

1 Trapped DNA fragments in marine sponge specimens unveil north 2 Atlantic deep-sea fish diversity

3 Erika F. Neave^{1,2}, Wang Cai¹, Maria Belén Arias², Lynsey R. Harper^{1,3}, Ana Riesgo^{2,4}, Stefano Mariani^{1*}

4 1. School of Biological & Environmental Sciences, Liverpool John Moores University, Byrom St,
5 Liverpool L3 3AF, United Kingdom

6 2. Natural History Museum, Cromwell Rd, South Kensington, London SW7 5BD, United Kingdom

7 3. The Freshwater Biological Association, The Hedley Wing, YMCA North Campus, Lakeside, Newby
8 Bridge, Cumbria LA12 8BD, United Kingdom

9 4. Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de
10 Madrid, Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain

11 *Correspondence: s.mariani@ljmu.ac.uk

12

13 Abstract

14 Sponges pump water to filter feed and for diffusive oxygen uptake. In doing so, trace DNA fragments
15 from a multitude of organisms living around them are trapped in their tissues. Here we show that
16 the environmental DNA retrieved from archived marine sponge specimens can reconstruct the fish
17 communities at the place of sampling and discriminate North Atlantic assemblages according to
18 biogeographic region (from Western Greenland to Svalbard), depth habitat (80-1600m), and even
19 the level of protection in place. Given the cost associated with ocean biodiversity surveys, we argue
20 that targeted and opportunistic sponge samples – as well as the specimens already stored in
21 museums and other research collections – represent an invaluable trove of biodiversity information
22 that can significantly extend the reach of ocean monitoring.

23

24 Keywords

25 Environmental DNA, biodiversity, marine monitoring, sponges, metabarcoding, extended specimen

26

27 1. Introduction

28 The worrying and widespread trend of ocean biodiversity loss that typifies the Anthropocene calls
29 for increasingly powerful and accurate approaches to expose the nuances of this loss, understand its
30 main drivers, and inform mitigation strategies. One such recent scientific advance has been
31 ‘environmental DNA’ (eDNA) analysis, an approach by which collecting DNA fragments shed by
32 organisms in their habitat, allows researchers to generate biodiversity data at unprecedented scales
33 ¹ and granularity ², redefining the way we observe and understand ocean life.

34 Biological research collections are critical for eDNA analyses. Apart from expanding DNA taxonomic
35 reference databases from tissues ³, they also provide untapped genomic insights that have become
36 more accessible with the advancement of molecular techniques ⁴. Metabarcoding in particular
37 allows for ecological insights, such as detecting multi-decadal community shifts from eDNA in
38 ethanol-preserved ichthyoplankton samples ⁵, or tracking micro-evolutionary changes in the gut
39 microbiome of 100-year-old fish specimens ⁶. These are prime applications of the extended
40 specimen concept ⁷, that is, a novel, comprehensive approach to biodiversity collections that

41 extends beyond the mere physical object to potentially limitless further uses that become possible
42 owing to new efforts, such as digitization, and new attitudes towards phenotypic description^{8,9}.

43 Filter-feeding marine sponges (phylum: Porifera) were recently found to act as natural eDNA
44 samplers, able to retain eDNA fragments reflective of their surrounding communities¹⁰. Sponges are
45 ideal extended specimens, in that exploring beyond the host DNA provides an understanding of the
46 environment from which the sponge was collected. Experimental studies subsequently found that
47 sponge species differ in their ability to retain eDNA, with some species likely to trap DNA for longer
48 intervals than what is usually observed in water samples^{11,12}. Given the urgent need to measure
49 trajectories of biodiversity changes, we explored whether this sponge natural sampler approach
50 could characterise fish assemblages across the North Atlantic, by leveraging sponge specimens
51 previously collected for other scientific purposes from vulnerable and underexplored deep-sea
52 habitats.

53

54 2. Results

55 We detected natural sampler DNA (nsDNA) from three sponge species (*Geodia barretti*, *Geodia*
56 *hentscheli*, and *Phakellia ventilabrum*) (N = 54, retained from 64 samples sequenced – see Methods)
57 across varied benthic habitats in the North Atlantic (Figure 1). The specimens were between 3-10
58 years old, spanning the continental shelf down to the bathyal slope (~80-1900 m), and cover large
59 biogeographic regions such as the Northeast Atlantic, North American Boreal, and Norwegian-Arctic
60 Seas (Figure 1B, 1C, 1D)¹³ (Supplemental Table 1). We amplified a fish-specific 12S mitochondrial
61 rRNA marker (tele02)¹⁴ from the previously extracted total DNA of the sponge specimens, and
62 sequenced the targeted amplicons on an Illumina iSeq 100, resulting in 5,269,740 raw reads. After
63 quality filtering (see Methods), we retained 4,565,067 reads for downstream analyses (Supplemental
64 Table 2), resulting with a median of 12,992 reads per sample (N = 74) (Supplemental Figure 1),
65 including controls (N = 10) and samples that were later removed (N = 10) for having low reads
66 (mostly *G. hentscheli*).

67 (a) Vertebrate Biodiversity

68 The sponges yielded 142 eukaryote MOTUs, resulting in 125 non-human, contaminant free, marine
69 MOTUs, which could be identified confidently to at least the taxonomic rank of class. Among these
70 we detected 119 fish MOTUs of which 65 were identified to species level at ≥99% identity, excluding
71 contaminants (Supplemental Table 2, 3). The following species were removed from downstream
72 analysis: our positive control (the tropical freshwater catfish *Pangasianodon hypophthalmus*), two
73 species (ie. *Amphiprion ocellaris*, *Pomacanthus imperator*) from a different project processed at a
74 similar time¹², and one Indo-Pacific fish heavily traded as seafood (*Nemipterus zyson*). The fish
75 MOTUs, spread over the classes Actinopterygii and Chondrichthyes, comprised 28 orders, 54 families
76 and 94 genera. A sand sea star (*Astropecten irregularis*) common in deep sea benthos was also
77 detected, while sponge DNA was never detected and likely not amplified, due to their phylogenetic
78 distance from vertebrates. We also removed domestic animals (e.g. *Sus scrofa*, *Bos taurus*) and
79 terrestrial mammals such as caribou (*Rangifer tarandus*), native to the Northern Hemisphere, whose
80 putatively leached DNA was found in a *G. barretti* specimen from the Davis straight, west of
81 Greenland. After these removals, we detected five ‘bonus’ non-fish vertebrate species, including
82 three marine mammals (harbour porpoise (*Phocoena phocoena*), Atlantic white-sided dolphin
83 (*Lagenorhynchus acutus*), and Bryde’s whale (*Balaenoptera brydei*) detected in both the west and

84 east North Atlantic) as well as two seabirds (pelagic cormorant (*Phalacrocorax pelagicus*) and
85 glaucous gull (*Larus hyperboreus*)).

86 (b) Biogeography and depth-associated Fish assemblages

87 Fish communities significantly differed between biogeographic regions of the North Atlantic ($R^2 =$
88 0.16, $p < 0.001$, Figure 2A, Supplemental Table 4). Beta diversity was examined through Non-metric
89 Multi-Dimensional Scaling (NMDS) of a Jaccard dissimilarity matrix of teleosts and elasmobranchs
90 detected across sponge samples, comprising of only MOTUs identified to the species level (though
91 the same pattern resulted when including genus level detections, Supplemental Figure 2), and by
92 permutational multivariate analysis of variance (PERMANOVA) testing. Sponge samples appeared
93 broadly grouped into the biogeographic regions previously determined from global distribution data
94 of marine taxa ¹³, emphasizing the effectiveness of sponge nsDNA to capably distinguish between
95 marine realms (Figure 2A). Pairwise comparisons of beta-diversity revealed that all regions
96 significantly differed, with the North American Boreal region showing greater divergence from both
97 the Northeast Atlantic ($R^2 = 0.14$, $p < 0.001$) and the Norwegian-Arctic Seas ($R^2 = 0.13$, $p < 0.001$),
98 compared to the divergence observed between the regions located in the eastern North Atlantic (R^2
99 = 0.06, $p = 0.025$) (Supplemental Table 4).

100 Latitude, depth and sampling year were all significant correlates of fish beta-diversity. Depth had the
101 strongest correlation ($R^2 = 0.58$, $p < 0.001$) followed by latitude ($R^2 = 0.35$, $p < 0.001$) and year ($R^2 =$
102 0.17, $p = 0.018$) (Supplemental Table 4). We attribute the weaker correlation with sampling year to
103 be a by-product of the different regions being sampled in separate years. Depth was plotted as a
104 smooth surface over the NMDS ordination plane (Figure 2A), particularly highlighting how the
105 composition of the Northeast Atlantic sites correspond with shallower continental shelf depths,
106 while the North American Boreal samples follow the gradient of the slope into bathypelagic depths.
107 Species richness approached saturation among all depth ranges from which sponges were sampled,
108 but more robustly in shallower groups (80-200 m) that had a greater sample size. Fish species
109 richness progressively decreased with depth, except between 1200-1400 m depth, which had a
110 higher richness than the 800-1200 m samples, but also had a greater sample size (Figure 2B).

111 To further test the extent to which sponge nsDNA data could be used to distinguish between more
112 fine-scale fish assemblages, the *P. ventilabrum* samples from the Northeast Atlantic were analysed
113 as a subset ($N = 23$) to compare similar habitats and to control for any possible bias introduced by
114 using different sponge species. We observed variance across samples collected in areas with
115 differing levels of marine protection. Species richness appeared to be higher in marine protected
116 area (MPA) sites, and communities detected in MPAs significantly differed from those outside MPAs
117 ($R^2 = 0.09$, $p = 0.026$) (Figure 2C, 2D). The same subset of sponges was also tested for significant
118 differences in teleost and elasmobranch beta-diversity between various *P. ventilabrum* aggregations
119 (Figure 2C); however, none of the pairwise comparisons among aggregations were significant after
120 correcting the p-values for multiple testing (Supplemental Table 5). This was likely due to low
121 replication within each of the several locations (e.g., Sula reef, Shetland Shelf) being compared.

122 (c) Fish detections and indicator species analysis

123 Greenland halibut (*Reinhardtius hippoglossoides*), beaked redfish (*Sebastes mentella*), and megrim
124 (*Lepidorhombus whiffagonis*) were detected in almost all 54 samples (i.e., 52, 51, and 50 samples,
125 respectively) (Figure 3, Supplemental Table 3). Other frequently detected species included Atlantic
126 mackerel (*Scomber scombrus*), greater argentine (*Argentina silus*) and poor cod (*Trisopterus*

127 *minutus*) (i.e., 48, 46, and 44 samples, respectively), all of which are known to be abundant
128 organisms in pelagic and demersal habitats of the North Atlantic.

129 While the 12S marker was designed to pick up teleost fish, six cartilaginous fish (class:
130 Chondrichthyes) were also detected. Three chimaeras, the closest living relatives to sharks and rays,
131 were detected, including the rabbit fish (*Chimaera monstrosa*) which was detected in 17 samples.
132 Two elasmobranchs were from the family Rajidae: the shagreen ray (*Leucoraja fullonica*) which is
133 IUCN red-listed as vulnerable and the blue skate (*Dipturus batis*) which is critically endangered, were
134 both detected in the Northeast Atlantic (Figure 3).

135 Indicator value species analysis conducted across biogeographic regions and depth ranges (Figure
136 4A, 4B) detected eight species as biogeographic indicators, and 16 species as depth layer indicators,
137 with seven species identified as indicators for both region and depth (Supplemental Table 5).
138 Indicator values (A, B, stat) were calculated using presence-absence data to conservatively interpret
139 detections. “A” is the estimate probability that samples are associated to a region or depth layer if
140 the indicator species has been detected in the sample (i.e., specificity or predictive value). “B” is the
141 estimate probability of detecting the indicator species in a region or depth layer (i.e., sensitivity).
142 “Stat” is the indicator value index which suggests the strength of the indicator species association
143 and encompasses both “A” and “B” values.

144 Many species of commercial value had strong significant associations for both region and depth
145 range. Norway pout (*Trisopterus esmarkii*) was positively associated with the Northeast Atlantic and
146 Norwegian-Arctic Seas (stat = 0.857, $p < 0.0001$) (Figure 4A) and had a strong association with depths
147 ranging from 80-800 m (stat = 0.903, $p < 0.0001$), such that there was high specificity (A = 1) or
148 likelihood that a Norway pout detection occurred in habitats shallower than 800 m depth (Figure 4B,
149 Supplemental Table 6). Pollock (*Pollachius virens*) shared the same region and depth associations as
150 Norway pout, although to a lesser strength. Atlantic cod (*Gadus morhua*) also showed clear
151 associations with the eastern Atlantic between 80-800 m (Figure 4A, 4B). Roughhead grenadier
152 (*Macrourus berglax*) and blacksmelt (*Bathylagus euroyops*) had a strong association with the North
153 American Boreal with grenadier having a higher likelihood of detection (B = 0.738) than blacksmelt
154 (B = 0.603). Both species were associated to depths between 800 and 1600 m (Figure 4B).

155 The indicator species analysis was repeated with the *P. ventilabrum* subset ($N = 23$) of the Northeast
156 Atlantic data to identify indicator species of MPA sites. Four species were significant indicators of
157 MPA sites (Figure 4C). These species included the moray wolf eel (*Lycenchelys muraena*), Atlantic
158 eelpout (*Lycodes terraenovae*), Arctic telescope (*Protomyctophum arcticum*) and Vahl’s eelpout
159 (*Lycodes vahlii*), all of which had high specificity (A = 0.999, 0.999, 1.0, and 1.0, respectively) to
160 MPAs. The moray wolf eel and the Atlantic eelpout both shared the highest association with MPAs
161 (stat(s) = 0.756, $p < 0.05$) (Supplemental Table 6).

162

163 **3. Discussion**

164 The retrieval of fish sequences from sponge specimens previously collected for other monitoring
165 purposes provides perhaps the most attractive demonstration to date of the role of sponges as
166 practical, cost-effective, universal natural DNA samplers for aquatic biodiversity studies. We
167 confidently detected at least 65 teleost and elasmobranch species that could be used to distinguish
168 fish assemblages and identify indicator species associated with depth and biogeographic regions
169 within the North Atlantic.

170 Congruent with what we know about sponge nsDNA *ex situ*¹², some sponge species appeared to
171 perform better than others. The original experimental design considered 93 sponge specimens;
172 however, only 64 of them were selected for sequencing because they showed amplification of the
173 desired target DNA region (i.e., bands on agarose gels). After bioinformatic quality control, DNA
174 information from 54 individual sponges was retained. Of the 34 *G. hentscheli* samples attempted,
175 only 17 were sequenced and nine were kept after rarefaction. Sample loss occurred, although to a
176 lesser degree, also for *G. barretti* (i.e. 33 attempted, 21 sequenced, 19 kept). *P. ventilabrum* resulted
177 instead in a 100% success rate (N = 26), followed by *G. barretti* (58%) and *G. hentscheli* (26%).
178 Curiously, *P. ventilabrum* likely has higher pumping rates and lower microbial abundance than the
179 *Geodia* species^{15,16}. It is possible that higher microbial abundance could contribute to increased
180 rates of eDNA decay within sponges due to decomposition by bacteria¹⁵ and less need to derive
181 energy from the uptake of dissolved organic carbon¹⁷. Given these observed coincidences,
182 relationships between sponge physiology and nsDNA efficacy would be an exciting area for further
183 investigation.

184 High DNA sampling efficiency in some sponge species (i.e. *P. ventilabrum*) is an obvious advantage
185 for biomonitoring, yet the percent success rate of the tetractinellid (*Geodia*) sponges was
186 comparable to or even better than other organisms that have been tested as natural DNA samplers.
187 For example, various leech species have been used to detect prey DNA, with vertebrate detection
188 rates ranging from 9% to 80% of attempted specimens¹⁸. Similarly, when gut contents of the
189 European brown shrimp (*Crangon crangon*), a generalist scavenger, were analysed with DNA
190 metabarcoding to reconstruct estuarine fish assemblages¹⁹, up to eight stomachs had to be pooled,
191 per DNA extraction, to constitute a sufficient sample. Extraction pooling could represent an
192 appropriate methodological solution for favourable and widespread sponge species with moderate
193 amplification success, such as *G. hentscheli* (i.e. 26%).

194 The detected fish communities significantly differed between biogeographic regions of the North
195 Atlantic (Figure 2A), and depth was identified as the most important variable in shaping beta-
196 diversity (Supplemental Table 4). Several fish species seemed to be more associated with either the
197 west or east North Atlantic. Thickback sole (*Microchirus virens*) was unique to the Northeast Atlantic;
198 saithe (*Pollachius virens*) and Norway pout (*Trispoterus esmarkii*) were present in the east Atlantic
199 far more than the North American Boreal. Seven species, most of commercial value, were identified
200 as significant indicators of both region and depth. Fishes known to be deep-sea adapted were indeed
201 significantly associated with greater depths, for instance, Rakery beaconlamp (*Lampanyctus*
202 *macdonaldi*) from 800-1600 m and small-eyed rabbitfish (*Hydrolagus affinis*) from 1200-1600 m.
203 Moreover, the mesopelagic silvery lightfish (*Maurolicus muelleri*) was significantly associated with all
204 sampled depth layers, except for 200-500 m, suggesting that the nsDNA signal detected their flexible
205 migratory behaviour²⁰. Interestingly, Atlantic cod (*Gadus morhua*) was associated with the same
206 region and depth range as the silvery pout (*Gadiculus argenteus*), which could be indicative of their
207 known predator-prey relationship²¹.

208 Fish assemblages under different MPA status were distinguishable within the subset of *P.*
209 *ventilabrum* specimens from the Northeast Atlantic, and greater species richness was observed in
210 specimens from MPAs (Figure 2C, 2D). Indicator species associated with MPAs were mostly benthic,
211 such as the moray wolf eel (*Lycenchelys muraena*), which prey on crustaceans and other
212 invertebrates that take refuge in sponge grounds²². Atlantic eelpout (*Lycodes terraenovae*) and
213 Vahl's eelpout (*Lycodes vahlii*) were also indicators and known to eat sponge remains and
214 cryptozoal organisms such as brittle stars²³. *Lycodes* sp. have also been found to correlate
215 positively with high sponge biomass²⁴. Differences between the sponge aggregations were strong

216 (R² = 0.52) though when pairwise comparisons were made, only one pair, the Faroe Shetland Sponge
217 Belt and Rockall Bank, was identified as a potential driver of the difference. While the significant
218 difference between MPA status was modest (R² = 0.09), with adequate samples sizes and targeted
219 rather than opportunistic sampling, sponge nsDNA shows promise for more fine-scale biodiversity
220 surveying.

221 Environmental DNA analysis is an emerging tool for deep-sea biodiversity ²⁵⁻²⁷ and ecological studies
222 ²⁸⁻³⁰, yet eDNA is less abundant in the deep-sea, such that larger volumes of water are needed to
223 attain representative samples, and the manual labour required to filter those samples *in situ* can
224 become a limitation ³¹. Furthermore, remote, deep-sea habitats are expensive to reach in the first
225 place, so leveraging of natural samplers in this context represents a major boost for large scale
226 ocean exploration and monitoring. For instance, the specimens in this study had previously been
227 used to understand sponge phylogenetics and connectivity of deep-sea environments ^{32,33}. The deep
228 sea and high seas are subject to threats such as overfishing ³⁴, deep-sea mining ³⁵, climate change
229 and pollution ³⁶. Sponges are habitat-forming organisms ³⁷ that provide shelter for cryptic animals,
230 thereby also attracting larger more mobile predators ³⁸, and as such playing a fundamental role in
231 the structure and functioning of marine ecosystems. Now, the wealth of environmental, biological
232 and molecular data that can be comprehensively obtained from sponges significantly expands their
233 broader value in marine ecology and conservation.

234

235 **4. Methods**

236 (a) Specimen Selection

237 Three sponge species: *Phakellia ventilabrum*, N = 26 (order Bubarida); *Geodia barretti*, N = 21 and
238 *Geodia hentscheli*, N = 17 (order Tetractinellida) from various North Atlantic sponge grounds were
239 selected for sequencing (N = 64 of which 54 were analysed for the study – see Statistical Analysis), all
240 collected previously for the SponGES project (www.deepseasponges.org), which ran until 2020
241 (Supplemental Table 1). The sponges were stored in 100% EtOH which was replaced at least once to
242 maintain a high percentage of EtOH, since the water retained by the sponges can significantly dilute
243 the preservative. The sponge DNA had been extracted between 6 and 36 months after sampling
244 using the Qiagen DNeasy Blood and Tissue Kit (Hilden, Germany), optimal for sponge nsDNA
245 extraction ³⁹ and were stored at the Natural History Museum at -80°C until being transported to -
246 20°C freezers at Liverpool John Moores University. These samples have now been deposited in the
247 Natural History Museum collections under voucher numbers found in Supplemental Table 1.

248 (b) Library Preparation and Sequencing

249 DNA extracts were diluted with molecular grade water to between 30-50 ng/µl. DNA was amplified
250 using PCR with the Tele02 primers ¹⁴. The forward sequence Tele02-F (5'-AAACTCGTGCCAGCCACC-
251 3') and the reverse sequence Tele02-R (3'-GGGTATCTAATCCCAGTTG-5'), were used to target a 167
252 bp fragment of the mitochondrial 12S rRNA gene. PCRs were prepared to a total volume of 20 µl for
253 each sample and included 10 µl of 2X MyFi Mix (Meridian Bioscience), 1 µl of each forward and
254 reverse primer, 0.16 µl Bovine Serum Albumin (Thermo Fisher Scientific), 5.84 µl molecular grade
255 water, and 2 µl of diluted DNA extract. The samples were amplified in triplicate across two libraries
256 using the following conditions: 95°C for 10 min, followed by 35 cycles of 95°C for 30 s, 60°C for 45 s,
257 72°C for 30 s, and finishing at 72°C for 5 min followed by a 4°C hold. Negative controls (N = 5) and
258 positive controls (N = 5), which were molecular grade water and a single fish species not present in
259 the North Atlantic (iridescent catfish *Pangasianodon hypophthalmus*) respectively, underwent PCR

260 alongside the samples. PCR triplicates were pooled and visualized on a 2% agarose gel (150 ml 1X
261 TBE buffer with 3 g agarose powder) stained with 1.5 μ l SYBRsafe dye. PCR products were
262 individually purified using a double-size selection in 1:1 and 0.6:1 ratio of Mag-Bind® Total Pure NGS
263 magnetic beads (Omega Bio-Tek) to PCR product. Products were visualised on an agarose gel again
264 to assure purity (i.e., target length bands on agarose gels were visible with minimal to no other
265 bands present). Purified PCR products were quantified using a Qubit dsDNA HS Assay kit (Invitrogen),
266 and pooled equimolar into their corresponding libraries (i.e., pooled samples each contained unique
267 8-bp dual barcodes). Pooled libraries were imaged on a Tape Station 4200 (Agilent) to check the
268 purity of the libraries. The libraries were then purified based on the Tape Station results, double-size
269 selecting the target fragment using magnetic beads as explained before. A unique adapter sequence
270 was ligated to each library using the NEXTFLEX® Rapid DNA-Seq Kit for Illumina (PerkinElmer)
271 following the manufacturer protocol. After adapter ligation, the libraries were again imaged on the
272 Tape Station and purified with magnetic beads, this time with a 0.8:1 ratio of beads to sample, as per
273 the NEXTFLEX® Rapid DNA-Seq Kit instructions. The dual-indexed libraries were then quantified by
274 qPCR using the NEBNext® Library Quant Kit for Illumina (New England Biolabs). The libraries were
275 pooled at equimolar concentrations having a final molarity of 50 pM with a 10% PhiX spike-in. The
276 libraries were sequenced at Liverpool John Moores University on an Illumina iSeq100 using iSeq i1
277 Reagent v2 (300 cycles).

278 (c) Bioinformatics Pipeline

279 The sequences were quality controlled through the following series of steps using Python v2 within
280 the OBITOOLS 1.2.11⁴⁰ package. The raw sequences were trimmed to a length of 150 bp using the
281 command 'obicut' to remove low-quality bases from the ends which were determined from the
282 output of the 'fastqc' command. The trimmed reads were then merged using 'illuminapairedend',
283 from which any paired-end alignments with low (<40) quality scores were removed. The remaining
284 paired-end alignments were demultiplexed using 'ngsfilter', filtered by length (130 - 190 bp) and
285 dereplicated using 'obiuniq'. Chimeras were removed de novo using the programme VSEARCH
286 version 2.4.3⁴¹. The remaining sequences were then clustered using the programme SWARM v2⁴²
287 with 'd-value' = 3. Taxonomy was assigned using the Bayesian LCA-based taxonomic classification
288 method (BLCA)⁴³. We first created a database using 'ecoPCR' from OBITOOLS with the Tele02
289 primers against the EMBL database (release version r143). This database was combined with a
290 trained BLCA custom database containing fish species, specifically Teleosts and Elasmobranchs,
291 (custom database file can be found here: <https://github.com/eneave/Trapped-DNA-fragments-in-marine-sponges-Neave-et-al-2023>). The workflow of BLCA was followed and can be found at:
292 <https://github.com/qunfengdong/BLCA>. This resulted in taxonomic assignments where each level
293 (i.e., family, genus) was associated with a percent probability of correct assignment. Analyses were
294 carried out with taxonomies that had a \geq 99% probability of correct assignment (i.e., species
295 referenced in this study had a \geq 99% identity at the species level and 100% identity at all higher levels
296 of assignment).

298 (d) Statistical Analysis

299 All downstream analyses were done using R version 4.1.3⁴⁴. The MOTUs were decontaminated by
300 removing the highest number of reads of a contaminant present in either the PCR positive control or
301 PCR negative control from all samples (Supplemental Figure 3). Ten samples that had less than 100
302 reads were removed from the dataset based on a rarefaction curve suggesting species saturation
303 after 100 reads (Supplemental Figure 1). Using the R package vegan v 2.5.7⁴⁵, beta-diversity was
304 examined through multi-dimensional scaling of a Jaccard dissimilarity matrix of teleosts and
305 elasmobranchs detected from each sponge, comprising of only MOTUs identified to the species

306 level. We tested the homogeneity among the group dispersions of biogeographic regions using the
307 functions 'betadisper' and 'anova', then tested for significant differences in beta-diversity between
308 regions by permutational multivariate analysis of variance (PERMANOVA) using the function
309 'adonis'. The same tests were repeated for the *P. ventilabrum* subset of the Northeast Atlantic.
310 Pairwise comparisons of the biogeographic groups and population groups were performed, and p-
311 values were corrected with the Benjamini-Hochberg method ⁴⁶. Correlations of fish assemblages
312 with latitude, sampling depth, and sampling year were tested for using the function 'envfit'. All tests
313 on beta-diversity were done on Jaccard dissimilarity matrices and underwent 1000 permutations.
314 The 'accumcomp' function from the BiodiversityR package v 2.14.2.1 ⁴⁷ was used to create species
315 accumulation curves. Using the R package indic species v 1.7.12 ⁴⁸, an indicator value species analysis
316 and multilevel pattern analysis was done using the function 'multipatt' with IndVal.g method on the
317 same Jaccard dissimilarity matrix of species for sampling depth ranges, biogeographic regions and
318 MPA status in the Northeast Atlantic with *P. ventilabrum* samples. Tests underwent 10,000
319 permutations. All figures were generated using the R packages tidyverse v 1.3.1 and ggplot2 v 3.4.0
320 ^{49,50}. All raw data and code can be found through the links in the data accessibility statement.

321

322 **Figure Captions**

323 **Figure 1.** Maps showing locations of sponge specimen retrieval. Depth is indicated by the colour bar
324 and sponge species is indicated by the shape of the points. **A** Panel showing the North Atlantic study
325 area. **B** Panel showing the Northeast Atlantic region. **C** Panel showing the North American Boreal
326 Atlantic region. **D** Panel showing the Norwegian-Arctic Seas Atlantic region. Sponge specimens in B,
327 C and D are jittered for visibility and labelled 1-30 (Northeast Atlantic), 31-49 (North American
328 Boreal) and 50-54 (Norwegian-Arctic Seas).

329 **Figure 2.** Plots conveying alpha and beta diversity from species-level teleost and elasmobranch
330 detections. **A** Non-metric Multi-Dimensional Scaling (NMDS) plot of a Jaccard dissimilarity species
331 matrix, where points are coloured by North Atlantic region and size indicates species richness. Depth
332 is plotted as a surface, where each line denotes a 20 m interval. **B** Fish species accumulation curve,
333 grouped by depth range. **C** NMDS plot of a Jaccard dissimilarity species matrix of *P. ventilabrum*
334 samples from the Northeast Atlantic region. Points are coloured by MPA status and shapes
335 represent different sponge aggregations. **D** Fish species accumulation curve of the *P. ventilabrum*
336 samples from the Northeast Atlantic region, grouped by MPA status.

337 **Figure 3.** Bubble plot showing teleost, elasmobranch and mammal species detected, where the size
338 of the bubble indicates the proportional read counts of that species represented in a sample.
339 Samples are listed at the bottom, where the number refers to the labels in Figure 1 and the
340 abbreviations refer to the sponge species (Gb = *Geodia barretti*, Gh = *Geodia hentscheli*, and Pv =
341 *Phakellia ventilabrum*). The bubbles are coloured by the depth at which the sponge specimen was
342 sampled. The panels separate the sponge specimens by the three biogeographic regions and are
343 coloured accordingly: Green = Northeast Atlantic, Orange = North American Boreal, and Pink =
344 Norwegian-Arctic Seas (Same colour scheme as Figure 2A).

345 **Figure 4.** Violin dot plots of log-transformed read counts, highlighting identified indicator species. A
346 Violin dot plot of indicator species associated with biogeographic regions. B Violin dot plot of the top
347 eight indicator species associated with depth. C Violin dot plot of indicator species associated with
348 MPA status.

349

350 **Data accessibility**

351 The raw data files can be accessed here: <https://doi.org/10.5281/zenodo.7740858>. The code used to
352 process the data can be found in the following GitHub repository:
353 <https://github.com/eneave/Trapped-DNA-fragments-in-marine-sponges-Neave-et-al-2023>.

354

355 **Author's Contribution**

356 Conceptualization, E.F.N., M.B.A., L.R.H., A.R. and S.M.; Investigation, E.F.N., M.B.A. and L.R.H.; Formal
357 Analysis, E.F.N. and W.C.; Visualization, E.F.N.; Writing – Original Draft, E.F.N. and S.M.; Writing –
358 Review & Editing, E.F.N., W.C., M.B.A., L.R.H., A.R. and S.M.; Supervision and Funding Acquisition,
359 A.R. and S.M.

360

361 **Competing Interests**

362 We declare that we have no competing interests.

363

364 **Funding**

365 The study was supported by Grant NE/T007028/1 (*SpongeDNA*) from the UK Natural Environment
366 Research Council to S.M. and A.R. A.R. was also supported by grants RYC2018-024247-I and PID2019-
367 105769GB-I00 from the Spanish Ministry of Science and Innovation, in the framework of both
368 MCIN/AEI/10.13039/50110001103 and “FSE invierte en tu futuro”, and an intramural grant from
369 CSIC (PIE-202030E006).

370

371 **Acknowledgements**

372 We thank Ellen Kenchington, Jim Drewery, Vasiliki Koutsouveli, Hans Tore Rapp, Joana Xavier, Paco
373 Cárdenas, Nathan J. Kennny, Kathrin Busch, and Karin Steffen, for facilitating access to the samples
374 analysed here, in the framework of the SponGES project (grant ID: 679849). We are also indebted to
375 Sergi Taboada, Alex Cranston, Alex Mitchell, Connie Whiting, and Karin Steffen, who performed DNA
376 extractions. We thank Peter Shum for his assistance with the Illumina iSeq100 system.

377

378 **References**

- 379 1. Deiner, K., Bik, H.M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S.,
380 Bista, I., Lodge, D.M., de Vere, N., et al. (2017). Environmental DNA metabarcoding:
381 Transforming how we survey animal and plant communities. *Mol. Ecol.* **26**, 5872–5895.
382 10.1111/mec.14350.
- 383 2. Jeunen, G.-J., Knapp, M., Spencer, H.G., Lamare, M.D., Taylor, H.R., Stat, M., Bunce, M., and
384 Gemmell, N.J. (2019). Environmental DNA (eDNA) metabarcoding reveals strong discrimination
385 among diverse marine habitats connected by water movement. *Mol. Ecol. Resour.* **19**, 426–438.
386 10.1111/1755-0998.12982.

387 3. de Santana, C.D., Parenti, L.R., Dillman, C.B., Coddington, J.A., Bastos, D.A., Baldwin, C.C.,
388 Zuanon, J., Torrente-Vilara, G., Covain, R., Menezes, N.A., et al. (2021). The critical role of natural
389 history museums in advancing eDNA for biodiversity studies: a case study with Amazonian
390 fishes. *Sci. Rep.* **11**, 18159. [10.1038/s41598-021-97128-3](https://doi.org/10.1038/s41598-021-97128-3).

391 4. Raxworthy, C.J., and Smith, B.T. (2021). Mining museums for historical DNA: advances and
392 challenges in museomics. *Trends Ecol. Evol.* **36**, 1049–1060. [10.1016/j.tree.2021.07.009](https://doi.org/10.1016/j.tree.2021.07.009).

393 5. Gold, Z., Kelly, R.P., Shelton, A.O., Thompson, A.R., Goodwin, K.D., Gallego, R., Parsons, K.M.,
394 Thompson, L.R., Kacev, D., and Barber, P.H. (2022). Message in a Bottle: Archived DNA Reveals
395 Marine Heatwave-Associated Shifts in Fish Assemblages (*Ecology*) [10.1101/2022.07.27.501788](https://doi.org/10.1101/2022.07.27.501788).

396 6. Heindler, F.M., Christiansen, H., Frédéric, B., Dettai, A., Lepoint, G., Maes, G.E., Van de Putte,
397 A.P., and Volckaert, F.A.M. (2018). Historical DNA Metabarcoding of the Prey and Microbiome of
398 Trematomid Fishes Using Museum Samples. *Front. Ecol. Evol.* **6**.

399 7. Webster, M.S. (2017). The Extended Specimen: Emerging Frontiers in Collections-Based
400 Ornithological Research (CRC Press).

401 8. Lendemer, J., Thiers, B., Monfils, A.K., Zaspel, J., Ellwood, E.R., Bentley, A., LeVan, K., Bates, J.,
402 Jennings, D., Contreras, D., et al. (2020). The Extended Specimen Network: A Strategy to
403 Enhance US Biodiversity Collections, Promote Research and Education. *BioScience* **70**, 23–30.
404 [10.1093/biosci/biz140](https://doi.org/10.1093/biosci/biz140).

405 9. Teixeira-Costa, L., Heberling, J.M., Wilson, C.A., and Davis, C.C. (2023). Parasitic flowering plant
406 collections embody the extended specimen. *Methods Ecol. Evol.* **14**, 319–331. [10.1111/2041-210X.13866](https://doi.org/10.1111/2041-210X.13866).

408 10. Mariani, S., Baillie, C., Colosimo, G., and Riesgo, A. (2019). Sponges as natural environmental
409 DNA samplers. *Curr. Biol.* **29**, R401–R402. [10.1016/j.cub.2019.04.031](https://doi.org/10.1016/j.cub.2019.04.031).

410 11. Jeunen, G.-J., Cane, J.S., Ferreira, S., Strano, F., von Ammon, U., Cross, H., Day, R., Hesseltine, S.,
411 Ellis, K., Urban, L., et al. Assessing the utility of marine filter feeders for environmental DNA
412 (eDNA) biodiversity monitoring. *Mol. Ecol. Resour.* *n/a*. [10.1111/1755-0998.13754](https://doi.org/10.1111/1755-0998.13754).

413 12. Cai, W., Harper, L.R., Neave, E.F., Shum, P., Craggs, J., Arias, M.B., Riesgo, A., and Mariani, S.
414 Environmental DNA persistence and fish detection in captive sponges. *Mol. Ecol. Resour.* *n/a*.
415 [10.1111/1755-0998.13677](https://doi.org/10.1111/1755-0998.13677).

416 13. Costello, M.J., Tsai, P., Wong, P.S., Cheung, A.K.L., Basher, Z., and Chaudhary, C. (2017). Marine
417 biogeographic realms and species endemism. *Nat. Commun.* **8**, 1057. [10.1038/s41467-017-01121-2](https://doi.org/10.1038/s41467-017-01121-2).

419 14. Taberlet, P., Bonin, A., Zinger, L., and Coissac, E. (2018). Environmental DNA: For Biodiversity
420 Research and Monitoring (Oxford University Press).

421 15. Weisz, J.B., Lindquist, N., and Martens, C.S. (2008). Do associated microbial abundances impact
422 marine demosponge pumping rates and tissue densities? *Oecologia* **155**, 367–376.
423 [10.1007/s00442-007-0910-0](https://doi.org/10.1007/s00442-007-0910-0).

424 16. Kutti, T., Bannister, R.J., and Fosså, J.H. (2013). Community structure and ecological function of
425 deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf.
426 *Cont. Shelf Res.* **69**, 21–30. [10.1016/j.csr.2013.09.011](https://doi.org/10.1016/j.csr.2013.09.011).

427 17. Bart, M.C., Mueller, B., Rombouts, T., van de Ven, C., Tompkins, G.J., Osinga, R., Brussaard, C.P.D., MacDonald, B., Engel, A., Rapp, H.T., et al. (2021). Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. 66, 925–938. 10.1002/lo.11652.

431 18. Lynggaard, C., Oceguera-Figueroa, A., Kvist, S., Gilbert, M.T.P., and Bohmann, K. (2022). The potential of aquatic bloodfeeding and nonbloodfeeding leeches as a tool for iDNA characterisation. Mol. Ecol. Resour. 22, 539–553. 10.1111/1755-0998.13486.

434 19. Siegenthaler, A., Wangensteen, O.S., Soto, A.Z., Benvenuto, C., Corrigan, L., and Mariani, S. (2019). Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220. 10.1111/1755-0998.12956.

437 20. Christiansen, S., Klevjer, T.A., Røstad, A., Aksnes, D.L., and Kaartvedt, S. (2021). Flexible behaviour in a mesopelagic fish (*Maurolicus muelleri*). ICES J. Mar. Sci. 78, 1623–1635. 10.1093/icesjms/fsab075.

440 21. Link, J.S., and Garrison, L.P. (2002). Trophic ecology of Atlantic cod *Gadus morhua* on the northeast US continental shelf. Mar. Ecol. Prog. Ser. 227, 109–123. 10.3354/meps227109.

442 22. Garcia, E.G. (2007). The Northern Shrimp (*Pandalus borealis*) Offshore Fishery in the Northeast Atlantic. In Advances in Marine Biology (Academic Press), pp. 147–266. 10.1016/S0065-2881(06)52002-4.

445 23. Albert, O.T. (1993). Distribution, population structure and diet of silvery pout (*Gadiculus argenteus thori* J. Schmidt), poor cod (*Trisopterus minutus minutus* (L.)), four-bearded rockling (*Rhinonemus cimbricus* (L.)), and Vahl's eelpout (*Lycodes vahlii gracilis* Reinhardt) in the Norwegian Deep. Sarsia 78, 141–154. 10.1080/00364827.1993.10413531.

449 24. Kenchington, E., Power, D., and Koen-Alonso, M. (2013). Associations of demersal fish with sponge grounds on the continental slopes of the northwest Atlantic. Mar. Ecol. Prog. Ser. 477, 217–230. 10.3354/meps10127.

452 25. Sinniger, F., Pawłowski, J., Harii, S., Gooday, A.J., Yamamoto, H., Chevaldonné, P., Cedhagen, T., Carvalho, G., and Creer, S. (2016). Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos. Front. Mar. Sci. 3.

455 26. Thomsen, P.F., Møller, P.R., Sigsgaard, E.E., Knudsen, S.W., Jørgensen, O.A., and Willerslev, E. (2016). Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes. PLOS ONE 11, e0165252. 10.1371/journal.pone.0165252.

458 27. Everett, M.V., and Park, L.K. (2018). Exploring deep-water coral communities using environmental DNA. Deep Sea Res. Part II Top. Stud. Oceanogr. 150, 229–241. 10.1016/j.dsr2.2017.09.008.

461 28. Canals, O., Mendibil, I., Santos, M., Irigoien, X., and Rodríguez-Ezpeleta, N. (2021). Vertical stratification of environmental DNA in the open ocean captures ecological patterns and behavior of deep-sea fishes. Limnol. Oceanogr. Lett. 6, 339–347. 10.1002/lol2.10213.

464 29. Visser, F., Merten, V.J., Bayer, T., Oudejans, M.G., de Jonge, D.S.W., Puebla, O., Reusch, T.B.H., Fuss, J., and Hoving, H.J.T. (2021). Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey. Sci. Adv. 7, eabf5908. 10.1126/sciadv.abf5908.

468 30. Fujiwara, Y., Tsuchida, S., Kawato, M., Masuda, K., Sakaguchi, S.O., Sado, T., Miya, M., and
469 Yoshida, T. (2022). Detection of the Largest Deep-Sea-Endemic Teleost Fish at Depths of Over
470 2,000 m Through a Combination of eDNA Metabarcoding and Baited Camera Observations.
471 *Front. Mar. Sci.* 9, 945758. 10.3389/fmars.2022.945758.

472 31. McClenaghan, B., Fahner, N., Cote, D., Chawarski, J., McCarthy, A., Rajabi, H., Singer, G., and
473 Hajibabaei, M. (2020). Harnessing the power of eDNA metabarcoding for the detection of deep-
474 sea fishes. *PLOS ONE* 15, e0236540. 10.1371/journal.pone.0236540.

475 32. Taboada, S., Ríos, P., Mitchell, A., Cranston, A., Busch, K., Tonzo, V., Cárdenas, P., Sánchez, F.,
476 Leiva, C., and Koutsouveli, V. (2022). Genetic diversity, gene flow and hybridization in fan-
477 shaped sponges (*Phakellia* spp.) in the North-East Atlantic deep sea. *Deep Sea Res. Part*
478 *Oceanogr. Res. Pap.* 181, 103685.

479 33. Taboada, S., Whiting, C., Wang, S., Ríos, P., Davies, A., Mienis, F., Kenchington, E., Cárdenas, P.,
480 Cranston, A., and Koutsouveli, V. (2022). Connectivity of sponge grounds in the deep sea:
481 genetic diversity, gene flow and oceanographic pathways in the fan-shaped sponge *Phakellia*
482 *ventilabrum* in the northeast Atlantic. *Authorea Prepr.*

483 34. Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P., and Danovaro, R.
484 (2014). Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem
485 functioning. *Proc. Natl. Acad. Sci.* 111, 8861–8866. 10.1073/pnas.1405454111.

486 35. Van Dover, C.L., Ardran, J.A., Escobar, E., Gianni, M., Gjerde, K.M., Jaeckel, A., Jones, D.O.B.,
487 Levin, L.A., Niner, H.J., Pendleton, L., et al. (2017). Biodiversity loss from deep-sea mining. *Nat.*
488 *Geosci.* 10, 464–465. 10.1038/ngeo2983.

489 36. Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell'Anno, A., Gjerde,
490 K., Jamieson, A.J., Kark, S., et al. (2020). Ecological variables for developing a global deep-ocean
491 monitoring and conservation strategy. *Nat. Ecol. Evol.* 4, 181–192. 10.1038/s41559-019-1091-z.

492 37. Maldonado, M., Aguilar, R., Bannister, R.J., Bell, J.J., Conway, K.W., Dayton, P.K., Díaz, C., Gutt, J.,
493 Kelly, M., Kenchington, E.L.R., et al. (2015). Sponge Grounds as Key Marine Habitats: A Synthetic
494 Review of Types, Structure, Functional Roles, and Conservation Concerns. In *Marine Animal*
495 *Forests*, S. Rossi, L. Bramanti, A. Gori, and C. Orejas Saco del Valle, eds. (Springer International
496 Publishing), pp. 1–39. 10.1007/978-3-319-17001-5_24-1.

497 38. Danovaro, R., Gambi, C., Dell'Anno, A., Corinaldesi, C., Fraschetti, S., Vanreusel, A., Vincx, M.,
498 and Gooday, A.J. (2008). Exponential Decline of Deep-Sea Ecosystem Functioning Linked to
499 Benthic Biodiversity Loss. *Curr. Biol.* 18, 1–8. 10.1016/j.cub.2007.11.056.

500 39. Harper, L.R., Neave, E.F., Sellers, G.S., Cunningham, A.V., Arias, M.B., Craggs, J., MacDonald, B.,
501 Riesgo, A., and Mariani, S. (2022). Optimised DNA isolation from marine sponges for natural
502 sampler DNA (nsDNA) metabarcoding. 2022.07.11.499619. 10.1101/2022.07.11.499619.

503 40. Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., and Coissac, E. (2016). obitools: a unix-
504 inspired software package for DNA metabarcoding. *Mol. Ecol. Resour.* 16, 176–182.
505 10.1111/1755-0998.12428.

506 41. Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open
507 source tool for metagenomics. *PeerJ* 4, e2584. 10.7717/peerj.2584.

508 42. Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2015). Swarm v2: highly-
509 scalable and high-resolution amplicon clustering. *PeerJ* 3, e1420. 10.7717/peerj.1420.

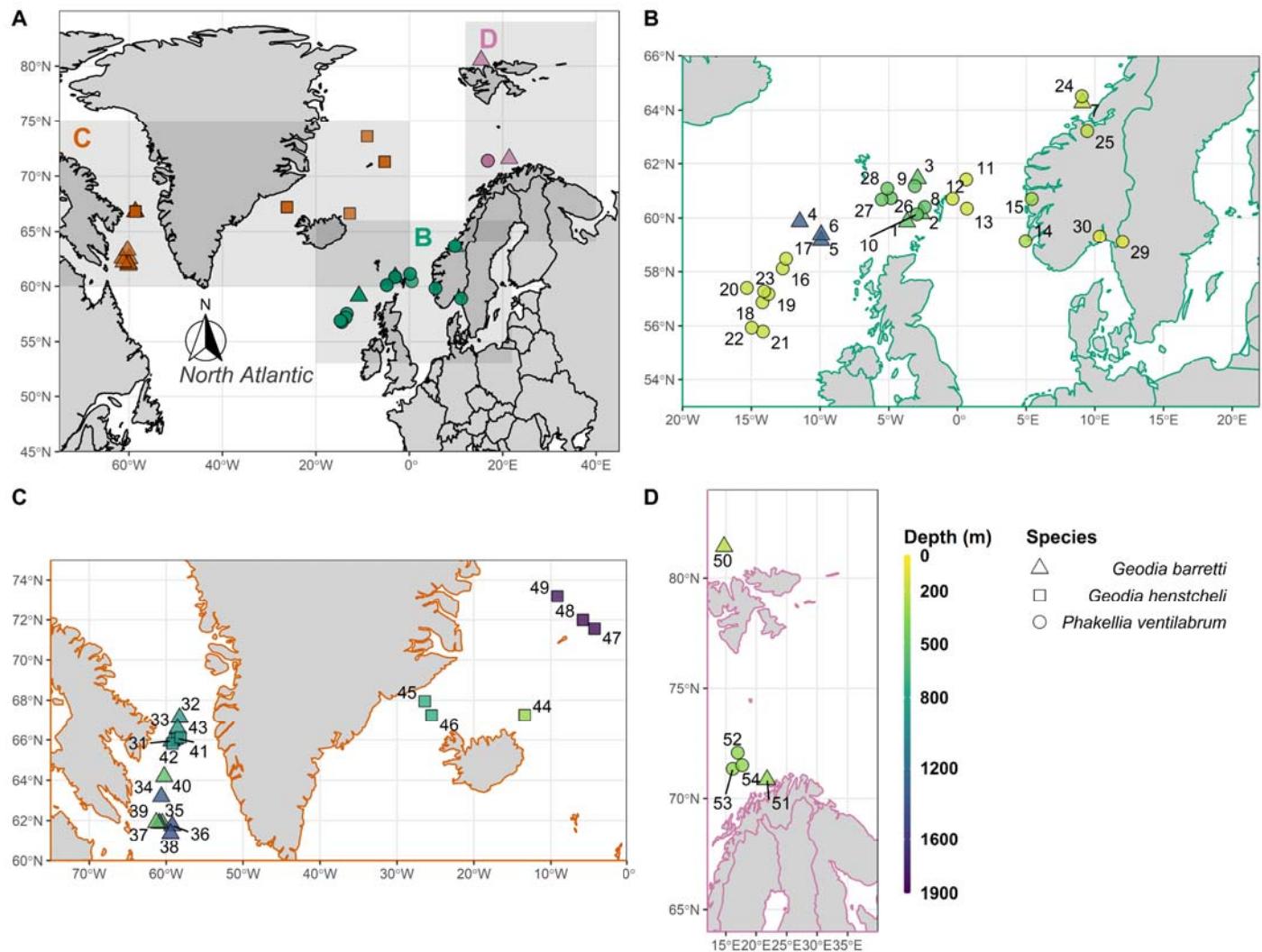
510 43. Gao, X., Lin, H., Revanna, K., and Dong, Q. (2017). A Bayesian taxonomic classification method
511 for 16S rRNA gene sequences with improved species-level accuracy. *BMC Bioinformatics* 18,
512 247. 10.1186/s12859-017-1670-4.

513 44. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for
514 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

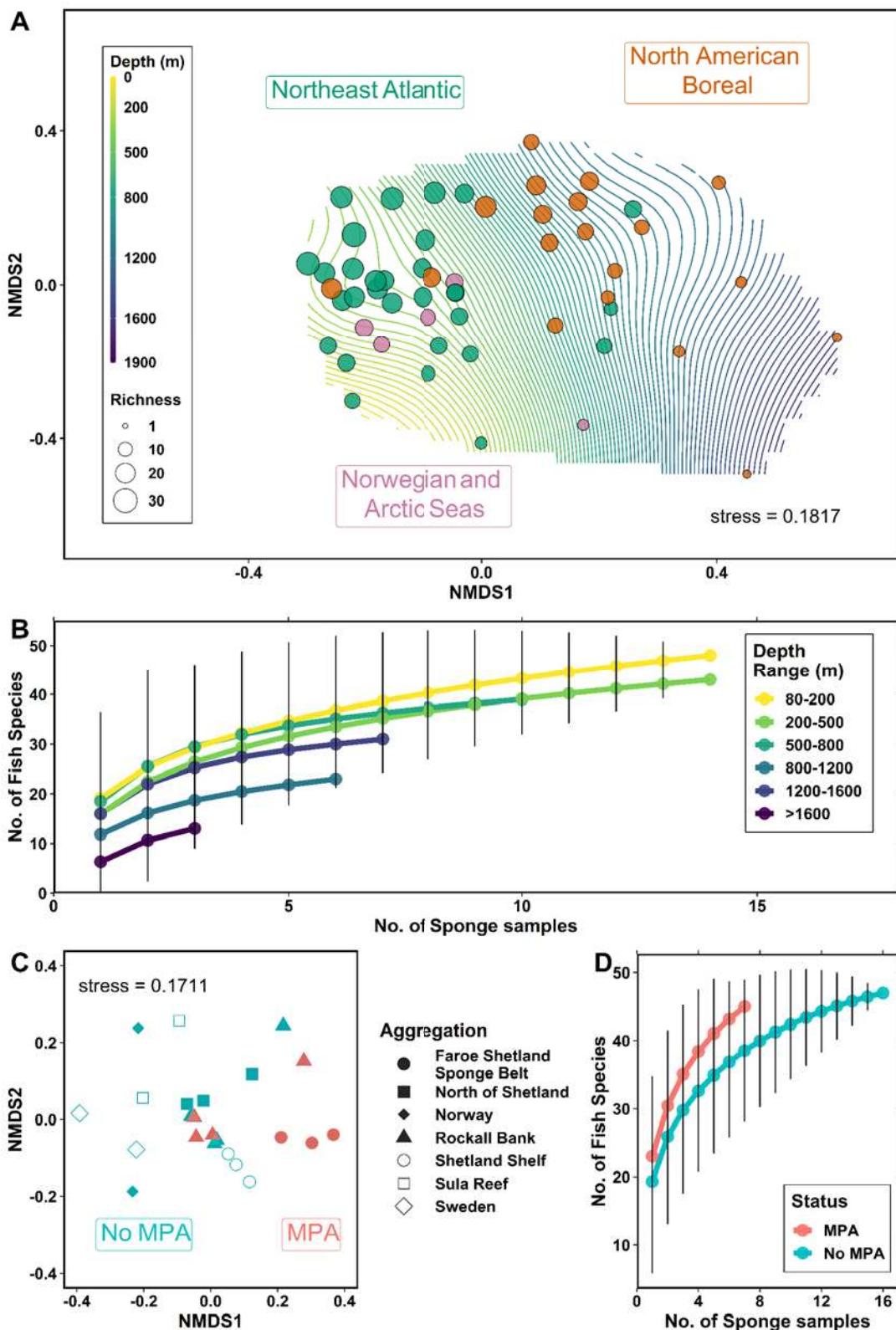
515 45. Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan
516 McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens,
517 Eduard Szoecs and Helene Wagner (2020). vegan: Community Ecology Package. R package version
518 2.5-7. <https://CRAN.R-project.org/package=vegan>

519 46. Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
520 under dependency. *Annals of Statistics*, 29, 1165–1188. doi:10.1214/aos/1013699998.

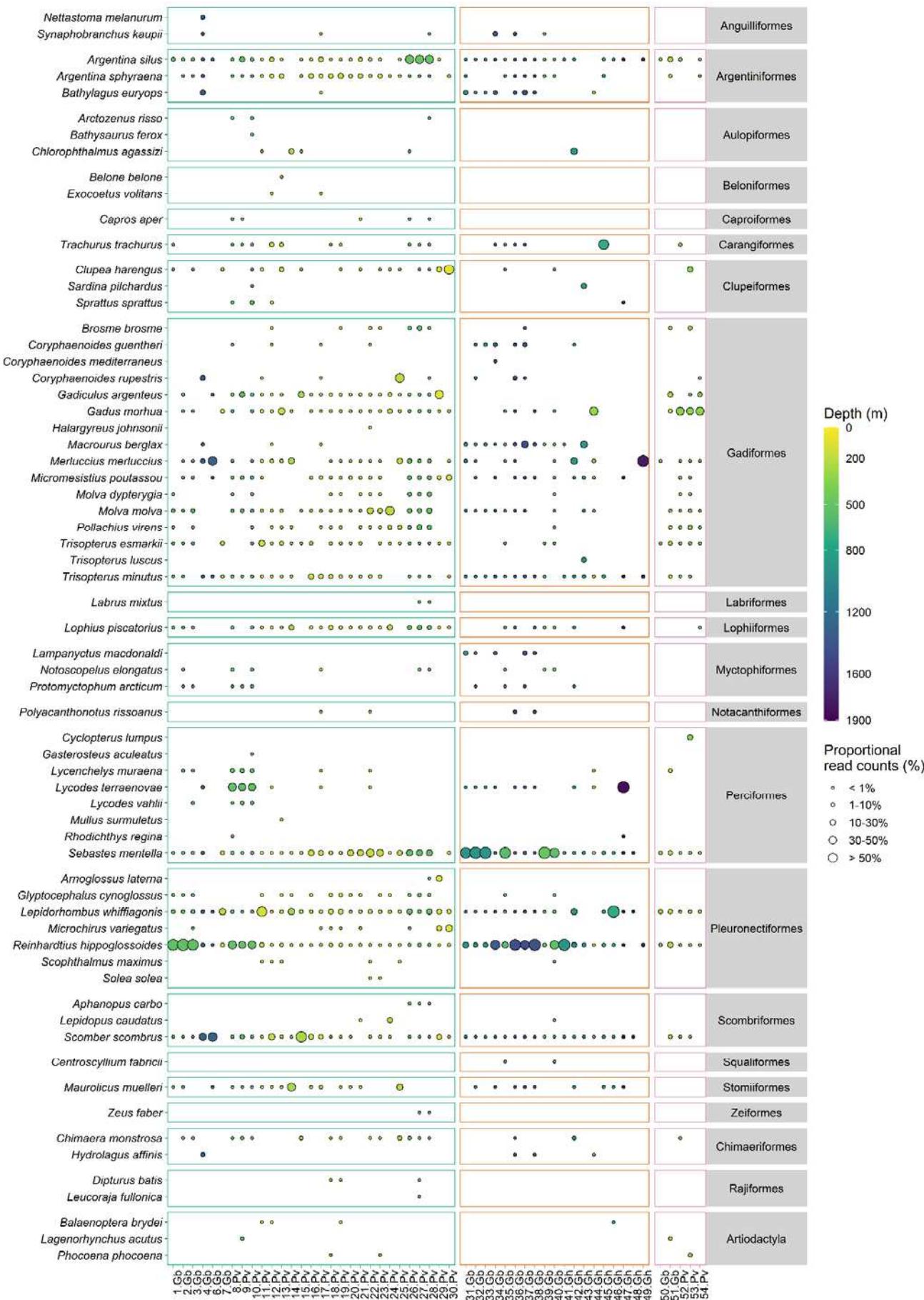
521 47. Kindt, R., and Coe, R. (2005). Tree diversity analysis: a manual and software for common
522 statistical methods for ecological and biodiversity studies (World Agroforestry Centre).


523 48. Cáceres, M.D., and Legendre, P. (2009). Associations between species and groups of sites:
524 indices and statistical inference. *Ecology* 90, 3566–3574. 10.1890/08-1823.1.

525 49. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G.,
526 Hayes, A., Henry, L., Hester, J., et al. (2019). Welcome to the Tidyverse. *J. Open Source Softw.* 4,
527 1686. 10.21105/joss.01686.


528 50. H. Wickham. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2016.

529


Figure 1

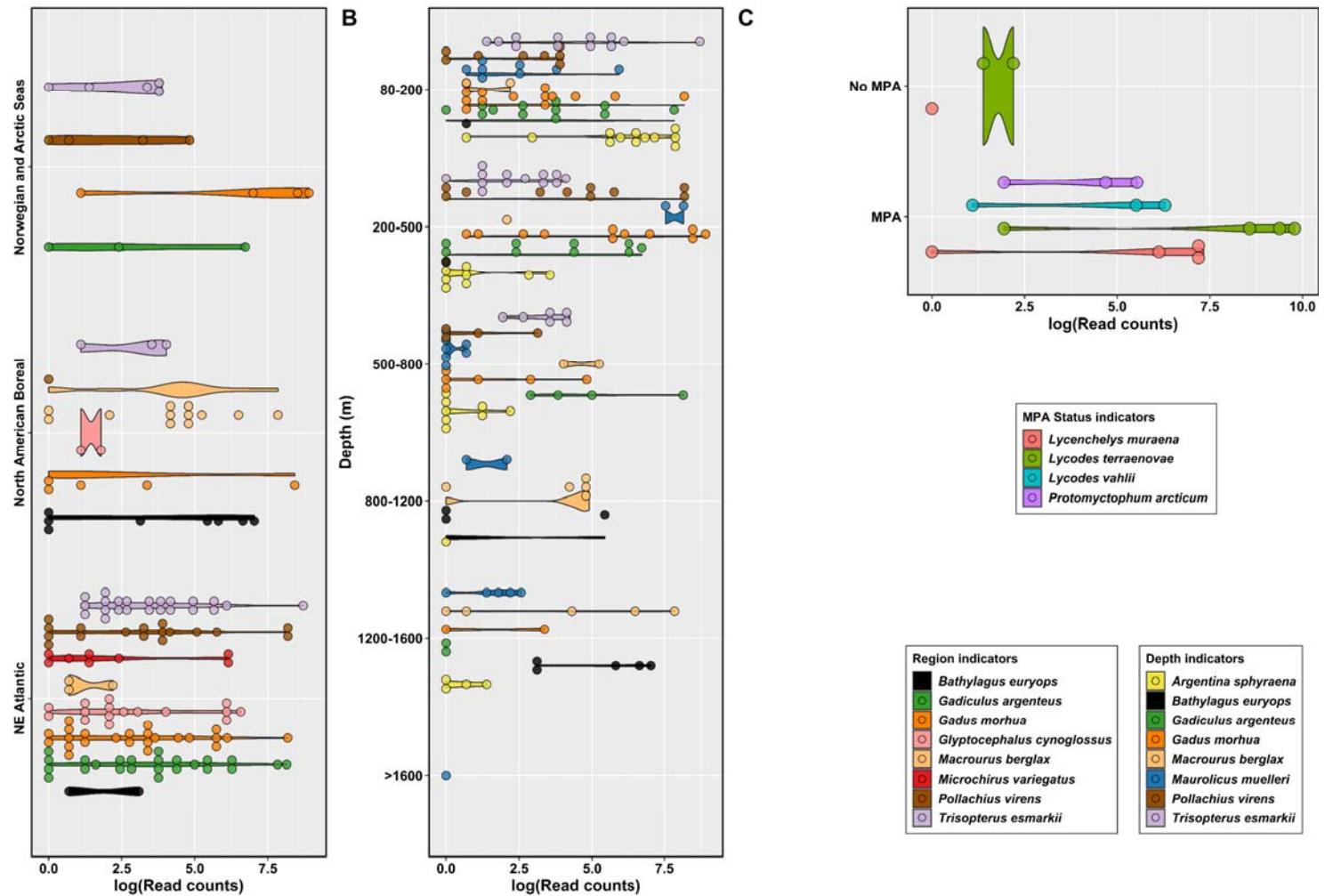

Figure 2

Figure 3

Figure 4

