were stored in 100% EtOH which was replaced at least once to
maintain a high percentage of EtOH, since the water retained by the sponges can significantly dilute
the preservative. The sponge DNA had been extracted between 6 and 36 months after sampling
using the Qiagen DNeasy Blood and Tissue Kit (Hilden, Germany), optimal for sponge nsDNA
extraction ¥ and were stored at the Natural History Museum at -80°C until being transported to -
20°C freezers at Liverpool John Moores University. These samples have now been deposited in the
Natural History Museum collections under voucher numbers found in Supplemental Table 1.

(b) Library Preparation and Sequencing

DNA extracts were diluted with molecular grade water to between 30-50 ng/ul. DNA was amplified
using PCR with the Tele02 primers 4. The forward sequence Tele02-F (5’-AAACTCGTGCCAGCCACC-
3’) and the reverse sequence Tele02-R (3’-GGGTATCTAATCCCAGTTTG-5’), were used to target a 167
bp fragment of the mitochondrial 12S rRNA gene. PCRs were prepared to a total volume of 20 pul for
each sample and included 10 pl of 2X MyFi Mix (Meridian Bioscience), 1 ul of each forward and
reverse primer, 0.16 pl Bovine Serum Albumin (Thermo Fisher Scientific), 5.84 pl molecular grade
water, and 2 pl of diluted DNA extract. The samples were amplified in triplicate across two libraries
using the following conditions: 95°C for 10 min, followed by 35 cycles of 95°C for 30 s, 60°C for 45 s,
72°C for 30's, and finishing at 72°C for 5 min followed by a 4°C hold. Negative controls (N = 5) and
positive controls (N = 5), which were molecular grade water and a single fish species not present in
the North Atlantic (iridescent catfish Pangasionodon hypopthalmus) respectively, underwent PCR
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alongside the samples. PCR triplicates were pooled and visualized on a 2% agarose gel (150 ml 1X
TBE buffer with 3 g agarose powder) stained with 1.5 pl SYBRsafe dye. PCR products were
individually purified using a double-size selection in 1:1 and 0.6:1 ratio of Mag-Bind® Total Pure NGS
magnetic beads (Omega Bio-Tek) to PCR product. Products were visualised on an agarose gel again
to assure purity (i.e., target length bands on agarose gels were visible with minimal to no other
bands present). Purified PCR products were quantified using a Qubit dsDNA HS Assay kit (Invitrogen),
and pooled equimolar into their corresponding libraries (i.e., pooled samples each contained unique
8-bp dual barcodes). Pooled libraries were imaged on a Tape Station 4200 (Agilent) to check the
purity of the libraries. The libraries were then purified based on the Tape Station results, double-size
selecting the target fragment using magnetic beads as explained before. A unique adapter sequence
was ligated to each library using the NEXTFLEX® Rapid DNA-Seq Kit for Illumina (PerkinElmer)
following the manufacturer protocol. After adapter ligation, the libraries were again imaged on the
Tape Station and purified with magnetic beads, this time with a 0.8:1 ratio of beads to sample, as per
the NEXTFLEX® Rapid DNA-Seq Kit instructions. The dual-indexed libraries were then quantified by
gPCR using the NEBNext® Library Quant Kit for lllumina (New England Biolabs). The libraries were
pooled at equimolar concentrations having a final molarity of 50 pM with a 10% PhiX spike-in. The
libraries were sequenced at Liverpool John Moores University on an lllumina iSeq100 using iSeq il
Reagent v2 (300 cycles).

(c) Bioinformatics Pipeline

The sequences were quality controlled through the following series of steps using Python v2 within
the OBITOOLS 1.2.11 *° package. The raw sequences were trimmed to a length of 150 bp using the
command ‘obicut’ to remove low-quality bases from the ends which were determined from the
output of the ‘fastqc’ command. The trimmed reads were then merged using ‘illuminapairedend’,
from which any paired-end alignments with low (<40) quality scores were removed. The remaining
paired-end alignments were demultiplexed using ‘ngsfilter’, filtered by length (130 - 190 bp) and
dereplicated using ‘obiuniq’. Chimeras were removed de novo using the programme VSEARCH
version 2.4.3 %1, The remaining sequences were then clustered using the programme SWARM v2 4
with ‘d-value’ = 3. Taxonomy was assigned using the Bayesian LCA-based taxonomic classification
method (BLCA) *3. We first created a database using 'ecoPCR' from OBITOOLS with the Tele02
primers against the EMBL database (release version r143). This database was combined with a
trained BLCA custom database containing fish species, specifically Teleosts and Elasmobranchs,
(custom database file can be found here: https://github.com/eneave/Trapped-DNA-fragments-in-
marine-sponges-Neave-et-al-2023). The workflow of BLCA was followed and can be found at:
https://github.com/gqunfengdong/BLCA. This resulted in taxonomic assighnments where each level
(i.e., family, genus) was associated with a percent probability of correct assignment. Analyses were
carried out with taxonomies that had a > 99% probability of correct assignment (i.e., species
referenced in this study had a 299% identity at the species level and 100% identity at all higher levels
of assignment).

(d) Statistical Analysis

All downstream analyses were done using R version 4.1.3 **. The MOTUs were decontaminated by
removing the highest number of reads of a contaminant present in either the PCR positive control or
PCR negative control from all samples (Supplemental Figure 3). Ten samples that had less than 100
reads were removed from the dataset based on a rarefaction curve suggesting species saturation
after 100 reads (Supplemental Figure 1). Using the R package vegan v 2.5.7 %, beta-diversity was
examined through multi-dimensional scaling of a Jaccard dissimilarity matrix of teleosts and
elasmobranchs detected from each sponge, comprising of only MOTUs identified to the species

7
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306 level. We tested the homogeneity among the group dispersions of biogeographic regions using the
307 functions ‘betadisper‘and ‘anova’, then tested for significant differences in beta-diversity between
308 regions by permutational multivariate analysis of variance (PERMANQOVA) using the function

309 ‘adonis’. The same tests were repeated for the P. ventilabrum subset of the Northeast Atlantic.

310 Pairwise comparisons of the biogeographic groups and population groups were performed, and p-
311  values were corrected with the Benjamini-Hochberg method “6. Correlations of fish assemblages
312 with latitude, sampling depth, and sampling year were tested for using the function ‘envfit’. All tests
313 on beta-diversity were done on Jaccard dissimilarity matrices and underwent 1000 permutations.
314  The ‘accumcomp’ function from the BiodiversityR package v 2.14.2.1 #’ was used to create species
315 accumulation curves. Using the R package indicspecies v 1.7.12 %, an indicator value species analysis
316  and multilevel pattern analysis was done using the function ‘multipatt’ with IndVal.g method on the
317  same Jaccard dissimilarity matrix of species for sampling depth ranges, biogeographic regions and
318 MPA status in the Northeast Atlantic with P. ventilabrum samples. Tests underwent 10,000

319 permutations. All figures were generated using the R packages tidyverse v 1.3.1 and ggplot2 v 3.4.0
320  *59 All raw data and code can be found through the links in the data accessibility statement.

321
322 Figure Captions

323 Figure 1. Maps showing locations of sponge specimen retrieval. Depth is indicated by the colour bar
324  and sponge species is indicated by the shape of the points. A Panel showing the North Atlantic study
325  area. B Panel showing the Northeast Atlantic region. C Panel showing the North American Boreal
326  Atlantic region. D Panel showing the Norwegian-Arctic Seas Atlantic region. Sponge specimens in B,
327  Cand D are jittered for visibility and labelled 1-30 (Northeast Atlantic), 31-49 (North American

328 Boreal) and 50-54 (Norwegian-Arctic Seas).

329  Figure 2. Plots conveying alpha and beta diversity from species-level teleost and elasmobranch

330  detections. A Non-metric Multi-Dimensional Scaling (NMDS) plot of a Jaccard dissimilarity species
331 matrix, where points are coloured by North Atlantic region and size indicates species richness. Depth
332 is plotted as a surface, where each line denotes a 20 m interval. B Fish species accumulation curve,
333  grouped by depth range. C NMDS plot of a Jaccard dissimilarity species matrix of P. ventilabrum

334  samples from the Northeast Atlantic region. Points are coloured by MPA status and shapes

335 represent different sponge aggregations. D Fish species accumulation curve of the P. ventilabrum
336  samples from the Northeast Atlantic region, grouped by MPA status.

337  Figure 3. Bubble plot showing teleost, elasmobranch and mammal species detected, where the size
338 of the bubble indicates the proportional read counts of that species represented in a sample.

339 Samples are listed at the bottom, where the number refers to the labels in Figure 1 and the

340  abbreviations refer to the sponge species (Gb = Geodia barretti, Gh = Geodia hentscheli, and Pv =
341 Phakellia ventilabrum). The bubbles are coloured by the depth at which the sponge specimen was
342  sampled. The panels separate the sponge specimens by the three biogeographic regions and are
343  coloured accordingly: Green = Northeast Atlantic, Orange = North American Boreal, and Pink =

344 Norwegian-Arctic Seas (Same colour scheme as Figure 2A).

345 Figure 4. Violin dot plots of log-transformed read counts, highlighting identified indicator species. A
346  Violin dot plot of indicator species associated with biogeographic regions. B Violin dot plot of the top
347  eight indicator species associated with depth. C Violin dot plot of indicator species associated with
348 MPA status.
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350 Data accessibility

351  The raw data files can be accessed here: https://doi.org/10.5281/zenodo.7740858. The code used to
352 process the data can be found in the following GitHub repository:
353  https://github.com/eneave/Trapped-DNA-fragments-in-marine-sponges-Neave-et-al-2023.
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Figure 3

Nettastoma melanurum L]

Anguilliformes
Synaphobranchus kaupi - . ° e | ® s e . g
Argentina sifusesess sBoobe sebBeaandoa o DEG [[saassma s s ew see a|llems @
Argentina sphyraena{ = v e seveon e00O000DOOsvuse o s caasan . F - Argenliniformes
Bathylagus euryops < L] “ |@cce soe o |
Arctozenus risso- o e .
Bathysaurus ferox - ° Aulopiformes
Chiorophthalmus agassizi- ¢ Qe ® | -] |
Belone belone - ° ' | o
; Beleniformes
Exocoelus volitans - ® ® | |
Capros aper | e . e o | ' Caproiformes
Trachurus trachurus -+ ess oo . ses | seae @ | ° Carangiformes
Cjupaa hamngus 10 - o ® 0 o e ° o 'Kl Y OQ . . | =]
Sardina pilchardus - ° e Clupeiformes
Spratius sprattus - . & 0o .
Brosme brosme - ° e« oo eges | . « w
Coryphaenoides guentheri = = ® a soe a8 -
Caoryphaenoides mediterraneus *
Coryphaenoides rupesins - L] = ® L] - » o s
Gadiculus argenteus- » = e@oecco Qooecvoncoconooo el o 0
Gadus morhua | e e s0eQo essasscenoosmna as v = @ @O0 Depth (m)
Hatargyreus johnsonii - ° 0
Macrourus berglax - ® . " ssescss@ecos @ :
Merluccius meduccius- sco@ o esocood casbda OOOOG o 6a e s ® o @ oo Gadiformas 200
Micromesislius poulassoy - =e¢ = saee scssecese ©8090 & & ses =2 soa | ae
Molva dypterygia -« e @ o8 pae oo - oo
Malva molva-2 = @ spesocn scssascsOd ece@ essazaas s as ssae 500
Pollachius virens-» @ 5 oo toe ecooOOB@O & LR
Trisopterus esmarkii-s ¢ © o *Qo0eve ooevw uwvlvwwui @ e eees 500
Trisopterus lusocus - L]
Tﬁsopfm:sminums-vv eso0voDooo0e QDEOGOOCOGO eas ollesssesasrs vesce o s oo e
Labrus mixlus 5= I ; Labriformes
= = 1200
Lophius | torius e o « s osce® 0e00B0O0A0 OO0 ve sew ! = Lophiiformes
Lampanyctus macdonaldi- lese o e |
Motoscopelus elongatus - e s s L . v Myctophiformes 1600
Protomyctophum arcticum- @ ® te 0 1l = : e ® |
Polyacanthonotus rissoanus- ° = | e @ | | Notacanthiformes 1800
Cyclopterus fumpus - ] )
Gasterosteus aculealus - . Proportional
Lycenchelys muraena- o = soe " - = P read counts (%)
Lycodes lerraenovae - « 200 - i a sese sew - o " s =19
ve . Perciformes
Lycodes valhii - ° sopm o 1-10%
Muilius surmuletus - L © 10-30%
Rhodichthys regina - e . O 20-50%
Sebasies menlella s sce 0800000000000 R000 0000 o @@ @ @Poscccvns |jlepone O >50%
Amoglossus laterna- v | |
Glyptocephalus cynoglossus-s » © & TR RN R e % =
Lgp;dorhgmbuswhjmagm;s-uon--QaaoOnu@ouugouunnoa@nqoo: ssssnssanso @ -.-u ©0soal
Microchirus varegatus - . LR L3 o | Pleuronectiformes
Reinhardtius hippoglossoides Q@@ » c@@@ocoeccsoocsscccencco 8o o@o@OPc-0@escoss o o0Doso
Scophthalmus maximus - aoa o s -
Soles solea- ae
Aphanopus carbo- 200 I |
Lepidopus caudatus - R s Scombriformes
Scomber scombrus-¢ ¢ c @@ Ineeﬂaa@(}uaao oae ﬂoooa!lollooiluolalenncl [- 3
Centroseyllium fabricii- f . . j Squaliformes
Maurolicts muelleri -« ® ® ssscso® o0 eve o & & wee B e Stomiiformes
Zeus faber- we: | | Zeiformes
Chimaera monstrosa- » e to © ss a0 moes | . ® | | e
i a5
Hydrolagus affinis - ® | T s | il
Dipturus batis . as 0 |
Rajiformes
Leucoraja fulfonica = / :
Balasnoptera brydei- e a °
Lagenorhynchus acutus - @ e Artiodactyla
Phocoena phocosna - ° ® ®
88666688288 EEEEEERRRARECIEREE BBOBE68688666666666 BOELE
‘_Nmthmmowvamwr—mmcrmmwm&a}mmg e S O e O O O S W e a cn—ga’;g
RN CIVOVIINIICIOVL TS TS AL T O



https://doi.org/10.1101/2023.03.29.534740
http://creativecommons.org/licenses/by/4.0/

Figure 4

North American Boreal Norwegian and Arctic Seas
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