bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license. )
simpleaf [ 1

bioRxiv, 2023, pp. 1-7

doi:

simpleaf: A simple, flexible, and scalable framework
for single-cell transcriptomics data processing using
alevin-fry

Dongze He®! and Rob Patro®?*

!Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA and ?Department of Computer Science and Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, USA

*Corresponding author. rob@cs.umd.edu

Abstract

Summary: The alevin-fry ecosystem provides a robust and growing suite of programs for single-cell data processing.
However, as new single-cell technologies are introduced, as the community continues to adjust best practices for data
processing, and as the alevin-fry ecosystem itself expands and grows, it is becoming increasingly important to manage
the complexity of alevin-fry’s single-cell preprocessing workflows while retaining the performance and flexibility that
make these tools enticing. We introduce simpleaf, a program that simplifies the processing of single-cell data using
tools from the alevin-fry ecosystem, and adds new functionality and capabilities, while retaining the flexibility and
performance of the underlying tools.

Availability and implementation: Simpleaf is written in Rust and released under a BSD 3-Clause license. It is freely
available from its GitHub repository https://github.com/COMBINE-1ab/simpleaf, and via bioconda. Documentation for
simpleaf is available at https://simpleaf.readthedocs.io/en/latest/ and tutorials for simpleaf are being developed
that can be accessed at https://combine-lab.github.io/alevin-fry-tutorials.
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[ ior is a high-level framework, that provides simple, exible,
Introduction high-1 1 f k hat d 1 flexibl
Single-cell sequencing has become an indispensable tool for and scalable interfaces for uniformly accessing standard and

studying cellular biology at the resolution of individual  advanced features in the alevin-fry ecosystem.

« » « » L
cells [1, 2], and processing the resulting data often requires The concept of “wrapper” or “workflow” programs in

a dedicated suite of tools and methods. Recently, He et al. the context of single-cell data processing pipelines is well-

[3] demonstrated that the alevin-fry ecosystem provides an established. Apart from the many bespoke workflows developed

efficient, accurate, and flexible framework for single-cell data for individual technologies, there exist several tools designed

processing. Yet, the rapid arrival of new technologies and to ease and simplify the processing of multiple types of data.

experimental modalities have led to data analysis pipelines that Here, we highlight a few examples, though this is not intended,

require increasingly complex and sophisticated workflows. For to constitute an exhaustive list of such tools. The popular

example, analyzing CITE-seq [4] data involves executing the Cell Ranger [7] tool itself is, in part, a Python script that

entire alevin-fry pipeline three times, each time with a slightly wraps STAR [8] and other tools designed by 10x Genomics. The

different configuration and on different sets of files. Likewise, zUMIs [9] and UniverSC [10] tools provide highly-capable suites

as improved tools, like the piscem [5, 6] read mapping tool, of workflows for processing data generated using many different
technologies using, respectively, STAR and Cell Ranger itself.
Kb-python is a Python tool that wraps kallisto|bustools [11]

and related tools, and provides a high-level interface to process

are introduced into the alevin-fry ecosystem, users wishing
to adopt these new tools have to learn their interfaces and

logistics.

data from many different experimental protocols and setups.
Software DeSCI‘ipti()ll The scPipe [12] tool is a modular wrapper around multiple tools
To simplify and ease the user experience for both simple and and packages within the R ecosystem, which uses the Subread

complex experimental setups, and to allow seamless use of the aligner [13] for mapping, and is capable of processing data from

newest alevin-fry ecosystem components, we have developed a variety of different single-cell technologies.

simpleaf (simple alevin-fry). Simpleaf (overview in Figure 1) Simpleaf is dedicated to providing a simple and flexible

user interface for the alevin-fry ecosystem, which consists of
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Fig. 1. Overview of some salient simpleaf subcommands, showing the flow of data through a hypothetical invocation. The leftmost expanded column

(blue) represents using the simpleaf index command to build a reference sequence and the corresponding piscem index. The center expanded column

(aqua) represents using this piscem index in conjunction with sequenced reads to produce a count matrix for subsequent analysis. Note that the indexer

and mapper of both piscem and salmon are fully supported in simpleaf. Finally, the rightmost expanded column (red) represents the invocation of a

hypothetical simpleaf workflow, where the workflow can require several input files and produce several outputs. Additional simpleaf subcommands are

described in the appendix.

a range of underlying tools and modules for single-cell data
processing [3, 5, 6, 14, 15, 16]. In addition to coordinating the
execution of these tools and providing a unified and simplified
interface, simpleaf also adds new functionality aimed at further
generalizing the capabilities of the underlying tools,
allowing users to easily create and share their own workflows

and

without having to program or modify simpleaf itself.

A simplified interface to core alevin-fry
functionality

The most basic functionality provided by simpleaf is that it
provides a simplified yet flexible interface to the underlying
alevin-fry modules and capabilities.

In simpleaf, the standard alevin-fry pipeline
distributed over two phases: which
creating an augmented (splici [3] or splicew [6]) reference,

where appropriate, and building the corresponding reference

[3] is

(i) indexing, includes

index, and (ii) quantification, which consists of read mapping,
and UMI resolution.

These two phases are exposed as two sub-commands within

cell barcode detection and correction,

simpleaf: simpleaf index and simpleaf quant. Each of these,
in turn, exposes various flags for retaining critical flexibility in
processing.

Although most of the functionality provided by simpleaf
programs can be directly replicated by calling the underlying
tools with the appropriate configurations and arguments,
the advantage of using simpleaf comes from the fact that
simpleaf, by default, incorporates the best practices for running
the underlying tools, reduces the workload by automatically
handling tedious but crucial details one needs to take care
of in the most common use cases, and also retains critical
flexibility when necessary. For example, if a simpleaf index
invocation is followed by a call to simpleaf quant, simpleaf
quant will automatically recruit and parameterize the correct
mapper, and will automatically locate and provide the file
containing the transcript-to-gene mapping information to later
quantification stages where appropriate. This file would have
explicitly provided if alevin-fry is not invoked through
simpleaf. Yet, to provide for maximum flexibility, simpleaf
provides alternative processing options as well, like the option
to begin the quantification process from an already-computed

set of mapping results and thus to skip the mapping process.

Dedicated parameterization for easily switching
between options and underlying tools

As the methodologies underlying single-cell quantification
advance, we have continued to improve the existing features
of the alevin-fry ecosystem and introduce new options and
Yet,
possibilities for single-cell analysis continue to expand, and the

functionality wherever appropriate. the options and
burden on users to keep up with new methods, tools, and best
practices grows. To ensure that the best practices and new
features of the alevin-fry ecosystem can be easily accessed
and applied by users to their data, simpleaf tracks current
best practices and provides built-in parameterizations under
simplified configurations, which allows seamless switching
between different options and backend tools.

One example is the ability to easily switch between
piscem [5, 6] and salmon [16, 14] as the underlying reference
indexing and mapping tools. Piscem is a new index and
mapper in the alevin-fry ecosystem that further lowers the
memory requirements for single-cell data processing [6], and
salmon [16, 14], which relies on the pufferfish index [17],
is the traditional mapper used with alevin-fry. As piscem
and salmon are independent tools with distinct parameters,
explicitly switching from salmon to piscem requires knowledge
about the piscem tool and the relevant details of its indexing
and mapping subcommands. However, in simpleaf, the only
modification needed to make use of piscem is to pass the
--use-piscem flag. Furthermore, for simplicity, if this flag is
set when calling simpleaf index, the subsequent simpleaf quant
executions that map against this index will automatically use
piscem, with appropriate parameters, as the mapper.

Another example is the ability to seamlessly build different
types of reference indices by simply changing the flags passed
to the simpleaf index command. Currently, simpleaf has the
ability to build three kinds of reference indices. Although the
procedure for generating these types of reference indexes is
different, simpleaf abstracts over the technicalities and only

requires the user to set the --ref-type option as desired.

Parsing protocols with a complex fragment geometry

Another useful feature provided by simpleaf is the ability to
represent and parse fragment geometry specifications that are
potentially more compler than those directly supported by the
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underlying mappers — for example, those with variable barcode
length and floating barcode position, such as sci-RNA-seq3 [18]
— using a concise description language'. An example of
streaming parser invocation can be found in appendix section B.

When presented with a “complex” geometry specification,
simpleaf “normalizes” these reads into an appropriate “simple”
format (a format with only known position and fixed-
length barcodes and UMIs) on the fly,
modified (and simplified) geometry format description to the

and provides a
underlying mapper. Moreover, it streams the normalized
reads directly to the mapper using FIFOs programmatically
managed by simpleaf, thereby avoiding intermediate disk
usage. This feature enables the existing mappers in the
alevin-fry ecosystem, which are designed to process reads
with simple geometry, to handle sophisticated geometries
without modifying the underlying mapping tools, requiring
extra preprocessing from the users, or taking the extra time
and space to write and read the intermediate representations.

To date, the community has put significant efforts into
documenting and categorizing the library layout for many
existing sequencing assays [19, 10, 20] and developing general
parsers for such protocols [21, 22, 10, 23]. Of course, these tools,
or their relevant components could also be applied to this task,
with the user handling the appropriate bookkeeping. However,
the built-in capability of simpleaf focuses on providing a
concise language for representing both simple and complex
fragment geometry that can be passed directly to simpleaf from
the command line, and the seamless internal normalization of
this complex geometry into a simplified form compatible with
both supported mappers.

Generalized and sharable workflow construction for
complex single-cell workflows

Simpleaf also provides the ability to execute complex and
highly-configurable alevin-fry workflows described by simple
user-provided configuration files. The purpose of the simpleaf
workflow module is neither to replace general workflow
languages like Nextflow [24] or Snakemake [25] that enable near-
limitless generality, but that require learning sophisticated and
complex domain-specific languages, nor to expose some set of
easy-to-use but pre-defined workflows for complex single-cell
protocols as in Cell Ranger and kb-python. Rather, simpleaf
workflow aims to provide a platform for alevin-fry users with
all levels of programming knowledge to easily create, invoke,
and share their workflows, which can contain not only simpleaf
commands but also any shell commands that are valid in the
user’s terminal. It allows the definition, via a simple imperative
configuration and templating system, of custom workflows
parameterized on user-defined input, which can then be reused
to simplify the processing of complex workflows and easily
shared with other users.

Simpleaf workflow takes a workflow configuration (a Jsonnet
program) as input?, converts it to a complete workflow JSON
file, and invokes some or all recorded simpleaf program
commands and external shell commands in an appropriate
order. More details can be found in Appendix sections A.7
and C. This design allows users with limited programming
experience to define a simple but useful workflow as a JSON

I The current specification of this description language
is available at https://hackmd.io/@PI70g0l1ReeBZu_pjQGUQQ/
rJMgmvri3.

2 Any valid JSON document is also a valid Jsonnet program.
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configuration, but also makes it possible for advanced users to
develop sophisticated Jsonnet programs to generate simpleaf
workflows by taking advantage of the full functionality provided
by the Jsonnet language. Furthermore, this design also makes
it easy for users to create and share their workflows by simply
sharing their workflow configuration files, without the need to
understand and contribute to the codebase of simpleaf itself.
To demonstrate the utility of the simpleaf workflow command,
we have built such workflow configurations for processing
CITE-seq [4] and 10x Genomics feature barcode data. We are
continuing to develop more workflow configurations and are also
accepting contributions from the community.

Discussion

Simpleaf provides a simple and flexible interface to access the
state-of-the-art features provided by the alevin-fry ecosystem,
tracks best practices using the underlying tools, enables users
to transparently process data with complex fragment geometry,
and to build and execute sophisticated workflows containing
both simpleaf and external commands without the need to
write code. Simpleaf has already seen adoption in community-
led projects, for example, in the scrna analysis pipeline of the
nf-core project [26, 27]. We hope that, in the future, simpleaf
can serve as an entry point and main interface to the alevin-fry
ecosystem for most users. We also envision that our workflow
feature can encourage those in the community to create and
share their workflows and, thus, can help simpleaf to provide
increasingly reusable building blocks to enable more varied and
sophisticated single-cell data analysis pipelines.

While simpleaf provides a simple and flexible framework
for single-cell data processing, the current implementation
still has some limitations, which motivate future work. For
example, although the fragment geometry parser can parse
barcodes with variable length and floating position, it currently
lacks the ability to perform certain kinds of preprocessing,
like the barcode substitution scheme required by the split-
seq [28] technology. This can be solved by expanding the
current geometry specification to describe and enable this kind
of preprocessing. Moreover, simpleaf workflow is still under
active development. Current efforts are underway to improve
its generality, expand its library of standard functions, and to
develop more useful and sophisticated workflows for different
purposes.
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Appendices

Appendix A simpleaf subcommands

Simpleaf provides subcommands for various purposes. Here we
briefly discuss the current subcommands exposed in simpleaf.
The alevin-fry team is actively working to improve existing
modules in the alevin-fry ecosystem as well as developing
new modules that will be most useful for the community.
For complete and up-to-date documentation, one can refer
to the official simpleaf documentation at https://simpleaf.
readthedocs.io/en/latest/.

In order to operate properly, simpleaf requires that
the environment variable ALEVIN_FRY_HOME exists. It will use
the directory pointed to by this variable to cache useful
information (e.g. the paths to selected versions of the tools
it invokes, configurations containing the mappings for custom
chemistries that have been registered, and other information
like the permit lists for certain chemistries). In popular
shells such as bash and zsh, this variable be set with export
ALEVIN_FRY_HOME=/full/path/to/dir/you/want/to/use

A.1 simpleaf set-paths

Before calling simpleaf, one has to run the simpleaf set-paths
command to set the paths to the underlying tools. If no flags
are provided, this program will try to find the dependencies in
the shell’s PATH. Currently, to use simpleaf, one must provide
a compatible version of pyroe (https://pyroe.readthedocs.io/
en/latest/), alevin-fry (https://alevin-fry.readthedocs.io/
en/latest/), and at least one of the alevin-fry mappers, piscem

or salmon.

A.2 simpleaf inspect

This subcommand inspects the configuration of simpleaf in the
current environment — such as the path to its dependencies
and the custom chemistries that have been registered — and
reports on the current configuration.

A.3 simpleaf index

The simpleaf index subcommand provides the functionality to
build a reference index from the provided reference set using
either the default salmon or the improved piscem indexing tool.
Usually, for a species, protocol pair, simpleaf index needs only
to be run once, and all subsequent experiments can utilize that
index. By default, simpleaf index takes a reference genome in
FASTA format and gene annotation in GTF format, and makes
the spliced+intronic (splici) reference index after extracting
the sequence of the spliced transcripts and intronic regions.
Other augmented reference types, such as the spliced+unspliced
(spliceu) reference, are also available in simpleaf index by
setting the --ref-type argument appropriately.

If one would like to build the index directly from the
provided reference sequences, for example, when the genome
build of a species is unavailable and the transcriptome
sequences are provided directly, one can pass the reference
sequence file to the --ref-seq argument.

A4 simpleaf quant

The simpleaf quant subcommand is designed as an all-in-one
program to generate a gene X barcode count matrix directly from
the provided index and sequencing reads. By default, it takes a
piscem or salmon index, and the sequencing read (lists of FASTQ
files) as input. It maps the reads and resolves the associated
UMIs after detecting and correcting the cellular barcodes. It
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also provides the option to directly begin quantification from
an already-computed set of mapping results, thereby skipping
the mapping process, via the --map-dir argument.

A5 simpleaf add-chemistry

This subcommand adds a new custom fragment geometry
specification to the simpleaf geometry library together
with a wunique name. Once added, one can specify
that custom geometry specification using the associated
name when running simpleaf quant. For example, if one
wants to store the geometry specification of sci-RNA-
seq3, one can invoke simpleaf add-chemistry --name sci-seq3
--geometry "1{b[9-10]1f [CAGAGC]u[8]b[10]}2{r:}". Then, one
can use this geometry when calling simpleaf quant by
specifying --chemistry sci-seq3.

A6 simpleaf get-workflow-config

This subcommand gets the workflow configuration file of
a published workflow from the protocol estuary GitHub
repository (https://github.com/COMBINE-1lab/protocol-estuary).
When calling this program, simpleaf will automatically
download the protocol estuary GitHub repository into the
ALEVIN_FRY_HOME directory. If invoking unpublished workflows,
one can skip this step and provide the workflow configuration

files directly to simpleaf workflow via the --config-file flag.

A7 simpleaf workflow

The simpleaf workflow subcommand is designed to run
potentially complex single-cell data processing workflows
according to a simpleaf workflow configuration file. Any valid
Jsonnet ((https://jsonnet.org/)) program and JSON file is a
valid simpleaf workflow configuration file. In simpleaf workflow,
the provided configuration file will be first converted to a
simpleaf workflow JSON file. Whereas the Jsonnet file provides
a “template” for the workflow and functions to handle features
like basic logic, the workflow JSON file that results is a
simple imperative description of the commands that are to be
executed.

To ease the later parsing process, the values of all command
arguments in the configuration file must be provided as strings,
i.e., wrapped by quotes ("value"). Simpleaf workflow will
traverse the converted workflow JSON file to find and parse
the valid fields that record either a simpleaf or an external
shell command. To provide the greatest flexibility, the only
requirement simpleaf workflow sets is for the layout of the fields
that records a command, either a simpleaf command or an
external command.

1. A command record field must contain a Step and a Program
Name sub-field, where the Step field represents which step,
using an integer, this command constitutes in the workflow.
The Program Name field represents a valid program in the
user’s execution environment. For example, the correct
Program Name for simpleaf index is "simpleaf index". For
an external command such as awk, if its binary is in the
user’s PATH environmental variable, it can just be "awk"; if
not, it must contain a valid path to its binary, for example,
"/usr/bin/awk".

2. If a field records a simpleaf command, i.e., it has a
valid Step and Program Name field, the name of the rest
of its sub-fields must be valid simpleaf flags (for example,
options like --fasta, or -f for short, for simpleaf index and
--unfiltered-pl, or —u for short for simpleaf quant). Those
option names (sub-field names), together with their values,
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if any, will be used to call the corresponding simpleaf
program. Sub-fields that are not named by a valid simpleaf
flag will be ignored.

3. Ifafield records an external shell command, it must contain
a Step and a Program Name sub-field as described above. In
contrast to simpleaf command records, all arguments of an
external shell command must be provided in an array, in
order, with the name “Arguments”. Simpleaf workflow will
parse the entries in the array to build the actual command.
For example, to tell simpleaf workflow to invoke the shell
command $1s -1 -h . at step 7, one needs to use the

following JSON record:

{
"Step": 7,
"Program Name": "ls",
"Arguments": ["-1", "-h", "."]
}

After converting the workflow configuration file into a
simpleaf workflow JSON file, simpleaf workflow will parse and
invoke the commands in the workflow according to the following
flags. If none of the flags are set, simpleaf workflow will invoke
the complete workflow.

e Ifsetting the no-execution flag, simpleaf workflow will write
the complete workflow JSON file and other log files but
invoke none of the commands.

o If setting the start-at flag with a step number, simpleaf
workflow will begin the invocation from that specific step
number according to the Step field in the command records.

e If setting the resume flag, simpleaf workflow will find the
JSON configuration of a previous simpleaf workflow run in
the provided output folder to decide which is the starting
step number.

o If setting the skip-step flag with a set of comma-separated
step numbers, simpleaf workflow will invoke all but the
commands represented by those skipped step numbers.

Many useful and frequently used functions have been
provided as a simpleaf workflow utility library at https://
github.com/COMBINE-lab/protocol-estuary, which is also the
place we recommend our users submit the workflows they
designed.

Appendix B Example of streaming parser
invocation

Internally, simpleaf will first check if the given geometry
specification has a fixed barcode length and position. If it
does, read files will be directly passed to the underlying

7

If not,
simpleaf will pass the geometry specification to its sequence
geometry parser (https://github.com/COMBINE-lab/seq_geom_

mapper, designed to take fixed geometry reads.

parser) and call its sequence geometry transformer (https:
//github.com/COMBINE-1lab/seq_geom_xform) to “normalize” the
reads to a fixed geometry format and stream the transformed
reads directly to the mapper, without writing intermediate
files. For example, the simplified geometry description for
the geometry originally specified in Appendix section A.5
is 1{b[11]ul[8]b[10]}2{r:}. The length of the first barcode
changes from 9 or 10 nucleotides to 11 because the sequence
geometry transformer augments the first barcode segment with
an A if the original barcode is of length 10 or with AC if it is of
length 9. By doing so, the first barcode of all reads will be of the
same length, and the augmented barcodes of hairpin barcodes
of different lengths will not overlap, as all hairpin barcodes of
length 9 now end with C and all of the length 10 ends with A
(this scheme can be naturally generalized to different segment
width ranges).

Appendix C Example of simpleaf workflow
invocation

As discussed in section A.7, simpleaf workflow is designed to
generate and invoke single-cell analysis workflows according
to a workflow configuration file (Jsonnet program). Simpleaf
uses the Jrsonnet (https://github.com/CertainLach/jrsonnet)
library for parsing the underlying Jsonnet configuration.

In the protocol estuary GitHub repository (https://
github.com/COMBINE-1lab/protocol-estuary), we have published
a workflow for processing CITE-seq data. Once one has
obtained the workflow configuration file, for example, by calling
simpleaf get-workflow-config with the argument --workflow
cite-seq-10xv2 as discussed in Appendix section A.6 and has
filled in all required fields in the configuration file, i.e., the
file path to the needed files, they can call simpleaf workflow
and pass the complete configuration file to the --config-file
argument. simpleaf workflow will convert the configuration file
to a workflow JSON file using Jrsonnet and recursively find and
parse all valid command records in the JSON file.

Without the help of simpleaf workflow, one needs to develop
and invoke 12 distinct commands in the shell, including
preprocessing, to obtain all the desired results of this specific
workflow. Using simpleaf workflow, one only needs to fill the
path to the files of sequencing reads and reference sets in
the configuration file, and pass it to simpleaf workflow via
the --config-file argument. Then, simpleaf workflow will
automatically generate a data analysis pipeline for that specific
dataset and invoke all required commands for analyzing the
data.
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