
simpleaf 1

bioRxiv, 2023, pp. 1–7

doi:

simpleaf: A simple, flexible, and scalable framework
for single-cell transcriptomics data processing using
alevin-fry

Dongze He 1 and Rob Patro 2,∗

1Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland,

College Park, MD, USA and 2Department of Computer Science and Center for Bioinformatics and Computational Biology, University of

Maryland, College Park, MD, USA
∗Corresponding author. rob@cs.umd.edu

Abstract

Summary: The alevin-fry ecosystem provides a robust and growing suite of programs for single-cell data processing.

However, as new single-cell technologies are introduced, as the community continues to adjust best practices for data

processing, and as the alevin-fry ecosystem itself expands and grows, it is becoming increasingly important to manage

the complexity of alevin-fry’s single-cell preprocessing workflows while retaining the performance and flexibility that

make these tools enticing. We introduce simpleaf, a program that simplifies the processing of single-cell data using

tools from the alevin-fry ecosystem, and adds new functionality and capabilities, while retaining the flexibility and

performance of the underlying tools.

Availability and implementation: Simpleaf is written in Rust and released under a BSD 3-Clause license. It is freely

available from its GitHub repository https://github.com/COMBINE-lab/simpleaf, and via bioconda. Documentation for

simpleaf is available at https://simpleaf.readthedocs.io/en/latest/ and tutorials for simpleaf are being developed

that can be accessed at https://combine-lab.github.io/alevin-fry-tutorials.

Key words: single-cell RNA-seq, single-nucleus RNA-seq, single-cell multiomics, feature barcoding.

Introduction

Single-cell sequencing has become an indispensable tool for

studying cellular biology at the resolution of individual

cells [1, 2], and processing the resulting data often requires

a dedicated suite of tools and methods. Recently, He et al.

[3] demonstrated that the alevin-fry ecosystem provides an

efficient, accurate, and flexible framework for single-cell data

processing. Yet, the rapid arrival of new technologies and

experimental modalities have led to data analysis pipelines that

require increasingly complex and sophisticated workflows. For

example, analyzing CITE-seq [4] data involves executing the

entire alevin-fry pipeline three times, each time with a slightly

different configuration and on different sets of files. Likewise,

as improved tools, like the piscem [5, 6] read mapping tool,

are introduced into the alevin-fry ecosystem, users wishing

to adopt these new tools have to learn their interfaces and

logistics.

Software Description

To simplify and ease the user experience for both simple and

complex experimental setups, and to allow seamless use of the

newest alevin-fry ecosystem components, we have developed

simpleaf (simple alevin-fry). Simpleaf (overview in Figure 1)

is a high-level framework, that provides simple, flexible,

and scalable interfaces for uniformly accessing standard and

advanced features in the alevin-fry ecosystem.

The concept of “wrapper” or “workflow” programs in

the context of single-cell data processing pipelines is well-

established. Apart from the many bespoke workflows developed

for individual technologies, there exist several tools designed

to ease and simplify the processing of multiple types of data.

Here, we highlight a few examples, though this is not intended,

to constitute an exhaustive list of such tools. The popular

Cell Ranger [7] tool itself is, in part, a Python script that

wraps STAR [8] and other tools designed by 10x Genomics. The

zUMIs [9] and UniverSC [10] tools provide highly-capable suites

of workflows for processing data generated using many different

technologies using, respectively, STAR and Cell Ranger itself.

Kb-python is a Python tool that wraps kallisto|bustools [11]

and related tools, and provides a high-level interface to process

data from many different experimental protocols and setups.

The scPipe [12] tool is a modular wrapper around multiple tools

and packages within the R ecosystem, which uses the Subread

aligner [13] for mapping, and is capable of processing data from

a variety of different single-cell technologies.

Simpleaf is dedicated to providing a simple and flexible

user interface for the alevin-fry ecosystem, which consists of

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://orcid.org/0000-0001-8259-7434
https://orcid.org/0000-0001-8463-1675
email:rob@cs.umd.edu
https://github.com/COMBINE-lab/simpleaf
https://simpleaf.readthedocs.io/en/latest/
https://combine-lab.github.io/alevin-fry-tutorials
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 He et al.

s
im

p
le

a
f

s
e

t-
p

a
th

s

con
ûg-
pat
h

resu
me …

Jrsonnet
Engine

Workflow
Executor

Input
Files

Alevin-fry
Pipeline

…

Sequencing
Reads

s
im

p
le

a
f

q
u

a
n

t

ref-
type

…

Reference
Construction

use
-pis
cem

Reference
set

s
im

p
le

a
f

in
d

e
x

s
im

p
le

a
f

w
o

rk
fl

o
w

Quantification

Salmon
Indexer

Piscem
Indexer

Indexing

Geometry

Parsing &
Normalization

Piscem
Mapper

Salmon
Mapper

Mapping

Step 1: gunzip
Step 2: simpleaf index
Step 3: simpleaf quant

...
Step N: echo <success!=

che
mis
try

Index Outputs

…Index Index Log

Quant Outputs

…

Quant Log
Count
Matrix

Index …

Workflow Outputs

Workflow
Log

 #1
Count
Matrix

 #M
Count
Matrix

… …

s
im

p
le

a
f

in
s

p
e

c
t

s
im

p
le

a
f

a
d

d
-c

h
e

m
is

tr
y

s
im

p
le

a
f

g
e

t-
w

o
rk

fl
o

w
-c

o
n

fi
g

Fig. 1. Overview of some salient simpleaf subcommands, showing the flow of data through a hypothetical invocation. The leftmost expanded column

(blue) represents using the simpleaf index command to build a reference sequence and the corresponding piscem index. The center expanded column

(aqua) represents using this piscem index in conjunction with sequenced reads to produce a count matrix for subsequent analysis. Note that the indexer

and mapper of both piscem and salmon are fully supported in simpleaf. Finally, the rightmost expanded column (red) represents the invocation of a

hypothetical simpleaf workflow, where the workflow can require several input files and produce several outputs. Additional simpleaf subcommands are

described in the appendix.

a range of underlying tools and modules for single-cell data

processing [3, 5, 6, 14, 15, 16]. In addition to coordinating the

execution of these tools and providing a unified and simplified

interface, simpleaf also adds new functionality aimed at further

generalizing the capabilities of the underlying tools, and

allowing users to easily create and share their own workflows

without having to program or modify simpleaf itself.

A simplified interface to core alevin-fry

functionality

The most basic functionality provided by simpleaf is that it

provides a simplified yet flexible interface to the underlying

alevin-fry modules and capabilities.

In simpleaf, the standard alevin-fry pipeline [3] is

distributed over two phases: (i) indexing, which includes

creating an augmented (splici [3] or spliceu [6]) reference,

where appropriate, and building the corresponding reference

index, and (ii) quantification, which consists of read mapping,

cell barcode detection and correction, and UMI resolution.

These two phases are exposed as two sub-commands within

simpleaf: simpleaf index and simpleaf quant. Each of these,

in turn, exposes various flags for retaining critical flexibility in

processing.

Although most of the functionality provided by simpleaf

programs can be directly replicated by calling the underlying

tools with the appropriate configurations and arguments,

the advantage of using simpleaf comes from the fact that

simpleaf, by default, incorporates the best practices for running

the underlying tools, reduces the workload by automatically

handling tedious but crucial details one needs to take care

of in the most common use cases, and also retains critical

flexibility when necessary. For example, if a simpleaf index

invocation is followed by a call to simpleaf quant, simpleaf

quant will automatically recruit and parameterize the correct

mapper, and will automatically locate and provide the file

containing the transcript-to-gene mapping information to later

quantification stages where appropriate. This file would have

explicitly provided if alevin-fry is not invoked through

simpleaf. Yet, to provide for maximum flexibility, simpleaf

provides alternative processing options as well, like the option

to begin the quantification process from an already-computed

set of mapping results and thus to skip the mapping process.

Dedicated parameterization for easily switching

between options and underlying tools

As the methodologies underlying single-cell quantification

advance, we have continued to improve the existing features

of the alevin-fry ecosystem and introduce new options and

functionality wherever appropriate. Yet, the options and

possibilities for single-cell analysis continue to expand, and the

burden on users to keep up with new methods, tools, and best

practices grows. To ensure that the best practices and new

features of the alevin-fry ecosystem can be easily accessed

and applied by users to their data, simpleaf tracks current

best practices and provides built-in parameterizations under

simplified configurations, which allows seamless switching

between different options and backend tools.

One example is the ability to easily switch between

piscem [5, 6] and salmon [16, 14] as the underlying reference

indexing and mapping tools. Piscem is a new index and

mapper in the alevin-fry ecosystem that further lowers the

memory requirements for single-cell data processing [6], and

salmon [16, 14], which relies on the pufferfish index [17],

is the traditional mapper used with alevin-fry. As piscem

and salmon are independent tools with distinct parameters,

explicitly switching from salmon to piscem requires knowledge

about the piscem tool and the relevant details of its indexing

and mapping subcommands. However, in simpleaf, the only

modification needed to make use of piscem is to pass the

--use-piscem flag. Furthermore, for simplicity, if this flag is

set when calling simpleaf index, the subsequent simpleaf quant

executions that map against this index will automatically use

piscem, with appropriate parameters, as the mapper.

Another example is the ability to seamlessly build different

types of reference indices by simply changing the flags passed

to the simpleaf index command. Currently, simpleaf has the

ability to build three kinds of reference indices. Although the

procedure for generating these types of reference indexes is

different, simpleaf abstracts over the technicalities and only

requires the user to set the --ref-type option as desired.

Parsing protocols with a complex fragment geometry

Another useful feature provided by simpleaf is the ability to

represent and parse fragment geometry specifications that are

potentially more complex than those directly supported by the

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

simpleaf 3

underlying mappers — for example, those with variable barcode

length and floating barcode position, such as sci-RNA-seq3 [18]

— using a concise description language1. An example of

streaming parser invocation can be found in appendix section B.

When presented with a “complex” geometry specification,

simpleaf “normalizes” these reads into an appropriate “simple”

format (a format with only known position and fixed-

length barcodes and UMIs) on the fly, and provides a

modified (and simplified) geometry format description to the

underlying mapper. Moreover, it streams the normalized

reads directly to the mapper using FIFOs programmatically

managed by simpleaf, thereby avoiding intermediate disk

usage. This feature enables the existing mappers in the

alevin-fry ecosystem, which are designed to process reads

with simple geometry, to handle sophisticated geometries

without modifying the underlying mapping tools, requiring

extra preprocessing from the users, or taking the extra time

and space to write and read the intermediate representations.

To date, the community has put significant efforts into

documenting and categorizing the library layout for many

existing sequencing assays [19, 10, 20] and developing general

parsers for such protocols [21, 22, 10, 23]. Of course, these tools,

or their relevant components could also be applied to this task,

with the user handling the appropriate bookkeeping. However,

the built-in capability of simpleaf focuses on providing a

concise language for representing both simple and complex

fragment geometry that can be passed directly to simpleaf from

the command line, and the seamless internal normalization of

this complex geometry into a simplified form compatible with

both supported mappers.

Generalized and sharable workflow construction for

complex single-cell workflows

Simpleaf also provides the ability to execute complex and

highly-configurable alevin-fry workflows described by simple

user-provided configuration files. The purpose of the simpleaf

workflow module is neither to replace general workflow

languages like Nextflow [24] or Snakemake [25] that enable near-

limitless generality, but that require learning sophisticated and

complex domain-specific languages, nor to expose some set of

easy-to-use but pre-defined workflows for complex single-cell

protocols as in Cell Ranger and kb-python. Rather, simpleaf

workflow aims to provide a platform for alevin-fry users with

all levels of programming knowledge to easily create, invoke,

and share their workflows, which can contain not only simpleaf

commands but also any shell commands that are valid in the

user’s terminal. It allows the definition, via a simple imperative

configuration and templating system, of custom workflows

parameterized on user-defined input, which can then be reused

to simplify the processing of complex workflows and easily

shared with other users.

Simpleaf workflow takes a workflow configuration (a Jsonnet

program) as input2, converts it to a complete workflow JSON

file, and invokes some or all recorded simpleaf program

commands and external shell commands in an appropriate

order. More details can be found in Appendix sections A.7

and C. This design allows users with limited programming

experience to define a simple but useful workflow as a JSON

1 The current specification of this description language

is available at https://hackmd.io/@PI7Og0l1ReeBZu_pjQGUQQ/

rJMgmvr13.
2 Any valid JSON document is also a valid Jsonnet program.

configuration, but also makes it possible for advanced users to

develop sophisticated Jsonnet programs to generate simpleaf

workflows by taking advantage of the full functionality provided

by the Jsonnet language. Furthermore, this design also makes

it easy for users to create and share their workflows by simply

sharing their workflow configuration files, without the need to

understand and contribute to the codebase of simpleaf itself.

To demonstrate the utility of the simpleaf workflow command,

we have built such workflow configurations for processing

CITE-seq [4] and 10x Genomics feature barcode data. We are

continuing to develop more workflow configurations and are also

accepting contributions from the community.

Discussion

Simpleaf provides a simple and flexible interface to access the

state-of-the-art features provided by the alevin-fry ecosystem,

tracks best practices using the underlying tools, enables users

to transparently process data with complex fragment geometry,

and to build and execute sophisticated workflows containing

both simpleaf and external commands without the need to

write code. Simpleaf has already seen adoption in community-

led projects, for example, in the scrna analysis pipeline of the

nf-core project [26, 27]. We hope that, in the future, simpleaf

can serve as an entry point and main interface to the alevin-fry

ecosystem for most users. We also envision that our workflow

feature can encourage those in the community to create and

share their workflows and, thus, can help simpleaf to provide

increasingly reusable building blocks to enable more varied and

sophisticated single-cell data analysis pipelines.

While simpleaf provides a simple and flexible framework

for single-cell data processing, the current implementation

still has some limitations, which motivate future work. For

example, although the fragment geometry parser can parse

barcodes with variable length and floating position, it currently

lacks the ability to perform certain kinds of preprocessing,

like the barcode substitution scheme required by the split-

seq [28] technology. This can be solved by expanding the

current geometry specification to describe and enable this kind

of preprocessing. Moreover, simpleaf workflow is still under

active development. Current efforts are underway to improve

its generality, expand its library of standard functions, and to

develop more useful and sophisticated workflows for different

purposes.

Competing interests

RP is a co-founder of Ocean Genomics inc.

Funding

This work has been supported by the US National Institutes

of Health (R01 HG009937), and the US National Science

Foundation (CCF-1750472, and CNS-1763680). Also, this

project has been made possible in part by grant number 252586

from the Chan Zuckerberg Initiative Foundation. The funders

had no role in the design of the method, data analysis, decision

to publish or preparation of the manuscript.

References

1. Efthymia Papalexi and Rahul Satija. Single-cell RNA

sequencing to explore immune cell heterogeneity. Nature

Reviews Immunology, 18(1):35–45, August 2017. doi:

10.1038/nri.2017.76. URL https://doi.org/10.1038/nri.

2017.76.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://hackmd.io/@PI7Og0l1ReeBZu_pjQGUQQ/rJMgmvr13
https://hackmd.io/@PI7Og0l1ReeBZu_pjQGUQQ/rJMgmvr13
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 He et al.

2. Tim Stuart and Rahul Satija. Integrative single-cell

analysis. Nature Reviews Genetics, 20(5):257–272, January

2019. doi: 10.1038/s41576-019-0093-7. URL https://doi.

org/10.1038/s41576-019-0093-7.

3. Dongze He, Mohsen Zakeri, Hirak Sarkar, Charlotte

Soneson, Avi Srivastava, and Rob Patro. Alevin-fry unlocks

rapid, accurate and memory-frugal quantification of single-

cell RNA-seq data. Nature Methods, 19(3):316–322, March

2022. doi: 10.1038/s41592-022-01408-3. URL https://doi.

org/10.1038/s41592-022-01408-3.

4. Marlon Stoeckius, Christoph Hafemeister, William

Stephenson, Brian Houck-Loomis, Pratip K

Chattopadhyay, Harold Swerdlow, Rahul Satija, and

Peter Smibert. Simultaneous epitope and transcriptome

measurement in single cells. Nature Methods, 14(9):

865–868, July 2017. doi: 10.1038/nmeth.4380. URL

https://doi.org/10.1038/nmeth.4380.

5. Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and

Rob Patro. Spectrum preserving tilings enable sparse and

modular reference indexing. bioRxiv, October 2022. doi:

10.1101/2022.10.27.513881. URL https://doi.org/10.1101/

2022.10.27.513881.

6. Dongze He, Charlotte Soneson, and Rob Patro.

Understanding and evaluating ambiguity in single-

cell and single-nucleus RNA-sequencing. bioRxiv,

January 2023. doi: 10.1101/2023.01.04.522742. URL

https://doi.org/10.1101/2023.01.04.522742.

7. Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader,

Paul Ryvkin, Zachary W. Bent, Ryan Wilson, Solongo B.

Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie

Zhu, Mark T. Gregory, Joe Shuga, Luz Montesclaros,

Jason G. Underwood, Donald A. Masquelier, Stefanie Y.

Nishimura, Michael Schnall-Levin, Paul W. Wyatt,

Christopher M. Hindson, Rajiv Bharadwaj, Alexander

Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg,

Christopher McFarland, Keith R. Loeb, William J. Valente,

Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich,

Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H.

Bielas. Massively parallel digital transcriptional profiling

of single cells. Nature Communications, 8(1), January

2017. doi: 10.1038/ncomms14049. URL https://doi.org/

10.1038/ncomms14049.

8. Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg

Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark

Chaisson, and Thomas R. Gingeras. STAR: ultrafast

universal RNA-seq aligner. Bioinformatics, 29(1):15–21,

October 2012. doi: 10.1093/bioinformatics/bts635. URL

https://doi.org/10.1093/bioinformatics/bts635.

9. Swati Parekh, Christoph Ziegenhain, Beate Vieth,

Wolfgang Enard, and Ines Hellmann. zUMIs - a fast

and flexible pipeline to process RNA sequencing data

with UMIs. GigaScience, 7(6), May 2018. doi: 10.

1093/gigascience/giy059. URL https://doi.org/10.1093/

gigascience/giy059.

10. Kai Battenberg, S. Thomas Kelly, Radu Abu Ras, Nicola A.

Hetherington, Makoto Hayashi, and Aki Minoda. A

flexible cross-platform single-cell data processing pipeline.

Nature Communications, 13(1), November 2022. doi: 10.

1038/s41467-022-34681-z. URL https://doi.org/10.1038/

s41467-022-34681-z.

11. Páll Melsted, A. Sina Booeshaghi, Lauren Liu, Fan

Gao, Lambda Lu, Kyung Hoi Joseph Min, Eduardo

da Veiga Beltrame, Kristján Eldjárn Hjörleifsson, Jase

Gehring, and Lior Pachter. Modular, efficient and constant-

memory single-cell RNA-seq preprocessing. Nature

biotechnology, 4 2021. doi: https://doi.org/10.1038/

s41587-021-00870-2.

12. Luyi Tian, Shian Su, Xueyi Dong, Daniela Amann-

Zalcenstein, Christine Biben, Azadeh Seidi, Douglas J.

Hilton, Shalin H. Naik, and Matthew E. Ritchie. scPipe:

A flexible r/bioconductor preprocessing pipeline for single-

cell RNA-sequencing data. PLOS Computational Biology,

14(8):e1006361, August 2018. doi: 10.1371/journal.pcbi.

1006361. URL https://doi.org/10.1371/journal.pcbi.

1006361.

13. Yang Liao, Gordon K Smyth, and Wei Shi. The R package

Rsubread is easier, faster, cheaper and better for alignment

and quantification of RNA sequencing reads. Nucleic acids

research, 47(8):e47–e47, 2019.

14. Avi Srivastava, Laraib Malik, Tom Smith, Ian Sudbery,

and Rob Patro. Alevin efficiently estimates accurate gene

abundances from dscRNA-seq data. Genome Biology, 20

(1), March 2019. doi: 10.1186/s13059-019-1670-y. URL

https://doi.org/10.1186/s13059-019-1670-y.

15. Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel

and low-memory compaction of de bruijn graphs from

large-scale genome collections. Bioinformatics, 37

(Supplement 1):i177–i186, July 2021. doi: 10.1093/

bioinformatics/btab309. URL https://doi.org/10.1093/

bioinformatics/btab309.

16. Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry,

and Carl Kingsford. Salmon provides fast and bias-aware

quantification of transcript expression. Nature Methods, 14

(4):417–419, March 2017. doi: 10.1038/nmeth.4197. URL

https://doi.org/10.1038/nmeth.4197.

17. Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and

Rob Patro. A space and time-efficient index for the

compacted colored de Bruijn graph. Bioinformatics, 34

(13):i169–i177, 06 2018. ISSN 1367-4803. doi: 10.

1093/bioinformatics/bty292. URL https://doi.org/10.

1093/bioinformatics/bty292.

18. Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang,

Daniel M. Ibrahim, Andrew J. Hill, Fan Zhang, Stefan

Mundlos, Lena Christiansen, Frank J. Steemers, Cole

Trapnell, and Jay Shendure. The single-cell transcriptional

landscape of mammalian organogenesis. Nature, 566(7745):

496–502, February 2019. doi: 10.1038/s41586-019-0969-x.

URL https://doi.org/10.1038/s41586-019-0969-x.

19. Xi Chen. Single Cell Genomics Library Structure, 2023.

URL https://scg-lib-structs.readthedocs.io/en/latest/.

20. A. Sina Booeshaghi, Xi Chen, and Lior Pachter. A machine-

readable specification for genomics assays. bioRxiv, March

2023. doi: 10.1101/2023.03.17.533215. URL https://doi.

org/10.1101/2023.03.17.533215.

21. Tom Smith, Andreas Heger, and Ian Sudbery. UMI-tools:

modeling sequencing errors in unique molecular identifiers

to improve quantification accuracy. Genome Research, 27

(3):491–499, January 2017. doi: 10.1101/gr.209601.116.

URL https://doi.org/10.1101/gr.209601.116.

22. Daniel Liu. Fuzzysplit: demultiplexing and trimming

sequenced DNA with a declarative language. PeerJ, 7:

e7170, June 2019. doi: 10.7717/peerj.7170. URL https:

//doi.org/10.7717/peerj.7170.

23. Delaney K Sullivan and Lior Pachter. Flexible parsing

and preprocessing of technical sequences with splitcode.

bioRxiv, March 2023. doi: 10.1101/2023.03.20.533521. URL

https://doi.org/10.1101/2023.03.20.533521.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41592-022-01408-3
https://doi.org/10.1038/s41592-022-01408-3
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1101/2022.10.27.513881
https://doi.org/10.1101/2022.10.27.513881
https://doi.org/10.1101/2023.01.04.522742
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/gigascience/giy059
https://doi.org/10.1093/gigascience/giy059
https://doi.org/10.1038/s41467-022-34681-z
https://doi.org/10.1038/s41467-022-34681-z
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1371/journal.pcbi.1006361
https://doi.org/10.1371/journal.pcbi.1006361
https://doi.org/10.1186/s13059-019-1670-y
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1038/s41586-019-0969-x
https://scg-lib-structs.readthedocs.io/en/latest/
https://doi.org/10.1101/2023.03.17.533215
https://doi.org/10.1101/2023.03.17.533215
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.7717/peerj.7170
https://doi.org/10.7717/peerj.7170
https://doi.org/10.1101/2023.03.20.533521
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

simpleaf 5

24. Paolo Di Tommaso, Maria Chatzou, Evan W Floden,

Pablo Prieto Barja, Emilio Palumbo, and Cedric

Notredame. Nextflow enables reproducible computational

workflows. Nature Biotechnology, 35(4):316–319, April

2017. doi: 10.1038/nbt.3820. URL https://doi.org/10.

1038/nbt.3820.

25. Felix Mölder, Kim Philipp Jablonski, Brice Letcher,

Michael B. Hall, Christopher H. Tomkins-Tinch, Vanessa

Sochat, Jan Forster, Soohyun Lee, Sven O. Twardziok,

Alexander Kanitz, Andreas Wilm, Manuel Holtgrewe,

Sven Rahmann, Sven Nahnsen, and Johannes Köster.

Sustainable data analysis with snakemake. F1000Research,

10:33, April 2021. doi: 10.12688/f1000research.29032.2.

URL https://doi.org/10.12688/f1000research.29032.2.

26. Alexander Peltzer, Felipe Marques De Almeida, Olga

Botvinnik, Gregor Sturm, Kevin Menden, Sangram K Sahu,

Nf-Core Bot, Gisela Gabernet, Pol Alvarez, Tom Kelly,

Florian Heyl, Robert Syme, PETER BAILEY, Alex Thiery,

Harshil Patel, Regina Hertfelder Reynolds, Azedine Zoufir,

Hanka Medova, Khajidu, Marcel Ribeiro Dantas, Wei-

An Chen, Maxime U Garcia, Jeremy Leipzig, Phil Ewels,

Ameynert, and Valentin Marteau. nf-core/scrnaseq: nf-

core/scrnaseq v2.2.0 ”titanium chuckwalla”, 2023. URL

https://zenodo.org/record/7751399.

27. Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil

Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse

Garcia, Paolo Di Tommaso, and Sven Nahnsen. The

nf-core framework for community-curated bioinformatics

pipelines. Nature Biotechnology, 38(3):276–278, February

2020. doi: 10.1038/s41587-020-0439-x. URL https://doi.

org/10.1038/s41587-020-0439-x.

28. Alexander B. Rosenberg, Charles M. Roco, Richard A.

Muscat, Anna Kuchina, Paul Sample, Zizhen Yao, Lucas T.

Graybuck, David J. Peeler, Sumit Mukherjee, Wei Chen,

Suzie H. Pun, Drew L. Sellers, Bosiljka Tasic, and Georg

Seelig. Single-cell profiling of the developing mouse brain

and spinal cord with split-pool barcoding. Science, 360

(6385):176–182, April 2018. doi: 10.1126/science.aam8999.

URL https://doi.org/10.1126/science.aam8999.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.12688/f1000research.29032.2
https://zenodo.org/record/7751399
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 He et al.

Appendices
Appendix A simpleaf subcommands

Simpleaf provides subcommands for various purposes. Here we

briefly discuss the current subcommands exposed in simpleaf.

The alevin-fry team is actively working to improve existing

modules in the alevin-fry ecosystem as well as developing

new modules that will be most useful for the community.

For complete and up-to-date documentation, one can refer

to the official simpleaf documentation at https://simpleaf.

readthedocs.io/en/latest/.

In order to operate properly, simpleaf requires that

the environment variable ALEVIN FRY HOME exists. It will use

the directory pointed to by this variable to cache useful

information (e.g. the paths to selected versions of the tools

it invokes, configurations containing the mappings for custom

chemistries that have been registered, and other information

like the permit lists for certain chemistries). In popular

shells such as bash and zsh, this variable be set with export

ALEVIN FRY HOME=/full/path/to/dir/you/want/to/use

A.1 simpleaf set-paths

Before calling simpleaf, one has to run the simpleaf set-paths

command to set the paths to the underlying tools. If no flags

are provided, this program will try to find the dependencies in

the shell’s PATH. Currently, to use simpleaf, one must provide

a compatible version of pyroe (https://pyroe.readthedocs.io/

en/latest/), alevin-fry (https://alevin-fry.readthedocs.io/

en/latest/), and at least one of the alevin-fry mappers, piscem

or salmon.

A.2 simpleaf inspect

This subcommand inspects the configuration of simpleaf in the

current environment — such as the path to its dependencies

and the custom chemistries that have been registered — and

reports on the current configuration.

A.3 simpleaf index

The simpleaf index subcommand provides the functionality to

build a reference index from the provided reference set using

either the default salmon or the improved piscem indexing tool.

Usually, for a species, protocol pair, simpleaf index needs only

to be run once, and all subsequent experiments can utilize that

index. By default, simpleaf index takes a reference genome in

FASTA format and gene annotation in GTF format, and makes

the spliced+intronic (splici) reference index after extracting

the sequence of the spliced transcripts and intronic regions.

Other augmented reference types, such as the spliced+unspliced

(spliceu) reference, are also available in simpleaf index by

setting the --ref-type argument appropriately.

If one would like to build the index directly from the

provided reference sequences, for example, when the genome

build of a species is unavailable and the transcriptome

sequences are provided directly, one can pass the reference

sequence file to the --ref-seq argument.

A.4 simpleaf quant

The simpleaf quant subcommand is designed as an all-in-one

program to generate a gene×barcode count matrix directly from

the provided index and sequencing reads. By default, it takes a

piscem or salmon index, and the sequencing read (lists of FASTQ

files) as input. It maps the reads and resolves the associated

UMIs after detecting and correcting the cellular barcodes. It

also provides the option to directly begin quantification from

an already-computed set of mapping results, thereby skipping

the mapping process, via the --map-dir argument.

A.5 simpleaf add-chemistry

This subcommand adds a new custom fragment geometry

specification to the simpleaf geometry library together

with a unique name. Once added, one can specify

that custom geometry specification using the associated

name when running simpleaf quant. For example, if one

wants to store the geometry specification of sci-RNA-

seq3, one can invoke simpleaf add-chemistry --name sci-seq3

--geometry "1{b[9-10]f[CAGAGC]u[8]b[10]}2{r:}". Then, one

can use this geometry when calling simpleaf quant by

specifying --chemistry sci-seq3.

A.6 simpleaf get-workflow-config

This subcommand gets the workflow configuration file of

a published workflow from the protocol estuary GitHub

repository (https://github.com/COMBINE-lab/protocol-estuary).

When calling this program, simpleaf will automatically

download the protocol estuary GitHub repository into the

ALEVIN FRY HOME directory. If invoking unpublished workflows,

one can skip this step and provide the workflow configuration

files directly to simpleaf workflow via the --config-file flag.

A.7 simpleaf workflow

The simpleaf workflow subcommand is designed to run

potentially complex single-cell data processing workflows

according to a simpleaf workflow configuration file. Any valid

Jsonnet ((https://jsonnet.org/)) program and JSON file is a

valid simpleaf workflow configuration file. In simpleaf workflow,

the provided configuration file will be first converted to a

simpleaf workflow JSON file. Whereas the Jsonnet file provides

a “template” for the workflow and functions to handle features

like basic logic, the workflow JSON file that results is a

simple imperative description of the commands that are to be

executed.

To ease the later parsing process, the values of all command

arguments in the configuration file must be provided as strings,

i.e., wrapped by quotes ("value"). Simpleaf workflow will

traverse the converted workflow JSON file to find and parse

the valid fields that record either a simpleaf or an external

shell command. To provide the greatest flexibility, the only

requirement simpleaf workflow sets is for the layout of the fields

that records a command, either a simpleaf command or an

external command.

1. A command record field must contain a Step and a Program

Name sub-field, where the Step field represents which step,

using an integer, this command constitutes in the workflow.

The Program Name field represents a valid program in the

user’s execution environment. For example, the correct

Program Name for simpleaf index is "simpleaf index". For

an external command such as awk, if its binary is in the

user’s PATH environmental variable, it can just be "awk"; if

not, it must contain a valid path to its binary, for example,

"/usr/bin/awk".

2. If a field records a simpleaf command, i.e., it has a

valid Step and Program Name field, the name of the rest

of its sub-fields must be valid simpleaf flags (for example,

options like --fasta, or -f for short, for simpleaf index and

--unfiltered-pl, or -u for short for simpleaf quant). Those

option names (sub-field names), together with their values,

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://simpleaf.readthedocs.io/en/latest/
https://simpleaf.readthedocs.io/en/latest/
https://pyroe.readthedocs.io/en/latest/
https://pyroe.readthedocs.io/en/latest/
https://alevin-fry.readthedocs.io/en/latest/
https://alevin-fry.readthedocs.io/en/latest/
https://github.com/COMBINE-lab/protocol-estuary
https://jsonnet.org/
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

if any, will be used to call the corresponding simpleaf

program. Sub-fields that are not named by a valid simpleaf

flag will be ignored.

3. If a field records an external shell command, it must contain

a Step and a Program Name sub-field as described above. In

contrast to simpleaf command records, all arguments of an

external shell command must be provided in an array, in

order, with the name “Arguments”. Simpleaf workflow will

parse the entries in the array to build the actual command.

For example, to tell simpleaf workflow to invoke the shell

command $ls -l -h . at step 7, one needs to use the

following JSON record:

{

"Step": 7,

"Program Name": "ls",

"Arguments": ["-l", "-h", "."]

}

After converting the workflow configuration file into a

simpleaf workflow JSON file, simpleaf workflow will parse and

invoke the commands in the workflow according to the following

flags. If none of the flags are set, simpleaf workflow will invoke

the complete workflow.

• If setting the no-execution flag, simpleaf workflow will write

the complete workflow JSON file and other log files but

invoke none of the commands.

• If setting the start-at flag with a step number, simpleaf

workflow will begin the invocation from that specific step

number according to the Step field in the command records.

• If setting the resume flag, simpleaf workflow will find the

JSON configuration of a previous simpleaf workflow run in

the provided output folder to decide which is the starting

step number.

• If setting the skip-step flag with a set of comma-separated

step numbers, simpleaf workflow will invoke all but the

commands represented by those skipped step numbers.

Many useful and frequently used functions have been

provided as a simpleaf workflow utility library at https://

github.com/COMBINE-lab/protocol-estuary, which is also the

place we recommend our users submit the workflows they

designed.

Appendix B Example of streaming parser

invocation

Internally, simpleaf will first check if the given geometry

specification has a fixed barcode length and position. If it

does, read files will be directly passed to the underlying

mapper, designed to take fixed geometry reads. If not,

simpleaf will pass the geometry specification to its sequence

geometry parser (https://github.com/COMBINE-lab/seq_geom_

parser) and call its sequence geometry transformer (https:

//github.com/COMBINE-lab/seq_geom_xform) to “normalize” the

reads to a fixed geometry format and stream the transformed

reads directly to the mapper, without writing intermediate

files. For example, the simplified geometry description for

the geometry originally specified in Appendix section A.5

is 1{b[11]u[8]b[10]}2{r:}. The length of the first barcode

changes from 9 or 10 nucleotides to 11 because the sequence

geometry transformer augments the first barcode segment with

an A if the original barcode is of length 10 or with AC if it is of

length 9. By doing so, the first barcode of all reads will be of the

same length, and the augmented barcodes of hairpin barcodes

of different lengths will not overlap, as all hairpin barcodes of

length 9 now end with C and all of the length 10 ends with A

(this scheme can be naturally generalized to different segment

width ranges).

Appendix C Example of simpleaf workflow

invocation

As discussed in section A.7, simpleaf workflow is designed to

generate and invoke single-cell analysis workflows according

to a workflow configuration file (Jsonnet program). Simpleaf

uses the Jrsonnet (https://github.com/CertainLach/jrsonnet)

library for parsing the underlying Jsonnet configuration.

In the protocol estuary GitHub repository (https://

github.com/COMBINE-lab/protocol-estuary), we have published

a workflow for processing CITE-seq data. Once one has

obtained the workflow configuration file, for example, by calling

simpleaf get-workflow-config with the argument --workflow

cite-seq 10xv2 as discussed in Appendix section A.6 and has

filled in all required fields in the configuration file, i.e., the

file path to the needed files, they can call simpleaf workflow

and pass the complete configuration file to the --config-file

argument. simpleaf workflow will convert the configuration file

to a workflow JSON file using Jrsonnet and recursively find and

parse all valid command records in the JSON file.

Without the help of simpleaf workflow, one needs to develop

and invoke 12 distinct commands in the shell, including

preprocessing, to obtain all the desired results of this specific

workflow. Using simpleaf workflow, one only needs to fill the

path to the files of sequencing reads and reference sets in

the configuration file, and pass it to simpleaf workflow via

the --config-file argument. Then, simpleaf workflow will

automatically generate a data analysis pipeline for that specific

dataset and invoke all required commands for analyzing the

data.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534653doi: bioRxiv preprint

https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_xform
https://github.com/COMBINE-lab/seq_geom_xform
https://github.com/CertainLach/jrsonnet
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/protocol-estuary
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

	㈱㐠〠潢樊㰼 呩瑬攨﻿㈱㔠〠潢樊㰼 呩瑬攨﻿㈱㘠〠潢樊㰼 呩瑬攨﻿㈱㜠〠潢樊㰼 呩瑬攨﻿㈱㠠〠潢樊㰼 呩瑬攨﻿㈱㤠〠潢樊㰼 呩瑬攨﻿㈲〠〠潢樊㰼 呩瑬攨﻿㈲ㄠ〠潢樊㰼 呩瑬攨﻿㈲㈠〠潢樊㰼 呩瑬攨﻿㈲㌠〠潢樊㰼 呩瑬攨﻿㈲㐠〠潢樊㰼 呩瑬攨﻿㈲㔠〠潢樊㰼 呩瑬攨﻿㈲㘠〠潢樊㰼 呩瑬攨﻿㈲㜠〠潢樊㰼 呩瑬攨﻿㈲㠠〠潢樊㰼 呩瑬攨﻿㈲㤠〠潢樊㰼 呩瑬攨﻿㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱ㄳ⸶㠠㔵〮㤵㜠ㄲ㐮㔵㌠㔶㘮〶崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽯牣楤⹯牧⼰〰〭〰〱ⴸ㈵㤭㜴㌴⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲ㄴ⸷ㄳ‵㔳⸴㠵′㈵⸵㠷‵㘶⸰㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯潲捩搮潲术〰〰ⴰ〰ㄭ㠴㘳ⴱ㘷㔩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄳ㠮㔶㠠㔰㔮㌹㜠ㄹ㜮〵㘠㔱㌮㐹㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨敭慩氺牯所捳⹵浤⹥摵⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲〰⸸㘵″㘸⸳㈲″㠷⸶㈸″㜸⸵㘵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䍏䵂䥎䔭污戯獩浰汥慦⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔱⸲㈱″㔷⸳㘳″㔱⸶㘠㌶㜮㘰㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯獩浰汥慦⹲敡摴桥摯捳⹩漯敮⽬慴敳琯⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔰⸸㤴″㐶⸴〴″㤰⸶㈷″㔶⸶㐷崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽣潭扩湥⵬慢⹧楴桵戮楯⽡汥癩渭晲礭瑵瑯物慬猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㜵⸹㌹′㘳⸷㈴‸㈮㈰㌠㈷〮㔵崊⽄敳琠嬲‰⁒ 塙娠㌰㘮㜰〰‱㈹⸲㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬸㘮㠸㔠㈶㌮㜲㐠㤳⸱㐸′㜰⸵㕝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‷㈵⸹㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㠲㔠㈴㈮㠰㈠㘲⸰㠹′㐹⸶㈸崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㘸㐮〹㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㈮ㄵ㤠ㄹ〮㐹㤠ㄷ㠮㐲㈠ㄹ㜮㌲㑝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‶㈱⸳㌱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤲⸴㜠ㄵ㤮ㄱ㘠ㄹ㠮㜳㌠ㄶ㔮㤴㉝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‵㐸⸱〵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〳⸳ㄠㄵ㤮ㄱ㘠㈰㤮㔷㌠ㄶ㔮㤴㉝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‴㤵⸸〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠㄠㅝਯ䠯䤊⽒散琠嬲㠰⸱㔲‶㈮㤹ㄠ㈸㘮㐱㔠㜲⸴㠴崊⽄敳琠嬱‰⁒ 塙娠㔴⸵㌴〠㜳〮㘷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㘮㐸㔠ㄹ㌮㜲㠠㌶㈮㜴㤠㈰〮㔵㑝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‴㐳⸴㤸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔱⸷㔠ㄸ㌮㈶㜠㌵㠮〱㌠ㄹ〮〹㍝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰′㠶⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌱⸲㔹‱㜲⸸〶″㌷⸵㈳‱㜹⸶㌲崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㈲㌮㠲㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㔮㘱㘠ㄷ㈮㠰㘠㐰㘮ㄵ‱㜹⸶㌲崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠ㄶㄮ〵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔲㤮㄰㜠ㄴㄮ㐲㐠㔳㤮㘴㈠ㄴ㠮㈵崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㤸⸲㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔰⸹㜵‱㄰⸰㐲″㘱⸵〹‱ㄶ⸸㘷崊⽄敳琠嬵‰⁒ 塙娠㌰㘮㠳㠰‶㠴⸰㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌵⸷㠵‸㤮ㄲ″㐶⸳㈠㤵⸹㐶崊⽄敳琠嬵‰⁒ 塙娠㌰㘮㠳㠰‶〰⸴〹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮㈸⸵㌴㘵㌩㸾敮摯扪ਲ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㐮ㄲ‷㘷′㜶⸸㤶‷㜷崊⽁†㈵〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘴⸴㐸‷㔱‴〶⸴㠠㜶ㅝਯ䄠′㔲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㐠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪ਲ㔵‰⁯扪਼㰯丠㌯䱥湧瑨‱㤹㈾㹳瑲敡洊�߈慰灬Ƞ�浮瑲則䈠塙娠ߙ�����慣獰䅐偌��慰灬������������팭慰灬������������������������摥獣�Ĉ�o摳捭�Ÿ�֊捰牴�܄�8睴灴�ܼ��牘奚�ݐ��杘奚�ݤ��托奚�ݸ��牔剃�ތ��捨慤�ޜ�,扔剃�ތ��杔剃�ތ��摥獣����䝥湥物挠則䈠偲潦楬攀�����ᑇ敮敲楣⁒䝂⁐牯晩汥�������������������������浬畣������獫卋�(�Ƅ摡䑋�$�Ƭ捡䕓�$�ǐ癩噎�$�Ǵ灴䉒�&�Ș畫啁�*�Ⱦ晲䙕�(�ɨ桵䡕�(�ʐ穨呗���ʸ歯䭒���ˊ湢乏�&�ˠ捳䍚�"�̆桥䥌���̨牯剏�$�͆摥䑅�,�ͪ楴䥔�(�Ζ獶卅�&�ˠ穨䍎���ξ橡䩐���ϐ敬䝒�"�Ϫ灴偏�&�Ќ湬乌�(�в敳䕓�&�Ќ瑨呈�$�њ瑲呒�"�Ѿ晩䙉�(�Ҡ桲䡒�(�ӈ灬偌�,�Ӱ牵剕�"�Ԝ敮啓�&�Ծ慲䕇�&�դVšeobecný RGB profilGenerel RGB-profilPerfil RGB genèricCấu hình RGB ChungPerfil RGB GenéricoЗагальний профайл RGBProfil générique RVBÁltalános RGB profil通用RGB色彩描述일반 RGB 프룓ೇ簀䜀攀渀攀爀椀猀欀 刀䜀䈀ⴀ瀀爀漀昀椀氀伀戀攀挀渀ﴀ 刀䜀䈀 瀀爀漀昀椀氅픅񑐀 刀䜀䈀 󑐅��爀漀昀椀氀 刀䜀䈀 最攀渀攀爀椀挀䄀氀氀最攀洀攀椀渀攀猀 刀䜀䈀ⴀ倀爀漀昀椀氀倀爀漀昀椀氀漀 刀䜀䈀 最攀渀攀爀椀挀潦源ᨀ刀䜀䉣쾏蝎�Ⰰ 刀䜀䈀‰휰픰ꄰꐰ錃딃봃뤃먃찀 쀃섃뼃옃꼃묀 刀䜀䈀倀攀爀昀椀氀 刀䜀䈀 最攀渀爀椀挀漀䄀氀最攀洀攀攀渀 刀䜀䈀ⴀ瀀爀漀昀椀攀氎䈎ᬎ⌎䐎Ἆ┎䰀 刀䜀䈀‎ᜎㄎ䠎✎䐎ᬀ䜀攀渀攀氀 刀䜀䈀 倀爀漀昀椀氀椀夀氀攀椀渀攀渀 刀䜀䈀ⴀ瀀爀漀昀椀椀氀椀䜀攀渀攀爀椁ഀ欀椀 刀䜀䈀 瀀爀漀昀椀氀唀渀椀眀攀爀猀愀氀渀礀 瀀爀漀昀椀氀 刀䜀䈄Ḅ㄄䤄㠄㤀 㼄䀄㸄䐄㠄㬄䰀 刀䜀䈀䜀攀渀攀爀椀挀 刀䜀䈀 倀爀漀昀椀氀攆䔆䐆䄀 ⨆㤆ㄆ䨆䄀 刀䜀䈀 ✆䐆㤆✆䔀t數琀�C潰祲楧桴′〰㜠䅰灬攠䥮挮Ⱐ慬氠物杨瑳⁲敳敲癥搮X奚 ��ó刀Ā�Ė콘奚 ��t䴀=�큘奚 ��Z甀¬猀�㑘奚 ��(ᨀ�鼀¸㙣畲瘀���ā촀s昳㈀��Č䈀��￳☀�鈀ý釿￻ꋿ�ꌀ��À氊敮摳瑲敡洊敮摯扪ਲ㔶‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓‹‰⁒㸾敮摯扪ਲ㔷‰⁯扪਼㰯丠㌯䱥湧瑨‵㌶㸾獴牥慭਀�ᡡ灰氄�m湴牒䝂⁘奚 ĀĀ��a捳灁偐䰀�A偐䰀��������ö혀Ā�Óⵡ灰泬ﶣ踸蕇썭뒽佺����������������੤敳挀�ﰀ�っ灲琀�Ⰰ�偷瑰琀�簀�ᑲ塙娀�退�ᑧ塙娀�ꐀ�ᑢ塙娀�렀�ᑲ呒䌀�찀�⁣桡搀��Ɫ呒䌀�찀�⁧呒䌀�찀�⁭汵挀���Ā�౥湕匀�᐀�ᰀ䐀椀猀瀀氀愀礀 倀㍭汵挀���Ā�౥湕匀�㐀�ᰀ䌀漀瀀礀爀椀最栀琀 䄀瀀瀀氀攀 䤀渀挀⸀Ⰰ ㈀　㈀㉘奚 ��ö픀Ā�Óⱘ奚 ����=뿿�뭘奚 ��J뼀±㜀
류奚 ��(㠀�଀È륰慲愀��̀�ɦ昀ò꜀
夀�퀀
孳昳㈀��Č䈀��￳☀�錀ý郿￻ꋿ�ꌀ��À渊敮摳瑲敡洊敮摯扪ਲ㔸‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ卩穥嬱㌶㕝⽌敮杴栠㐶㌾㹳瑲敡洊碜闂՗ᙁ᐀倔ᖱᄻㅑ쉀吔꒻뮻셮䑁冱䆄缹ᵦ盟뱯盞㴷ⲕ藍鴧꞉熡㺓ⷒ䛈姪戰魅抗롳풥襁䲻�ˌ末놫鰅炔眡뼚᭝үᛗ櫗㥋犩렁뮱ೞ⒗ꮛ沋皫ꥮΫ�뭚�훰㮵믜떾믁㪶޻흙࿇稷냻ᯡ㣯⛱胶ꂳ᤾Ⓑ袇녇媑䟝淪ㅽ㬻긽ⅷꠧ셎瘊篚�鸁믹돚珮ở뷢׭䕧ὼ즻龿貽㉠ꢃ졫铱輈꾣ΰ澐㹡㜩濩龆鱠酪羛㈑籮竇Ɠʿ勯匾遟孍㙿䋹탽홪ꫡ㬸贲�䒘ᇪ筤♥혰愶糖㻇﹇㺗㉏㼒犾뺀눐ﱤ婤婌夢輅⼍ﱅⶣⲗ뽚괰ﰆ坒嘹읭圛纇欨殝㼈㿱羱ۊ䛴潼鏽㽼㍥௸ힴ헦蓘䛙๎驶�剶쥓솻췿ﯶ僶쫓囻౧쪁ᤶ୷⺬蘊敮摳瑲敡洊敮摯扪ਲ㔹‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ卩穥嬱㌶㕝⽌敮杴栠㐶㐾㹳瑲敡洊碜ꗂ襗䵁ᰀ怤銵კ䎑└닇꽺涯붐㕋⣼菶ⷊ阢媴壚鐤뮙㏷챽㏷㝳柞糧裏ᅏ䞧ۿꭽ髊㾴霛曲띷뫻೑烑彊柀㍥翚枚趰杅ﳐ㹋꠯틤矟沽�丨鶫㓇ﺍ㧏窜鮫犁뉑皿羴솅捹ꖋ瑿䇳晣줂턥꺇斗ਗ먜쉣മ挖备唯휽쀁ူ릒ﺬ뺘廥望ꔥ삏덱츟졒흫뗶뒮⟻䈜�⻛↔ᕸ྾쇬䛧䫧䒭�䶲單㞓崡�꽦瘲띊癔❵Ვ�빳㺆渇뾵ầ鏑盡ᑦ䷊᯦仉ퟸ⻫ৰ溲ඞ�櫟⍼૝设ዞ읭⅏鏻╟顧렇줗횳嫑⏜ꟁ쾡ố昼ᵸ黶鉍ﲉ㵓㫫ㅽ퇙읭㟖섟슗탲⇜½䳦䧧�廡ᛐ藖竾嶼䠺耷Ӯ삋鵯퍗䮤䭯膯텥怹ﾺ廁ﰏ휢叜੥湤獴牥慭੥湤潢樊㈶〠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽆畮捴楯湔祰攠《⽄潭慩湛《ㅝਯ剡湧敛《ㄊ《ㄊ《ㅝਯ䉩瑳健牓慭灬攠㠊⽓楺敛ㄳ㘵崯䱥湧瑨‱㘵㸾獴牥慭੸鲽싕ᇂ䀔Ր��ᥪ৮娃◲茶Ǽ惉擞뻍�䞳�帻낃ﻶ�瘱�ẩΡ幠鼵螔绠胾嗦졼းꓤ�ꋰ䐿ਜ卾羽埽삝▱叀㥦ظﭳꅴ฻潰⧶䱝.驝妻Ц嵛딂ᖸ鄃긓龾濙ᯀ䷦ᵣஸ⵻俟勵῀邯ᬊ敮摳瑲敡洊敮摯扪ਲ㘱‰⁯扪਼㰊⽒敧楳瑲礨䅤潢�

