bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.)
simpleaf [1

bioRxiv, 2023, pp. 1-7

doi:

simpleaf: A simple, flexible, and scalable framework
for single-cell transcriptomics data processing using
alevin-fry

Dongze He®! and Rob Patro®?*

!Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA and ?Department of Computer Science and Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, USA

*Corresponding author. rob@cs.umd.edu

Abstract

Summary: The alevin-fry ecosystem provides a robust and growing suite of programs for single-cell data processing.
However, as new single-cell technologies are introduced, as the community continues to adjust best practices for data
processing, and as the alevin-fry ecosystem itself expands and grows, it is becoming increasingly important to manage
the complexity of alevin-fry’s single-cell preprocessing workflows while retaining the performance and flexibility that
make these tools enticing. We introduce simpleaf, a program that simplifies the processing of single-cell data using
tools from the alevin-fry ecosystem, and adds new functionality and capabilities, while retaining the flexibility and
performance of the underlying tools.

Availability and implementation: Simpleaf is written in Rust and released under a BSD 3-Clause license. It is freely
available from its GitHub repository https://github.com/COMBINE-1ab/simpleaf, and via bioconda. Documentation for
simpleaf is available at https://simpleaf.readthedocs.io/en/latest/ and tutorials for simpleaf are being developed
that can be accessed at https://combine-lab.github.io/alevin-fry-tutorials.

Key words: single-cell RNA-seq, single-nucleus RNA-seq, single-cell multiomics, feature barcoding.

[ior is a high-level framework, that provides simple, exible,
Introduction high-1 1 f k hat d 1 flexibl
Single-cell sequencing has become an indispensable tool for and scalable interfaces for uniformly accessing standard and

studying cellular biology at the resolution of individual advanced features in the alevin-fry ecosystem.

« » « » L
cells [1, 2], and processing the resulting data often requires The concept of “wrapper” or “workflow” programs in

a dedicated suite of tools and methods. Recently, He et al. the context of single-cell data processing pipelines is well-

[3] demonstrated that the alevin-fry ecosystem provides an established. Apart from the many bespoke workflows developed

efficient, accurate, and flexible framework for single-cell data for individual technologies, there exist several tools designed

processing. Yet, the rapid arrival of new technologies and to ease and simplify the processing of multiple types of data.

experimental modalities have led to data analysis pipelines that Here, we highlight a few examples, though this is not intended,

require increasingly complex and sophisticated workflows. For to constitute an exhaustive list of such tools. The popular

example, analyzing CITE-seq [4] data involves executing the Cell Ranger [7] tool itself is, in part, a Python script that

entire alevin-fry pipeline three times, each time with a slightly wraps STAR [8] and other tools designed by 10x Genomics. The

different configuration and on different sets of files. Likewise, zUMIs [9] and UniverSC [10] tools provide highly-capable suites

as improved tools, like the piscem [5, 6] read mapping tool, of workflows for processing data generated using many different
technologies using, respectively, STAR and Cell Ranger itself.
Kb-python is a Python tool that wraps kallisto|bustools [11]

and related tools, and provides a high-level interface to process

are introduced into the alevin-fry ecosystem, users wishing
to adopt these new tools have to learn their interfaces and

logistics.

data from many different experimental protocols and setups.
Software DeSCI‘ipti()ll The scPipe [12] tool is a modular wrapper around multiple tools
To simplify and ease the user experience for both simple and and packages within the R ecosystem, which uses the Subread

complex experimental setups, and to allow seamless use of the aligner [13] for mapping, and is capable of processing data from

newest alevin-fry ecosystem components, we have developed a variety of different single-cell technologies.

simpleaf (simple alevin-fry). Simpleaf (overview in Figure 1) Simpleaf is dedicated to providing a simple and flexible

user interface for the alevin-fry ecosystem, which consists of

https://orcid.org/0000-0001-8259-7434
https://orcid.org/0000-0001-8463-1675
email:rob@cs.umd.edu
https://github.com/COMBINE-lab/simpleaf
https://simpleaf.readthedocs.io/en/latest/
https://combine-lab.github.io/alevin-fry-tutorials
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

2 | He et al.

’

made available under aCC-BY-NC-ND 4.0 International license.

'

Quant Outputs

=~
Al

=5

Piscem
Indexer

» Reference

£ 0B x Construction 2

T o %) = f

e = =N |

5 2 £ T

7 Y= v Y= vy
;358 | =
o 3 o o B DE
s g §)E = |
EfLE 2 N

7

L]

P
o |
£
Q
-
o
T
T
T
© |
[l
©
9
Q|
£
[}

Indexing

LY

Index Outputs

Q |

Index

Parsing &
Normalization |

3
o
=
x
~
]
3
-
(o]
o
S
E
2]

Mapping

4 ANV
o . Workflow
o lg

Workflow Outputs

Fig. 1. Overview of some salient simpleaf subcommands, showing the flow of data through a hypothetical invocation. The leftmost expanded column

(blue) represents using the simpleaf index command to build a reference sequence and the corresponding piscem index. The center expanded column

(aqua) represents using this piscem index in conjunction with sequenced reads to produce a count matrix for subsequent analysis. Note that the indexer

and mapper of both piscem and salmon are fully supported in simpleaf. Finally, the rightmost expanded column (red) represents the invocation of a

hypothetical simpleaf workflow, where the workflow can require several input files and produce several outputs. Additional simpleaf subcommands are

described in the appendix.

a range of underlying tools and modules for single-cell data
processing [3, 5, 6, 14, 15, 16]. In addition to coordinating the
execution of these tools and providing a unified and simplified
interface, simpleaf also adds new functionality aimed at further
generalizing the capabilities of the underlying tools,
allowing users to easily create and share their own workflows

and

without having to program or modify simpleaf itself.

A simplified interface to core alevin-fry
functionality

The most basic functionality provided by simpleaf is that it
provides a simplified yet flexible interface to the underlying
alevin-fry modules and capabilities.

In simpleaf, the standard alevin-fry pipeline
distributed over two phases: which
creating an augmented (splici [3] or splicew [6]) reference,

where appropriate, and building the corresponding reference

[3] is

(i) indexing, includes

index, and (ii) quantification, which consists of read mapping,
and UMI resolution.

These two phases are exposed as two sub-commands within

cell barcode detection and correction,

simpleaf: simpleaf index and simpleaf quant. Each of these,
in turn, exposes various flags for retaining critical flexibility in
processing.

Although most of the functionality provided by simpleaf
programs can be directly replicated by calling the underlying
tools with the appropriate configurations and arguments,
the advantage of using simpleaf comes from the fact that
simpleaf, by default, incorporates the best practices for running
the underlying tools, reduces the workload by automatically
handling tedious but crucial details one needs to take care
of in the most common use cases, and also retains critical
flexibility when necessary. For example, if a simpleaf index
invocation is followed by a call to simpleaf quant, simpleaf
quant will automatically recruit and parameterize the correct
mapper, and will automatically locate and provide the file
containing the transcript-to-gene mapping information to later
quantification stages where appropriate. This file would have
explicitly provided if alevin-fry is not invoked through
simpleaf. Yet, to provide for maximum flexibility, simpleaf
provides alternative processing options as well, like the option
to begin the quantification process from an already-computed

set of mapping results and thus to skip the mapping process.

Dedicated parameterization for easily switching
between options and underlying tools

As the methodologies underlying single-cell quantification
advance, we have continued to improve the existing features
of the alevin-fry ecosystem and introduce new options and
Yet,
possibilities for single-cell analysis continue to expand, and the

functionality wherever appropriate. the options and
burden on users to keep up with new methods, tools, and best
practices grows. To ensure that the best practices and new
features of the alevin-fry ecosystem can be easily accessed
and applied by users to their data, simpleaf tracks current
best practices and provides built-in parameterizations under
simplified configurations, which allows seamless switching
between different options and backend tools.

One example is the ability to easily switch between
piscem [5, 6] and salmon [16, 14] as the underlying reference
indexing and mapping tools. Piscem is a new index and
mapper in the alevin-fry ecosystem that further lowers the
memory requirements for single-cell data processing [6], and
salmon [16, 14], which relies on the pufferfish index [17],
is the traditional mapper used with alevin-fry. As piscem
and salmon are independent tools with distinct parameters,
explicitly switching from salmon to piscem requires knowledge
about the piscem tool and the relevant details of its indexing
and mapping subcommands. However, in simpleaf, the only
modification needed to make use of piscem is to pass the
--use-piscem flag. Furthermore, for simplicity, if this flag is
set when calling simpleaf index, the subsequent simpleaf quant
executions that map against this index will automatically use
piscem, with appropriate parameters, as the mapper.

Another example is the ability to seamlessly build different
types of reference indices by simply changing the flags passed
to the simpleaf index command. Currently, simpleaf has the
ability to build three kinds of reference indices. Although the
procedure for generating these types of reference indexes is
different, simpleaf abstracts over the technicalities and only

requires the user to set the --ref-type option as desired.

Parsing protocols with a complex fragment geometry

Another useful feature provided by simpleaf is the ability to
represent and parse fragment geometry specifications that are
potentially more compler than those directly supported by the

https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

underlying mappers — for example, those with variable barcode
length and floating barcode position, such as sci-RNA-seq3 [18]
— using a concise description language'. An example of
streaming parser invocation can be found in appendix section B.

When presented with a “complex” geometry specification,
simpleaf “normalizes” these reads into an appropriate “simple”
format (a format with only known position and fixed-
length barcodes and UMIs) on the fly,
modified (and simplified) geometry format description to the

and provides a
underlying mapper. Moreover, it streams the normalized
reads directly to the mapper using FIFOs programmatically
managed by simpleaf, thereby avoiding intermediate disk
usage. This feature enables the existing mappers in the
alevin-fry ecosystem, which are designed to process reads
with simple geometry, to handle sophisticated geometries
without modifying the underlying mapping tools, requiring
extra preprocessing from the users, or taking the extra time
and space to write and read the intermediate representations.

To date, the community has put significant efforts into
documenting and categorizing the library layout for many
existing sequencing assays [19, 10, 20] and developing general
parsers for such protocols [21, 22, 10, 23]. Of course, these tools,
or their relevant components could also be applied to this task,
with the user handling the appropriate bookkeeping. However,
the built-in capability of simpleaf focuses on providing a
concise language for representing both simple and complex
fragment geometry that can be passed directly to simpleaf from
the command line, and the seamless internal normalization of
this complex geometry into a simplified form compatible with
both supported mappers.

Generalized and sharable workflow construction for
complex single-cell workflows

Simpleaf also provides the ability to execute complex and
highly-configurable alevin-fry workflows described by simple
user-provided configuration files. The purpose of the simpleaf
workflow module is neither to replace general workflow
languages like Nextflow [24] or Snakemake [25] that enable near-
limitless generality, but that require learning sophisticated and
complex domain-specific languages, nor to expose some set of
easy-to-use but pre-defined workflows for complex single-cell
protocols as in Cell Ranger and kb-python. Rather, simpleaf
workflow aims to provide a platform for alevin-fry users with
all levels of programming knowledge to easily create, invoke,
and share their workflows, which can contain not only simpleaf
commands but also any shell commands that are valid in the
user’s terminal. It allows the definition, via a simple imperative
configuration and templating system, of custom workflows
parameterized on user-defined input, which can then be reused
to simplify the processing of complex workflows and easily
shared with other users.

Simpleaf workflow takes a workflow configuration (a Jsonnet
program) as input?, converts it to a complete workflow JSON
file, and invokes some or all recorded simpleaf program
commands and external shell commands in an appropriate
order. More details can be found in Appendix sections A.7
and C. This design allows users with limited programming
experience to define a simple but useful workflow as a JSON

I The current specification of this description language
is available at https://hackmd.io/@PI70g0l1ReeBZu_pjQGUQQ/
rJMgmvri3.

2 Any valid JSON document is also a valid Jsonnet program.

simpleaf | 3

configuration, but also makes it possible for advanced users to
develop sophisticated Jsonnet programs to generate simpleaf
workflows by taking advantage of the full functionality provided
by the Jsonnet language. Furthermore, this design also makes
it easy for users to create and share their workflows by simply
sharing their workflow configuration files, without the need to
understand and contribute to the codebase of simpleaf itself.
To demonstrate the utility of the simpleaf workflow command,
we have built such workflow configurations for processing
CITE-seq [4] and 10x Genomics feature barcode data. We are
continuing to develop more workflow configurations and are also
accepting contributions from the community.

Discussion

Simpleaf provides a simple and flexible interface to access the
state-of-the-art features provided by the alevin-fry ecosystem,
tracks best practices using the underlying tools, enables users
to transparently process data with complex fragment geometry,
and to build and execute sophisticated workflows containing
both simpleaf and external commands without the need to
write code. Simpleaf has already seen adoption in community-
led projects, for example, in the scrna analysis pipeline of the
nf-core project [26, 27]. We hope that, in the future, simpleaf
can serve as an entry point and main interface to the alevin-fry
ecosystem for most users. We also envision that our workflow
feature can encourage those in the community to create and
share their workflows and, thus, can help simpleaf to provide
increasingly reusable building blocks to enable more varied and
sophisticated single-cell data analysis pipelines.

While simpleaf provides a simple and flexible framework
for single-cell data processing, the current implementation
still has some limitations, which motivate future work. For
example, although the fragment geometry parser can parse
barcodes with variable length and floating position, it currently
lacks the ability to perform certain kinds of preprocessing,
like the barcode substitution scheme required by the split-
seq [28] technology. This can be solved by expanding the
current geometry specification to describe and enable this kind
of preprocessing. Moreover, simpleaf workflow is still under
active development. Current efforts are underway to improve
its generality, expand its library of standard functions, and to
develop more useful and sophisticated workflows for different
purposes.

Competing interests

RP is a co-founder of Ocean Genomics inc.

Funding

This work has been supported by the US National Institutes
of Health (R01 HGO009937), and the US National Science
Foundation (CCF-1750472, and CNS-1763680). Also, this
project has been made possible in part by grant number 252586
from the Chan Zuckerberg Initiative Foundation. The funders
had no role in the design of the method, data analysis, decision
to publish or preparation of the manuscript.

References

1. Efthymia Papalexi and Rahul Satija. Single-cell RNA
sequencing to explore immune cell heterogeneity. Nature
Reviews Immunology, 18(1):35-45, August 2017. doi:
10.1038/nri.2017.76. URL https://doi.org/10.1038/nri.
2017.76.

https://hackmd.io/@PI7Og0l1ReeBZu_pjQGUQQ/rJMgmvr13
https://hackmd.io/@PI7Og0l1ReeBZu_pjQGUQQ/rJMgmvr13
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10.

11.

4|

He et al.

Tim Stuart and Rahul Satija.
analysis. Nature Reviews Genetics, 20(5):257-272, January
2019. doi: 10.1038/s41576-019-0093-7. URL https://doi.
org/10.1038/s41576-019-0093-7.

Mohsen Zakeri, Hirak Sarkar, Charlotte
Soneson, Avi Srivastava, and Rob Patro. Alevin-fry unlocks

Integrative single-cell

Dongze He,

rapid, accurate and memory-frugal quantification of single-
cell RNA-seq data. Nature Methods, 19(3):316-322, March
2022. doi: 10.1038/s41592-022-01408-3. URL https://doi.
org/10.1038/s415692-022-01408-3.

Marlon Christoph Hafemeister, William
Brian Houck-Loomis, Pratip K
Harold Swerdlow, Rahul Satija,
Simultaneous epitope and transcriptome
measurement in single cells. Nature Methods, 14(9):
865-868, July 2017. doi: 10.1038/nmeth.4380. URL
https://doi.org/10.1038/nmeth.4380.

Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and

Stoeckius,
Stephenson,
Chattopadhyay,
Peter Smibert.

and

Rob Patro. Spectrum preserving tilings enable sparse and
modular reference indexing. bioRziv, October 2022. doi:
10.1101/2022.10.27.513881. URL https://doi.org/10.1101/
2022.10.27.513881.

Dongze He, Charlotte Soneson, and Rob Patro.
Understanding and evaluating ambiguity in single-
cell and single-nucleus RNA-sequencing. bioRxiv,
January 2023. doi: 10.1101/2023.01.04.522742. URL

https://doi.org/10.1101/2023.01.04.522742.

Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader,
Paul Ryvkin, Zachary W. Bent, Ryan Wilson, Solongo B.
Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie
Zhu, Mark T. Gregory, Joe Shuga, Luz Montesclaros,
Jason G. Underwood, Donald A. Masquelier, Stefanie Y.
Nishimura, Michael Schnall-Levin, Paul W. Wyatt,
Christopher M. Hindson, Rajiv Bharadwaj, Alexander
Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg,
Christopher McFarland, Keith R. Loeb, William J. Valente,
Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich,
Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H.
Bielas. Massively parallel digital transcriptional profiling
of single cells. Nature Communications, 8(1), January
2017. doi: 10.1038 /ncomms14049. URL https://doi.org/
10.1038/ncomms14049.

Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg
Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark
and Thomas R. Gingeras. STAR: ultrafast
Bioinformatics, 29(1):15-21,

Chaisson,
universal RNA-seq aligner.

October 2012. doi: 10.1093/bioinformatics/bts635. URL
https://doi.org/10.1093/bioinformatics/bts635.
Swati Parekh, Christoph Ziegenhain, Beate Vieth,

Wolfgang Enard, zUMIs - a fast
and flexible pipeline to process RNA sequencing data

and Ines Hellmann.

with UMIs. GigaScience, 7(6), May 2018. doi: 10.
1093 /gigascience/giy059. URL https://doi.org/10.1093/
gigascience/giy059.

Kai Battenberg, S. Thomas Kelly, Radu Abu Ras, Nicola A.
Makoto Hayashi, and Aki Minoda. A
flexible cross-platform single-cell data processing pipeline.
Nature Communications, 13(1), November 2022. doi: 10.
1038/s41467-022-34681-z. URL https://doi.org/10.1038/
s41467-022-34681-z.

Hetherington,

P4ll Melsted, A. Sina Booeshaghi, Lauren Liu, Fan
Gao, Lambda Lu, Kyung Hoi Joseph Min, Eduardo
da Veiga Beltrame, Kristjdn Eldjarn Hjorleifsson, Jase

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

made available under aCC-BY-NC-ND 4.0 International license.

Gehring, and Lior Pachter. Modular, efficient and constant-

memory single-cell RNA-seq preprocessing. Nature

biotechnology, 4 2021. doi: https://doi.org/10.1038/
s41587-021-00870-2.

Luyi Tian, Shian Su, Xueyi Dong, Daniela Amann-
Zalcenstein, Christine Biben, Azadeh Seidi, Douglas J.

Hilton, Shalin H. Naik, and Matthew E. Ritchie.
A flexible r/bioconductor preprocessing pipeline for single-
cell RNA-sequencing data. PLOS Computational Biology,
14(8):€1006361, August 2018. doi: 10.1371/journal.pcbi.
1006361. URL https://doi.org/10.1371/journal.pcbi.
1006361.

Yang Liao, Gordon K Smyth, and Wei Shi. The R package
Rsubread is easier, faster, cheaper and better for alignment

scPipe:

and quantification of RNA sequencing reads. Nucleic acids
research, 47(8):e47-e47, 2019.

Avi Srivastava, Laraib Malik, Tom Smith, Ian Sudbery,
and Rob Patro. Alevin efficiently estimates accurate gene
abundances from dscRNA-seq data. Genome Biology, 20
(1), March 2019. doi: 10.1186/s13059-019-1670-y. URL
https://doi.org/10.1186/s13059-019-1670-y.

Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel
and low-memory compaction of de bruijn graphs from
Bioinformatics, 37
July 2021. doi: 10.1093/
URL https://doi.org/10.1093/

large-scale genome collections.
(Supplement_1):i177-i186,
bioinformatics/btab309.
bioinformatics/btab309.
Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry,
and Carl Kingsford. Salmon provides fast and bias-aware
quantification of transcript expression. Nature Methods, 14
(4):417-419, March 2017. doi: 10.1038 /nmeth.4197. URL
https://doi.org/10.1038/nmeth.4197.

Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and
Rob Patro.
compacted colored de Bruijn graph. Bioinformatics, 34
(13):1169-i177, 06 2018. ISSN 1367-4803. doi: 10.
1093 /bioinformatics/bty292. URL https://doi.org/10.
1093/bioinformatics/bty292.

Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang,
Daniel M. Ibrahim, Andrew J. Hill, Fan Zhang, Stefan
Mundlos, Cole
Trapnell, and Jay Shendure. The single-cell transcriptional

A space and time-efficient index for the

Lena Christiansen, Frank J. Steemers,
landscape of mammalian organogenesis. Nature, 566(7745):
496-502, February 2019. doi: 10.1038/s41586-019-0969-x.
URL https://doi.org/10.1038/s41586-019-0969-x.

Xi Chen.
URL https://scg-lib-structs.readthedocs.io/en/latest/.
A. Sina Booeshaghi, Xi Chen, and Lior Pachter. A machine-
readable specification for genomics assays. bioRziv, March
2023. doi: 10.1101/2023.03.17.533215. URL https://doi.
org/10.1101/2023.03.17.533215.

Tom Smith, Andreas Heger, and Ian Sudbery. UMI-tools:
modeling sequencing errors in unique molecular identifiers

Single Cell Genomics Library Structure, 2023.

to improve quantification accuracy. Genome Research, 27
(3):491-499, January 2017. doi: 10.1101/gr.209601.116.
URL https://doi.org/10.1101/gr.209601.116.

Daniel Liu.
sequenced DNA with a declarative language.
e7170, June 2019. doi: 10.7717/peerj.7170.
//doi.org/10.7717/peerj.7170.

Delaney K Sullivan and Lior Pachter.

demultiplexing and trimming
Peerd, T:
URL https:

Fuzzysplit:

Flexible parsing
and preprocessing of technical sequences with splitcode.
btoRziv, March 2023. doi: 10.1101/2023.03.20.533521. URL
https://doi.org/10.1101/2023.03.20.533521.

https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41592-022-01408-3
https://doi.org/10.1038/s41592-022-01408-3
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1101/2022.10.27.513881
https://doi.org/10.1101/2022.10.27.513881
https://doi.org/10.1101/2023.01.04.522742
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/gigascience/giy059
https://doi.org/10.1093/gigascience/giy059
https://doi.org/10.1038/s41467-022-34681-z
https://doi.org/10.1038/s41467-022-34681-z
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1371/journal.pcbi.1006361
https://doi.org/10.1371/journal.pcbi.1006361
https://doi.org/10.1186/s13059-019-1670-y
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1038/s41586-019-0969-x
https://scg-lib-structs.readthedocs.io/en/latest/
https://doi.org/10.1101/2023.03.17.533215
https://doi.org/10.1101/2023.03.17.533215
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.7717/peerj.7170
https://doi.org/10.7717/peerj.7170
https://doi.org/10.1101/2023.03.20.533521
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license. ‘

simpleaf 5

9

24. Paolo Di Tommaso, Maria Chatzou, Evan W Floden,
Pablo Prieto Barja, Emilio Palumbo, and Cedric
Notredame. Nextflow enables reproducible computational
workflows. Nature Biotechnology, 35(4):316-319, April
2017. doi: 10.1038/nbt.3820. URL https://doi.org/10.
1038/nbt . 3820.

25. Felix Molder, Kim Philipp Jablonski, Brice Letcher,
Michael B. Hall, Christopher H. Tomkins-Tinch, Vanessa
Sochat, Jan Forster, Soohyun Lee, Sven O. Twardziok,
Alexander Kanitz, Andreas Wilm, Manuel Holtgrewe,
Sven Rahmann, Sven Nahnsen, and Johannes Koster.
Sustainable data analysis with snakemake. F'1000Research,
10:33, April 2021. doi: 10.12688/f1000research.29032.2.
URL https://doi.org/10.12688/£1000research.29032.2.

26. Alexander Peltzer, Felipe Marques De Almeida, Olga
Botvinnik, Gregor Sturm, Kevin Menden, Sangram K Sahu,
Nf-Core Bot, Gisela Gabernet, Pol Alvarez, Tom Kelly,
Florian Heyl, Robert Syme, PETER BAILEY, Alex Thiery,
Harshil Patel, Regina Hertfelder Reynolds, Azedine Zoufir,
Hanka Medova, Khajidu, Marcel Ribeiro Dantas, Wei-
An Chen, Maxime U Garcia, Jeremy Leipzig, Phil Ewels,
Ameynert, and Valentin Marteau. nf-core/scrnaseq: nf-
core/scrnaseq v2.2.0 "titanium chuckwalla”, 2023. URL
https://zenodo.org/record/7751399.

27. Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil
Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse
Garcia, Paolo Di Tommaso, and Sven Nahnsen. The
nf-core framework for community-curated bioinformatics
pipelines. Nature Biotechnology, 38(3):276-278, February
2020. doi: 10.1038/s41587-020-0439-x. URL https://doi.
org/10.1038/s41587-020-0439-x.

28. Alexander B. Rosenberg, Charles M. Roco, Richard A.
Muscat, Anna Kuchina, Paul Sample, Zizhen Yao, Lucas T.
Graybuck, David J. Peeler, Sumit Mukherjee, Wei Chen,
Suzie H. Pun, Drew L. Sellers, Bosiljka Tasic, and Georg
Seelig. Single-cell profiling of the developing mouse brain
and spinal cord with split-pool barcoding. Science, 360
(6385):176-182, April 2018. doi: 10.1126/science.aam8999.
URL https://doi.org/10.1126/science.aam8999.

https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.12688/f1000research.29032.2
https://zenodo.org/record/7751399
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

6 | He et al.

Appendices

Appendix A simpleaf subcommands

Simpleaf provides subcommands for various purposes. Here we
briefly discuss the current subcommands exposed in simpleaf.
The alevin-fry team is actively working to improve existing
modules in the alevin-fry ecosystem as well as developing
new modules that will be most useful for the community.
For complete and up-to-date documentation, one can refer
to the official simpleaf documentation at https://simpleaf.
readthedocs.io/en/latest/.

In order to operate properly, simpleaf requires that
the environment variable ALEVIN_FRY_HOME exists. It will use
the directory pointed to by this variable to cache useful
information (e.g. the paths to selected versions of the tools
it invokes, configurations containing the mappings for custom
chemistries that have been registered, and other information
like the permit lists for certain chemistries). In popular
shells such as bash and zsh, this variable be set with export
ALEVIN_FRY_HOME=/full/path/to/dir/you/want/to/use

A.1 simpleaf set-paths

Before calling simpleaf, one has to run the simpleaf set-paths
command to set the paths to the underlying tools. If no flags
are provided, this program will try to find the dependencies in
the shell’s PATH. Currently, to use simpleaf, one must provide
a compatible version of pyroe (https://pyroe.readthedocs.io/
en/latest/), alevin-fry (https://alevin-fry.readthedocs.io/
en/latest/), and at least one of the alevin-fry mappers, piscem

or salmon.

A.2 simpleaf inspect

This subcommand inspects the configuration of simpleaf in the
current environment — such as the path to its dependencies
and the custom chemistries that have been registered — and
reports on the current configuration.

A.3 simpleaf index

The simpleaf index subcommand provides the functionality to
build a reference index from the provided reference set using
either the default salmon or the improved piscem indexing tool.
Usually, for a species, protocol pair, simpleaf index needs only
to be run once, and all subsequent experiments can utilize that
index. By default, simpleaf index takes a reference genome in
FASTA format and gene annotation in GTF format, and makes
the spliced+intronic (splici) reference index after extracting
the sequence of the spliced transcripts and intronic regions.
Other augmented reference types, such as the spliced+unspliced
(spliceu) reference, are also available in simpleaf index by
setting the --ref-type argument appropriately.

If one would like to build the index directly from the
provided reference sequences, for example, when the genome
build of a species is unavailable and the transcriptome
sequences are provided directly, one can pass the reference
sequence file to the --ref-seq argument.

A4 simpleaf quant

The simpleaf quant subcommand is designed as an all-in-one
program to generate a gene X barcode count matrix directly from
the provided index and sequencing reads. By default, it takes a
piscem or salmon index, and the sequencing read (lists of FASTQ
files) as input. It maps the reads and resolves the associated
UMIs after detecting and correcting the cellular barcodes. It

made available under aCC-BY-NC-ND 4.0 International license.

also provides the option to directly begin quantification from
an already-computed set of mapping results, thereby skipping
the mapping process, via the --map-dir argument.

A5 simpleaf add-chemistry

This subcommand adds a new custom fragment geometry
specification to the simpleaf geometry library together
with a wunique name. Once added, one can specify
that custom geometry specification using the associated
name when running simpleaf quant. For example, if one
wants to store the geometry specification of sci-RNA-
seq3, one can invoke simpleaf add-chemistry --name sci-seq3
--geometry "1{b[9-10]1f [CAGAGC]u[8]b[10]}2{r:}". Then, one
can use this geometry when calling simpleaf quant by
specifying --chemistry sci-seq3.

A6 simpleaf get-workflow-config

This subcommand gets the workflow configuration file of
a published workflow from the protocol estuary GitHub
repository (https://github.com/COMBINE-1lab/protocol-estuary).
When calling this program, simpleaf will automatically
download the protocol estuary GitHub repository into the
ALEVIN_FRY_HOME directory. If invoking unpublished workflows,
one can skip this step and provide the workflow configuration

files directly to simpleaf workflow via the --config-file flag.

A7 simpleaf workflow

The simpleaf workflow subcommand is designed to run
potentially complex single-cell data processing workflows
according to a simpleaf workflow configuration file. Any valid
Jsonnet ((https://jsonnet.org/)) program and JSON file is a
valid simpleaf workflow configuration file. In simpleaf workflow,
the provided configuration file will be first converted to a
simpleaf workflow JSON file. Whereas the Jsonnet file provides
a “template” for the workflow and functions to handle features
like basic logic, the workflow JSON file that results is a
simple imperative description of the commands that are to be
executed.

To ease the later parsing process, the values of all command
arguments in the configuration file must be provided as strings,
i.e., wrapped by quotes ("value"). Simpleaf workflow will
traverse the converted workflow JSON file to find and parse
the valid fields that record either a simpleaf or an external
shell command. To provide the greatest flexibility, the only
requirement simpleaf workflow sets is for the layout of the fields
that records a command, either a simpleaf command or an
external command.

1. A command record field must contain a Step and a Program
Name sub-field, where the Step field represents which step,
using an integer, this command constitutes in the workflow.
The Program Name field represents a valid program in the
user’s execution environment. For example, the correct
Program Name for simpleaf index is "simpleaf index". For
an external command such as awk, if its binary is in the
user’s PATH environmental variable, it can just be "awk"; if
not, it must contain a valid path to its binary, for example,
"/usr/bin/awk".

2. If a field records a simpleaf command, i.e., it has a
valid Step and Program Name field, the name of the rest
of its sub-fields must be valid simpleaf flags (for example,
options like --fasta, or -f for short, for simpleaf index and
--unfiltered-pl, or —u for short for simpleaf quant). Those
option names (sub-field names), together with their values,

https://simpleaf.readthedocs.io/en/latest/
https://simpleaf.readthedocs.io/en/latest/
https://pyroe.readthedocs.io/en/latest/
https://pyroe.readthedocs.io/en/latest/
https://alevin-fry.readthedocs.io/en/latest/
https://alevin-fry.readthedocs.io/en/latest/
https://github.com/COMBINE-lab/protocol-estuary
https://jsonnet.org/
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534653; this version posted March 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license. ‘

if any, will be used to call the corresponding simpleaf
program. Sub-fields that are not named by a valid simpleaf
flag will be ignored.

3. Ifafield records an external shell command, it must contain
a Step and a Program Name sub-field as described above. In
contrast to simpleaf command records, all arguments of an
external shell command must be provided in an array, in
order, with the name “Arguments”. Simpleaf workflow will
parse the entries in the array to build the actual command.
For example, to tell simpleaf workflow to invoke the shell
command $1s -1 -h . at step 7, one needs to use the

following JSON record:

{
"Step": 7,
"Program Name": "ls",
"Arguments": ["-1", "-h", "."]
}

After converting the workflow configuration file into a
simpleaf workflow JSON file, simpleaf workflow will parse and
invoke the commands in the workflow according to the following
flags. If none of the flags are set, simpleaf workflow will invoke
the complete workflow.

e Ifsetting the no-execution flag, simpleaf workflow will write
the complete workflow JSON file and other log files but
invoke none of the commands.

o If setting the start-at flag with a step number, simpleaf
workflow will begin the invocation from that specific step
number according to the Step field in the command records.

e If setting the resume flag, simpleaf workflow will find the
JSON configuration of a previous simpleaf workflow run in
the provided output folder to decide which is the starting
step number.

o If setting the skip-step flag with a set of comma-separated
step numbers, simpleaf workflow will invoke all but the
commands represented by those skipped step numbers.

Many useful and frequently used functions have been
provided as a simpleaf workflow utility library at https://
github.com/COMBINE-lab/protocol-estuary, which is also the
place we recommend our users submit the workflows they
designed.

Appendix B Example of streaming parser
invocation

Internally, simpleaf will first check if the given geometry
specification has a fixed barcode length and position. If it
does, read files will be directly passed to the underlying

7

If not,
simpleaf will pass the geometry specification to its sequence
geometry parser (https://github.com/COMBINE-lab/seq_geom_

mapper, designed to take fixed geometry reads.

parser) and call its sequence geometry transformer (https:
//github.com/COMBINE-1lab/seq_geom_xform) to “normalize” the
reads to a fixed geometry format and stream the transformed
reads directly to the mapper, without writing intermediate
files. For example, the simplified geometry description for
the geometry originally specified in Appendix section A.5
is 1{b[11]ul[8]b[10]}2{r:}. The length of the first barcode
changes from 9 or 10 nucleotides to 11 because the sequence
geometry transformer augments the first barcode segment with
an A if the original barcode is of length 10 or with AC if it is of
length 9. By doing so, the first barcode of all reads will be of the
same length, and the augmented barcodes of hairpin barcodes
of different lengths will not overlap, as all hairpin barcodes of
length 9 now end with C and all of the length 10 ends with A
(this scheme can be naturally generalized to different segment
width ranges).

Appendix C Example of simpleaf workflow
invocation

As discussed in section A.7, simpleaf workflow is designed to
generate and invoke single-cell analysis workflows according
to a workflow configuration file (Jsonnet program). Simpleaf
uses the Jrsonnet (https://github.com/CertainLach/jrsonnet)
library for parsing the underlying Jsonnet configuration.

In the protocol estuary GitHub repository (https://
github.com/COMBINE-1lab/protocol-estuary), we have published
a workflow for processing CITE-seq data. Once one has
obtained the workflow configuration file, for example, by calling
simpleaf get-workflow-config with the argument --workflow
cite-seq-10xv2 as discussed in Appendix section A.6 and has
filled in all required fields in the configuration file, i.e., the
file path to the needed files, they can call simpleaf workflow
and pass the complete configuration file to the --config-file
argument. simpleaf workflow will convert the configuration file
to a workflow JSON file using Jrsonnet and recursively find and
parse all valid command records in the JSON file.

Without the help of simpleaf workflow, one needs to develop
and invoke 12 distinct commands in the shell, including
preprocessing, to obtain all the desired results of this specific
workflow. Using simpleaf workflow, one only needs to fill the
path to the files of sequencing reads and reference sets in
the configuration file, and pass it to simpleaf workflow via
the --config-file argument. Then, simpleaf workflow will
automatically generate a data analysis pipeline for that specific
dataset and invoke all required commands for analyzing the
data.

https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_xform
https://github.com/COMBINE-lab/seq_geom_xform
https://github.com/CertainLach/jrsonnet
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/protocol-estuary
https://doi.org/10.1101/2023.03.28.534653
http://creativecommons.org/licenses/by-nc-nd/4.0/

	㈱㐠〠潢樊㰼 呩瑬攨﻿㈱㔠〠潢樊㰼 呩瑬攨﻿㈱㘠〠潢樊㰼 呩瑬攨﻿㈱㜠〠潢樊㰼 呩瑬攨﻿㈱㠠〠潢樊㰼 呩瑬攨﻿㈱㤠〠潢樊㰼 呩瑬攨﻿㈲〠〠潢樊㰼 呩瑬攨﻿㈲ㄠ〠潢樊㰼 呩瑬攨﻿㈲㈠〠潢樊㰼 呩瑬攨﻿㈲㌠〠潢樊㰼 呩瑬攨﻿㈲㐠〠潢樊㰼 呩瑬攨﻿㈲㔠〠潢樊㰼 呩瑬攨﻿㈲㘠〠潢樊㰼 呩瑬攨﻿㈲㜠〠潢樊㰼 呩瑬攨﻿㈲㠠〠潢樊㰼 呩瑬攨﻿㈲㤠〠潢樊㰼 呩瑬攨﻿㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱ㄳ⸶㠠㔵〮㤵㜠ㄲ㐮㔵㌠㔶㘮〶崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽯牣楤⹯牧⼰〰〭〰〱ⴸ㈵㤭㜴㌴⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲ㄴ⸷ㄳ‵㔳⸴㠵′㈵⸵㠷‵㘶⸰㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯潲捩搮潲术〰〰ⴰ〰ㄭ㠴㘳ⴱ㘷㔩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄳ㠮㔶㠠㔰㔮㌹㜠ㄹ㜮〵㘠㔱㌮㐹㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨敭慩氺牯所捳⹵浤⹥摵⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲〰⸸㘵″㘸⸳㈲″㠷⸶㈸″㜸⸵㘵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䍏䵂䥎䔭污戯獩浰汥慦⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔱⸲㈱″㔷⸳㘳″㔱⸶㘠㌶㜮㘰㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯獩浰汥慦⹲敡摴桥摯捳⹩漯敮⽬慴敳琯⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔰⸸㤴″㐶⸴〴″㤰⸶㈷″㔶⸶㐷崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽣潭扩湥⵬慢⹧楴桵戮楯⽡汥癩渭晲礭瑵瑯物慬猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㜵⸹㌹′㘳⸷㈴‸㈮㈰㌠㈷〮㔵崊⽄敳琠嬲‰⁒ 塙娠㌰㘮㜰〰‱㈹⸲㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬸㘮㠸㔠㈶㌮㜲㐠㤳⸱㐸′㜰⸵㕝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‷㈵⸹㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㠲㔠㈴㈮㠰㈠㘲⸰㠹′㐹⸶㈸崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㘸㐮〹㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㈮ㄵ㤠ㄹ〮㐹㤠ㄷ㠮㐲㈠ㄹ㜮㌲㑝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‶㈱⸳㌱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤲⸴㜠ㄵ㤮ㄱ㘠ㄹ㠮㜳㌠ㄶ㔮㤴㉝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‵㐸⸱〵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〳⸳ㄠㄵ㤮ㄱ㘠㈰㤮㔷㌠ㄶ㔮㤴㉝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‴㤵⸸〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠㄠㅝਯ䠯䤊⽒散琠嬲㠰⸱㔲‶㈮㤹ㄠ㈸㘮㐱㔠㜲⸴㠴崊⽄敳琠嬱‰⁒ 塙娠㔴⸵㌴〠㜳〮㘷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㘮㐸㔠ㄹ㌮㜲㠠㌶㈮㜴㤠㈰〮㔵㑝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰‴㐳⸴㤸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔱⸷㔠ㄸ㌮㈶㜠㌵㠮〱㌠ㄹ〮〹㍝ਯ䑥獴⁛㔠〠删⽘奚‵㐮㔳㐰′㠶⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌱⸲㔹‱㜲⸸〶″㌷⸵㈳‱㜹⸶㌲崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㈲㌮㠲㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㔮㘱㘠ㄷ㈮㠰㘠㐰㘮ㄵ‱㜹⸶㌲崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠ㄶㄮ〵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔲㤮㄰㜠ㄴㄮ㐲㐠㔳㤮㘴㈠ㄴ㠮㈵崊⽄敳琠嬵‰⁒ 塙娠㔴⸵㌴〠㤸⸲㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔰⸹㜵‱㄰⸰㐲″㘱⸵〹‱ㄶ⸸㘷崊⽄敳琠嬵‰⁒ 塙娠㌰㘮㠳㠰‶㠴⸰㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌵⸷㠵‸㤮ㄲ″㐶⸳㈠㤵⸹㐶崊⽄敳琠嬵‰⁒ 塙娠㌰㘮㠳㠰‶〰⸴〹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮㈸⸵㌴㘵㌩㸾敮摯扪ਲ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㐮ㄲ‷㘷′㜶⸸㤶‷㜷崊⽁†㈵〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘴⸴㐸‷㔱‴〶⸴㠠㜶ㅝਯ䄠′㔲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㐠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪ਲ㔵‰⁯扪਼㰯丠㌯䱥湧瑨‱㤹㈾㹳瑲敡洊�߈慰灬Ƞ�浮瑲則䈠塙娠ߙ�����慣獰䅐偌��慰灬������������팭慰灬������������������������摥獣�Ĉ�o摳捭�Ÿ�֊捰牴�܄�8睴灴�ܼ��牘奚�ݐ��杘奚�ݤ��托奚�ݸ��牔剃�ތ��捨慤�ޜ�,扔剃�ތ��杔剃�ތ��摥獣����䝥湥物挠則䈠偲潦楬攀�����ᑇ敮敲楣⁒䝂⁐牯晩汥�������������������������浬畣������獫卋�(�Ƅ摡䑋�$�Ƭ捡䕓�$�ǐ癩噎�$�Ǵ灴䉒�&�Ș畫啁�*�Ⱦ晲䙕�(�ɨ桵䡕�(�ʐ穨呗���ʸ歯䭒���ˊ湢乏�&�ˠ捳䍚�"�̆桥䥌���̨牯剏�$�͆摥䑅�,�ͪ楴䥔�(�Ζ獶卅�&�ˠ穨䍎���ξ橡䩐���ϐ敬䝒�"�Ϫ灴偏�&�Ќ湬乌�(�в敳䕓�&�Ќ瑨呈�$�њ瑲呒�"�Ѿ晩䙉�(�Ҡ桲䡒�(�ӈ灬偌�,�Ӱ牵剕�"�Ԝ敮啓�&�Ծ慲䕇�&�դVšeobecný RGB profilGenerel RGB-profilPerfil RGB genèricCấu hình RGB ChungPerfil RGB GenéricoЗагальний профайл RGBProfil générique RVBÁltalános RGB profil通用RGB色彩描述일반 RGB 프룓ೇ簀䜀攀渀攀爀椀猀欀 刀䜀䈀ⴀ瀀爀漀昀椀氀伀戀攀挀渀ﴀ 刀䜀䈀 瀀爀漀昀椀氅픅񑐀 刀䜀䈀 󑐅��爀漀昀椀氀 刀䜀䈀 最攀渀攀爀椀挀䄀氀氀最攀洀攀椀渀攀猀 刀䜀䈀ⴀ倀爀漀昀椀氀倀爀漀昀椀氀漀 刀䜀䈀 最攀渀攀爀椀挀潦源ᨀ刀䜀䉣쾏蝎�Ⰰ 刀䜀䈀‰휰픰ꄰꐰ錃딃봃뤃먃찀 쀃섃뼃옃꼃묀 刀䜀䈀倀攀爀昀椀氀 刀䜀䈀 最攀渀爀椀挀漀䄀氀最攀洀攀攀渀 刀䜀䈀ⴀ瀀爀漀昀椀攀氎䈎ᬎ⌎䐎Ἆ┎䰀 刀䜀䈀‎ᜎㄎ䠎✎䐎ᬀ䜀攀渀攀氀 刀䜀䈀 倀爀漀昀椀氀椀夀氀攀椀渀攀渀 刀䜀䈀ⴀ瀀爀漀昀椀椀氀椀䜀攀渀攀爀椁ഀ欀椀 刀䜀䈀 瀀爀漀昀椀氀唀渀椀眀攀爀猀愀氀渀礀 瀀爀漀昀椀氀 刀䜀䈄Ḅ㄄䤄㠄㤀 㼄䀄㸄䐄㠄㬄䰀 刀䜀䈀䜀攀渀攀爀椀挀 刀䜀䈀 倀爀漀昀椀氀攆䔆䐆䄀 ⨆㤆ㄆ䨆䄀 刀䜀䈀 ✆䐆㤆✆䔀t數琀�C潰祲楧桴′〰㜠䅰灬攠䥮挮Ⱐ慬氠物杨瑳⁲敳敲癥搮X奚 ��ó刀Ā�Ė콘奚 ��t䴀=�큘奚 ��Z甀¬猀�㑘奚 ��(ᨀ�鼀¸㙣畲瘀���ā촀s昳㈀��Č䈀��￳☀�鈀ý釿￻ꋿ�ꌀ��À氊敮摳瑲敡洊敮摯扪ਲ㔶‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓‹‰⁒㸾敮摯扪ਲ㔷‰⁯扪਼㰯丠㌯䱥湧瑨‵㌶㸾獴牥慭਀�ᡡ灰氄�m湴牒䝂⁘奚 ĀĀ��a捳灁偐䰀�A偐䰀��������ö혀Ā�Óⵡ灰泬ﶣ踸蕇썭뒽佺����������������੤敳挀�ﰀ�っ灲琀�Ⰰ�偷瑰琀�簀�ᑲ塙娀�退�ᑧ塙娀�ꐀ�ᑢ塙娀�렀�ᑲ呒䌀�찀�⁣桡搀��Ɫ呒䌀�찀�⁧呒䌀�찀�⁭汵挀���Ā�౥湕匀�᐀�ᰀ䐀椀猀瀀氀愀礀 倀㍭汵挀���Ā�౥湕匀�㐀�ᰀ䌀漀瀀礀爀椀最栀琀 䄀瀀瀀氀攀 䤀渀挀⸀Ⰰ ㈀　㈀㉘奚 ��ö픀Ā�Óⱘ奚 ����=뿿�뭘奚 ��J뼀±㜀
류奚 ��(㠀�଀È륰慲愀��̀�ɦ昀ò꜀
夀�퀀
孳昳㈀��Č䈀��￳☀�錀ý郿￻ꋿ�ꌀ��À渊敮摳瑲敡洊敮摯扪ਲ㔸‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ卩穥嬱㌶㕝⽌敮杴栠㐶㌾㹳瑲敡洊碜闂՗ᙁ᐀倔ᖱᄻㅑ쉀吔꒻뮻셮䑁冱䆄缹ᵦ盟뱯盞㴷ⲕ藍鴧꞉熡㺓ⷒ䛈姪戰魅抗롳풥襁䲻�ˌ末놫鰅炔眡뼚᭝үᛗ櫗㥋犩렁뮱ೞ⒗ꮛ沋皫ꥮΫ�뭚�훰㮵믜떾믁㪶޻흙࿇稷냻ᯡ㣯⛱胶ꂳ᤾Ⓑ袇녇媑䟝淪ㅽ㬻긽ⅷꠧ셎瘊篚�鸁믹돚珮ở뷢׭䕧ὼ즻龿貽㉠ꢃ졫铱輈꾣ΰ澐㹡㜩濩龆鱠酪羛㈑籮竇Ɠʿ勯匾遟孍㙿䋹탽홪ꫡ㬸贲�䒘ᇪ筤♥혰愶糖㻇﹇㺗㉏㼒犾뺀눐ﱤ婤婌夢輅⼍ﱅⶣⲗ뽚괰ﰆ坒嘹읭圛纇欨殝㼈㿱羱ۊ䛴潼鏽㽼㍥௸ힴ헦蓘䛙๎驶�剶쥓솻췿ﯶ僶쫓囻౧쪁ᤶ୷⺬蘊敮摳瑲敡洊敮摯扪ਲ㔹‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ卩穥嬱㌶㕝⽌敮杴栠㐶㐾㹳瑲敡洊碜ꗂ襗䵁ᰀ怤銵კ䎑└닇꽺涯붐㕋⣼菶ⷊ阢媴壚鐤뮙㏷챽㏷㝳柞糧裏ᅏ䞧ۿꭽ髊㾴霛曲띷뫻೑烑彊柀㍥翚枚趰杅ﳐ㹋꠯틤矟沽�丨鶫㓇ﺍ㧏窜鮫犁뉑皿羴솅捹ꖋ瑿䇳晣줂턥꺇斗ਗ먜쉣മ挖备唯휽쀁ူ릒ﺬ뺘廥望ꔥ삏덱츟졒흫뗶뒮⟻䈜�⻛↔ᕸ྾쇬䛧䫧䒭�䶲單㞓崡�꽦瘲띊癔❵Ვ�빳㺆渇뾵ầ鏑盡ᑦ䷊᯦仉ퟸ⻫ৰ溲ඞ�櫟⍼૝设ዞ읭⅏鏻╟顧렇줗횳嫑⏜ꟁ쾡ố昼ᵸ黶鉍ﲉ㵓㫫ㅽ퇙읭㟖섟슗탲⇜½䳦䧧�廡ᛐ藖竾嶼䠺耷Ӯ삋鵯퍗䮤䭯膯텥怹ﾺ廁ﰏ휢叜੥湤獴牥慭੥湤潢樊㈶〠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽆畮捴楯湔祰攠《⽄潭慩湛《ㅝਯ剡湧敛《ㄊ《ㄊ《ㅝਯ䉩瑳健牓慭灬攠㠊⽓楺敛ㄳ㘵崯䱥湧瑨‱㘵㸾獴牥慭੸鲽싕ᇂ䀔Ր��ᥪ৮娃◲茶Ǽ惉擞뻍�䞳�帻낃ﻶ�瘱�ẩΡ幠鼵螔绠胾嗦졼းꓤ�ꋰ䐿ਜ卾羽埽삝▱叀㥦ظﭳꅴ฻潰⧶䱝.驝妻Ц嵛딂ᖸ鄃긓龾濙ᯀ䷦ᵣஸ⵻俟勵῀邯ᬊ敮摳瑲敡洊敮摯扪ਲ㘱‰⁯扪਼㰊⽒敧楳瑲礨䅤潢�

