

1 **Integrative transcriptomic and metabolic analyses of the mammalian hibernating brain**  
2 **identifies a key role for succinate dehydrogenase in ischemic tolerance**

3

4 Joshua D. Bernstock MD, PhD<sup>1,2,3\*</sup>; Cory M. Willis PhD<sup>4</sup>; Monica Emili Garcia-Segura<sup>4,5</sup>;  
5 Edoardo Gaude PhD<sup>6</sup>, Daniela Anni PhD<sup>7</sup>; Yan-ja Lee PhD<sup>3</sup>; Luke W. Thomas PhD<sup>8</sup>, Alva  
6 Casey PhD<sup>9</sup>; Nunzio Vicario PhD<sup>10</sup>; Tommaso Leonardi PhD<sup>11</sup>; Alexandra M. Nicaise<sup>4</sup>;  
7 Florian A. Gessler MD, PhD<sup>12</sup>; Saef Izzy MD<sup>13</sup>; Mario R. Buffelli<sup>7</sup>; Jakob Seidlitz PhD<sup>14,15,16</sup>;  
8 Shriya Srinivasan<sup>17</sup>; Michael P. Murphy PhD<sup>8,9</sup>; Margaret Ashcroft PhD<sup>8</sup>; Marco Cambiaghi  
9 PhD<sup>7</sup>; John M. Hallenbeck MD<sup>3</sup>; and Luca Peruzzotti-Jametti MD, PhD<sup>4,5\*</sup>

10 \*Correspondence

11 **Affiliations**

12 <sup>1</sup>Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School,  
13 Boston, MA, USA.

14 <sup>2</sup>David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of  
15 Technology, Cambridge, MA, USA.

16 <sup>3</sup>Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of  
17 Health (NINDS/NIH), Bethesda, MD, USA.

18 <sup>4</sup>Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of  
19 Cambridge, Cambridge, UK.

20 <sup>5</sup>Department of Metabolism, Digestion and Reproduction, Imperial College London, UK.

21 <sup>6</sup>Pockit Diagnostics, Allia Future Business Centre, Cambridge, UK.

22 <sup>7</sup>Department of Neuroscience, Biomedicine and Movements, University of Verona, Italy.

23 <sup>8</sup>Department of Medicine, University of Cambridge, Cambridge, UK.

24 <sup>9</sup>MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus,  
25 Cambridge, UK.

26 <sup>10</sup>Department of Biomedical and Biotechnological Sciences, Physiology Section, University of  
27 Catania, Italy.

28 <sup>11</sup>Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia,  
29 Milan, Italy.

30 <sup>12</sup>Department of Neurosurgery, University Medicine Rostock, Rostock, Germany.

31 <sup>13</sup>Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston,  
32 MA, USA.

33 <sup>14</sup>Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.

34 <sup>15</sup>Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's  
35 Hospital of Philadelphia, Philadelphia, PA, USA.

36 <sup>16</sup>Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine,  
37 Philadelphia, PA, USA.

38 <sup>17</sup>John A. Paulson School of Engineering and Applied Sciences, Harvard University,  
39 Cambridge, MA, USA.

40

41 Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying  
42 pathobiology of which stems primarily from the depletion of cellular energy stores and  
43 perturbation of available metabolites<sup>1</sup>. Hibernation in thirteen-lined ground squirrels (TLGS),  
44 *Ictidomys tridecemlineatus*, provides a natural model of ischemic tolerance as these mammals  
45 undergo prolonged periods of critically low cerebral blood flow without evidence of central  
46 nervous system (CNS) damage<sup>2</sup>. Studying the complex interplay of genes and metabolites that  
47 unfolds during hibernation may provide novel insights into key regulators of cellular  
48 homeostasis during brain ischemia. Herein, we interrogated the molecular profiles of TLGS  
49 brains at different time points within the hibernation cycle via RNA sequencing coupled with  
50 untargeted metabolomics. We demonstrate that hibernation in TLGS leads to major changes in  
51 the expression of genes involved in oxidative phosphorylation and this is correlated with an  
52 accumulation of the tricarboxylic acid (TCA) cycle intermediates citrate, cis-aconitate, and  $\alpha$ -  
53 ketoglutarate- $\alpha$ KG. Integration of the gene expression and metabolomics datasets led to the  
54 identification of succinate dehydrogenase (SDH) as the critical enzyme during hibernation,  
55 uncovering a break in the TCA cycle at that level. Accordingly, the SDH inhibitor dimethyl  
56 malonate (DMM) was able to rescue the effects of hypoxia on human neuronal cells *in vitro*  
57 and in mice subjected to permanent ischemic stroke *in vivo*. Our findings indicate that studying  
58 the regulation of the controlled metabolic depression that occurs in hibernating mammals may  
59 lead to novel therapeutic approaches capable of increasing ischemic tolerance in the CNS.

60

61 Stroke is one of the largest contributors to morbidity/mortality worldwide and continues to  
62 increase in both incidence and prevalence<sup>3</sup>. From a pathophysiological perspective, ischemic  
63 stroke sets in motion a complicated array of metabolic and neurophysiological perturbations,  
64 which ultimately lead to permanent CNS damage<sup>4</sup>. Because of the inherent complexity of this  
65 pathological process, a sensible approach to treatment must centre on the targeting of regulators  
66 of CNS homeostasis in an effort to improve outcomes after permanent brain ischemia. In this  
67 sense, model organisms that have evolved homeostatic and cytoprotective processes to promote  
68 a natural tolerance to ischemic conditions may prove invaluable.

69 TLGS are one of several types of mammals with the physiological capability of undergoing  
70 hibernation in response to extreme environmental conditions<sup>5</sup>. TLGS hibernation cycle is a  
71 tightly regulated process that can be studied by following the molecular modifications that  
72 occur as they progress through several phases (see **Methods** for detailed overview of the TLGS  
73 hibernation cycle). This process begins with a physiological baseline state defined as active

74 cold room (ACR) and progresses to the entrance of hibernation (ENT) phase. From there, the  
75 TLGS proceed to early hibernation (E\_Hib) and finally the late hibernation/torpor (L\_Hib)  
76 phase. During L\_Hib, cerebral blood flow is severely diminished (i.e., a ~90% reduction from  
77 baseline) and reaches values comparable to those seen in the ischemic core of stroke patients<sup>2,6</sup>.  
78 Nonetheless, no ischemic damage nor functional deficits are described in these animals after  
79 prolonged periods of hypoxia spent in L\_Hib<sup>2,7</sup>. Notably, the neuroprotective phenotype  
80 associated with hibernation not only allows neural tissue to cope with extreme conditions, but  
81 also appears to promote increased resistance to superimposed neural injury<sup>8</sup>.

82 The goal of this study was to comprehensively interrogate the combined gene expression and  
83 metabolic profiles of TLGS brain tissue at different stages of hibernation via RNA sequencing  
84 integrated with ultrahigh performance liquid chromatography-tandem mass spectroscopy  
85 (UPLC-MS/MS)-based metabolomics in an effort to identify new targets capable of promoting  
86 tolerance to brain ischemia (**Fig. 1a**).

87 Sparse partial least squares - discriminant analysis (sPLS-DA) performed on the n=18,492  
88 genes identified via RNA sequencing showed a clear separation between hibernating TLGS  
89 (i.e. ENT, E\_Hib, L\_Hib, and arousal-AR) vs control animals (i.e., ACR and interbout arousal-  
90 IBA) (**Fig. 1b**). Based on gene set enrichment analysis (GSEA), we found that ~17% of the  
91 significantly enriched pathways belonged to metabolic functions, highlighting the involvement  
92 of cellular metabolism in the mammalian hibernation cycle (**Fig. 1c, Table 1**). We also found  
93 that each stage of hibernation was defined by predominant alterations of specific gene  
94 pathways, with mitochondrial complex II (succinate dehydrogenase, SDH) assembly being the  
95 most relevant GSEA pathway in L\_Hib (**Table 1**).

96 We next focused on the subset of genes with known metabolic functions (n=1,517) to identify  
97 regulators of the controlled metabolic depression that occurs during L\_Hib (vs control ACR)  
98 and protects against hypoxic damage. We found *SDHAF1*, *SLC3A2*, *SGSH* and *SLC16A1* to  
99 have the highest upregulation among the differentially expressed genes (DEGs) in L\_Hib vs  
100 ACR; while *TPH1*, *GFPT2*, *TPH2*, *DNMT1*, *ALG2* and *SLCO1C1* were the most  
101 downregulated DEGs in L\_Hib vs ACR (**Fig. 1d, Table 1**). GSEA analysis of these DEGs  
102 showed that *oxidative phosphorylation* was the most significantly upregulated metabolic  
103 pathway in L\_Hib vs ACR, followed by *butanoate*, *heparan sulfate*, *pyruvate*, and *limonene*  
104 and *pinene metabolism* (**Fig. 1e, Table 1**). Whereas processes involved in *amino* and

105 *nucleotide sugar metabolism, N-glycan biosynthesis, and inositol phosphate metabolism* were  
106 significantly downregulated in L\_Hib vs ACR (**Fig. 1e, Table 1**). When we analysed the DEGs  
107 determining each metabolic pathway at the different stages of TLGS hibernation (**Fig. 1f,**  
108 **Extended data Fig. 1**), we found that *SDHAF1* and *SDHA* were among the most upregulated  
109 *oxidative phosphorylation genes*, in particular during L\_Hib (**Table 1**). Interestingly, *SDHAF1*  
110 encodes for one of the chaperone proteins involved in the assembly of the SDH complex and  
111 plays a key role in its protection against oxidative stress<sup>9</sup>. Overall, these data suggest that major  
112 alterations to metabolic genes occur during TLGS hibernation, and that oxidative  
113 phosphorylation, and in particular SDH-related genes, are at the forefront of these adaptive  
114 changes.

115 To further investigate the involvement of metabolism in the response to hibernation in TLGS,  
116 we next analysed the n=462 metabolites identified via UPLC-MS/MS analysis. SPLS-DA  
117 showed a clear separation between the individual stages of TLGS hibernation cycle (**Fig. 2a**).  
118 This was coupled with clustering of metabolites belonging to several metabolic pathways (**Fig.**  
119 **2b, Table 2**). We next performed pathway enrichment analysis of all the metabolites with VIP  
120 score  $\geq 1$  (n=185) followed by heuristic multiple linkage clustering of enriched pathways to  
121 provide a comprehensive view of the metabolic changes that occur during the TLGS  
122 hibernation cycle (**Table 2**). We excluded pathways that (i) did not cluster or (ii) were  
123 annotated into multiple clusters, thus identifying a total of n=12 unique enrichment clusters  
124 (**Fig. 2c**), which included key biological processes (**Extended data Fig. 2, Table 2**). The most  
125 biologically relevant cluster (based on statistical significance and elevated median metabolite  
126 ratio<sup>10</sup>) was *enrichment cluster 6*, which included metabolites involved in *alanine and*  
127 *aspartate metabolism, the TCA cycle, and amino acid metabolism* (**Fig. 2d, Table 2**).

128 We next focused on the single metabolites constituting *enrichment cluster 6* and their putative  
129 role in the controlled metabolic depression that occurs during L\_Hib vs ACR (**Fig. 2e, Table**  
130 **2**). *Enrichment cluster 6* metabolites linked to glycolytic processes (i.e., phosphoenolpyruvate-  
131 PEP, and pyruvate) and glutathione (GSH) were all significantly increased in L\_Hib vs ACR;  
132 while aspartate, asparagine, and acetyl-CoA were significantly decreased in L\_Hib vs ACR  
133 (**Fig. 2f, Table 2**). When focusing on *enrichment cluster 6* metabolites involved in the TCA  
134 cycle, we found a dichotomous response to hibernation with a significant increase in  
135 metabolites upstream of SDH (i.e., citrate and  $\alpha$ -ketoglutarate- $\alpha$ KG) and a decrease of  
136 downstream metabolites (i.e., fumarate and malate) in L\_Hib vs ACR. The SDH related energy

137 metabolite guanosine-5'-diphosphate (GDP) and the dicarboxylic acid methylmalonate (MMA),  
138 which has been reported to inhibit SDH activity<sup>11,12</sup>, were also found to be among the  
139 *enrichment cluster 6* metabolites that were increased during L\_Hib vs ACR (**Fig. 2f**). While  
140 significant alterations of succinate levels were not captured, we instead found that *cis*-aconitate  
141 (another metabolite known to inhibit SDH activity, but not included in *enrichment cluster 6*)<sup>13</sup>  
142 was also increased in L\_Hib vs ACR (**Fig. 2g**). Collectively, these data suggest that hibernation  
143 in TLGS induces a dichotomy of TCA cycle metabolites that may be explained via an  
144 enzymatic block at the level of SDH<sup>14</sup>.

145 To further confirm the enzymatic targets underlying the controlled metabolic depression that  
146 occurs during TLGS hibernation, we integrated the gene expression and metabolomics datasets  
147 by identifying the enzyme commission (EC) numbers associated with each significant gene  
148 and metabolite. This systems biology approach led to the identification of 330 unique  
149 enzymatic functions, out of which only 7 were shared between genes and metabolites (**Fig. 3a**,  
150 **Table 2**). Among these, SDH was identified, which supports our transcriptomic and  
151 metabolomic analyses. Altogether these data show that hibernation in TLGS induces major  
152 changes in the expression of both genes and metabolites that are linked with key enzymatic  
153 functions in the brains of TLGS that increase their tolerance to brain ischemia (**Fig. 3b**).

154 We next investigated whether SDH inhibition could be induced in relevant cellular and animal  
155 models to promote ischemic tolerance, as seen in the hibernating TLGS brain. We first tested  
156 the ability of DMM, a molecule capable of crossing cell membranes and the blood brain  
157 barrier<sup>15</sup>, to inhibit SDH activity in human SH-SY5Y differentiated neurons (**Fig. 4a**). To  
158 mimic ischemic stress *in vitro*, we subjected SH-SY5Y differentiated neurons to hypoxia (1%  
159 O<sub>2</sub>), which was quantified via western blot (i.e., blotting for known hypoxia-induced proteins,  
160 such as HIF-1 $\alpha$ /HIF-2 $\alpha$ , GLUT1, and BNIP3), flow cytometry (for apoptosis/necroptosis), and  
161 gene expression analysis (**Extended data Fig. 3**). Upon hypoxia, SH-SY5Y differentiated  
162 neurons were treated with DMM (10 mM) or PBS (sham) (**Fig. 4b**). After 24 h we observed a  
163 significant shortening of neurites (total length and average length) in SH-SY5Y neurons under  
164 hypoxic conditions, which was prevented by DMM treatment (**Fig. 4c-d**).

165 We next employed a model of photothrombotic stroke in the primary motor cortex of mice to  
166 test the effects of SDH inhibition on the clinicopathological outcomes of permanent brain  
167 ischemia (**Fig. 4e**). This model leads to an occlusion of small cerebral vessels, which causes

168 ischemic cell death and prolonged sensorimotor impairment<sup>16,17</sup>. At 3 h following stroke  
169 induction, mice received daily intraperitoneal (IP) injections of either DMM (160mg/kg) or  
170 saline (sham) for 4 days. We observed a physiological reduction of body weight at 24 h after  
171 stroke induction, which later stabilized and was not statistically significant between groups  
172 (**Fig. 4f**). Instead, we found that DMM treated ischemic mice had a significantly lower  
173 ischemic lesion volume at 4 days after stroke *vs* sham (**Fig. 4g**). This effect was coupled with  
174 a significant recovery of forelimb impairment *vs* sham, as assessed with the cylinder and grid-  
175 walk tests (**Fig. 4h**). In a motor coordination test (i.e. rotarod) and in an open field test, both  
176 estimating bilaterally symmetric dysfunction, we found a trend toward better outcomes in  
177 DMM treated ischemic mice *vs* sham, although this was not significant (**Fig. 4g**). These results  
178 confirmed that, in addition to promoting neuroprotection *in vitro*, SDH inhibition promotes  
179 ischemic tolerance and prevents functional impairment to permanent brain ischemia *in vivo*.

180 Previous approaches centred on the detection of metabolic alterations during TLGS hibernation  
181 have demonstrated a switch from carbohydrate to lipid metabolism, decreased protein synthesis  
182 and protein degradation, and an IBA/AR period-specific increase in gluconeogenesis at the  
183 systemic level<sup>18-21</sup>. Tissue specific (i.e., liver) metabolomic analyses of the TLGS have  
184 demonstrated seasonal and hibernation cycle variations in purine/pyrimidine metabolism,  
185 amino acid, nitrogen, phospholipid catabolism, and lipid metabolism<sup>22,23</sup>. Finally, two recent  
186 studies have also shed light on nitrogen recycling during prolonged fasting in the TLGS.<sup>24,25</sup>  
187 In the CNS, a previous study performed a targeted analysis of 18 metabolites via NMR  
188 spectroscopy and found changes in neurotransmitters (i.e., GABA increase coupled with  
189 glutamate decrease) during torpor<sup>26</sup>. These and other data<sup>27,28</sup> have laid a foundation for further  
190 studies aiming to explore the molecular underpinnings of ischemic tolerance within the  
191 hibernating CNS. Yet, no previous body of work has explored the entire cycle and/or have  
192 sought to validate the function of ascribed targets in pertinent preclinical models of brain  
193 ischemia. Therefore, more comprehensive transcriptomic and metabolomic analyses of the  
194 brain from multiple time points during the hibernation cycle was needed to provide  
195 novel/actionable insights into the extreme neuroprotection, cytoprotection, and maintenance of  
196 homeostasis of which these animals are capable.

197 Our data constitutes the first comprehensive untargeted survey of the gene and metabolic  
198 changes that appear in the hibernating TLGS brain throughout the hibernation cycle. This  
199 unique approach allowed us to draw several novel conclusions based on our analyses of

200 hibernation in the TLGS, which, among hibernating mammals, are one of the most resistant  
201 to ischemia. Furthermore, while reperfusion after ischemic stroke is known to increase the risk  
202 of oxidative stress and damage<sup>29</sup>, hibernating TLGS are able to exit from hibernation and re-  
203 initiate normal metabolic function without incurring CNS damage<sup>30</sup>. This suggests an endowed  
204 natural protection against ischemia-reperfusion injury, which could be further explored in the  
205 future using our unique dataset. While many transcriptomic and metabolic alterations were  
206 differentially regulated during hibernation, we focused on the L\_Hib stage of hibernation as  
207 this most closely models the conditions seen in the ischemic core of patients. We identified a  
208 prominent rearrangement of the TCA cycle, centred at the level of SDH, which appeared to be  
209 associated with the natural tolerance to ischemia of hibernating TLGS.

210 Recent data has shown that succinate accumulates in both the human and mouse brain upon  
211 ischemia, and that inhibiting its oxidation via delivery of SDH inhibitors before stroke  
212 induction<sup>31</sup> or before stroke reperfusion<sup>32</sup> can lead to a dose-dependent decrease in brain injury.  
213 Our data build on this body of evidence to unequivocally show that the delayed (i.e., 3 h after  
214 stroke) therapeutic systemic administration of DMM is able to significantly ameliorate the  
215 clinicopathological outcomes of stroke in the absence of reperfusion. Moreover, we show that  
216 DMM has a direct neuroprotective effect on human neurons, where it protects neurites from  
217 hypoxic damage. Such effects may ultimately prove transformative in clinical stroke care.

218 Altogether our data provide a solid basis for future studies aimed at interrogating hibernation,  
219 and its related compensatory mechanisms, on a deeper cellular level. This may be key to  
220 developing next generation therapeutics for CNS diseases/disorders, including ischemic stroke.  
221 By understanding the mechanisms by which hibernators preserve homeostasis during extreme  
222 conditions, our work may ultimately be leveraged translationally to influence the care of stroke  
223 patients that have suffered permanent ischemic injury.

224 **References**

225 1 Deb, P., Sharma, S. & Hassan, K. M. Pathophysiologic mechanisms of acute ischemic stroke: An  
226 overview with emphasis on therapeutic significance beyond thrombolysis. *Pathophysiology : the*  
227 *official journal of the International Society for Pathophysiology / ISP* **17**, 197-218,  
228 doi:10.1016/j.pathophys.2009.12.001 (2010).

229 2 Frerichs, K. U., Kennedy, C., Sokoloff, L. & Hallenbeck, J. M. Local cerebral blood flow during  
230 hibernation, a model of natural tolerance to "cerebral ischemia". *J Cereb Blood Flow Metab* **14**, 193-  
231 205, doi:10.1038/jcbfm.1994.26 (1994).

232 3 Benjamin, E. J. et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American  
233 Heart Association. *Circulation* **139**, e56-e528, doi:10.1161/CIR.0000000000000659 (2019).

234 4 Lo, E. H., Moskowitz, M. A. & Jacobs, T. P. Exciting, radical, suicidal: how brain cells die after  
235 stroke. *Stroke* **36**, 189-192, doi:10.1161/01.STR.0000153069.96296.fd (2005).

236 5 Wang, L. C. et al. The "hibernation induction trigger": specificity and validity of bioassay using the 13-  
237 lined ground squirrel. *Cryobiology* **25**, 355-362, doi:10.1016/0011-2240(88)90043-0 (1988).

238 6 Ginsberg, M. D. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression,  
239 neuroprotection: the 2002 Thomas Willis Lecture. *Stroke* **34**, 214-223,  
240 doi:10.1161/01.str.0000048846.09677.62 (2003).

241 7 Ma, Y. L. et al. Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in  
242 Arctic ground squirrels. *American journal of physiology. Regulatory, integrative and comparative*  
243 *physiology* **289**, R1297-1306, doi:10.1152/ajpregu.00260.2005 (2005).

244 8 Zhou, F. et al. Hibernation, a model of neuroprotection. *Am J Pathol* **158**, 2145-2151,  
245 doi:10.1016/S0002-9440(10)64686-X (2001).

246 9 Na, U. et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of  
247 succinate dehydrogenase. *Cell Metab* **20**, 253-266, doi:10.1016/j.cmet.2014.05.014 (2014).

248 10 Karp, P. D., Midford, P. E., Caspi, R. & Khodursky, A. Pathway size matters: the influence of pathway  
249 granularity on over-representation (enrichment analysis) statistics. *BMC Genomics* **22**, 191,  
250 doi:10.1186/s12864-021-07502-8 (2021).

251 11 Toyoshima, S., Watanabe, F., Saido, H., Miyatake, K. & Nakano, Y. Methylmalonic acid inhibits  
252 respiration in rat liver mitochondria. *J Nutr* **125**, 2846-2850, doi:10.1093/jn/125.11.2846 (1995).

253 12 Dutra, J. C. et al. Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase  
254 activities by methylmalonate in brain and liver of developing rats. *J Inherit Metab Dis* **16**, 147-153,  
255 doi:10.1007/BF00711328 (1993).

256 13 Cordes, T. & Metallo, C. M. Itaconate Alters Succinate and Coenzyme A Metabolism via Inhibition of  
257 Mitochondrial Complex II and Methylmalonyl-CoA Mutase. *Metabolites* **11**,  
258 doi:10.3390/metabo11020117 (2021).

259 14 Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and  
260 disease. *Nature communications* **11**, 102, doi:10.1038/s41467-019-13668-3 (2020).

261 15 Xu, J. et al. Inhibiting Succinate Dehydrogenase by Dimethyl Malonate Alleviates Brain Damage in a  
262 Rat Model of Cardiac Arrest. *Neuroscience* **393**, 24-32, doi:10.1016/j.neuroscience.2018.09.041  
263 (2018).

264 16 Uzdenksy, A. B. Photothrombotic Stroke as a Model of Ischemic Stroke. *Translational stroke research*  
265 **9**, 437-451, doi:10.1007/s12975-017-0593-8 (2018).

266 17 Cherchi, L., Anni, D., Buffelli, M. & Cambiaghi, M. Early Application of Ipsilateral Cathodal-tDCS in  
267 a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia  
268 Modulation. *Biomolecules* **12**, doi:10.3390/biom12040588 (2022).

269 18 Dark, J. Annual lipid cycles in hibernators: integration of physiology and behavior. *Annu Rev Nutr* **25**,  
270 469-497, doi:10.1146/annurev.nutr.25.050304.092514 (2005).

271 19 Frerichs, K. U. et al. Suppression of protein synthesis in brain during hibernation involves inhibition of  
272 protein initiation and elongation. *Proc Natl Acad Sci U S A* **95**, 14511-14516,  
273 doi:10.1073/pnas.95.24.14511 (1998).

274 20 Galster, W. & Morrison, P. R. Gluconeogenesis in arctic ground squirrels between periods of  
275 hibernation. *Am J Physiol* **228**, 325-330, doi:10.1152/ajplegacy.1975.228.1.325 (1975).

276 21 D'Alessandro, A., Nemkov, T., Bogren, L. K., Martin, S. L. & Hansen, K. C. Comfortably Numb and  
277 Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground  
278 Squirrel. *J Proteome Res* **16**, 958-969, doi:10.1021/acs.jproteome.6b00884 (2017).

279 22 Nelson, C. J., Otis, J. P., Martin, S. L. & Carey, H. V. Analysis of the hibernation cycle using LC-MS-  
280 based metabolomics in ground squirrel liver. *Physiol Genomics* **37**, 43-51,  
281 doi:10.1152/physiolgenomics.90323.2008 (2009).

282 23 Serkova, N. J., Rose, J. C., Epperson, L. E., Carey, H. V. & Martin, S. L. Quantitative analysis of liver  
283 metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.  
284 *Physiol Genomics* **31**, 15-24, doi:10.1152/physiolgenomics.00028.2007 (2007).

285 24 Rice, S. A. et al. Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown  
286 in hibernating arctic ground squirrels. *Nat Metab* **2**, 1459-1471, doi:10.1038/s42255-020-00312-4  
287 (2020).

288 25 Regan, M. D. et al. Nitrogen recycling via gut symbionts increases in ground squirrels over the  
289 hibernation season. *Science* **375**, 460-463, doi:10.1126/science.abb2950 (2022).

290 26 Henry, P. G. et al. Brain energy metabolism and neurotransmission at near-freezing temperatures: in  
291 vivo <sup>1</sup>H MRS study of a hibernating mammal. *J Neurochem* **101**, 1505-1515, doi:10.1111/j.1471-  
292 4159.2007.04514.x (2007).

293 27 Gonzalez-Riano, C. et al. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of  
294 Neuroprotective Agents. *J Proteome Res* **18**, 1175-1190, doi:10.1021/acs.jproteome.8b00816 (2019).

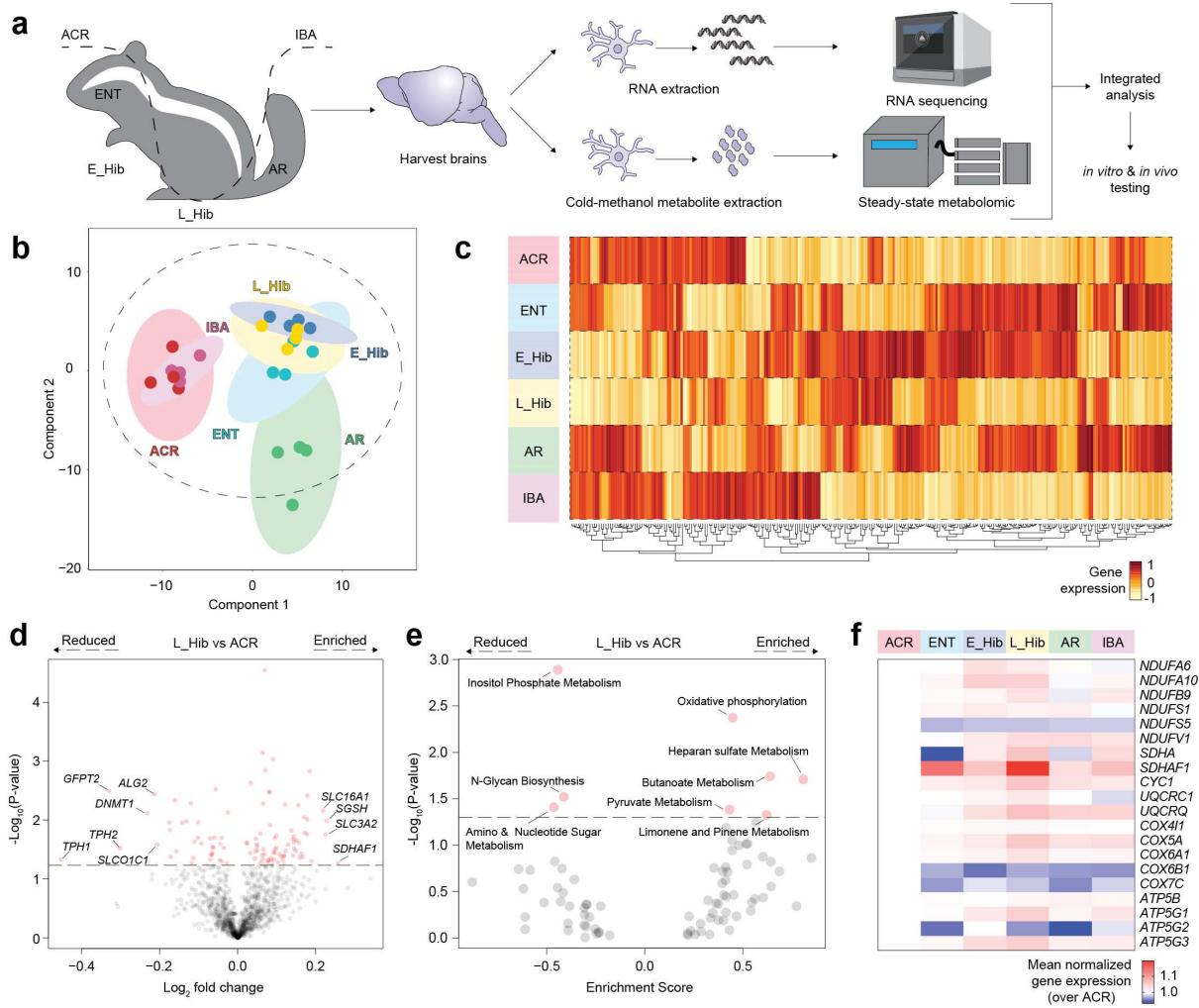
295 28 Luan, Y. et al. Integrated transcriptomic and metabolomic analysis reveals adaptive changes of  
296 hibernating retinas. *J Cell Physiol* **233**, 1434-1445, doi:10.1002/jcp.26030 (2018).

297 29 Hallenbeck, J. M. & Dutka, A. J. Background review and current concepts of reperfusion injury. *Arch  
298 Neurol* **47**, 1245-1254, doi:10.1001/archneur.1990.00530110107027 (1990).

299 30 Drew, K. L. et al. Role of the antioxidant ascorbate in hibernation and warming from hibernation.  
300 *Comp Biochem Physiol C Toxicol Pharmacol* **133**, 483-492, doi:10.1016/s1532-0456(02)00118-7  
301 (2002).

302 31 Zhang, Z. et al. Protective effects of Dimethyl malonate on neuroinflammation and blood-brain barrier  
303 after ischemic stroke. *Neuroreport* **32**, 1161-1169, doi:10.1097/WNR.0000000000001704 (2021).

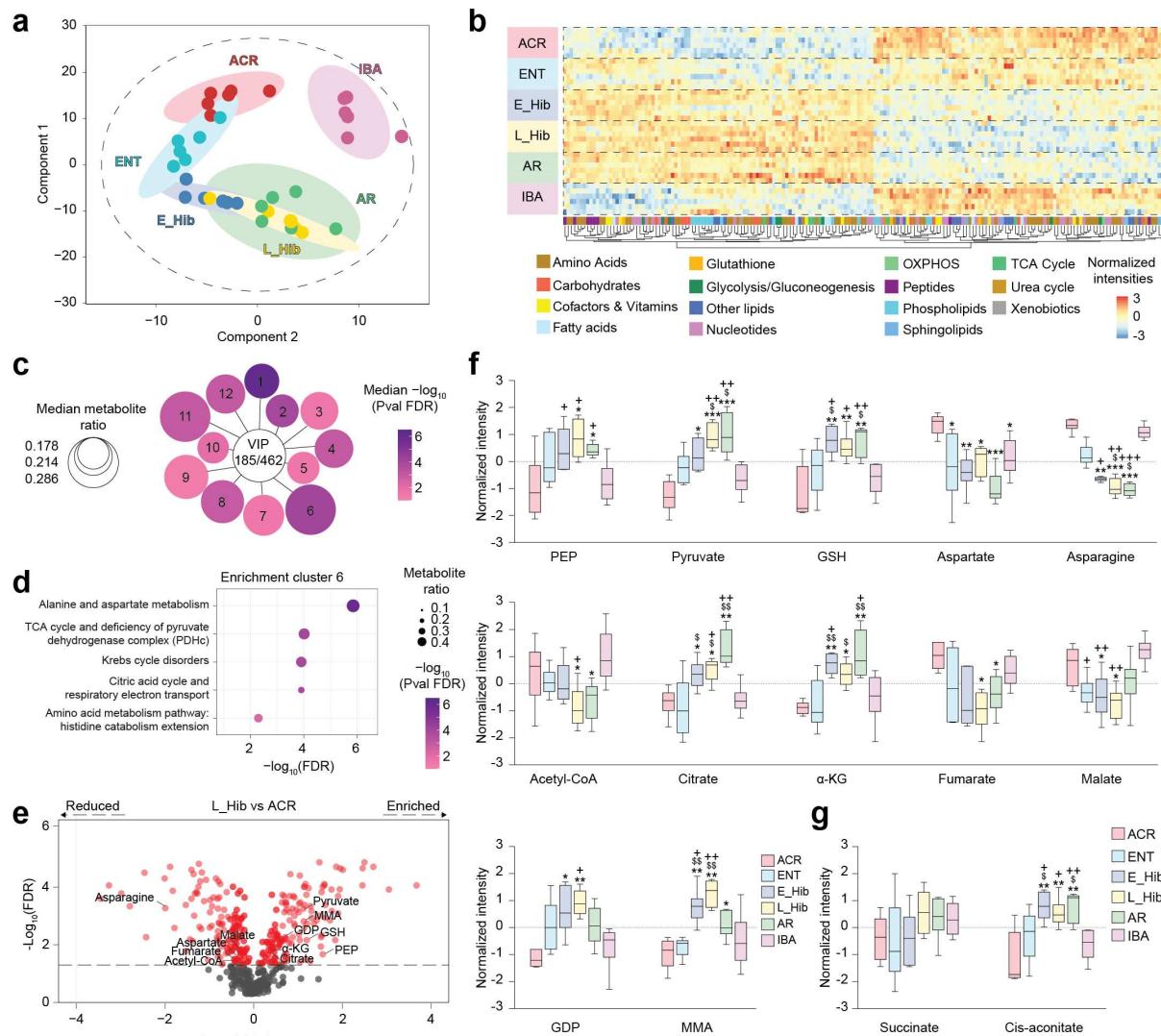
304 32 Mottahedin, A. et al. Targeting succinate metabolism to decrease brain injury upon mechanical  
305 thrombectomy treatment of ischemic stroke. *Redox Biol* **59**, 102600, doi:10.1016/j.redox.2023.102600  
306 (2023).


307 33 Lee, Y. J. et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the  
308 cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. *J Cereb  
309 Blood Flow Metab* **27**, 950-962, doi:10.1038/sj.jcbfm.9600395 (2007).

310 34 Lee, Y. J., Bernstock, J. D., Klimanis, D. & Hallenbeck, J. M. Akt Protein Kinase, miR-200/miR-182  
311 Expression and Epithelial-Mesenchymal Transition Proteins in Hibernating Ground Squirrels. *Front  
312 Mol Neurosci* **11**, 22, doi:10.3389/fnmol.2018.00022 (2018).

313

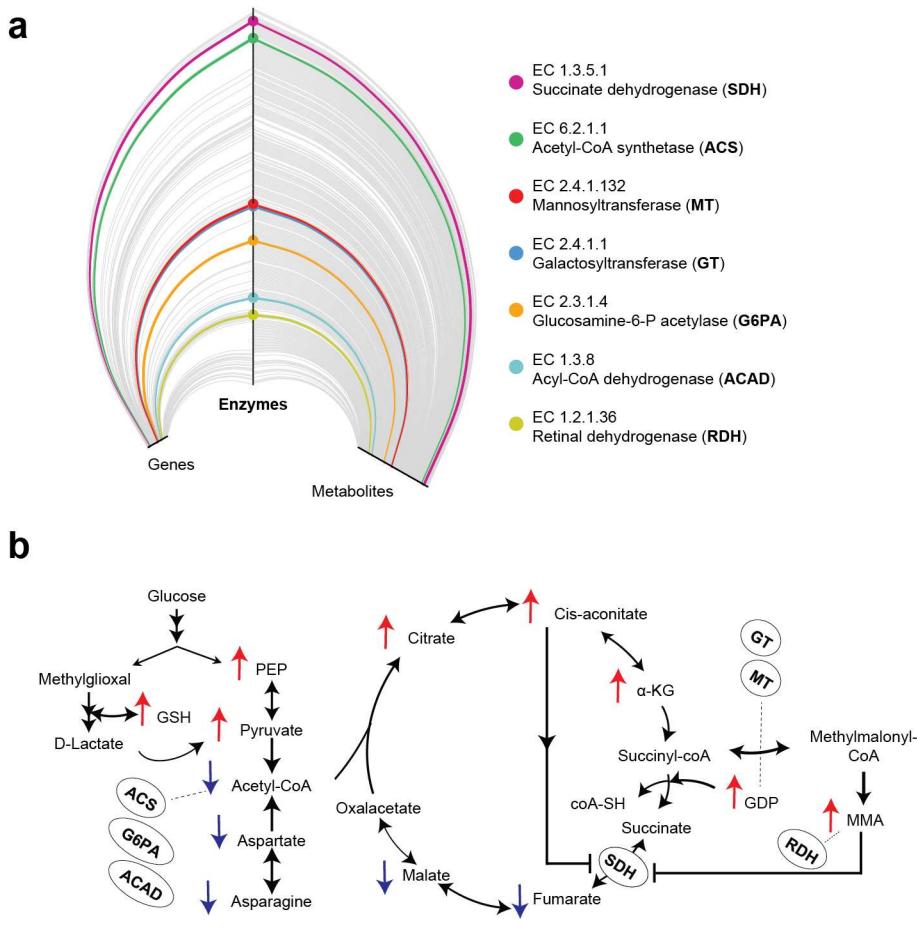
314 **Figures**


315



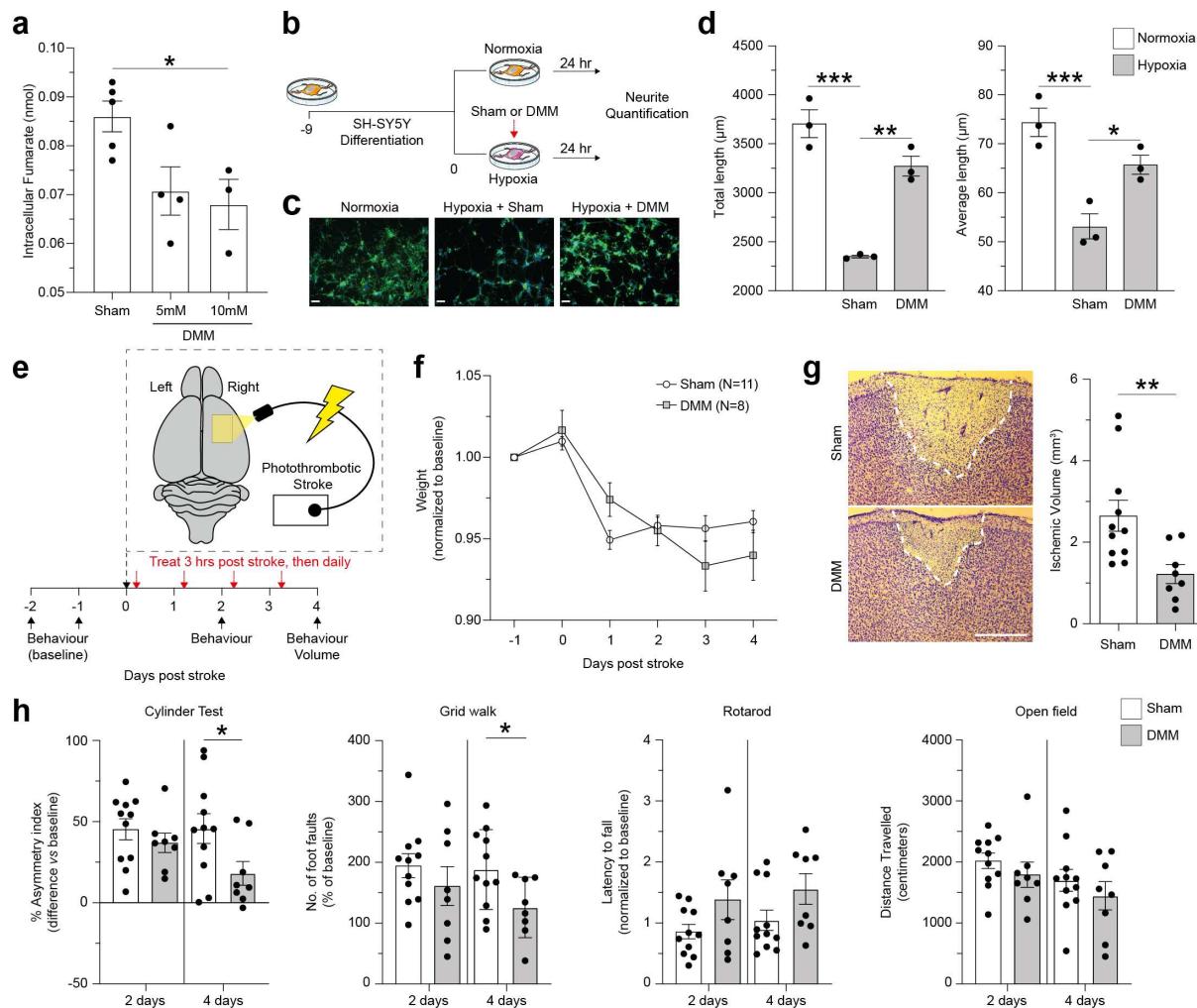
316

317


**Figure 1. Gene expression and pathway enrichment analyses.** **a**, Schematic overview of the workflow for steady-state global RNA sequencing and metabolomics profiling of brains obtained from thirteen-lined ground squirrels (TLGS) at defined stages of hibernation. **b**, Sparse Partial Least Squares - Discriminant Analysis (SPLS-DA) of metabolic genes at defined stages of hibernation. Individual points indicate each biological replicate, n=4 biological replicates per group. **c**, Heat map representation of the pathways (Wiki Pathways) found significantly enriched by GSEA analysis in each stage of hibernation. **d**, Volcano plot showing the pairwise comparison of the metabolic genes between L\_Hib and ACR, n=4 biological replicates per group. **e**, Volcano plot showing the significantly enriched metabolic pathways according to GSEA analysis performed between L\_Hib and ACR. **f**, Heat map of metabolic genes (P-value < 0.1) defining the oxidative phosphorylation pathway at defined stages of hibernation. Abbreviations: ACR (active cold room), ENT (entrance of hibernation), E\_Hib (early hibernation), L\_Hib (late hibernation/torpor), AR (arousal), IBA (interbout arousal).



331  
332


333 **Figure 2. Metabolic profiling of hibernators show key TCA cycle alterations.** **a**, Sparse  
334 Partial Least Squares - Discriminant Analysis (sPLS-DA) of the global metabolomics data  
335 obtained via UPLC-MS/MS of the hibernators' brains at defined stages of hibernation.  
336 Individual points represent each biological replicate, n=6 biological replicates per group. **b**,  
337 Heat map of normalized intensities showing clustering of the 462 metabolites identified in the  
338 hibernators' brains, n=6 biological replicates per group. **c**, Diagram showing the clusters  
339 derived from pathway enrichment analysis of the 185/462 metabolites with VIP score  $\geq 1$ .  
340 Circle size is proportional to the median metabolite ratio in the pathway and colorimetric scale  
341 shows the median  $-\log_{10}$  value of Benjamini-Hochberg (BH) corrected significance, n=6  
342 biological replicates per group. **d**, Individual enrichment analysis of biological pathways  
343 assigned to *enrichment cluster 6*. Circle size is proportional to the metabolite ratio in the  
344 pathway and colorimetric scale shows the  $-\log_{10}$  value of BH adjusted significance. **e**, Volcano  
345 plot showing the pairwise comparison between L\_Hib and ACR. Metabolites belonging to  
346 *enrichment cluster 6* are shown, n=6 biological replicates per group. **f**, Normalized intensities  
347 of the single metabolites belonging to *enrichment cluster 6* at defined stages of hibernation.  
348 Significance was determined via Kruskal-Wallis non-parametric testing followed by BH  
349 correction for multiple testing. \*: p<0.05; \*\*: p<0.01; \*\*\*: p<0.001 vs ACR. \$: p<0.05; \$\$:  
350 p<0.01 vs ENT. +: p<0.05; ++: p<0.01; +++: p<0.001 vs IBA, n=6 biological replicates per  
351 group. **g**, Normalized intensities of succinate and cis-aconitate at defined stages of hibernation,

352 with significance determined via Kruskal-Wallis non-parametric testing followed by BH  
353 correction for multiple testing. \*\*: p<0.01 vs ACR. \$: p<0.05 vs ENT. +: p<0.05; ++: p<0.01  
354 vs IBA, n=6 biological replicates per group. Abbreviations: ACR (active cold room), ENT  
355 (entrance of hibernation), E\_Hib (early hibernation), L\_Hib (late hibernation/torpor), AR  
356 (arousal), IBA (interbout arousal), PEP (phosphoenolpyruvate), GSH (reduced glutathione),  $\alpha$ -  
357 KG ( $\alpha$ -ketoglutarate), GDP (guanosine-5'-diphosphate), MMA (methylmalonate), SDH  
358 (succinate dehydrogenase).



359  
360  
361  
362  
363  
364  
365  
366  
367

**Figure 3. Integrative transcriptomic and metabolic analysis.** **a**, Hive plot showing significant (L\_Hib vs ACR) genes (left axis) and metabolites of *enrichment cluster 6* (right axis) and their associations with enzymatic functions (central axis). Enzymes associated with both significant genes and metabolites are highlighted. **b**, Schematic representation of enzymes (in bold) mapped on the metabolic changes seen in hibernation (directionality is given with red and blue arrows to show *enrichment cluster 6* metabolites that changes in L\_Hib vs ACR). Abbreviations: EC (enzyme commission).



368  
369

370 **Figure 4. SDH inhibition promotes tolerance to hypoxia/ischemia in vitro and in vivo.** **a**,  
371 Treatment with DMM for 1 hr inhibits SDH activity and reduces intracellular fumarate levels  
372 in human SH-SY5Y neurons, n=3-5 technical replicates per group. **b**, Schematic overview of  
373 the workflow for the *in vitro* experiments on hypoxic SH-SY5Y neurons receiving DMM or  
374 sham (PBS) treatment. **c**, Representative pictures of SH-SY5Y neurites under normoxia,  
375 hypoxia + sham treatment, and hypoxia + DMM treatment. Green: neurites stained with FITC-  
376 phalloidin. Blue: DAPI. Scale bar: 46 μm. **d**, Quantification of total and average neurite length  
377 of SH-SY5Y neurons under hypoxia (1% O<sub>2</sub>) after sham/DMM treatment for 24 h. n=3  
378 technical replicates per group. Significance was determined via an ordinary one-way ANOVA  
379 followed by Tukey's multiple comparisons test to correct for multiple comparisons. \*: p<0.05;  
380 \*\*: p<0.01, \*\*\*: p<0.001. **e**, Schematic overview of *in vivo* experiments in the mouse model  
381 of photothrombotic stroke receiving DMM or sham (saline) treatment. **f**, Body weight variation  
382 after photothrombotic stroke in mice, n≥8 biological replicates per group. **g**, Representative  
383 Nissl-stained brain sections showing the lesion in the M1 area and quantification of the  
384 ischemic lesion in sham/DMM treated mice. Red dotted lines shows edge of the ischemic lesion,  
385 n≥8 biological replicates per group. \*\*: p<0.01 (unpaired t-test). **h**, Behavioural tests specific  
386 for the affected forelimb showing a significant amelioration in DMM treated vs sham treated  
387 mice with respect to pre-ischemic condition (baseline). DMM treatment resulted in a  
388 significant reduction in the asymmetry index (cylinder test) and in the number of foot faults  
389 (grid-walk test) with respect to untreated mice, n≥8 biological replicates per group. \*: p<0.05  
390 (unpaired t-test). Abbreviations: DMM, dimethyl malonate.

391 **Methods**

392 **Hibernation in TLGS**

393 TLGS were captured by USDA-licensed trappers (TLS Research, Bartlett, IL, USA).  
394 Experiments were approved by the NINDS Animal Care and Use Committee. Both male and  
395 female ground squirrels were used equally for this study and all animals were between one and  
396 three years of age (as these animals were caught in the wild, only an age estimate was available).  
397 TLGS were housed, fed, and induced to hibernate as described previously<sup>33,34</sup>. Animals in 6  
398 different phases of the hibernation bout (cycle) were differentiated by body temperature (T<sub>b</sub>),  
399 time, and respiratory rate as previously described<sup>33,34</sup>. ACR: active for 4 to 5 days in the cold  
400 chamber with a temperature of 4°C to 5°C (T<sub>b</sub>=34°C to 37°C); ENT: entrance of hibernation  
401 (T<sub>b</sub>=31°C to 12°C); E-Hib: early hibernation (1 day, T<sub>b</sub>=5°C to 8°C); L-Hib: late  
402 hibernation/torpor (>5 days, T<sub>b</sub>=5°C to 8°C); AR: arousal from torpor spontaneously with a  
403 respiratory rate >60/min and a persistent low body temperature (T<sub>b</sub>=9°C to 12°C); IBA:  
404 interbout arousal from a torpor state and returned to a normal metabolic state for at least 7 h  
405 (T<sub>b</sub>=34°C to 37°C). At each time point, brains were removed, snap-frozen in 2-methylbutane  
406 (-50°C), and stored at -80°C until use; n=4 and n=6 animals for each time point were used for  
407 transcriptomics and metabolomics studies, respectively (see **Supplementary Information**).  
408

409 **Photothrombotic stroke experimental design and DMM administration *in vivo***

410 Male C57/BL6 mice (8–10 weeks of age) were used for this study. All animals were allowed  
411 free access to food/water and were maintained in a humidity and temperature-controlled room  
412 with a 12-hour light/dark cycle. Procedures were performed according with the EU Council  
413 Directive 2010/63/EU on the protection of animals used for scientific purposes. Mice were  
414 randomly sub-divided into two experimental groups subjected to stroke and treated after 3hr  
415 and for the following 4 days with daily IP injections of either vehicle or DMM solution (160  
416 mg/Kg body weight). As illustrated in **Fig. 1**, the day of the stroke surgery was indicated as  
417 Day 0, and behavioural tests were performed 1 or 2 days before surgery (respectively -1 and -  
418 2) and at 48 h (day 2) and 96 h post-stroke (day 4, see **Supplementary Information**). On day  
419 4, mice were sacrificed and their brains collected/stored overnight in ice-cold 10% formalin  
420 (v/v) before being washed with PBS and cut into transversal sections of 35 µm thickness using  
421 a vibratome (Leica VT 1200, see **Supplementary Information**).

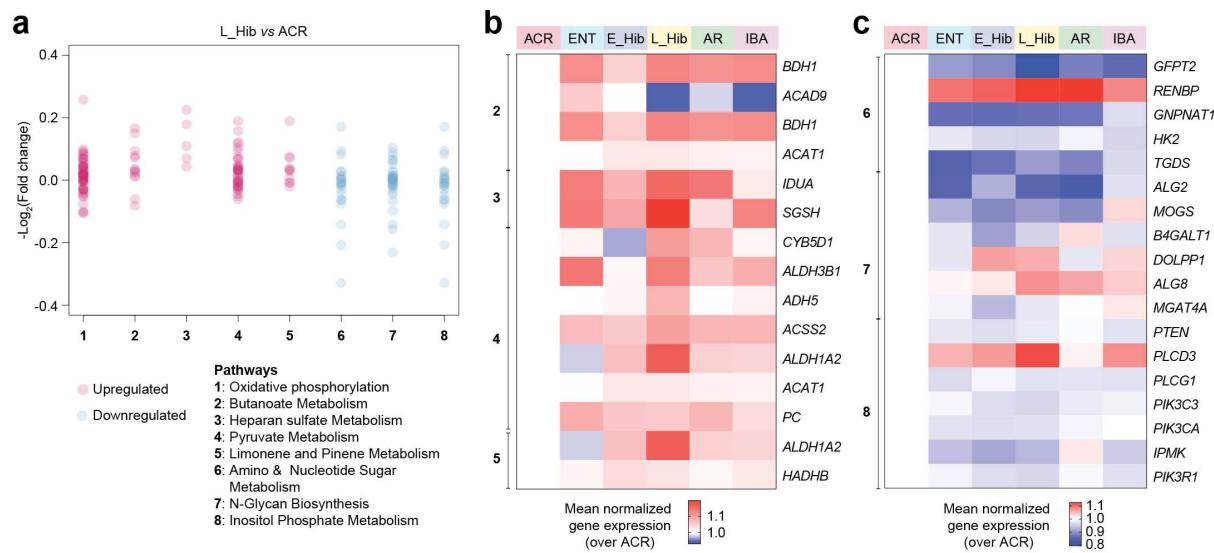
422 **Acknowledgements**

423 This research was supported by a Wellcome Trust Clinical Research Career Development  
424 Fellowship G105713 (LPJ) and the Intramural Research Program of the NINDS/NIH (JDB and  
425 JH). Work in the MPM lab is supported by the Medical Research Council UK (MC\_UU\_00028/4)  
426 and by a Wellcome Trust Investigator award (220257/Z/20/Z).

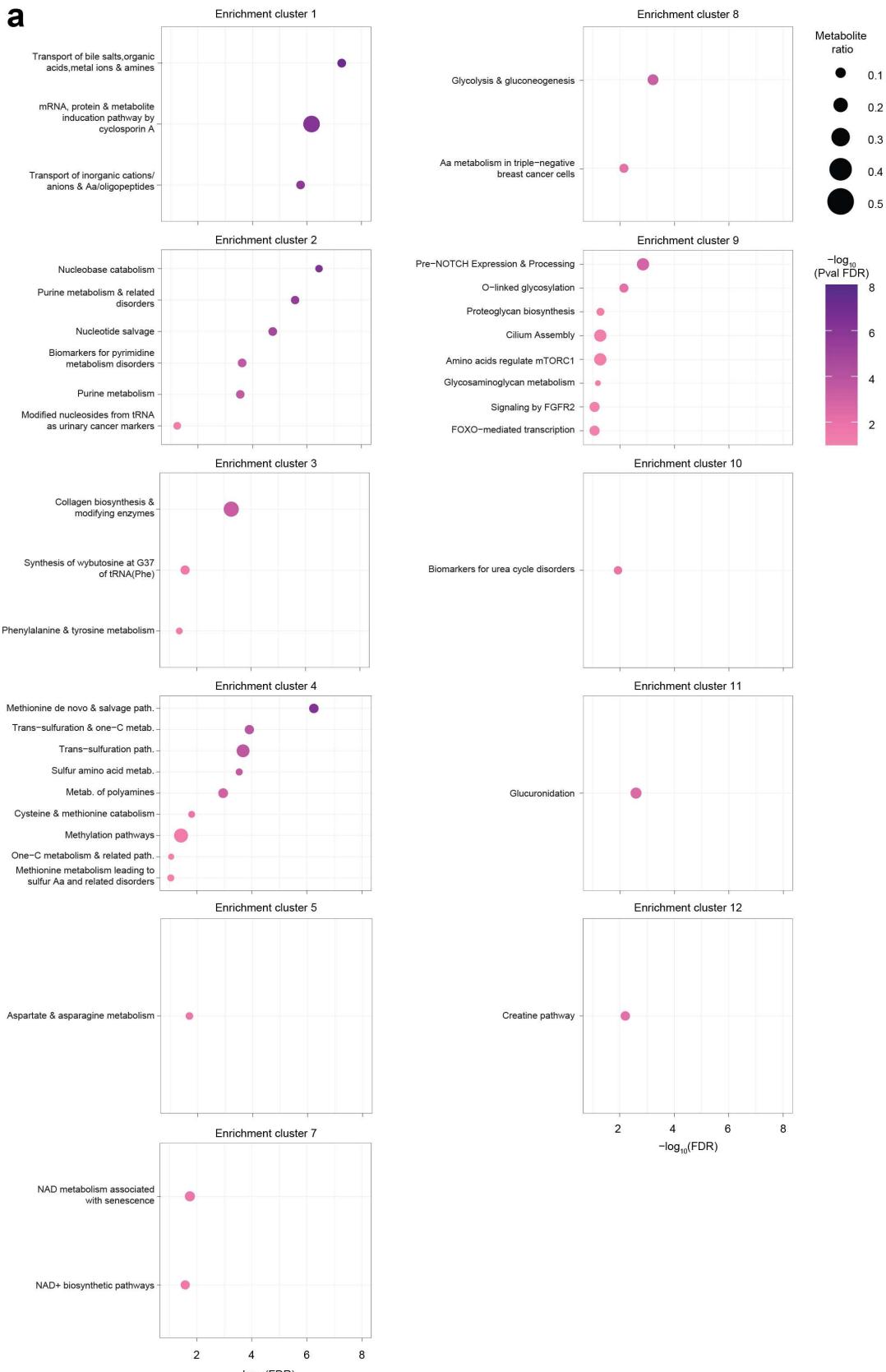
427 **Author contributions**

428 JDB and LPJ conceptualized the project.  
429 JDB designed the experimental protocols.  
430 JDB and YJL performed the studies.  
431 TL performed bioinformatics analysis.  
432 MEGS performed the metabolomic analysis.  
433 EG performed analysis of gene expression data and integration with metabolomics dataset.  
434 CMW, AMN, and LWT performed the *in vitro* experiments and analysis.  
435 DA, MRB, and MC performed *in vivo* experiments and analysis.  
436 JDB, CMW, MEGS, NV, and LPJ analysed and interpreted all data.  
437 JDB, AC, FG, SI, JS, SS, MPM, MA, MC, and LPJ wrote the manuscript with  
438 assistance/contributions from all the other authors.  
439 JDB, MPM, MA, MC, JMH, and LPJ provided supervision/guidance to all parties.  
440

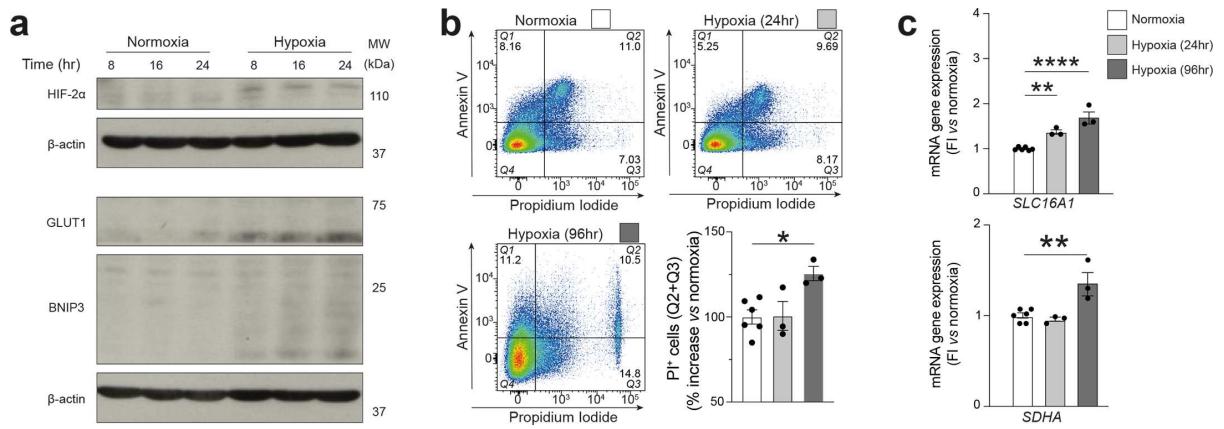
441 **Competing interests**


442 JDB and EG have an equity positions POCKiT Diagnostics which is developing a diagnostic  
443 tool for LVO detection. JDB and JS have an equity positions in Centile Bioscience. JDB also  
444 hold positions/equity in Treovir and NeuroX1. MPM holds patents in the therapeutic  
445 application of malonates.

446


447 **Additional information**

448 Correspondence and requests for materials should be addressed to  
449 [jbernstock@bwh.harvard.edu](mailto:jbernstock@bwh.harvard.edu) or [lp429@cam.ac.uk](mailto:lp429@cam.ac.uk).


## Extended Data Figures



**Extended Data Figure 1. Genes determining the GSEA pathways of L\_Hib vs ACR.** **a**, Significantly enriched metabolic pathways according to GSEA analysis performed between L\_Hib and ACR. Single dots are all single genes. **b**, Heat map of selected metabolic genes (P-value < 0.1) defining the GSEA pathways upregulated in L\_Hib vs ACR (except oxidative phosphorylation, reported in **Fig. 1**) at defined stages of hibernation. **c**, Heat map of selected metabolic genes (P-value < 0.1) defining the GSEA pathways downregulated in L\_Hib vs ACR at defined stages of hibernation. Abbreviations: ACR (active cold room), ENT (entrance of hibernation), E\_Hib (early hibernation), L\_Hib (late hibernation/torpor), AR (arousal), IBA (interbout arousal).



**Extended Data Figure 2. Clusters derived from pathway enrichment analysis** **a**, Enrichment of WIKI pathways of the metabolic enrichment clusters (except *enrichment cluster 6*, reported in **Fig. 2**). Circle size is proportional to the metabolite ratio in the pathway and colorimetric scale shows the  $-\log_{10}$  value of significance after Benjamini-Hochberg (BH) correction for multiple testing or false discovery rate. n=6 biological replicates per group.



**Extended Data Figure 3. *In vitro* model of hypoxia in human SH-SY5Y neurons.** **a**, Western blot showing the increased induction of the hypoxic markers HIF-2 $\alpha$ , GLUT1, and BNIP3 at increasing times of hypoxia (1% O<sub>2</sub>) vs normoxia (21% O<sub>2</sub>). HIF-1 $\alpha$  protein induction was also detectable (not shown). **b**, Annexin/PI staining of SH-SY5Y neurons at 24 and 96 h of hypoxia. n=3-6 technical replicates per group. Significance was determined via one-way ANOVA followed by Dunnet's multiple comparisons test for correction. \*: p<0.05. **c**, Gene expression analysis of selected hypoxic genes found to be increased during hibernation (i.e., *SLC16A1*, *SDHA*) in SH-SY5Y neurons at 24 and 96 h of hypoxia. n=3-6 technical replicates per group. Significance was determined via one-way ANOVA followed by Dunnet's multiple comparisons test for correction. \*: p<0.05; \*\*: p<0.01, \*\*\*\*: p<0.0001.

1 **Supplementary Methods**

2

3 ***Ex vivo* Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy**  
4 **(UPLC-MS/MS)**

5 Untargeted metabolomics profiling of brain samples was performed by Metabolon (Durham,  
6 NC)<sup>1</sup>. Samples were prepared using the automated MicroLab STAR® system from Hamilton  
7 Company. Metabolite extraction, along with several recovery standards for QC purposes, was  
8 performed via methanol precipitation under vigorous shaking for 2 min (Glen Mills  
9 GenoGrinder 2000) followed by centrifugation. The resulting extract was divided into fractions  
10 for analysis by separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode  
11 electrospray ionization (ESI), RP/UPLC-MS/MS with negative ion mode ESI, HILIC/UPLC-  
12 MS/MS with negative ion mode ESI, and backup. A pooled matrix sample as well as extracted  
13 water samples served as technical replicate and process blanks throughout runs. A cocktail of  
14 known QC were also spiked into every analysed sample for instrument performance monitoring  
15 and chromatographic alignment. Experimental samples were randomized across the platform  
16 run with QC samples spaced evenly among the injections. All methods utilized a Waters  
17 ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-  
18 Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray  
19 ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution.  
20 Compounds were identified by comparison to library entries of containing purified standards  
21 or additional compounds validated by Metabolon via data curation. Metabolites were identified  
22 based on their retention time/index (RI), mass to charge ratio (*m/z*), and chromatographic data  
23 (including MS/MS spectral data) as compared to all other molecules present in the Metabolon  
24 library. Sucesfull matches were determined based on the presence of a narrow RI window of  
25 the proposed identification, accurate mass match to the library  $\pm$  10 ppm, and the MS/MS  
26 forward and reverse scores between the experimental and authentic standards spectra for a  
27 given metabolite. Peaks were quantified using area-under-the-curve. Day-to-day variability  
28 was accounted by registering the metabolite medians to one and normalizing each metabolite  
29 within a particular sample proportionately to their median. The resulting raw intensities across  
30 all samples are found in Table 2a.

31

32 **Metabolomics processing and statistical analysis**

33 Data processing of integrated peak intensities was performed in the R environment, version  
34 3.6.2 (<https://www.R-project.org/>). Briefly, metabolites with missing values (N/As) in 33% or

more of the samples were removed, with the remaining N/As imputed using the k-Nearest Neighbour algorithm as implemented on the package *VIM* (version 5.1.1)<sup>2</sup>. Data underwent log-10 transformation and autoscale normalization using core functions in the R environment; normalized intensities were graphically inspected to verify appropriate normalization. The resulting normalized intensities across all samples are found in Table 2b. All samples were included in the analyses and no samples or animals were excluded. Multivariate statistical analysis was initially performed on the normalized dataset using the Sparse Partial Least Squares – Discriminant Analysis (sPLS-DA) algorithm as implemented in the R package *mixOmics* (version 6.10.9)<sup>3</sup>. sPLS-DA models allow for the identification of variance attributed to class membership, while selecting variables meaningful to the classification task<sup>4</sup>. Metabolites with a variable influence of projection (VIP) > 1 in Component 1 were retained for further analyses due to their importance in contributing to the model's classification task<sup>5</sup>. Hierarchical clustering and heatmaps of features were calculated and generated using the package *pheatmap* (version 1.0.12); metabolic pathway annotation within heatmap was performed using Metabolon's custom annotation panel. Univariate analysis of features with VIP > 1 was performed using core functions in R; metabolites underwent Kruskal-Wallis non-parametric testing followed by false discovery rate (FDR) correction via the Benjamini-Hochberg (BH) method. Features were considered statistically significant if P-value < 0.05 upon FDR correction and quantitative data are presented box and whisker plots (min max).

54

### 55 **Metabolic pathway enrichment analysis**

Pathway enrichment analysis of metabolites with a VIP > 1 in Component 1 was performed using the Relational Database of Metabolic Pathways<sup>6</sup>, using WikiPathways v20220710 as data source<sup>7</sup>. Significance was determined with right-tailed Fischer's exact test followed by FDR correction via the BH method ( $\alpha = 0.050$ ). Metabolite ratio was defined across enriched pathways as the number of mapped input metabolites in relation to the total number of metabolites annotated in a given pathway<sup>8</sup>. Enriched pathways subsequently underwent Heuristic Multiple Linkage clustering based on partial overlap of the pathway's mapped metabolites (Braisted et al 2023). Clusters metabolite ratio and FDR adjusted P-value were calculated using the median metabolite ratio and FDR adjusted P-value across pathways assigned to a given cluster.

66

### 67 **Ex vivo RNA sequencing**

68 Fastq files were quality inspected by sample using the FASTQC tool  
69 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Adaptor clipping and quality  
70 trimming was achieved using Trimmomatic  
71 (<http://www.usadellab.org/cms/index.php?page=trimmomatic>). Stranded paired-end reference  
72 mapping against the current instance of the Squirrel genome (spetri2) via local alignment was  
73 performed in CLCbio ([www.clcbio.com](http://www.clcbio.com)); providing RPKM expression for 20,387  
74 transcripts/sample. Post enumeration, RPKM expression was imported into R ([www.cran.r-project.org](http://www.cran.r-project.org)) and cross-sample normalized via quantile tact after pedestalling by 2 and taking  
75 the Log2 transform. Quality of the expression enumerated per sample was challenged and  
76 assured via Tukey box plot, covariance-based PCA scatter plot, and correlation-based heat map.  
77 To remove noise-biased expression, lowess fitting was employed to define the minimum  
78 threshold of expression at which the linear relationship between mean expression (i.e., signal)  
79 and CV (i.e., noise) across groups is grossly lost. Transcripts not having expression greater  
80 than this threshold for at least one sample were discarded with the remaining transcripts subject  
81 to ANOVA testing. Transcripts having an uncorrected  $P < 0.05$  by this test were subset and  
82 post hoc analysis performed using the TukeyHSD test. Transcripts with a  $P < 0.05$  by this test  
83 and an absolute difference of means  $\geq 1.5X$  for a group comparison were subset as those  
84 having differential expression between those groups. Transcript annotations were obtained  
85 from the Ensembl FTP site (<http://useast.ensembl.org/info/data/ftp/index.html>). Transcript  
86 sequences were aligned against the *Ictidomys tridecemlineatus*'s genome. For the purpose of  
87 functional annotation, squirrel gene symbols from Ensembl (Table 1) were matched to the  
88 human counterpart to retrieve WikiPathways metabolic pathways annotations.  
89  
90

## 91 **Integration of RNA sequencing and metabolomics**

92 All samples were included in the analyses and no samples or animals were excluded.  
93 Multivariate statistical analysis was initially performed on the RPKM values using the Sparse  
94 Partial Least Squares – Discriminant Analysis (sPLS-DA) algorithm as implemented in the R  
95 package mixOmics (version 6.10.9, Rohart F et al 2017). To define the biological pathways  
96 associated with each stage of hibernation, the log2 fold change between the median of each  
97 hibernation stage and the full dataset median expression was calculated. For each hibernation  
98 stage, this was used as input for a gene set enrichment analysis (GSEA) against the  
99 WikiPathways collection, which was downloaded from MsigDB using the R package 'msigdbr'  
100 version 7.5.1. For all GSEA analyses, the R package 'piano' version 2.14.0 was used. To focus  
101 on the metabolic gene expression we used a previously defined manually curated subset of

102 metabolic genes and pathways<sup>9</sup>. To integrate the gene expression and metabolomics datasets,  
103 genes that significantly contributed to the pathway enrichment found by GSEA and metabolites  
104 belonging to *enrichment cluster 6* of the metabolomics sPLSDA analysis were selected and  
105 enzyme commission (EC) numbers associated to each gene and/or metabolite were extracted  
106 from the UniProt database. A hive plot was then built by linking each gene or metabolite to the  
107 associated EC number. The hive plot was built by using the R package ‘HiveR’ version 0.3.63.  
108

### 109 **Succinate dehydrogenase (SDH) activity *in vitro***

110 To assess whether dimethyl malonate (DMM, Merck) could inhibit succinate dehydrogenase  
111 activity in SH-SY5Y cells, we used a fumarate detection kit (Abcam) following manufacturer’s  
112 protocol. Briefly, SH-SY5Y cells were seeded at a final density of 5x10<sup>5</sup> cells/well in 6-well  
113 plates. After 9 days of differentiation, cells were treated with either 5 mM or 10 mM of DMM  
114 for 1 h in normoxic conditions at 37°C with 5% CO<sub>2</sub>. After 1 h, cells were washed with PBS  
115 and homogenized in the assay buffer provided. The assay was performed on 50 µl of sample  
116 per well in a new 96-well flat bottom culture plate. A standard curve (0-2-4-6-8-10 nmol/well)  
117 was obtained following developer’s recommendation and adding to each well a final volume  
118 adjusted to 50 µl, using assay buffer. The reaction mix was prepared and 100 µl was added to  
119 each well. The plate was incubated for 60 min in a 0% CO<sub>2</sub> incubator at 37°C. After 60 min,  
120 the absorbance was measured at 450 nm with a Tecan Infinite M200 Pro plate reader. Data was  
121 analysed according to the manufacturer’s recommendations.  
122

### 123 **SH-SY5Y *in vitro* culture**

124 SH-SY5Y cells (gift from Michael Whitehead, University of Cambridge) were kept in culture  
125 and expanded in growth medium [DMEM-F12 (Gibco), 10% FBS, 1% pen/strep]. Growth  
126 medium was refreshed every 4 to 7 days. After reaching 80-90% confluence, SH-SY5Y cells  
127 were washed with PBS (Gibco), detached with trypsin-EDTA 0.05%, (Thermo Fisher  
128 Scientific) for 5 min followed by trypsin neutralization in growth media and spun down at 400  
129 g for 5 min. Next, SH-SY5Y cells were counted and seeded at a density of 5x10<sup>5</sup> cells/well for  
130 6-well plates and 5x10<sup>4</sup> cells/well on coverslips in 12-well plates with differentiation media  
131 (Neurobasal medium [Thermo Fisher Scientific], B27 supplement 2% [Thermo Fisher  
132 Scientific], GlutaMAX 1% [Thermo Fisher Scientific], and all-trans retinoic acid 10 µM  
133 [STEMCELL Technologies]). Differentiation media was replaced every other day until day 9  
134 post-seeding.

135 Hypoxia was achieved by incubating cells in 1% O<sub>2</sub>, 5% CO<sub>2</sub>, and 94% N<sub>2</sub> in a Don Whitley  
136 H35 workstation. To assess cellular apoptosis under hypoxic conditions, we used an annexin  
137 V staining kit (eBioscience) in tandem with the viability dye propidium iodide (PI) followed  
138 by flow cytometry analysis. 5x10<sup>5</sup> SH-SY5Y cells/well (n=3 technical replicates per condition)  
139 were differentiated for 9 days and then subjected to hypoxia (1% O<sub>2</sub>) for 24 h and 96 h. After  
140 96 h, the conditioned media from each well was collected to capture all detached cells. Then,  
141 the remaining cells were detached using trypsin-EDTA 0.05% for 5 min and collected into the  
142 same tube as the conditioned media. The cells were spun down at 500 g for 5 min, the  
143 supernatant removed, and the pellet resuspended in binding buffer. The cells were then spun  
144 down at 500 g for 5 min, the supernatant removed, and the pellet resuspended in 100 µL of  
145 binding buffer plus 5 µL of annexin V antibody. The cells were incubated for 15 min at room  
146 temperature (RT) followed by pelleting at 500 g for 5 min, the supernatant removed, and  
147 washed in binding buffer followed by a final spin at 500 g for 5 min. The cell pellet was  
148 resuspended in 200 µL of binding buffer and stored on ice until acquisition. Acquisition was  
149 performed on a BD LSRIFortessa™ flow cytometer (BD Biosciences) using the 640 nm red  
150 laser for annexin V and the 561 nm yellow laser for PI. Positive gates were established using  
151 unstained, live/dead, and single marker cells prior to the analysis of the samples. Immediately  
152 prior to acquisition, 5 µL of PI was added to each sample. 100,000 total events were acquired  
153 for each sample and analysis was performed in FlowJo v10 software (BD Biosciences).  
154 For gene expression analysis, 5x10<sup>5</sup> SH-SY5Y cells/well (n=3 technical replicates / condition)  
155 were differentiated for 9 days and then subjected to hypoxia (1% O<sub>2</sub>) for 24 h and 96 h. Total  
156 RNA from SH-SY5Y cells was collected by washing the cells once in ice-cold PBS followed  
157 by the addition of 350 µL of RLT lysis buffer (QIAGEN). Samples were then stored at -80°C  
158 until extraction. Total RNA from SH-SY5Y was extracted using the RNeasy Mini Kit  
159 (QIAGEN) following the manufacturer's instructions. Total RNA was then quantified with the  
160 NanoDrop 2000c instrument (Thermo Fisher Scientific). For qRT-PCR analysis, 500 ng of  
161 RNA were reversed-transcribed using the high-capacity cDNA reverse transcription kit  
162 (Thermo Fisher Scientific) according to the manufacturer's instructions using a 20 µL reaction  
163 volume. qRT-PCR was performed with the TaqMan™ Fast Universal PCR Master Mix (2x)  
164 (Thermo Fisher Scientific) and TaqMan® Gene Expression Assays for: *HCAR1* (Thermo  
165 Fisher Scientific, Hs02597779\_s1), *LDHB* (Thermo Fisher Scientific, Hs00929956\_m1),  
166 *SLC16A1* (Thermo Fisher Scientific, Hs01560299\_m1), *SDHA* (Thermo Fisher Scientific,  
167 Hs00188166\_m1), *NAMPT* (Thermo Fisher Scientific, Hs00237184\_m1), and 18S (Thermo  
168 Fisher Scientific) was used for normalization. For qRT-PCR, 1.5 µL of cDNA from each

169 sample was run in triplicates using a 7500 Fast Real-Time PCR System (Applied Biosystems)  
170 and analysed with the  $2^{-\Delta\Delta CT}$  method.

171 For neurite length,  $5 \times 10^4$  SH-SY5Y cells/well were plated onto 12 mm glass coverslips in 12-well plates and differentiated for 9 days. The cells were then subjected to hypoxia (1% O<sub>2</sub>) in the presence or absence of 10 mM DMM for 24 h. Immediately after, the coverslips were washed once in PBS followed by fixation in 4% PFA for 60 mins at RT. The extended fixation was to ensure preservation of neurites for quantification. After fixation, the coverslips were washed three times in PBS, permeabilized in PBS with 0.1% Triton<sup>TM</sup> X-100 (Merck) for 15 min, blocked with PBS with 5% normal goat serum for 30 min, then stained with phalloidin (Thermo Fisher Scientific) diluted 1:400 in PBS for 30 min followed by counterstaining with DAPI (Merck) for 10 min to label nuclei. The cells were then washed three times in PBS and mounted onto glass slides using ProLong<sup>TM</sup> diamond antifade mountant (Thermo Fisher Scientific). Slides were left to dry overnight and stored at 4°C until acquisition. Bright field pictures (10x) of 5 ROIs per coverslip from each condition were taken using a Leica DM IL LED microscope. Images were converted to 8-bit and contrast was adjusted so the neurites were easily visible using Fiji 2.0.0. software. Data were quantified using the NeuronJ plugin that allows for semi-automatic tracing from an average of >30 neurite lengths per ROI from n=3 independent experiments.

187

## 188 **Western blotting**

189 Protein lysates were generated by rapid (>2 min) lysis of cells using Laemmli sample buffer  
190 (2% SDS, 10% glycerol, 10% 0.625 M Tris-HCl pH 6.8, in water), followed by heating to  
191 100 °C for 5 min. Protein concentration in lysates was determined by BCA assay  
192 (ThermoFisher Scientific, #23227), and lysates were normalised to equal protein concentration  
193 by addition of Laemmli sample buffer. Lysates were prepared for western blotting by the  
194 addition of 0.4% (w/v) bromophenol blue solution (10% final v/v), and 1M dithiothreitol (10%  
195 final v/v).

196 Samples were separated by gel electrophoresis using a Hoefer SE400 vertical protein  
197 electrophoresis unit, then transferred to PVDF membranes using a Hoefer TE42 transfer unit.  
198 Membranes were blocked with 5 % (w/v) non-fat dry milk in TBS-Tween (20 mM Tris, 150 mM NaCl, 0.1% (v/v) Tween-20), for 1 h at RT. Proteins were detected by serial incubation  
199 with target-specific antibodies (16-24 h, 4 °C), followed by species-specific HRP-linked  
200 secondary antibodies (1 h, RT), then incubation with enhanced chemiluminescence substrate  
201 (Cytiva, #RPN2209). HIF-1 $\alpha$  and HIF-2 $\alpha$  were exposed for 30 min on x-ray film to obtain

203 protein bands with GLUT1 and BNIP3 exposed for 5 min. Antibody details as follow: mouse  
204 anti-human HIF-1 $\alpha$  (BD Biosciences, #610959); rabbit anti-human HIF-2 $\alpha$  (Cell Signaling  
205 Technologies, #7096); rabbit anti-human GLUT1 (Cell Signaling Technologies, #73015);  
206 rabbit anti-human BNIP3 (Cambridge Biosciences, #HPA003015); mouse anti-human  $\beta$ -actin  
207 (Abcam, #ab6276).

208

### 209 **Photothrombotic stroke induction**

210 Before surgery, male C57 mice (8-10 weeks of age) were anesthetized via intraperitoneal  
211 injection of 80 mg/kg ketamine and 5mg/kg xylazine. Anesthetized mice were placed in a  
212 stereotaxic frame and their body temperature was maintained at 37 °C by a digital heating mat.  
213 After removing the skin, skull was exposed and the green laser ( $\lambda$  530 nm) was positioned in  
214 the M1 forelimb area (from bregma: 0,4 mm AP and  $\pm$  1,6 mm ML) contralateral to the  
215 preferred paw (see also Behavioural tests section below). 200  $\mu$ l of Rose Bengal solution (10  
216 mg/ml in physiological solution) was delivered via intraperitoneal injection and after 5 min the  
217 laser was switched on (33 mW) and M1 irradiated for 15 min.

218

### 219 **Nissl staining, images acquisition and ischemic volume measurement**

220 For ischemic volume measurements, one of every three brain sections of 35  $\mu$ m each was  
221 stained with 0.1 % cresyl violet (Nissl staining). Briefly, slides were submerged for 15 min in  
222 a mixture of absolute ethanol and chloroform (in 4:1 ratio), hydrated for 2 min in MilliQ water,  
223 stained for 2 min in 0.1% cresyl violet solution and dehydrated by quick passages through 70%,  
224 80% and 96% ethanol solutions. Finally, slides were cleared in absolute xylene for 10 min  
225 following a washing step in 96% ethanol before being mounted using Eukitt mounting medium  
226 (#0389, Merck).

227 Images were acquired on a Leica bright bright-field microscope (Leica DM6000) using a 5X  
228 objective and ischemic volume quantified in Fiji software as follows: ischemic volume ( $\text{mm}^3$ )  
229 = area ( $\text{mm}^2$ ) \* section thickness \* spacing factor

230

### 231 **Behavioural tests**

232 To assess whether DMM may influence motor recovery after stroke, we performed a variety of  
233 behavioural tests as has been previously described<sup>10</sup>:

234 Cylinder test. The cylinder test was used to evaluate the spontaneous asymmetry in forelimb  
235 use during vertical-lateral wall exploration of a clear plexiglass cylinder (10 cm diameter and

236 14 cm in height). Mice were individually recorded for 5 min with a video camera placed below  
237 the cylinder and the preferential use of the right or left forelimb was scored by counting the  
238 number of times an individual forepaw was used by mice to rear their body from the bottom of  
239 the cylinder, to touch the cylinder wall, to push themselves from a region to another of the wall  
240 as well as down from the wall, and to land on the bottom of the cylinder. Simultaneous use of  
241 both left and right forelimb was not taken into consideration in the counting. We evaluated the  
242 forelimb preference first at baseline (i.e. prior to photothrombotic stroke) in the forelimb motor  
243 cortex contralateral to the preferred paw, and next at 48 h (2 days) and 96 h (4 days) after stroke  
244 induction. The asymmetry index was subsequently calculated through the following formula:  
245  $(C_{ipsi}/C_{ipsi} + C_{contra}) \times 100 - (C_{contra}/C_{ipsi} + C_{contra}) \times 100$ , where the  $C_{ipsi}$  represents the ipsilateral  
246 paw to the hemisphere subjected to injury.

247 Gridwalk test. The gridwalk test was performed to assess motor fine function and coordination  
248 in mice following stroke and DMM treatments. Mice were placed on a metal grid (25 cm length  
249 and 25 cm width) composed of wire-openings (1 × 1) to explore freely for 5 min. The number  
250 of correct steps and foot faults were video-recorded by a camera placed underneath the grid,  
251 and steps made using the preferential forelimb were counted via analyzing the video in VLC  
252 Media Player. We considered a step failure when the the foot slipped into a grid hole and  
253 percentage of foot faults was calculated according to the formula: Foot Faults% =  $100 \times \#foot$   
254 faults/#correct steps + #foot fault. Values obtained at 48 h and 96 h were normalized to baseline.

255 Rotarod test. To assess motor coordination and function, mice were placed on a horizontal  
256 rotating rod with 3.5 cm diameter using the accelerating rotation speed mode (4–40 rpm within  
257 5 min). The trial was performed twice with an inter-trial interval of 20 min and stopped when  
258 the mice fell down. The latency to fall (in terms of seconds) was recorded and the best  
259 performance for each mouse was used for statistical analysis. Trials were performed at baseline  
260 and at 48 h and 96 h after stroke induction, and values normalized to baseline. For better  
261 performance, mice were pre-trained on the rotarod before baseline at a fixed speed of 8 rpm  
262 until the score was at least 60 seconds.

263 Open field. The open field test was carried out to assess spontaneous and exploratory activity in mice after stroke and following DMM treatments. Each mouse was gently placed in  
264 the center a square wooden box (47 cm × 47 cm) and its explorative activity was recorded  
265 under low light conditions for 5 min using a camera. Total distance traveled, time spent in  
266 center and number center entries were analyzed using VideoTrack software. All values  
267 obtained at 48 h and 96 h were normalized to baseline.

269

270 **Other statistical analyses**

271 Statistically significant differences between groups were analysed using a One-Way ANOVA  
272 for multiple comparisons, or a two-way unpaired Student's t-test for comparisons of two groups.  
273 Differences were considered significant at P-value < 0.05 and quantitative data are presented  
274 as box and whisker plots (min/max).

275 **References**

276 1 Dehaven, C. D., Evans, A. M., Dai, H. & Lawton, K. A. Organization of GC/MS and  
277 LC/MS metabolomics data into chemical libraries. *J Cheminform* **2**, 9,  
278 doi:10.1186/1758-2946-2-9 (2010).

279 2 Kowarik, A. & Templ, M. Imputation with the R Package VIM. *Journal of Statistical*  
280 *Software* **74**, doi:10.18637/jss.v074.i07 (2016).

281 3 Rohart, F., Gautier, B., Singh, A. & Le Cao, K. A. mixOmics: An R package for 'omics  
282 feature selection and multiple data integration. *Plos Computational Biology* **13**,  
283 doi:ARTN e1005752  
284 10.1371/journal.pcbi.1005752 (2017).

285 4 Cao, K. A. L., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically  
286 relevant feature selection and graphical displays for multiclass problems. *Bmc*  
287 *Bioinformatics* **12**, doi:Artn 253  
288 10.1186/1471-2105-12-253 (2011).

289 5 Liu, K. D. et al. Consequences of Lipid Remodeling of Adipocyte Membranes Being  
290 Functionally Distinct from Lipid Storage in Obesity. *Journal of Proteome Research* **19**,  
291 3919-3935, doi:10.1021/acs.jproteome.9b00894 (2020).

292 6 Braisted, J. et al. RaMP-DB 2.0: a renovated knowledgebase for deriving biological  
293 and chemical insight from metabolites, proteins, and genes. *Bioinformatics*,  
294 doi:ARTN btac726  
295 10.1093/bioinformatics/btac726 (2022).

296 7 Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging  
297 metabolomics to other omics research. *Nucleic Acids Research* **46**, D661-D667,  
298 doi:10.1093/nar/gkx1064 (2018).

299 8 Garcia-Segura, M. E. et al. Pathway-based integration of multi-omics data reveals  
300 lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci  
301 carriers. *Journal of Neurochemistry* **164**, 57-76, doi:10.1111/jnc.15719 (2023).

302 9 Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of  
303 cancer correlates with metastatic potential and patient survival. *Nature*  
304 *communications* **7**, 13041, doi:10.1038/ncomms13041 (2016).

305 10 Cherchi, L., Anni, D., Buffelli, M. & Cambiaghi, M. Early Application of Ipsilateral  
306 Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional  
307 Improvement and Perilesional Microglia Modulation. *Biomolecules* **12**,  
308 doi:10.3390/biom12040588 (2022).

309