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SUMMARY

Studies combining metabolomics and genetics, known as metabolite genome-wide association
studies (mMGWAS), have provided valuable insights into our understanding of the genetic control
of metabolite levels. However, the biological interpretation of these associations remains
challenging due to a lack of existing tools to annotate mGWAS gene-metabolite pairs beyond the
use of conservative statistical significance threshold. Here, we computed the shortest reactional
distance (SRD) based on the curated knowledge of the KEGG database to explore its utility in
enhancing the biological interpretation of results from three independent mGWAS, including a
case study on sickle cell disease patients. Results show that, in reported mGW AS pairs, there is an
excess of small SRD values and that SRD values and p-values significantly correlate, even beyond
the standard conservative thresholds. The added-value of SRD annotation is shown for
identification of potential false negative hits, exemplified by the finding of gene-metabolite
associations with SRD <1 that did not reach standard genome-wide significance cut-off. The wider
use of this statistic as an mGWAS annotation would prevent the exclusion of biologically relevant
associations and can also identify errors or gaps in current metabolic pathway databases. Our
findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation

for gene-metabolite pairs that can be used to integrate statistical evidence to biological networks.
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INTRODUCTION

High throughput biotechnologies and analytic approaches applied to large human cohorts have
recently revolutionized biomedical research, allowing the quantification and characterization of
biological molecules to generate “omics” datasets. Genomics, the characterization of an
individual’s DNA molecules, led to the identification of thousands of genetic variants associated
with a trait, disease, or response to treatments, through large-scale genome-wide association
studies (GWAS) [1]. Although GWAS have resulted in a better understanding of disease
mechanisms, these approaches only consider genetic variation established at birth, and ignore the
environment of an individual, influencing its biological state. An alternative strategy to
complement traditional GWAS and better understand human biology is to comprehensively
interrogate disease states at the molecular level using metabolomics, which offers a robust way to
systematically measure thousands of low-molecular-weight compounds, called metabolites. After
tissue extraction or collection of biological samples (usually blood and urine), metabolites can be
detected, identified, and quantified using either mass spectrometry (MS) or nuclear magnetic
resonance (NMR) [2]. As biomarkers of the underlying molecular dysfunctions, metabolite levels
correspond to intermediate phenotypes (or endophenotypes) representing natural or clinical
heterogeneity. Storing and sharing metabolomics knowledge is the focus of The Human
Metabolome Database (HMDB), which is one of the largest and comprehensive curated collection

of human metabolite and human metabolism data in the world [3].

Metabolomics can be seen as the study of the ultimate molecular response of an organism to
genetic, environmental, and pathological modifications, but elucidating specific molecular
mechanisms from metabolomics alone is difficult since many metabolites are involved in multiple
biological processes. Linking metabolomics signals with genetics provides a promising approach
to identify the implicated pathways and, as such, metabolite genome-wide association studies
(mGWAS) are key approaches to integrate metabolomics with genomics. mGWAS report
associations between metabolites and genetic loci, referred to as metabolite quantitative trait loci
(mQTL), making it possible to study associations between millions of genetic variants and
thousands of metabolites and to generate insightful hypotheses about uncharacterized regulatory
mechanisms [2]. Although very powerful, interpretation of mGW AS results remains challenging.
Indeed, millions of statistical tests are generally performed between single nucleotide

polymorphisms (SNPs) and metabolites, leading to a huge multiple testing burden [4].
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Furthermore, interpreting the biological meaning of an association between a given SNP and a
metabolite requires interdisciplinary knowledge. In this context, the simplest way of prioritizing
hypotheses remains to apply a conservative correction for multiple testing such as Bonferroni or
Benjamini-Hochberg procedures [4]. The consequence of this correction is that only associations
with the most significant p-values are reported whereas biologically relevant associations with a

suggestive p-value may be missed.

With the increasing number of published mGWAS and their current limits, it is necessary to
develop systematic methodologies to gain better insight into the mGWAS results by exploiting
the most up-to-date biological knowledge. There are multiple resources available that aim at
storing and describing known relationships between genes and phenotypes or endophenotypes
(GWAS Catalog [5], PhenoScanner [6], OpenGWAS [7], Open Targets Genetics [8], PheLiGe
[9], DisGeNET [10]) as well as tools to annotate gene-metabolites pairs based on the available
resources but none of them have been specifically designed to address current mGWAS
limitations [11, 12]. Only few methods have been developed to gain insight into the biological
interpretation of mGWAS data specifically [13, 14], and none have been explicitly used to
annotate mGW AS results based on well-curated biochemical knowledge, such as KEGG database
[15]. KEGG is recognized for its high curation level of metabolic pathways for many model
organisms, including humans, and is a reference for the reporting of enzymatic reactions, which
1s needed to understand the functional importance of gene-metabolite pairs. KEGG is a reference
for the biochemical functions of genes with the descriptions of enzyme reactions, but a systematic
and quantitative annotation procedure using this database in the context of mGWAS results
remains to be explored. In this regard, recent studies have highlighted the applicability and utility
of topological data analysis based on graph theory approaches [16], including the shortest path
[17, 18], in revealing biological knowledge in the context of complex metabolic networks [13,
17, 18]. For example, the shortest path was used to characterize the impact of gene deletion on
nearby metabolites within the metabolic network of E. coli [18]. It was also used to analyze the
relationship between expression quantitative trait loci (eQTL) and metabolomic data, for example
within the metabolic network of rat adipose tissues [17]. Still, this type of metric has not been

applied to systematically annotate mGW AS results.

In this study, we assessed the utility of the shortest reactional distance (SRD) metric computed

from KEGG database’s pathways to annotate mGWAS results and to help extract biological
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insights from them. We developed PathQuant, an R package, to enable a robust and systematic
computation of SRD values between any lists of gene-metabolite pairs mapped onto KEGG
graphs, which represent metabolic pathways, while keeping the original, well-curated, topology
of each queried pathway. Focusing on genes encoding for enzymes and their associated
metabolites, we applied the SRD annotation to two previously published mGWAS datasets in
individuals from different ethnicities: an mGWAS [11] performed on 7,824 participants from the
TwinsUK cohort [19] and the KORA study [20], referred herein as the TK study, and an mGWAS
[21] performed on 614 Qatari participants from the Hamad Medical Corporation (HMC), referred
herein as the HMC study. We explored results at varying levels of statistical significance. We
found that the SRD metric enables identification of associations that do not meet currently
accepted cut-off of statistical significance (suggestive associations) but which have high
biological relevance. Finally, we performed an mGWAS on previously reported genetic and
metabolomic data from a Sickle Cell Disease (SCD) cohort [22, 23], referred herein as the SCD
study, and show how the SRD metric can be used to prioritize novel hits, including hits with a

suggestive p-value.
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99  RESULTS
100  Overview of study pipeline

101  PathQuant is a tool that converts a metabolic pathway map into a graph of biochemical reactions
102 with metabolites as nodes and genes as edges, to compute the SRD path between a given gene-
103  metabolite pair (STAR Methods, Supplementary Methods). To explore the potential of SRD
104  values as an annotation metric to inform on the biological relevance of gene-metabolite pairs
105  obtained from mGWAS, we developed a pipeline, presented in Figure 1. First, we gather
106 mGWAS summary statistics and perform standard quality-control filters on genetic variants
107  based on minor allele frequencies (MAF) and completeness. The second step of our pipeline only
108  keeps bi-allelic SNPs at MAF > 0.01 (to exclude rare variants) and tested across all measured
109  metabolites, but indels, tri-allelic SNPs and rare variants can be easily integrated, if present in
110  mGWAS summary statistics. Third, SNPs are mapped to their closest genes coding for an enzyme
111 (within 10,000 pb upstream and downstream) to obtain gene-metabolite pairs. As multiple SNPs
112 will generally be linked with the same gene, only the minimum p-value of all SNPs is kept for a
113 gene-metabolite pair, representing the strongest statistical signal for each pair within a study.
114 These p-values can be categorized as either significant, suggestive, or non-significant according
115  to appropriate thresholds that depend on the dataset (STAR Methods). We then retrieve KEGG
116  IDs from all pairs (STAR Methods), and only retain pairs for which both IDs could be found.
117  Third, we run PathQuant R package to compute the SRD value on all remaining pairs based on
118  the KEGG overview graph (hsa01100). Note that other KEGG graph, or a combination of KEGG
119  graphs, can be easily added at this step. SRD values obtained can be numerical when a path is
120  found, can be given an infinite value (noted as “Inf”’) when there is no path between the gene and
121  metabolite in the queried graph, or an “NA” value when the gene or the metabolite (or both) are
122 not found in the queried graph, despite having a valid KEGG ID. We can then perform several
123 analyses of SRD values, as detailed below.

124
125  Stringent and suggestive associated pairs have shorter reactional distances

126  To test whether the SRD is a metric capable of capturing the biological relevance of a gene-
127  metabolite pairs, we first explored the results of the TK study, as it represents one of the largest

128 mGWAS studies conducted to date. This mGWAS was done on a group of participants from
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129  European descent, and many findings were replicated in follow-up studies, making it a well-
130  validated dataset. Furthermore, it is considered a reference study by the community, resulting in
131  anideal dataset to test the hypothesis that stringently associated pairs will have lower SRD values.
132 We started to explore this dataset by using the 74 gene-metabolite pairs with KEGG IDs passing
133 the genome-wide significance cut-off set by the original authors [11] (Table 1). Among these, 40
134 gene-metabolite pairs were mapped onto KEGG overview graph. After excluding the two pairs
135  with infinite SRD values, the median SRD value for the remaining 38 pairs is 1, which indicates
136  aclose biological relationship between the genes and their associated metabolites (Figure 2). To
137  assess how significant this result is, we used two strategies: we compared the SRD values to (1)
138  a null distribution (STAR Methods), built from all possible pairs of gene-metabolites that are
139  present on the KEGG overview graph (Figure 2A); (2) to a permuted set of gene-metabolite pairs
140  (Figure 2B), built with the 33 metabolites and 27 genes involved in the 40 significant gene-
141  metabolite pairs (Figure 2C). There is a statistically significant difference between the TK pairs’
142 SRD values and the null distribution (Welch test, p-value < 3.48 x 107'%), confirming the close
143 biological relationship between mGWAS gene-metabolite pairs in the TK study. Similarly, the
144 median SRD value for the permuted pairs is 8, which is significantly higher than the median SRD
145  of 1 (empirical p-value = 0.035). These results confirm that closely connected genes and

146  metabolites are enriched in gene-metabolite pairs discovered in mGWAS.

147  To visualize the relationship between all genes and metabolites involved in the significant pairs
148  reported in the TK study within KEGG overview graph, we used a heatmap representation of
149  SRD values (Figure 2C), highlighting the reported significant pairs using thick black boxes.
150  Seventeen of these associations have an SRD of 0, implying that these gene-metabolite pairs are
151  from a single enzymatic reaction. For example, PSPH (phosphoserine phosphatase) is catalysing
152 the formation of L-Serine and results in an SRD of 0. Interestingly, within the 40 associations
153  with an SRD annotation, some genes are closely connected to multiple metabolites, such as
154  ACADM and CPS1 that have multiple small SRD values. Moreover, some genes are isolated and
155  appear to be part of disconnected subgraphs of the KEGG overview graph, such as GMPR
156  (Guanosine Monophosphate Reductase), NAT2 (N-Acetyltransferase 2) and TDO2 (Tryptophan

157  2,3-Dioxygenase), which obtained infinite SRD values with most metabolites.

158 The design of mGWAS can be heterogeneous, with distinct genomic and metabolomic

159  technologies and pre-processing steps used across studies. To demonstrate the applicability of
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160  our annotation more broadly, it is important to use an independent study to replicate the
161  observations above. Furthermore, there is a widely recognized bias towards white Europeans in
162  genetics studies, which often makes results less generalizable in other ethnicities [24, 25],
163 highlighting a need for new bioinformatics solutions to be tested in underrepresented populations.
164  In line with these criteria, we further tested our approach in the HMC study, which has been
165  performed in a different ethnic group, on Qatari individuals. In this mGWAS, the genomic data
166  comes from the exome sequencing technology compared to genotyping data in the TK study, and
167  the metabolomics data is generated using differing pre-processing steps (see STAR Methods).
168  Furthermore, the authors of this study identified SNP-metabolite pairs with suggestive p-values,
169  which were made available (Supplementary File number 7 of [21]) , allowing us to explore
170  whether including the suggestive mGW AS association results replicated the observation from the
171  TK study. Of 68 gene-metabolite associations (Table 1) at a cut-off of p<1.4x 1077, 42 were
172 mapped to the KEGG overview graph for which SRD values were computed. Four pairs had
173 infinite SRD values (see Supplementary Figure 1C), while the 38 gene-metabolite remaining
174  pairs (Table 1) had SRDs of 0 or 1 (Supplementary Figure 1), meaning that we have associations
175  that are either substrate-product associations or with one intermediate step. Thus, we replicated
176  the observation seen in the TK study of a significant enrichment of low SRD values compared to
177  the null distribution in this second mGWAS (Welch test, p-value < 7.91 x 107%°, Supplementary
178  Figure 1), even when considering a lower significant threshold than standard genome-wide cut-

179  offs.
180
181  SRD annotation can identify false negative hits

182 By using two different studies and different summary statistics cut-offs, we have determined that
183  associations with stringent and suggestive p-values are enriched for low SRDs. We next explored
184  more formally the relationship between the SRD values and the p-values from the TK study. We
185  graphically defined the gene-metabolite significance cut-off at p < 3.16 x 107 of the TK study
186  based on a QQplot (Supplementary Figure 2B, STAR Methods) and used it as a threshold for the
187  minimum value to determine the relationship between SRDs and p-values. We observed a
188  significant negative correlation between the mGWAS p-values and SRD values (R =-0.2, p =

189  9.1x 107!, Figure 3A), meaning that the higher the significance of an association between a
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190  metabolite and a gene is, the closer they are likely to be in the KEGG overview graph. This
191  negative correlation confirms the enrichment of biologically relevant pairs in significant
192 associations, and suggests that combining p-values and SRD may help prioritizing associations
193 of high biological interest. Furthermore, the SRD value could be used to select for further analysis
194 pairs with small SRD having low p-value that nevertheless do not pass stringent significance cut-

195  offs.

196  As a result of multiple testing burden between each variant and each metabolite level, only top
197  hits are generally reported in mGWAS, but it is well known that there could be false negative hits
198  [26]. Thereby, we tested the potential for the SRD metric to identify some of these false-negative
199  candidates in these published mGWAS. In the TK study, we focused on the genes and metabolites
200  involved in stringent associations (presented in the heatmap, Figure 2C), which include 27 genes
201  and 33 metabolites. We noticed gene-metabolite pairs annotated with a smaller SRD than the
202  initially reported association, such as the ALDH18A1 (aldehyde dehydrogenase 18 family
203  member Al) and L-citrulline pair, which has an SRD value of 2, whereas other pairs involving
204  L-citrulline show smaller SRD values. For instance, the CPS1 (carbamoyl-phosphate synthase 1)
205  and L-citrulline pair has an SRD = 1 but did not pass the stringent p-value cut-offs of the TK
206  study, despite a p-value of 1.749 x 1078, The SRD value of 1 reflects a sequence of reactions
207  pertaining to the urea cycle catalysed by CPS1 for the formation carbamoyl phosphate from
208  ammonia and bicarbonate and by the ornithine transcarbamylase (OTC) for the formation of L-
209  citrulline from carbamoyl phosphate and L-ornithine [27]. The association between CPS1 and L-
210  citrulline has recently been described twice in the literature with a p-value of 1 x 1072 with SNP
211  rs1509820 [28] and 1 x 10~ with SNP rs975530777 [29]. The fact that this association was not

212 significant in the TK study can thus be considered a false negative result.

213 Using the same approach, we also identified an example within the HMC study of a gene-
214 metabolite pair at SRD = 0, which was not reported as a significant association because of a
215  suggestive p-value (p=1.17 x 1077). This association is between UMPS (uridine monophosphate
216  synthetase) and orotate (Supplementary Figure 1C, indicated in red). UMPS is a bifunctional
217 enzyme that is part of the de novo pyrimidine biosynthetic pathway; its orotate
218  phosphoribosyltransferase subunit catalyses the addition of ribose-5-phosphate to orotate to form

219  orotidine monophosphate (KEGG reaction ID R01870). Given that a significant association has
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220  been previously reported between UMPS gene and orotate [30], we could consider that this
221  finding is replicated in the HMC study but only by adding information about its SRD value.

222 Taken altogether, the examples highlighted the opportunity to explore associations annotated
223 with low SRD values in mGWAS, beyond those with stringent significance cut-offs. Identifying
224  these potential false negative hits illustrates how useful the SRD annotation can be in discovering
225  biologically relevant results which would be missed when only considering stringent p-value cut-

226  offs in mGWAS reporting.
227
228  Case study: mGWAS in Sickle Cell Disease patients

229  To exemplify how the SRD metric can be used to prioritize mGWAS results, we present a new
230 mGWAS analysis performed in sickle cell disease (SCD) patients of African or African-
231  American ancestry. While the cause of SCD has been known for over a century, the molecular
232 determinants of the severity of this blood disease remain unknown and are influenced by genetic
233 variants unlinked to the beta-globin gene [31]. An mGWAS was performed in 651 SCD patients,
234  quantifying a total of 128 metabolites, to identify metabolites associated with genetic markers. A
235  total of 165 unique SNPs (with MAF > 1%) passed a genome-wide significance cut-off of p <
236 7.8125 x 107'°(Supplementary Figure 2, 1 x 10”7/ 128 metabolites) and an additional unique 256
237  SNPs passed a suggestive cut-off of p < 1 x 1077 (Supplementary Figure 2C). We identified a
238  total of eight loci associated with metabolite levels (Supplementary Figure 3), with four of them
239  reported in previous studies (Supplementary Table 2). The four additional associations were not
240  previously reported neither in the TK/HMC studies, nor in a large mGWAS of human blood
241  metabolites [32]. In all four cases, the frequency of the top associated SNP is larger in individuals
242 of African descent than in Europeans according to the gnomAD Genomes database, but these hits
243 were not found in the three largest mGWAS done in individuals of African ancestry to date [33-
244 35]. We recognize that while interesting, these novel associations will need replication in an

245  independent cohort.

246  We generated a QQplot based on minimum p-values for the gene-metabolite pairs extracted from
247  the SCD mGWAS (STAR Methods) and defined the gene-metabolite significance cut-off at p <
248  3.16 x 107> (Supplementary Figure 2D). We observed a significant negative correlation between

249  the mGWAS p-values and SRD values (R = -0.1, p = 0.036), replicating the result observed in
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250  the TK study, demonstrating that this relationship between significance and SRD is reproducible
251 in a disease cohort, where biological mechanisms can be altered (Figure 3C). Given these
252  observations, we investigated whether associations above the gene-metabolite significance cut-
253  off of p < 3.16 x 107, but below genome-wide significant cut-offs usually required to report
254  associations, could be prioritized according to SRD values (candidate pairs below the plain line
255 in Figure 4). We split the associations into two suggestively significant categories, one that
256  includes association p-values between the genome-wide significance cut-off and p < 1 x 107’
257  (Supplementary Figure 2C) and another that includes associations p-values between p < 1 x 1077
258  and the gene-metabolite significance cut-off of p < 3.16 x 10~ (Supplementary Figure 2D), which
259  we labelled S+ and S-, respectively. To evaluate the potential of association results in each
260  significance categories, we aimed to compute the proportion of small SRD values. From the
261  distribution of all SRD values computed on the KEGG overview graph (Methods), we observed
262 that 25% of SRD values (first quartile) are lower or equal to 8 (Supplementary Figure 4). We
263  thus used the SRD value < 8 as a threshold for considering SRD values as small, reflecting close
264  Dbiological relationships based on the graph topology. Furthermore, 90% of gene-metabolite
265  significant pairs in the well-powered TK and HMC studies have SRD < 8 and, out of the genome-
266  wide significant associations with a numerical SRD value in this mGWAS (Block R, Figure 4),
267  two out of three have SRD < 8.

268  Two (40%) out of five associations from the S+ category have small SRD values, and 116/411 for
269  the S- category (28.22%). Next, we manually investigated the 118 suggestive associations with
270  SRD < 8 by searching the literature for these gene-metabolite pairs and found six previously
271  described associations (5%): PRODH (proline dehydrogenase 1) and L-proline [11, 36, 37],
272  NTS5C3A (5'-nucleotidase, cytosolic IIIA) and orotate [30], GATM (glycine amidinotransferase)
273  and creatine [38], UPB1 (beta-ureidopropionase 1) and 3-ureidopropionate [32], UGT2B17 (UDP
274  glucuronosyltransferase family 2 member B17) and sn-glycerol 3-phosphate (previously described
275  for total phosphoglycerides) [39], DGKH (diacylglycerol kinase eta) and tetradecanoyl-carnitine
276  [40], implying that these are likely to be real associations in SCD patients (Table 2). We thus
277  estimate that at least 5% of associations in this category are false negative and that the SRD metric
278  has added value in identifying them. It also demonstrates the ability of the SRD metric to retain
279  pairs that would not be otherwise reported, thus improving the mGWAS’ potential for discovery.
280
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281  DISCUSSION

282  The identification of an association between a SNP and a metabolite is usually supported solely
283 by the p-values of the statistical test without consideration for the known metabolic pathways.
284  Although the possibility of false positive hits is well understood among geneticists following up
285 on mGWAS results, the fact that reporting of gene-metabolite pairs using only statistical
286  significance can lead to an incomplete list of associations is less discussed. In this study, we
287  demonstrate how a simple metric called shortest reactional distance (SRD) can be useful for the
288  reporting and the ad-hoc annotation of gene-metabolite pairs for several p-values acceptance cut-
289  offs. By using previously published mGWAS, we have shown that the SRD is a metric capable of
290 retrospectively identifying a number of false negatives. The datasets we used in our study involved
291  different genomics and metabolomics protocols, different preprocessing strategies, different sets
292  of genetic variants (genotyped, imputed, exclusive to exons) and of metabolites, different
293  ethnicities (from European, African and Middle Eastern ancestries), disease-based and population

294  cohorts, illustrating the wide range of contexts in which our annotation is applicable.

295  PathQuant, the package developed to compute the SRD metric in this study, is not the only package
296  available that computes the shortest path metric between genes and metabolites. Similar to
297  PathQuant, MetaboSignal [13] is an R package based on the same mathematical criterion of
298  shortest path metric and also uses metabolic pathways from the KEGG database. There are,
299  however, important differences between these two methods. MetaboSignal combines both
300 metabolic and signaling pathway maps. While this can provide novel information about the
301 interaction between genes and metabolites that goes beyond the known enzymatic reactions and
302  pathways, it modifies the original topology of the curated pathways (signaling and metabolic).
303  These changes are not necessarily supported by biological data, which is crucial to ensure their
304  validity, as emphasized by Dumas et al. [17]. Thus, for our assessment of the potential of SRD
305 annotation in mGWAS, we favored a simpler approach that focuses only on curated metabolic
306  pathways, by converting a metabolic pathway map from KEGG into a graph of biochemical
307  reactions with metabolites as nodes and genes as edges. PathQuant computes SRD values from
308 any given list of gene-metabolite pairs using any given metabolic pathway graph in KGML format
309 thus keeping the original and curated topology of the metabolic pathways reported by KEGG. Of
310  note, a direct comparison of the shortest path metrics calculated by PathQuant and MetaboSignal

311  on the list of gene-metabolite pairs of the mGWAS investigated here could not be performed, as
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312 the KEGG overview pathway graph we used with PathQuant is not accepted as input by
313  MetaboSignal. Indeed, MetaboSignal computes its shortest path metric using a custom graph that

314  is built from a pre-selected list of signaling and metabolic pathways.

315  The computation of the SRD metric with PathQuant within KEGG graphs leads to several possible
316  values: numerical, infinite or NA. Having a numerical annotation to a pair which is based on known
317  pathways leads to a better understanding of the underlying biology of an association. Indeed, we
318  have shown that SRD values decrease as statistical significance of gene-metabolite pairs increases:
319  this negative correlation between the level of significance and SRD values suggests an enrichment
320  of biologically relevant pairs as the p-value decreases, thus making SRD a promising annotation
321  metric to improve mGWAS reporting. We defined two categories for numerical values (short SRD:
322 0 <SRD < 8; large SRD: SRD > 8), which have been derived from the topological properties of
323  the KEGG overview graph (ID: hsa01100) as this graph contains all curated human biological
324  reactions, but different thresholds could be used in different contexts. The annotation of a pair with
325 an SRD lower or equal to 8 suggests that the gene, its expression levels or the protein it codes for,
326  may have a direct influence on the associated metabolite concentration. This is illustrated by the
327  statistical difference between the SRD values of mGWAS pairs and the null distribution of SRD
328  values within the KEGG overview graph and by manual investigation of specific pairs of interest,
329  such as the CPS1 and L-citrulline finding (SRD=1) in TK study, the UMPS and orotate example
330  (SRD=0) in HMC study. Moreover, for the SCD study, the gene-metabolite pairs presented in
331  Table 2 are annotated with an SRD lower or equal than 8 and have been already reported to be
332 associated with the corresponding metabolite levels in the literature. Despite the number of
333 investigated associations being very small for the R and S+ categories, we observed a decreasing
334  proportion of pairs with values lower than 8 and an increasing frequency of pairs with values
335  greater than 8, as p-values increases, in line with the negative correlation observed. These results
336  demonstrate, across all different mGWAS datasets we used, the potential of using the SRD metric
337  with a cut-off of SRD < 8 in order to identify false negatives hits and prioritize follow up studies

338  and experiments.

339  Another interesting case is when the SRD value is large, but the p-value is highly significant. In
340 this case, a direct influence of the gene on the associated metabolite is less clear. For example, we
341 noticed a large SRD value for the association between the alkaline phosphate (ALPL) and the
342 phosphocreatine (SRD = 22; p-value = 9.356x 10"'%). One possibility is that this association could
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343  have been a false negative. However, digging further into the literature, we found that
344  phosphocreatine can, in fact, be the substrate of the enzyme encoded by the ALPL gene [41, 42].
345  Thus, the true SRD value for ALPL-phosphocreatine pair should be 0, and the high SRD value
346  computed is a consequence of the current state of the publicly shared knowledge available on
347  KEGG. This result highlights a limitation of our approach, which is the incompleteness of some
348  metabolic pathways in KEGG. However, our SRD annotation pipeline of mGWAS results can help
349  identify those cases and could be useful to detect gaps and errors in metabolic network databases.
350  Other cases of SRD > 8 for highly significant association have been noted in our work, notably in
351  TK study (Figure 2A, Figure 2C; Figure 3A). When the path computed in KEGG is accurate and
352  the association is independently replicated, higher values of SRD can identify metabolic pathways
353  involving more indirect gene-metabolite relationships. By themselves, these cases are of interest
354  as they illustrate a violation of the hypothesis that biological proximity between a gene and a

355  metabolite is needed to regulate its level.

356  An SRD annotation with an infinite or NA value means that there was no path between the gene
357  and the metabolite within the chosen graph, because they are not connected (infinite value) or
358  Dbecause one of the two entities (or both) are missing from the queried graph (NA value). In most
359  cases, there likely exist no biological paths between these entities, but if the association is highly
360 significant, it could reflect actual gaps within the graph again. Investigation of enzymes or
361  metabolites with an unusual number of infinite or NA values may lead to more complete metabolic
362  pathway databases. Beyond these potential gaps in KEGG, other limitations of this resource are
363  the metabolic reactions provided do not specify cofactors, enzymatic complexes required for the
364  reaction to happen, and directionality, resulting in a decreasing level of complexity and accuracy
365  of the metabolic pathways. Thus, computing SRD on other resources for pathway mapping, such
366 as Recon3D, could improve our distance-based annotation pipeline. Indeed, this resource is
367  considered the most complete reconstruction of human metabolism so far [43, 44]. Furthermore,
368 in contrast to KEGG, Recon3D has the advantage of including more genes encoding transporters,
369  which would allow to increase the breath of SRD computation beyond enzymatic reactions. It also
370  includes information about cellular compartments and the directionality of reactions is known, in
371  contrast to KEGG graphs. Despite these advantages, the available file format (sbml) used in
372 Recon3D to represent metabolic pathways is incompatible with the graph structure we used for

373  KEGG. Given that the goal of this study was to establish if the SRD annotation is useful for
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374  mGWAS annotation, a simple representation of metabolic pathways is highly appropriate and it is
375 outside the scope of the present study to implement an SRD metric based on Recon3D. Future
376  implementations on alternative databases should consider two additional desirable characteristics
377  of KEGG when comparing results : first, KEGG is the only database for which pathway maps were
378  built on known reactions from humans and others species, a clear advantage for non-human
379  mGWAS studies [45, 46]; second, KEGG pathway maps are built with an explicit labeling of side
380 compounds definition (such as ATP or H,O) from KEGG RPAIRS [47], making their removal
381  from curated reactions possible, which eliminates shortcuts created by their over-representation

382  within the graph when computing SRD [48].

383 A crucial step for the annotation of gene-metabolite pairs with SRD values is to obtain the KEGG
384  IDs for the genes and metabolites. Although gene names and IDs are highly standardized [49] there
385  isalack of uniformed nomenclature for metabolites. In most cases, there are multiple ways to refer
386  to a metabolite, with different studies using different reporting conventions, which complicated
387  the re-analysis of published datasets. For HMC and SCD studies, HMDB IDs [3] were provided
388 by the authors, which could be easily converted to KEGG IDs using the MetaboAnalyst Convert
389  tool. In the case of the TK study, we performed a manual annotation of the common names to
390 KEGG IDs, but this process was time consuming and required having the relevant expertise. This
391  manual work allowed us to include listed metabolites that did not have KEGG IDs, such as
392  acylcarnitines (see Material and Methods). These metabolites are measured in plasma but arise
393  from intracellular metabolism of their acyl-CoA counterparts, which in contrast to acylcarnitines
394  do not cross the plasma membrane. Based on the known direct link between the acylcarnitines and
395 the acyl-CoAs we have used the CoA counterparts to represent these metabolites, which do have
396 KEGG IDs. The increasing quantity of released studies involving metabolomics in the literature
397  encourages the community to release new standards to refer metabolites, such as Simplified
398  Molecular-Input LineEntry System [50], COordination of Standards in MetabOlomicS [51],
399 JUPAC International Chemical Identifier [52]. These efforts for standardisation of metabolites
400  naming, and the reporting improvements they allow, are leading to a promising leap for the field,

401  as this will result into better links being made between novel findings and already published data.

402  In practice, SRD annotations can be a great addition to bioinformatics pipelines in order to reduce
403  the number of potential candidate pairs to follow up on, by prioritizing hits based on a curated

404  biological information, as the number of released mGWAS grows. Furthermore, this metric could
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405  be added within already available user-friendly resources such as mGWAS Explorer [14]. SRD
406  values could also play a role in designing targeted studies, in a context where extensive mGWAS
407  cannot be done or is not relevant, for example if the research question is about finding the genes
408 or proteins that regulate the levels of a specific metabolite, or conversely, finding which
409  metabolites are regulated by a specific enzyme. In this latter case, it would make sense to focus
410  more specifically on the metabolites showing low SRD values with the targeted enzyme. In the
411  future, we believe that extending the implementation by using other appropriate resources for
412  pathway mapping would likely improve coverage and enhance the value of the SRD metric in

413  mGWAS annotation pipelines.

414  In conclusion, we consider this work as a proof of concept of the benefits of using shortest
415  reactional distance metrics for annotating mGWAS results based on a model representation of the
416  human metabolism provided by the KEGG database. These metrics can also be used as a tool for
417  metabolic databases in order to more easily identify gaps within current metabolic pathway graphs
418 by using a new information provided by mGWAS. In this multi-omics era, we anticipate that large
419  scale studies looking for associations between genomics, proteomics and metabolomics signals
420  will soon become a new standard, as illustrated by recent studies in mice and humans [53, 54],
421  resulting in additional protein-metabolite pairs, for which the computation of SRD values may add

422 great value.

423
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424  STAR METHODS

425 RESOURCE AVAILABILITY

426  Lead contact

427  Further information and requests should be directed to and will be fulfilled by the lead contact,
428  Julie Hussin (julie.hussin @umontreal.ca).

429

430  Materials availability

431  This study did not generate new materials.

432  Data and code availability

433 < Source data statement. This paper analyzed existing, publicly available summary mGWAS data
434 for the TK and HMC studies. The SCD study data comes from genomic and metabolomics of two
435  previously published studies. Raw data can be made available upon request to GL. Summary
436  statistics of SCD study will be made available publicly upon journal publication and from the lead

437  contact upon request in the meantime.

438  + All additional files necessary to reproduce the reported results of this paper are available at:

439  www.github.com/HussinLab/PathQuant/Publication/References.
440  « PathQuant source code is available at www.github.com/HussinLab/PathQuant/.

441  « Any additional information required to reanalyze the data reported in this paper is available from

442 the lead contact upon request.

443  METHOD DETAILS

444  Overview of the mGWAS Datasets

445  In this study we used three different mGWAS datasets. The TK study refers to an mGWAS [11]
446  previously performed on 7,824 participants (plasma or serum samples) from the TwinsUK cohort
447  [19] and the KORA study [20]. The mGWAS was carried out on 2.1 million genotyped SNPs
448  and 529 metabolites (assessed by targeted and untargeted metabolomics). The authors reported

449 299 SNP-metabolite (or ratio of metabolites) significant associations (at cut-off of p<1.03
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450  x 107" for metabolite concentrations and p < 5.08x10!3 for pairwise metabolite ratios) involving
451 187 unique metabolites and 145 loci, annotated as 132 causal genes [11]. The TK study also made
452  available mGWAS output files from METAL software [55] involving 486 metabolites without

453  any p-value cut-off [www.metabolomics.helmholtz-muenchen.de].

454  The HMC study refers to an mGWAS [21] previously performed on 614 Qatari participants
455  (plasma samples) from the Hamad Medical Corporation. The mGWAS was carried out on 1.6
456  million imputed exome variants and 826 metabolites (assessed by targeted and untargeted
457  metabolomics) and reported 3,127 significant associations (at cut-off of p<2.2 x 107'° for both
458  metabolite concentrations and pairwise metabolite ratios) in 21 locus-metabolite pairs. The
459  suggestive association results were also provided to the community, reporting all associations
460  with cut-off of p<1.4x10~7 (Supplementary Data 7 in [21]), which include 6517 SNP-

461  metabolite (or ratio of metabolites) pairs with available p-values.

462 In the SCD study, an mGWAS was performed here using genetics and metabolomics data
463  published in different studies [22, 23] on a total of 651 SCD patients (plasma samples) including
464 401 individuals of African ancestry in the Genetic Modifier (GEN-MOD) cohort and 250
465  African-American individuals from Southwest USA in the Duke University Outcome Modifying
466  Genes (OMG) cohort. Metabolomics profiling was performed at the Broad Institute, and
467  appropriate statistical modelling was used to account for residual batch effects [56]. Briefly, for
468  association testing, 128 metabolites were profiled using a targeted approach in 651 plasma
469  samples from SCD patients. Metabolites were inverse normal transformed, adjusting for age and
470  sex. We then generated summary statistics for each cohort individually in a linear regression
471  model, accounting for relatedness using a kinship matrix as implemented in rvtest (v. 20171009)
472  [57] in GEN-MOD. The software SNPTEST [58] was employed in OMG to generate cohort-
473  specific summary statistics. We then meta-analyzed the effect size estimates and standard errors
474  from GEN-MOD and OMG using METAL [55]. After the pre-processing step, 6 million SNPs
475  were kept.

476
477  Mapping shortest reactional distances (SRD) onto KEGG

478 To compute the SRD metric, the R package PathQuant was developed [available at:

479  www.github.com/HussinLab/PathQuant]. PathQuant converts a metabolic pathway map into a
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480  graph of biochemical reactions with metabolites as nodes and genes as edges (Figure 1). Briefly,
481  PathQuant takes as input a list of gene-metabolite pairs as pairs of KEGG identifiers (IDs) and a
482  list of metabolic pathways (eg. “hsa01100”, referred herein as KEGG overview graph, a global
483  concatenation of multiple distinct pathways). PathQuant then uses a KEGG XML file format
484 (KEGG Markup Language, KGML), downloaded wusing the KEGG API
485  [www.kegg.jp/kegg/rest/keggapi.html] to build the most up-to-date KEGG undirected graphs.
486  Next, PathQuant computes the SRD path between a gene and a metabolite from a given pair. The
487  SRD values are obtained using the breadth-first search Dijkstra algorithm [59]. PathQuant
488  outputs a text file containing genes and metabolites classification, Enzyme Commission number
489  (EC), KEGG Brite IDs, KEGG IDs of metabolic pathways for the SRD computation, and the
490  SRD values for all pairs. PathQuant also allows the visualization of SRD values annotation in a

491  heatmap, leading to a better identification of potentially interesting hits.
492

493  Extracting and annotating gene-metabolite pairs from mGWAS summary statistics

494 Using bedtools version v2.30.0 [60], we annotated each SNP to genes with KEGG IDs, using a
495  custom bed file: we downloaded gene coordinates for human genome build GRCh37.p13 from
496  NCBI (NCBI Homo sapiens Updated Annotation Release 105.2020/10/22, gff format) and
497  modified it to add 10,000 base pairs upstream and downstream for each of the 26,105 genes with
498  KEGG IDs. Because we focused on pairs involving genes encoding enzymes, which are the most
499  represented genes in the KEGG database, we only annotated SNPs with KEGG IDs classified as
500  enzymes within the KEGG Brite database by using the Brite enzyme code “BR:hsa01000”, leading
501 to a subset of 4,049/26,105 genes. For metabolites, if available, we used the provided IDs, either
502 KEGG IDs directly or HMDB IDs. For metabolites with HMDB ID the list was queried to
503  Metaboanalyst [61][www.metaboanalyst.ca/faces/upload/ConvertView.xhtml] to get the
504  corresponding KEGG IDs. For metabolites without KEGG or HMDB IDs provided, KEGG IDs
505 retrieval was achieved automatically by parsing the common names into the most standard KEGG
506 name format, and then queried the metabolite names with new format to MetaboAnalyst.
507  Additionally, specific metabolites were manually treated: acylcarnitines without KEGG IDs were
508  swapped to their acyl-CoA counterparts when available in KEGG. For each gene-metabolite pair
509  within a dataset (TK, HMC and SCD study), only one mGWAS p-value was kept, which is the

510  minimum p-value obtained for the association between any SNP annotated to the gene and that
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511  specific metabolite. Based on that p-value, each pair is annotated as genome-wide significant,
512 suggestive, or non-significant: genome-wide p-value cut-offs were derived from a standard GWAS
513  Bonferroni correction approach (dividing by the number of tested metabolites). Suggestive
514  significance cut-offs, were obtained graphically from quantile-quantile plots (QQplots) of
515 minimum p-values for the variants-metabolite pairs of corresponding study. Specifically, we
516  determined the value on the QQplot x-axis where the slope starts to increase drastically.

517
518  SRD null distribution and investigation of candidate gene-metabolite pairs

519  To obtain a null distribution of SRD values from the KEGG overview graph (hsa01100), we
520  gathered all different KEGG IDs for both metabolites and genes found within the graph, and then
521  ran PathQuant on all possible pairs (Supplementary File 1). The KEGG overview graph version
522 (KGML v0.7.2 file) includes 1,351 genes and 2,889 metabolites, generating a total of 3,903,039
523  pairs for which we computed the SRD values, referred herein as the KEGG overview graph’s SRD
524 null distribution. The first quartile of this distribution is used as the threshold to categorize any
525  pair with a close or far biological relationship label. This threshold was determined because 25%
526  of the smallest values are below half of the mean, leaving 75% as a representative sample of distant
527  relationships between genes and metabolites. We also performed a manual investigation of
528  candidate gene-metabolite pairs (Table 1, Supplementary Table 1) by extracting the corresponding
529  rsID using dbSNP annotation of UCSC Genome Browser [62], searching for published
530  associations of the metabolite with (1) the SNP rsID within GWAS Catalogue and/or with (2) the
531  gene symbol within PhenoScanner [6] (with parameters: cut-off p-value=le-5, cut-off r>=0.8,
532 build=37).

533
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Figure 1. Overview of the Shortest Reactional Distance (SRD) annotation process.

On the left panel, we show the main steps of the pipeline used to annotate mGWAS datasets. Boxes indicate
input and outputs of processing steps described on arrows. The right panel shows the meaning of an SRD
annotation of a reaction. The queried metabolite is in blue, the queried gene is Enzyme A and a sub-graph
is shown. The SRD between Enzyme A and its main reactants, the substrate and the product, are of 0,
everything running deeper adds 1 at each step (dashed arrows): green metabolites are at SRD = 1 and the
queried metabolite is at SRD = 2 from Enzyme A.
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Figure 2. SRD of stringently associated gene-metabolite pairs in the TK study.

(A) Comparison of SRD annotations for reported genome-wide significant associations from the TK study
(orange) and the distribution of all SRD values within KEGG overview graph (hsa01100) (B) Distribution
of SRD values computed from permuted gene-metabolite pairs from TK study, with a median SRD of 8
(black dotted line). The median SRD of 1 (orange dotted line) represents an empirical p-value of p=0.035.
(C) Heatmap representing all genes and metabolites included in reported genome-wide significant
associations from the TK study. The 40 mapped gene-metabolite associations are enclosed in black boxes
on the heatmap (n=40). Abbreviations: CoA = Coenzyme A.

* CoA metabolites are proxies for measured carnitines.
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Figure 3. Relationship between p-values and SRD values for TK and SCD studies

Correlation plot between the —log10(p-values) and SRD values for gene-metabolite pairs in (A) the TK
study (p-value cutoff was 3.16 x 10, Supplementary Figure 3B) and (C) the SCD study (p-value cutoff
was 3.16 x 10, Supplementary Figure 3E). Correlation computed on permuted data (N=1000) to take into
account the graph structure allowed computation of empirical p-values for TK (B) and SCD (C), with the
true correlation coefficient presented (dotted red line).
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Figure 4. Identification of potential false negative hits for different p-values cut-offs in the SCD study.
The main panel represents -log10(p-values) for gene-metabolite pairs for SNPs on each chromosome (x-
axis). Coloring represents the SRD annotation from 3 categories: SRD = Infinite or NA (white), numerical
SRD < 8 (light grey), numerical SRD > 8 (dark grey). On the top right panel, the histogram represents the
frequencies of SRD < 8 and > 8 for each block. The frequency percentage is obtained by summing only the
pairs with a numerical SRD value (n) within each category according to different p-value cut-offs: R : p <
7.8125 x 10719, S+:7.8125x 107 <p<1x107and S-: 1 x 107<p <3.16 x 107°.
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MAIN TABLES AND LEGENDS

Study name TK HMC SCD TK-None
Summary stats cut-off 1.03 x 10—-10  1.79 x 10-7 None None
Sample size 7,824 614 651 7,824
SNP-Metabolite name pairs 336 6 465 3139070 208 1236 909 025
(unique SNP - unique metabolites) (218-186) (3192-100) (24 523 986-128) (2 617 408-486)
Enzyme Gene-Metabolite pairs with KEGG IDs: PathQuant input 74 68 209 645 290 46 779 684
(unique genes - unique metabolites) (43 - 56) (32-20) (3875-118) (3815-177)
SRD: 38 SRD: 38 SRD: 82 145 SRD: 86 219
. . ors . Inf: 2 Inf: 4 Inf: 38 980 Inf: 55 822
Pairs’ SRD a.nnotatlons w1tl}1n KEGG OYel‘VleW Graph NA: 34 NA: 26 NA: 336 125 NA: 533 214
(unique genes - unique metabolites*)
(27 -33) (13-98) (1275 - 95) (1257 -113)
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Table 1. Dataset description of used dataset for the TK, HMC, and SCD studies.

Line 1: Dataset label for TK, HMC and SCD studies and the TK dataset without p-values cut-off (TK-None). Line 2: Maximum p-value cut-off.
Line 3: Maximum number of samples available for the mGWAS study. Line 4: Number of SNP-metabolites pairs. Line 5: Number of gene coding
for enzyme-metabolite pairs for which KEGG IDs have been obtained. Line 6: Number of SRD annotation within map hsa01100 (KEGG overview
graph) categorized in three categories. Line 4,5,6 have the count of unique genes and metabolites involved in pairs between parenthesis. *: the
number of unique genes and metabolites are ignoring NA values. Abbreviations: ID = Identifier; SNP = Single-nucleotide polymorphism; SRD =
Shortest Reactional Distance; Inf = Infinite value; NA = Not available, a missing annotation.
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Table 2: Associations with SRD lower or equal to 8 for the SCD study, illustrating potential false negative hits discovered by manual
verification.

Column 1: SNP information formatted as CHROMOSOME_POSITION_ALLELE1_ALLELE2 in hg19. Column 2: Gene symbol found the in the
KEGG ID entry. Column 3: Metabolite common name found the in the KEGG ID entry. Column 4: P-value of the association between the SNP
and the metabolite. Column 5: SRD annotation of the gene-metabolite pair using KEGG graph hsa01100. Column 6: Miscellaneous information
for the association: rsID if available; PMID of the publications reporting association between the gene, or the SNP with the associated metabolite;
link to the query used in Phenoscanner website. Abbreviations: ID = Identifier; SNP = Single-nucleotide polymorphism; SRD = Shortest
Reactional Distance, PMID = PubMed Identifier. * CoA are representatives of the measured carnitines.
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SUPPLEMENTAL INFORMATION

Supplementary figures and legends.
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Supplementary Figure 1. SRD of stringently and suggestive associated gene-metabolite pairs in the
HMC study. (A) Comparison of SRD annotations for reported genome-wide significant associations from
the HMC study (orange) and the distribution of all SRD values within KEGG overview graph (hsa01100)
(B) Distribution of SRD values computed from permuted gene-metabolite pairs from HMC study, with a
median SRD of 10 (black dotted line). The median SRD of 0 (orange dotted line) represents an empirical
p-value of p=0. (C) Heatmap representing all genes and metabolites included in reported stringent and
suggestive associations from the HMC study. The 24 mapped gene-metabolite associations are enclosed: a
black box indicates a reported stringent or a suggestive pair for which either the gene, the metabolite or
both have been reported in the dataset (n=23) while a red enclosed box indicates a suggestive pair for which
the gene and the metabolite have not been reported in the study (n=1).
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Supplementary Figure 2. QQplots for the TK and SCD studies.

(A/C) QQplots using all p-values from mGWAS files available, before any pre-processing steps for TK
study (A) and for the SCD study (C). (B/D) QQplots using p-values at the end of the pipeline (See Methods)
for the TK study (B) and for the SCD study (D). Vertical lines indicate the graphically determined cut-offs
we used in our Results section. Abbreviations: MAF = Minor Allele Frequency, QQplot = Quantile-

Quantile plot.
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Supplementary Figure 3. Manhattan plot of the SCD study.

Manhattan plot of the SCD study with a p-values below 1x10™ cutoff, each dot represents an association
between a variant and a metabolite. Black and white is an alternating color palette for chromosomes. The
first line from plot bottom (dark plain) indicates the genome-wide threshold at 1x107, and the second line
(light plain) at 7.8125x10-10, indicates the first threshold corrected by Bonferroni (See Methods). Top hits
for each mapped gene above the Bonferroni threshold are labelled with two distinct colors: blue if the
association has not been previously reported, or orange if the association has been already reported in the
literature. Gene symbols are separated to metabolite name(s) by "/" symbol.
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Supplementary Figure 4. Summary statistics of the null distribution of SRD values within the KEGG
overview graph.
Boxplot of the SRD values and table of summary statistics for the null distribution of SRD values within
the KEGG overview graph (hsa01100). The mean SRD within this graph is 14.89, with a maximum value
of 66. The first quartile (SRD <8) is used as the threshold to categorize any pair with a close or far biological
relationship label.
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SUPPLEMENTARY METHODS

PathQuant tool to compute shortest reactional distances (SRD).

The method was developed using R and delivered as an R package. PathQuant (for Pathway
Quantity).

1.1 Input parameters

Gene-metabolite pairs: PathQuant accepts the following input for SRD computation: 1) gene(s);

and 2) their associated metabolite(s) in columns, each with their specific KEGG identifiers (IDs).
Each row represents a unique gene-metabolite association. Only associations between genes and
individual metabolites are taken as entry, hence associations between a gene and a ratio of
metabolites must be separated prior to analysis (usually by generating gene-
numerator/denominator pairs).

Selected metabolic pathways: PathQuant accepts a list of metabolic pathways, each with its

specific KEGG IDs. For this application, we used the map ID: hsa: 01100 in KEGG (referred

herein as the ‘overview’ or hsa01100’ throughout this article).

1.2 Association classification
PathQuant can classify each association of the input by gene product into four broad categories:
enzyme, transporter, other (other proteins, transcription factor, and more) and not classified using

KEGG Brite database.

1.3 Metabolic network modelling

The selected KEGG pathway, encoded in KEGG XML file format (KGML), is downloaded using
the KEGG API, from the most up-to-date KEGG pathways available, and then moved to a specific
version folder in order to keep track, or use a specific version of interest. Users can choose which
downloaded version to use or let PathQuant use the up-to-date version. The pathway is then
converted into a graph of biochemical reactions (also called compound graph) with metabolites,
as nodes and genes, mapped to their corresponding encoded enzymes, as edges. The topology of

the pathway is captured in the constructed graph. Genes encoding enzymes catalysing multiple
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reactions are mapped to multiple edges. The constructed graph represents exactly the metabolic
pathways of KEGG which are built mainly with metabolites that are the main reactants of a
reaction, dismissing cofactor metabolites, such as NAD, or common co-substrates/products, such
as ATP or H20. Finally, we use a non-oriented graph as the KEGG standards are not consistent in

this matter.

1.4 SRD computation

Our method computes the SRD, which is defined as the shortest reactional distance path between
a given gene and a metabolite. The SRD is computed using each metabolic pathway received in
input, in which a given pair is mapped. The SRD is computed as described in the workflow figure
(Figurel): A distance of O is assigned to metabolites, which are the main substrates or products of
the reaction catalysed by the enzyme encoded by the selected gene of interest. The SRDs to all
other metabolites are obtained using the breadth-first search algorithm. The algorithm is used to
find the SRD starting from the substrate and from the product of the mapped gene to the paired
metabolite, thereby selecting the smallest SRD between these two. Figurel depicts an example of
SRD computation for a hypothetical reaction The main reactants of this reaction: the substrate and
the product are set at an SRD of 0. Everything running deeper than the substrate and the product
within the graph is adding a distance of one for each depth: SRD = 1 for the green hypothetical
metabolites and SRD = 2 for the blue hypothetical metabolite.

1.5 SRD metric analysis
The utility of the computed SRD metric for the annotation of gene-metabolite associations

reported by mGWAS was assessed using different approaches (See Methods).

1.6 Data outputs and visualisation

PathQuant outputs a text file containing gene and metabolite classification, Enzyme Commission
number (EC), KEGG Brite, KEGG IDs of used pathways for the SRD computation, and SRD
values for all associations. These SRD values can also be visualised in a heatmap and global or

multiple distribution plots; a few examples are available at in this manuscript (Results).
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TK datasets and naming.

For the TK study, we downloaded the file named “NIHMS58114-supplement-2.xlsx” from the
supplementary section of the publication. This first file contains only stringently associated pairs.
We make a distinction between the TK and the “TK None” datasets as they do not use the same
files from the original publication. The TK None is referring to the GWAS summary stats, without
any p-value cut-off, directly downloaded from here: https://metabolomics.helmholtz-
muenchen.de/gwas/index.php?task=download. We downloaded and merge the files named:
shin_et_al.metal.out.tar.gz, shin_et_al.xeno.metal.out.tar.gz. As the positions were coming from
NCBI Build 36, we performed a lift over to hgl9 in order to have same build across all different

studies.
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