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SUMMARY  

 

Studies combining metabolomics and genetics, known as metabolite genome-wide association 1 

studies (mGWAS), have provided valuable insights into our understanding of the genetic control 2 

of metabolite levels. However, the biological interpretation of these associations remains 3 

challenging due to a lack of existing tools to annotate mGWAS gene-metabolite pairs beyond the 4 

use of conservative statistical significance threshold. Here, we computed the shortest reactional 5 

distance (SRD) based on the curated knowledge of the KEGG database to explore its utility in 6 

enhancing the biological interpretation of results from three independent mGWAS, including a 7 

case study on sickle cell disease patients. Results show that, in reported mGWAS pairs, there is an 8 

excess of small SRD values and that SRD values and p-values significantly correlate, even beyond 9 

the standard conservative thresholds. The added-value of SRD annotation is shown for 10 

identification of potential false negative hits, exemplified by the finding of gene-metabolite 11 

associations with SRD ≤1 that did not reach standard genome-wide significance cut-off. The wider 12 

use of this statistic as an mGWAS annotation would prevent the exclusion of biologically relevant 13 

associations and can also identify errors or gaps in current metabolic pathway databases. Our 14 

findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation 15 

for gene-metabolite pairs that can be used to integrate statistical evidence to biological networks. 16 

 17 

Keywords: mGWAS, KEGG, biological networks, shortest reactional distance, annotation 18 

 19 

  20 
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INTRODUCTION 21 

High throughput biotechnologies and analytic approaches applied to large human cohorts have 22 

recently revolutionized biomedical research, allowing the quantification and characterization of 23 

biological molecules to generate <omics= datasets. Genomics, the characterization of an 24 

individual9s DNA molecules, led to the identification of thousands of genetic variants associated 25 

with a trait, disease, or response to treatments, through large-scale genome-wide association 26 

studies (GWAS) [1]. Although GWAS have resulted in a better understanding of disease 27 

mechanisms, these approaches only consider genetic variation established at birth, and ignore the 28 

environment of an individual, influencing its biological state.  An alternative strategy to 29 

complement traditional GWAS and better understand human biology is to comprehensively 30 

interrogate disease states at the molecular level using metabolomics, which offers a robust way to 31 

systematically measure thousands of low-molecular-weight compounds, called metabolites. After 32 

tissue extraction or collection of biological samples (usually blood and urine), metabolites can be 33 

detected, identified, and quantified using either mass spectrometry (MS) or nuclear magnetic 34 

resonance (NMR) [2]. As biomarkers of the underlying molecular dysfunctions, metabolite levels 35 

correspond to intermediate phenotypes (or endophenotypes) representing natural or clinical 36 

heterogeneity. Storing and sharing metabolomics knowledge is the focus of The Human 37 

Metabolome Database (HMDB), which is one of the largest and comprehensive curated collection 38 

of human metabolite and human metabolism data in the world [3]. 39 

Metabolomics can be seen as the study of the ultimate molecular response of an organism to 40 

genetic, environmental, and pathological modifications, but elucidating specific molecular 41 

mechanisms from metabolomics alone is difficult since many metabolites are involved in multiple 42 

biological processes. Linking metabolomics signals with genetics provides a promising approach 43 

to identify the implicated pathways and, as such, metabolite genome-wide association studies 44 

(mGWAS) are key approaches to integrate metabolomics with genomics. mGWAS report 45 

associations between metabolites and genetic loci, referred to as metabolite quantitative trait loci 46 

(mQTL), making it possible to study associations between millions of genetic variants and 47 

thousands of metabolites and to generate insightful hypotheses about uncharacterized regulatory 48 

mechanisms [2]. Although very powerful, interpretation of mGWAS results remains challenging. 49 

Indeed, millions of statistical tests are generally performed between single nucleotide 50 

polymorphisms (SNPs) and metabolites, leading to a huge multiple testing burden [4]. 51 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533869doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533869
http://creativecommons.org/licenses/by-nc/4.0/


  

 

Page 4 of 40 

 

Furthermore, interpreting the biological meaning of an association between a given SNP and a 52 

metabolite requires interdisciplinary knowledge. In this context, the simplest way of prioritizing 53 

hypotheses remains to apply a conservative correction for multiple testing such as Bonferroni or 54 

Benjamini-Hochberg procedures [4]. The consequence of this correction is that only associations 55 

with the most significant p-values are reported whereas biologically relevant associations with a 56 

suggestive p-value may be missed. 57 

With the increasing number of published mGWAS and their current limits, it is necessary to 58 

develop systematic methodologies to gain better insight into the mGWAS results by exploiting 59 

the most up-to-date biological knowledge. There are multiple resources available that aim at 60 

storing and describing known relationships between genes and phenotypes or endophenotypes 61 

(GWAS Catalog [5], PhenoScanner [6], OpenGWAS [7], Open Targets Genetics [8], PheLiGe 62 

[9], DisGeNET [10]) as well as tools to annotate gene-metabolites pairs based on the available 63 

resources but none of them have been specifically designed to address current mGWAS 64 

limitations [11, 12]. Only few methods have been developed to gain insight into the biological 65 

interpretation of mGWAS data specifically [13, 14], and none have been explicitly used to 66 

annotate mGWAS results based on well-curated biochemical knowledge, such as KEGG database 67 

[15]. KEGG is recognized for its high curation level of metabolic pathways for many model 68 

organisms, including humans, and is a reference for the reporting of enzymatic reactions, which 69 

is needed to understand the functional importance of gene-metabolite pairs. KEGG is a reference 70 

for the biochemical functions of genes with the descriptions of enzyme reactions, but a systematic 71 

and quantitative annotation procedure using this database in the context of mGWAS results 72 

remains to be explored. In this regard, recent studies have highlighted the applicability and utility 73 

of topological data analysis based on graph theory approaches [16], including the shortest path 74 

[17, 18], in revealing biological knowledge in the context of complex metabolic networks [13, 75 

17, 18]. For example, the shortest path was used to characterize the impact of gene deletion on 76 

nearby metabolites within the metabolic network of E. coli [18]. It was also used to analyze the 77 

relationship between expression quantitative trait loci (eQTL) and metabolomic data, for example 78 

within the metabolic network of rat adipose tissues [17]. Still, this type of metric has not been 79 

applied to systematically annotate mGWAS results. 80 

In this study, we assessed the utility of the shortest reactional distance (SRD) metric computed 81 

from KEGG database9s pathways to annotate mGWAS results and to help extract biological 82 
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insights from them. We developed PathQuant, an R package, to enable a robust and systematic 83 

computation of SRD values between any lists of gene-metabolite pairs mapped onto KEGG 84 

graphs, which represent metabolic pathways, while keeping the original, well-curated, topology 85 

of each queried pathway. Focusing on genes encoding for enzymes and their associated 86 

metabolites, we applied the SRD annotation to two previously published mGWAS datasets in 87 

individuals from different ethnicities: an mGWAS [11] performed on 7,824 participants from the 88 

TwinsUK cohort [19] and the KORA study [20], referred herein as the TK study, and an mGWAS 89 

[21] performed on 614 Qatari participants from the Hamad Medical Corporation (HMC), referred 90 

herein as the HMC study. We explored results at varying levels of statistical significance. We 91 

found that the SRD metric enables identification of associations that do not meet currently 92 

accepted cut-off of statistical significance (suggestive associations) but which have high 93 

biological relevance. Finally, we performed an mGWAS on previously reported genetic and 94 

metabolomic data from a Sickle Cell Disease (SCD) cohort [22, 23], referred herein as the SCD 95 

study, and show how the SRD metric can be used to prioritize novel hits, including hits with a 96 

suggestive p-value. 97 

  98 
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RESULTS 99 

Overview of study pipeline 100 

PathQuant is a tool that converts a metabolic pathway map into a graph of biochemical reactions 101 

with metabolites as nodes and genes as edges, to compute the SRD path between a given gene-102 

metabolite pair (STAR Methods, Supplementary Methods). To explore the potential of SRD 103 

values as an annotation metric to inform on the biological relevance of gene-metabolite pairs 104 

obtained from mGWAS, we developed a pipeline, presented in Figure 1. First, we gather 105 

mGWAS summary statistics and perform standard quality-control filters on genetic variants 106 

based on minor allele frequencies (MAF) and completeness. The second step of our pipeline only 107 

keeps bi-allelic SNPs at MAF > 0.01 (to exclude rare variants) and tested across all measured 108 

metabolites, but indels, tri-allelic SNPs and rare variants can be easily integrated, if present in 109 

mGWAS summary statistics. Third, SNPs are mapped to their closest genes coding for an enzyme 110 

(within 10,000 pb upstream and downstream) to obtain gene-metabolite pairs. As multiple SNPs 111 

will generally be linked with the same gene, only the minimum p-value of all SNPs is kept for a 112 

gene-metabolite pair, representing the strongest statistical signal for each pair within a study. 113 

These p-values can be categorized as either significant, suggestive, or non-significant according 114 

to appropriate thresholds that depend on the dataset (STAR Methods). We then retrieve KEGG 115 

IDs from all pairs (STAR Methods), and only retain pairs for which both IDs could be found. 116 

Third, we run PathQuant R package to compute the SRD value on all remaining pairs based on 117 

the KEGG overview graph (hsa01100). Note that other KEGG graph, or a combination of KEGG 118 

graphs, can be easily added at this step. SRD values obtained can be numerical when a path is 119 

found, can be given an infinite value (noted as <Inf=) when there is no path between the gene and 120 

metabolite in the queried graph, or an <NA= value when the gene or the metabolite (or both) are 121 

not found in the queried graph, despite having a valid KEGG ID. We can then perform several 122 

analyses of SRD values, as detailed below. 123 

 124 

Stringent and suggestive associated pairs have shorter reactional distances 125 

To test whether the SRD is a metric capable of capturing the biological relevance of a gene-126 

metabolite pairs, we first explored the results of the TK study, as it represents one of the largest 127 

mGWAS studies conducted to date. This mGWAS was done on a group of participants from 128 
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European descent, and many findings were replicated in follow-up studies, making it a well-129 

validated dataset. Furthermore, it is considered a reference study by the community, resulting in 130 

an ideal dataset to test the hypothesis that stringently associated pairs will have lower SRD values. 131 

We started to explore this dataset by using the 74 gene-metabolite pairs with KEGG IDs passing 132 

the genome-wide significance cut-off set by the original authors [11] (Table 1). Among these, 40 133 

gene-metabolite pairs were mapped onto KEGG overview graph. After excluding the two pairs 134 

with infinite SRD values, the median SRD value for the remaining 38 pairs is 1, which indicates 135 

a close biological relationship between the genes and their associated metabolites (Figure 2). To 136 

assess how significant this result is, we used two strategies: we compared the SRD values to (1) 137 

a null distribution (STAR Methods), built from all possible pairs of gene-metabolites that are 138 

present on the KEGG overview graph (Figure 2A); (2) to a permuted set of gene-metabolite pairs 139 

(Figure 2B), built with the 33 metabolites and 27 genes involved in the 40 significant gene-140 

metabolite pairs (Figure 2C). There is a statistically significant difference between the TK pairs9 141 

SRD values and the null distribution (Welch test, p-value < 3.48 × 10216), confirming the close 142 

biological relationship between mGWAS gene-metabolite pairs in the TK study. Similarly, the 143 

median SRD value for the permuted pairs is 8, which is significantly higher than the median SRD 144 

of 1 (empirical p-value = 0.035). These results confirm that closely connected genes and 145 

metabolites are enriched in gene-metabolite pairs discovered in mGWAS.  146 

To visualize the relationship between all genes and metabolites involved in the significant pairs 147 

reported in the TK study within KEGG overview graph, we used a heatmap representation of 148 

SRD values (Figure 2C), highlighting the reported significant pairs using thick black boxes. 149 

Seventeen of these associations have an SRD of 0, implying that these gene-metabolite pairs are 150 

from a single enzymatic reaction. For example, PSPH (phosphoserine phosphatase) is catalysing 151 

the formation of L-Serine and results in an SRD of 0. Interestingly, within the 40 associations 152 

with an SRD annotation, some genes are closely connected to multiple metabolites, such as 153 

ACADM and CPS1 that have multiple small SRD values. Moreover, some genes are isolated and 154 

appear to be part of disconnected subgraphs of the KEGG overview graph, such as GMPR 155 

(Guanosine Monophosphate Reductase), NAT2 (N-Acetyltransferase 2) and TDO2 (Tryptophan 156 

2,3-Dioxygenase), which obtained infinite SRD values with most metabolites. 157 

The design of mGWAS can be heterogeneous, with distinct genomic and metabolomic 158 

technologies and pre-processing steps used across studies. To demonstrate the applicability of 159 
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our annotation more broadly, it is important to use an independent study to replicate the 160 

observations above. Furthermore, there is a widely recognized bias towards white Europeans in 161 

genetics studies, which often makes results less generalizable in other ethnicities [24, 25], 162 

highlighting a need for new bioinformatics solutions to be tested in underrepresented populations. 163 

In line with these criteria, we further tested our approach in the HMC study, which has been 164 

performed in a different ethnic group, on Qatari individuals. In this mGWAS, the genomic data 165 

comes from the exome sequencing technology compared to genotyping data in the TK study, and 166 

the metabolomics data is generated using differing pre-processing steps (see STAR Methods). 167 

Furthermore, the authors of this study identified SNP-metabolite pairs with suggestive p-values, 168 

which were made available (Supplementary File number 7 of [21]) , allowing us to explore 169 

whether including the suggestive mGWAS association results replicated the observation from the 170 

TK study. Of 68 gene-metabolite associations (Table 1) at a cut-off of p ≤ 1.4 × 1027, 42 were 171 

mapped to the KEGG overview graph for which SRD values were computed. Four pairs had 172 

infinite SRD values (see Supplementary Figure 1C), while the 38 gene-metabolite remaining 173 

pairs (Table 1) had SRDs of 0 or 1 (Supplementary Figure 1), meaning that we have associations 174 

that are either substrate-product associations or with one intermediate step. Thus, we replicated 175 

the observation seen in the TK study of a significant enrichment of low SRD values compared to 176 

the null distribution in this second mGWAS (Welch test, p-value < 7.91 × 10260, Supplementary 177 

Figure 1), even when considering a lower significant threshold than standard genome-wide cut-178 

offs. 179 

 180 

SRD annotation can identify false negative hits 181 

By using two different studies and different summary statistics cut-offs, we have determined that 182 

associations with stringent and suggestive p-values are enriched for low SRDs. We next explored 183 

more formally the relationship between the SRD values and the p-values from the TK study. We 184 

graphically defined the gene-metabolite significance cut-off at p < 3.16 × 1024 of the TK study 185 

based on a QQplot (Supplementary Figure 2B, STAR Methods) and used it as a threshold for the 186 

minimum value to determine the relationship between SRDs and p-values. We observed a 187 

significant negative correlation between the mGWAS p-values and SRD values (R = -0.2, p = 188 

9.1× 10211, Figure 3A), meaning that the higher the significance of an association between a 189 
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metabolite and a gene is, the closer they are likely to be in the KEGG overview graph. This 190 

negative correlation confirms the enrichment of biologically relevant pairs in significant 191 

associations, and suggests that combining p-values and SRD may help prioritizing associations 192 

of high biological interest. Furthermore, the SRD value could be used to select for further analysis 193 

pairs with small SRD having low p-value that nevertheless do not pass stringent significance cut-194 

offs.  195 

As a result of multiple testing burden between each variant and each metabolite level, only top 196 

hits are generally reported in mGWAS, but it is well known that there could be false negative hits 197 

[26]. Thereby, we tested the potential for the SRD metric to identify some of these false-negative 198 

candidates in these published mGWAS. In the TK study, we focused on the genes and metabolites 199 

involved in stringent associations (presented in the heatmap, Figure 2C), which include 27 genes 200 

and 33 metabolites. We noticed gene-metabolite pairs annotated with a smaller SRD than the 201 

initially reported association, such as the ALDH18A1 (aldehyde dehydrogenase 18 family 202 

member A1) and L-citrulline pair, which has an SRD value of 2, whereas other pairs involving 203 

L-citrulline show smaller SRD values. For instance, the CPS1 (carbamoyl-phosphate synthase 1) 204 

and L-citrulline pair has an SRD = 1 but did not pass the stringent p-value cut-offs of the TK 205 

study, despite a p-value of 1.749 × 1028.  The SRD value of 1 reflects a sequence of reactions 206 

pertaining to the urea cycle catalysed by CPS1 for the formation carbamoyl phosphate from 207 

ammonia and bicarbonate and by the ornithine transcarbamylase (OTC) for the formation of L-208 

citrulline from carbamoyl phosphate and L-ornithine [27]. The association between CPS1 and L-209 

citrulline has recently been described twice in the literature with a p-value of 1 × 10225 with SNP 210 

rs1509820 [28] and 1 × 10214 with SNP rs975530777 [29]. The fact that this association was not 211 

significant in the TK study can thus be considered a false negative result. 212 

Using the same approach, we also identified an example within the HMC study of a gene-213 

metabolite pair at SRD = 0, which was not reported as a significant association because of a 214 

suggestive p-value (p =1.17 × 10-7).  This association is between UMPS (uridine monophosphate 215 

synthetase) and orotate (Supplementary Figure 1C, indicated in red). UMPS is a bifunctional 216 

enzyme that is part of the de novo pyrimidine biosynthetic pathway; its orotate 217 

phosphoribosyltransferase subunit catalyses the addition of ribose-5-phosphate to orotate to form 218 

orotidine monophosphate (KEGG reaction ID R01870). Given that a significant association has 219 
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been previously reported between UMPS gene and orotate [30], we could consider that this 220 

finding is replicated in the HMC study but only by adding information about its SRD value.   221 

Taken altogether, the examples highlighted the opportunity to explore associations annotated 222 

with low SRD values in mGWAS, beyond those with stringent significance cut-offs. Identifying 223 

these potential false negative hits illustrates how useful the SRD annotation can be in discovering 224 

biologically relevant results which would be missed when only considering stringent p-value cut-225 

offs in mGWAS reporting. 226 

 227 

Case study: mGWAS in Sickle Cell Disease patients 228 

To exemplify how the SRD metric can be used to prioritize mGWAS results, we present a new 229 

mGWAS analysis performed in sickle cell disease (SCD) patients of African or African-230 

American ancestry. While the cause of SCD has been known for over a century, the molecular 231 

determinants of the severity of this blood disease remain unknown and are influenced by genetic 232 

variants unlinked to the beta-globin gene [31]. An mGWAS was performed in 651 SCD patients, 233 

quantifying a total of 128 metabolites, to identify metabolites associated with genetic markers. A 234 

total of 165 unique SNPs (with MAF > 1%) passed a genome-wide significance cut-off of p < 235 

7.8125 × 10210 (Supplementary Figure 2, 1 × 1027/ 128 metabolites) and an additional unique 256 236 

SNPs passed a suggestive cut-off of p < 1 × 1027 (Supplementary Figure 2C). We identified a 237 

total of eight loci associated with metabolite levels (Supplementary Figure 3), with four of them 238 

reported in previous studies (Supplementary Table 2). The four additional associations were not 239 

previously reported neither in the TK/HMC studies, nor in a large mGWAS of human blood 240 

metabolites [32]. In all four cases, the frequency of the top associated SNP is larger in individuals 241 

of African descent than in Europeans according to the gnomAD Genomes database, but these hits 242 

were not found in the three largest mGWAS done in individuals of African ancestry to date [33-243 

35]. We recognize that while interesting, these novel associations will need replication in an 244 

independent cohort. 245 

We generated a QQplot based on minimum p-values for the gene-metabolite pairs extracted from 246 

the SCD mGWAS (STAR Methods) and defined the gene-metabolite significance cut-off at p < 247 

3.16 × 1025 (Supplementary Figure 2D). We observed a significant negative correlation between 248 

the mGWAS p-values and SRD values (R = -0.1, p = 0.036), replicating the result observed in 249 
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the TK study, demonstrating that this relationship between significance and SRD is reproducible 250 

in a disease cohort, where biological mechanisms can be altered (Figure 3C). Given these 251 

observations, we investigated whether associations above the gene-metabolite significance cut-252 

off of p < 3.16 × 1025, but below genome-wide significant cut-offs usually required to report 253 

associations, could be prioritized according to SRD values (candidate pairs below the plain line 254 

in Figure 4). We split the associations into two suggestively significant categories, one that 255 

includes association p-values between the genome-wide significance cut-off and p < 1 × 1027 256 

(Supplementary Figure 2C) and another that includes associations p-values between p < 1 × 1027 257 

and the gene-metabolite significance cut-off of p < 3.16 × 1025 (Supplementary Figure 2D), which 258 

we labelled S+ and S-, respectively. To evaluate the potential of association results in each 259 

significance categories, we aimed to compute the proportion of small SRD values. From the 260 

distribution of all SRD values computed on the KEGG overview graph (Methods), we observed 261 

that 25% of SRD values (first quartile) are lower or equal to 8 (Supplementary Figure 4). We 262 

thus used the SRD value ≤ 8 as a threshold for considering SRD values as small, reflecting close 263 

biological relationships based on the graph topology. Furthermore, 90% of gene-metabolite 264 

significant pairs in the well-powered TK and HMC studies have SRD ≤ 8 and, out of the genome-265 

wide significant associations with a numerical SRD value in this mGWAS (Block R, Figure 4), 266 

two out of three have SRD ≤ 8.  267 

Two (40%) out of five associations from the S+ category have small SRD values, and 116/411 for 268 

the S- category (28.22%). Next, we manually investigated the 118 suggestive associations with 269 

SRD ≤ 8 by searching the literature for these gene-metabolite pairs and found six previously 270 

described associations (5%): PRODH (proline dehydrogenase 1) and L-proline [11, 36, 37], 271 

NT5C3A (5'-nucleotidase, cytosolic IIIA) and orotate [30], GATM (glycine amidinotransferase) 272 

and creatine [38], UPB1 (beta-ureidopropionase 1) and 3-ureidopropionate [32], UGT2B17 (UDP 273 

glucuronosyltransferase family 2 member B17) and sn-glycerol 3-phosphate (previously described 274 

for total phosphoglycerides) [39], DGKH (diacylglycerol kinase eta) and tetradecanoyl-carnitine 275 

[40], implying that these are likely to be real associations in SCD patients (Table 2). We thus 276 

estimate that at least 5% of associations in this category are false negative and that the SRD metric 277 

has added value in identifying them. It also demonstrates the ability of the SRD metric to retain 278 

pairs that would not be otherwise reported, thus improving the mGWAS9 potential for discovery.  279 

280 
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DISCUSSION  281 

The identification of an association between a SNP and a metabolite is usually supported solely 282 

by the p-values of the statistical test without consideration for the known metabolic pathways. 283 

Although the possibility of false positive hits is well understood among geneticists following up 284 

on mGWAS results, the fact that reporting of gene-metabolite pairs using only statistical 285 

significance can lead to an incomplete list of associations is less discussed. In this study, we 286 

demonstrate how a simple metric called shortest reactional distance (SRD) can be useful for the 287 

reporting and the ad-hoc annotation of gene-metabolite pairs for several p-values acceptance cut-288 

offs. By using previously published mGWAS, we have shown that the SRD is a metric capable of 289 

retrospectively identifying a number of false negatives. The datasets we used in our study involved 290 

different genomics and metabolomics protocols, different preprocessing strategies, different sets 291 

of genetic variants (genotyped, imputed, exclusive to exons) and of metabolites, different 292 

ethnicities (from European, African and Middle Eastern ancestries), disease-based and population 293 

cohorts, illustrating the wide range of contexts in which our annotation is applicable.  294 

PathQuant, the package developed to compute the SRD metric in this study, is not the only package 295 

available that computes the shortest path metric between genes and metabolites. Similar to 296 

PathQuant, MetaboSignal [13] is an R package based on the same mathematical criterion of 297 

shortest path metric and also uses metabolic pathways from the KEGG database. There are, 298 

however, important differences between these two methods. MetaboSignal combines both 299 

metabolic and signaling pathway maps. While this can provide novel information about the 300 

interaction between genes and metabolites that goes beyond the known enzymatic reactions and 301 

pathways, it modifies the original topology of the curated pathways (signaling and metabolic). 302 

These changes are not necessarily supported by biological data, which is crucial to ensure their 303 

validity, as emphasized by Dumas et al. [17]. Thus, for our assessment of the potential of SRD 304 

annotation in mGWAS, we favored a simpler approach that focuses only on curated metabolic 305 

pathways, by converting a metabolic pathway map from KEGG into a graph of biochemical 306 

reactions with metabolites as nodes and genes as edges. PathQuant computes SRD values from 307 

any given list of gene-metabolite pairs using any given metabolic pathway graph in KGML format 308 

thus keeping the original and curated topology of the metabolic pathways reported by KEGG. Of 309 

note, a direct comparison of the shortest path metrics calculated by PathQuant and MetaboSignal 310 

on the list of gene-metabolite pairs of the mGWAS investigated here could not be performed, as 311 
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the KEGG overview pathway graph we used with PathQuant is not accepted as input by 312 

MetaboSignal. Indeed, MetaboSignal computes its shortest path metric using a custom graph that 313 

is built from a pre-selected list of signaling and metabolic pathways.  314 

The computation of the SRD metric with PathQuant within KEGG graphs leads to several possible 315 

values: numerical, infinite or NA. Having a numerical annotation to a pair which is based on known 316 

pathways leads to a better understanding of the underlying biology of an association. Indeed, we 317 

have shown that SRD values decrease as statistical significance of gene-metabolite pairs increases: 318 

this negative correlation between the level of significance and SRD values suggests an enrichment 319 

of biologically relevant pairs as the p-value decreases, thus making SRD a promising annotation 320 

metric to improve mGWAS reporting. We defined two categories for numerical values (short SRD: 321 

0 < SRD ≤ 8; large SRD: SRD > 8), which have been derived from the topological properties of 322 

the KEGG overview graph (ID: hsa01100) as this graph contains all curated human biological 323 

reactions, but different thresholds could be used in different contexts. The annotation of a pair with 324 

an SRD lower or equal to 8 suggests that the gene, its expression levels or the protein it codes for, 325 

may have a direct influence on the associated metabolite concentration. This is illustrated by the 326 

statistical difference between the SRD values of mGWAS pairs and the null distribution of SRD 327 

values within the KEGG overview graph and by manual investigation of specific pairs of interest, 328 

such as the CPS1 and L-citrulline finding (SRD=1) in TK study, the UMPS and orotate example 329 

(SRD=0) in HMC study. Moreover, for the SCD study, the gene-metabolite pairs presented in 330 

Table 2 are annotated with an SRD lower or equal than 8 and have been already reported to be 331 

associated with the corresponding metabolite levels in the literature. Despite the number of 332 

investigated associations being very small for the R and S+ categories, we observed a decreasing 333 

proportion of pairs with values lower than 8 and an increasing frequency of pairs with values 334 

greater than 8, as p-values increases, in line with the negative correlation observed. These results 335 

demonstrate, across all different mGWAS datasets we used, the potential of using the SRD metric 336 

with a cut-off of SRD ≤ 8 in order to identify false negatives hits and prioritize follow up studies 337 

and experiments.  338 

Another interesting case is when the SRD value is large, but the p-value is highly significant. In 339 

this case, a direct influence of the gene on the associated metabolite is less clear. For example, we 340 

noticed a large SRD value for the association between the alkaline phosphate (ALPL) and the 341 

phosphocreatine (SRD = 22; p-value = 9.356× 10210). One possibility is that this association could 342 
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have been a false negative. However, digging further into the literature, we found that 343 

phosphocreatine can, in fact, be the substrate of the enzyme encoded by the ALPL gene [41, 42]. 344 

Thus, the true SRD value for ALPL-phosphocreatine pair should be 0, and the high SRD value 345 

computed is a consequence of the current state of the publicly shared knowledge available on 346 

KEGG.  This result highlights a limitation of our approach, which is the incompleteness of some 347 

metabolic pathways in KEGG. However, our SRD annotation pipeline of mGWAS results can help 348 

identify those cases and could be useful to detect gaps and errors in metabolic network databases. 349 

Other cases of SRD > 8 for highly significant association have been noted in our work, notably in 350 

TK study (Figure 2A, Figure 2C; Figure 3A). When the path computed in KEGG is accurate and 351 

the association is independently replicated, higher values of SRD can identify metabolic pathways 352 

involving more indirect gene-metabolite relationships. By themselves, these cases are of interest 353 

as they illustrate a violation of the hypothesis that biological proximity between a gene and a 354 

metabolite is needed to regulate its level.  355 

An SRD annotation with an infinite or NA value means that there was no path between the gene 356 

and the metabolite within the chosen graph, because they are not connected (infinite value) or 357 

because one of the two entities (or both) are missing from the queried graph (NA value). In most 358 

cases, there likely exist no biological paths between these entities, but if the association is highly 359 

significant, it could reflect actual gaps within the graph again. Investigation of enzymes or 360 

metabolites with an unusual number of infinite or NA values may lead to more complete metabolic 361 

pathway databases. Beyond these potential gaps in KEGG, other limitations of this resource are 362 

the metabolic reactions provided do not specify cofactors, enzymatic complexes required for the 363 

reaction to happen, and directionality, resulting in a decreasing level of complexity and accuracy 364 

of the metabolic pathways. Thus, computing SRD on other resources for pathway mapping, such 365 

as Recon3D, could improve our distance-based annotation pipeline. Indeed, this resource is 366 

considered the most complete reconstruction of human metabolism so far [43, 44]. Furthermore, 367 

in contrast to KEGG, Recon3D has the advantage of including more genes encoding transporters, 368 

which would allow to increase the breath of SRD computation beyond enzymatic reactions. It also 369 

includes information about cellular compartments and the directionality of reactions is known, in 370 

contrast to KEGG graphs. Despite these advantages, the available file format (sbml) used in 371 

Recon3D to represent metabolic pathways is incompatible with the graph structure we used for 372 

KEGG. Given that the goal of this study was to establish if the SRD annotation is useful for 373 
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mGWAS annotation, a simple representation of metabolic pathways is highly appropriate and it is 374 

outside the scope of the present study to implement an SRD metric based on Recon3D. Future 375 

implementations on alternative databases should consider two additional desirable characteristics 376 

of KEGG when comparing results : first, KEGG is the only database for which pathway maps were 377 

built on known reactions from humans and others species, a clear advantage for non-human 378 

mGWAS studies [45, 46]; second, KEGG pathway maps are built with an explicit labeling of side 379 

compounds definition (such as ATP or H2O) from KEGG RPAIRS [47], making their removal 380 

from curated reactions possible, which eliminates shortcuts created by their over-representation 381 

within the graph when computing SRD [48].  382 

A crucial step for the annotation of gene-metabolite pairs with SRD values is to obtain the KEGG 383 

IDs for the genes and metabolites. Although gene names and IDs are highly standardized [49] there 384 

is a lack of uniformed nomenclature for metabolites. In most cases, there are multiple ways to refer 385 

to a metabolite, with different studies using different reporting conventions, which complicated 386 

the re-analysis of published datasets. For HMC and SCD studies, HMDB IDs [3] were provided 387 

by the authors, which could be easily converted to KEGG IDs using the MetaboAnalyst Convert 388 

tool. In the case of the TK study, we performed a manual annotation of the common names to 389 

KEGG IDs, but this process was time consuming and required having the relevant expertise. This 390 

manual work allowed us to include listed metabolites that did not have KEGG IDs, such as 391 

acylcarnitines (see Material and Methods). These metabolites are measured in plasma but arise 392 

from intracellular metabolism of their acyl-CoA counterparts, which in contrast to acylcarnitines 393 

do not cross the plasma membrane. Based on the known direct link between the acylcarnitines and 394 

the acyl-CoAs we have used the CoA counterparts to represent these metabolites, which do have 395 

KEGG IDs. The increasing quantity of released studies involving metabolomics in the literature 396 

encourages the community to release new standards to refer metabolites, such as Simplified 397 

Molecular-Input LineEntry System [50], COordination of Standards in MetabOlomicS [51], 398 

IUPAC International Chemical Identifier [52]. These efforts for standardisation of metabolites 399 

naming, and the reporting improvements they allow, are leading to a promising leap for the field, 400 

as this will result into better links being made between novel findings and already published data. 401 

In practice, SRD annotations can be a great addition to bioinformatics pipelines in order to reduce 402 

the number of potential candidate pairs to follow up on, by prioritizing hits based on a curated 403 

biological information, as the number of released mGWAS grows. Furthermore, this metric could 404 
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be added within already available user-friendly resources such as mGWAS Explorer [14]. SRD 405 

values could also play a role in designing targeted studies, in a context where extensive mGWAS 406 

cannot be done or is not relevant, for example if the research question is about finding the genes 407 

or proteins that regulate the levels of a specific metabolite, or conversely, finding which 408 

metabolites are regulated by a specific enzyme. In this latter case, it would make sense to focus 409 

more specifically on the metabolites showing low SRD values with the targeted enzyme. In the 410 

future, we believe that extending the implementation by using other appropriate resources for 411 

pathway mapping would likely improve coverage and enhance the value of the SRD metric in 412 

mGWAS annotation pipelines. 413 

In conclusion, we consider this work as a proof of concept of the benefits of using shortest 414 

reactional distance metrics for annotating mGWAS results based on a model representation of the 415 

human metabolism provided by the KEGG database. These metrics can also be used as a tool for 416 

metabolic databases in order to more easily identify gaps within current metabolic pathway graphs 417 

by using a new information provided by mGWAS. In this multi-omics era, we anticipate that large 418 

scale studies  looking for associations between genomics, proteomics and metabolomics signals 419 

will soon become a new standard, as illustrated by recent studies in mice and humans [53, 54], 420 

resulting in additional protein-metabolite pairs, for which the computation of SRD values may add 421 

great value. 422 

423 
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STAR METHODS 424 

RESOURCE AVAILABILITY 425 

Lead contact 426 

Further information and requests should be directed to and will be fulfilled by the lead contact, 427 

Julie Hussin (julie.hussin@umontreal.ca). 428 

 429 

Materials availability 430 

This study did not generate new materials. 431 

Data and code availability 432 

• Source data statement. This paper analyzed existing, publicly available summary mGWAS data 433 

for the TK and HMC studies. The SCD study data comes from genomic and metabolomics of two 434 

previously published studies. Raw data can be made available upon request to GL. Summary 435 

statistics of SCD study will be made available publicly upon journal publication and from the lead 436 

contact upon request in the meantime. 437 

• All additional files necessary to reproduce the reported results of this paper are available at: 438 

www.github.com/HussinLab/PathQuant/Publication/References. 439 

• PathQuant source code is available at www.github.com/HussinLab/PathQuant/. 440 

• Any additional information required to reanalyze the data reported in this paper is available from 441 

the lead contact upon request.   442 

METHOD DETAILS 443 

Overview of the mGWAS Datasets 444 

In this study we used three different mGWAS datasets. The TK study refers to an mGWAS [11] 445 

previously performed on 7,824 participants (plasma or serum samples) from the TwinsUK cohort 446 

[19] and the KORA study [20]. The mGWAS was carried out on 2.1 million genotyped SNPs 447 

and 529 metabolites (assessed by targeted and untargeted metabolomics). The authors reported 448 

299 SNP-metabolite (or ratio of metabolites) significant associations (at cut-off of p ≤ 1.03 449 
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× 10210 for metabolite concentrations and p ≤ 5.08×10213 for pairwise metabolite ratios) involving 450 

187 unique metabolites and 145 loci, annotated as 132 causal genes [11]. The TK study also made 451 

available mGWAS output files from METAL software [55] involving 486 metabolites without 452 

any p-value cut-off [www.metabolomics.helmholtz-muenchen.de].  453 

The HMC study refers to an mGWAS [21] previously performed on 614 Qatari participants 454 

(plasma samples) from the Hamad Medical Corporation. The mGWAS was carried out on 1.6 455 

million imputed exome variants and 826 metabolites (assessed by targeted and untargeted 456 

metabolomics) and reported 3,127 significant associations (at cut-off of p ≤ 2.2 × 10210 for both 457 

metabolite concentrations and pairwise metabolite ratios) in 21 locus-metabolite pairs. The 458 

suggestive association results were also provided to the community, reporting all associations 459 

with cut-off of p ≤ 1.4 × 1027 (Supplementary Data 7 in [21]), which include 6517 SNP-460 

metabolite (or ratio of metabolites) pairs with available p-values.  461 

In the SCD study, an mGWAS was performed here using genetics and metabolomics data 462 

published in different studies [22, 23] on a total of 651 SCD patients (plasma samples) including 463 

401 individuals of African ancestry in the Genetic Modifier (GEN-MOD) cohort and 250 464 

African-American individuals from Southwest USA in the Duke University Outcome Modifying 465 

Genes (OMG) cohort. Metabolomics profiling was performed at the Broad Institute, and 466 

appropriate statistical modelling was used to account for residual batch effects [56]. Briefly, for 467 

association testing, 128 metabolites were profiled using a targeted approach in 651 plasma 468 

samples from SCD patients. Metabolites were inverse normal transformed, adjusting for age and 469 

sex. We then generated summary statistics for each cohort individually in a linear regression 470 

model, accounting for relatedness using a kinship matrix as implemented in rvtest (v. 20171009) 471 

[57] in GEN-MOD. The software SNPTEST [58] was employed in OMG to generate cohort-472 

specific summary statistics. We then meta-analyzed the effect size estimates and standard errors 473 

from GEN-MOD and OMG using METAL [55]. After the pre-processing step, 6 million SNPs 474 

were kept. 475 

 476 

Mapping shortest reactional distances (SRD) onto KEGG 477 

To compute the SRD metric, the R package PathQuant was developed [available at: 478 

www.github.com/HussinLab/PathQuant]. PathQuant converts a metabolic pathway map into a 479 
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graph of biochemical reactions with metabolites as nodes and genes as edges (Figure 1). Briefly, 480 

PathQuant takes as input a list of gene-metabolite pairs as pairs of KEGG identifiers (IDs) and a 481 

list of metabolic pathways (eg. <hsa01100=, referred herein as KEGG overview graph, a global 482 

concatenation of multiple distinct pathways). PathQuant then uses a KEGG XML file format 483 

(KEGG Markup Language, KGML), downloaded using the KEGG API 484 

[www.kegg.jp/kegg/rest/keggapi.html] to build the most up-to-date KEGG undirected graphs. 485 

Next, PathQuant computes the SRD path between a gene and a metabolite from a given pair. The 486 

SRD values are obtained using the breadth-first search Dijkstra algorithm [59]. PathQuant 487 

outputs a text file containing genes and metabolites classification, Enzyme Commission number 488 

(EC), KEGG Brite IDs, KEGG IDs of metabolic pathways for the SRD computation, and the 489 

SRD values for all pairs. PathQuant also allows the visualization of SRD values annotation in a 490 

heatmap, leading to a better identification of potentially interesting hits.  491 

 492 

Extracting and annotating gene-metabolite pairs from mGWAS summary statistics  493 

Using bedtools version v2.30.0 [60], we annotated each SNP to genes with KEGG IDs, using a 494 

custom bed file: we downloaded gene coordinates for human genome build GRCh37.p13 from 495 

NCBI (NCBI Homo sapiens Updated Annotation Release 105.2020/10/22, gff format) and 496 

modified it to add 10,000 base pairs upstream and downstream for each of the 26,105 genes with 497 

KEGG IDs. Because we focused on pairs involving genes encoding enzymes, which are the most 498 

represented genes in the KEGG database, we only annotated SNPs with KEGG IDs classified as 499 

enzymes within the KEGG Brite database by using the Brite enzyme code <BR:hsa01000=, leading 500 

to a subset of 4,049/26,105 genes. For metabolites, if available, we used the provided IDs, either 501 

KEGG IDs directly or HMDB IDs. For metabolites with HMDB ID the list was queried to 502 

Metaboanalyst [61][www.metaboanalyst.ca/faces/upload/ConvertView.xhtml] to get the 503 

corresponding KEGG IDs. For metabolites without KEGG or HMDB IDs provided, KEGG IDs 504 

retrieval was achieved automatically by parsing the common names into the most standard KEGG 505 

name format, and then queried the metabolite names with new format to MetaboAnalyst. 506 

Additionally, specific metabolites were manually treated: acylcarnitines without KEGG IDs were 507 

swapped to their acyl-CoA counterparts when available in KEGG. For each gene-metabolite pair 508 

within a dataset (TK, HMC and SCD study), only one mGWAS p-value was kept, which is the 509 

minimum p-value obtained for the association between any SNP annotated to the gene and that 510 
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specific metabolite. Based on that p-value, each pair is annotated as genome-wide significant, 511 

suggestive, or non-significant: genome-wide p-value cut-offs were derived from a standard GWAS 512 

Bonferroni correction approach (dividing by the number of tested metabolites). Suggestive 513 

significance cut-offs, were obtained graphically from quantile-quantile plots (QQplots) of 514 

minimum p-values for the variants-metabolite pairs of corresponding study. Specifically, we 515 

determined the value on the QQplot x-axis where the slope starts to increase drastically. 516 

 517 

SRD null distribution and investigation of candidate gene-metabolite pairs 518 

To obtain a null distribution of SRD values from the KEGG overview graph (hsa01100), we 519 

gathered all different KEGG IDs for both metabolites and genes found within the graph, and then 520 

ran PathQuant on all possible pairs (Supplementary File 1). The KEGG overview graph version 521 

(KGML v0.7.2 file) includes 1,351 genes and 2,889 metabolites, generating a total of 3,903,039 522 

pairs for which we computed the SRD values, referred herein as the KEGG overview graph9s SRD 523 

null distribution. The first quartile of this distribution is used as the threshold to categorize any 524 

pair with a close or far biological relationship label. This threshold was determined because 25% 525 

of the smallest values are below half of the mean, leaving 75% as a representative sample of distant 526 

relationships between genes and metabolites. We also performed a manual investigation of 527 

candidate gene-metabolite pairs (Table 1, Supplementary Table 1) by extracting the corresponding 528 

rsID using dbSNP annotation of UCSC Genome Browser [62], searching for published 529 

associations of the metabolite with (1) the SNP rsID within GWAS Catalogue  and/or with (2) the 530 

gene symbol within PhenoScanner [6] (with parameters: cut-off p-value=1e-5, cut-off r2=0.8, 531 

build=37). 532 

  533 
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MAIN FIGURES AND LEGENDS 

 
Figure 1. Overview of the Shortest Reactional Distance (SRD) annotation process.  

On the left panel, we show the main steps of the pipeline used to annotate mGWAS datasets. Boxes indicate 

input and outputs of processing steps described on arrows. The right panel shows the meaning of an SRD 

annotation of a reaction. The queried metabolite is in blue, the queried gene is Enzyme A and a sub-graph 

is shown. The SRD between Enzyme A and its main reactants, the substrate and the product, are of 0, 

everything running deeper adds 1 at each step (dashed arrows): green metabolites are at SRD = 1 and the 

queried metabolite is at SRD = 2 from Enzyme A.  
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Figure 2. SRD of stringently associated gene-metabolite pairs in the TK study.  

(A) Comparison of SRD annotations for reported genome-wide significant associations from the TK study 

(orange) and the distribution of all SRD values within KEGG overview graph (hsa01100) (B) Distribution 

of SRD values computed from permuted gene-metabolite pairs from TK study, with a median SRD of 8 

(black dotted line).  The median SRD of 1 (orange dotted line) represents an empirical p-value of p=0.035. 

(C) Heatmap representing all genes and metabolites included in reported genome-wide significant 

associations from the TK study. The 40 mapped gene-metabolite associations are enclosed in black boxes 

on the heatmap (n=40). Abbreviations: CoA = Coenzyme A. 

* CoA metabolites are proxies for measured carnitines.  
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Figure 3. Relationship between p-values and SRD values for TK and SCD studies 

Correlation plot between the –log10(p-values) and SRD values for gene-metabolite pairs in (A) the TK 

study (p-value cutoff was 3.16 × 10-4, Supplementary Figure 3B) and (C) the SCD study (p-value cutoff 

was 3.16 × 10-5, Supplementary Figure 3E). Correlation computed on permuted data (N=1000) to take into 

account the graph structure allowed computation of empirical p-values for TK (B) and SCD (C), with the 

true correlation coefficient presented (dotted red line). 
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Figure 4. Identification of potential false negative hits for different p-values cut-offs in the SCD study.  

The main panel represents -log10(p-values) for gene-metabolite pairs for SNPs on each chromosome (x-

axis). Coloring represents the SRD annotation from 3 categories: SRD = Infinite or NA (white), numerical 

SRD ≤ 8 (light grey), numerical SRD > 8 (dark grey). On the top right panel, the histogram represents the 

frequencies of SRD ≤ 8 and > 8 for each block. The frequency percentage is obtained by summing only the 

pairs with a numerical SRD value (n) within each category according to different p-value cut-offs: R : p < 

7.8125 × 10210, S+ : 7.8125 × 10210 < p < 1 × 1027 and S- : 1 × 1027 < p < 3.16 × 1025.  
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MAIN TABLES AND LEGENDS 

Study name TK HMC SCD TK-None 

Summary stats cut-off 1.03 × 10210 1.79 × 10-7 None None 

Sample size 7,824 614 651 7,824 

SNP-Metabolite name pairs 

(unique SNP - unique metabolites) 

336 

(218-186) 

6 465 

(3 192-100) 

3 139 070 208 

(24 523 986-128) 

1 236 909 025 

(2 617 408-486) 

Enzyme Gene-Metabolite pairs with KEGG IDs: PathQuant input 

(unique genes - unique metabolites) 

74 

(43 - 56) 

68 

(32-20) 

209 645 290 

(3875-118) 

46 779 684 

(3815-177) 

Pairs’ SRD annotations within KEGG Overview Graph 

(unique genes - unique metabolites*) 

SRD: 38 

Inf: 2 

NA: 34 

 

(27 - 33) 

SRD: 38 

Inf: 4 

NA: 26 

 

(13 - 8) 

SRD: 82 145 

Inf:  38 980 

NA: 336 125 

 

(1275 - 95) 

SRD: 86 219 

Inf: 55 822 

NA: 533 214  

 

(1257 - 113) 
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Table 1. Dataset description of used dataset for the TK, HMC, and SCD studies.   

Line 1: Dataset label for TK, HMC and SCD studies and the TK dataset without p-values cut-off (TK-None). Line 2: Maximum p-value cut-off. 

Line 3: Maximum number of samples available for the mGWAS study.  Line 4: Number of SNP-metabolites pairs. Line 5: Number of gene coding 

for enzyme-metabolite pairs for which KEGG IDs have been obtained. Line 6: Number of SRD annotation within map hsa01100 (KEGG overview 

graph) categorized in three categories. Line 4,5,6 have the count of unique genes and metabolites involved in pairs between parenthesis. *: the 

number of unique genes and metabolites are ignoring NA values. Abbreviations: ID = Identifier; SNP = Single-nucleotide polymorphism; SRD = 

Shortest Reactional Distance; Inf = Infinite value; NA = Not available, a missing annotation.  
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SNP 

(Chromosome_Position_Alle

le1_Allele2) 

Gene 

symbol 

(KEGG 

ID) 

Metabolite  

common 

name 

(KEGG ID) 

P-

valu

e 

SR

D 

Comments – Publication ID reporting the described 

association 

22_18905964_C_T 

PRODH 

(hsa:562

5) 

L-Proline 

(C00148) 

4.77

4e-

06 

0 

rs2904552, 

PMID:24816252, 26068415, 25569235 

http://www.phenoscanner.medschl.cam.ac.uk/?query=PRODH&c

atalogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 

7_33081514_A_G 

NT5C3A 

(hsa:512

51) 

Orotate 

(C00295) 

3.65

9e-

08 

2 

rs4316067, 

PMID: 23823483 

http://www.phenoscanner.medschl.cam.ac.uk/?query=NT5C3A&

catalogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 

15_45682944_T_C 

GATM 

(hsa:262

8) 

Creatine 

(C00300) 

5.16

0e-

06 

1 

rs536148271,  

PMID : 34226706,  

http://www.phenoscanner.medschl.cam.ac.uk/?query=GATM+&

catalogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 

22_24893867_G_A 

UPB1 

(hsa:517

33) 

3-

Ureidopropi

onate 

(C02642) 

1.14

9e-

09 

0 

No rsID found, 

PMID:28263315,  

http://www.phenoscanner.medschl.cam.ac.uk/?query=UPB1&cat

alogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 

4_69444550_C_A 

UGT2B1

7 

(hsa:736

7) 

sn-Glycerol 

3-phosphate 

(C00093) 

2.93

e-05 
6 

No rsID found, 

PMID : 27005778 (Total phosphoglycerides) 

http://www.phenoscanner.medschl.cam.ac.uk/?query=UGT2B17

&catalogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 

13_42683873_C_T 

DGKH 

(hsa:160

851) 

Tetradecano

yl-CoA* 

(C02593) 

2.72

e-05 
8 

rs75732304 

PMID : 21886157 (2-tetradecenoyl carnitine/gamma-

glutamylmethionine*) 

http://www.phenoscanner.medschl.cam.ac.uk/?query=DGKH&ca

talogue=mQTL&p=1e-5&proxies=None&r2=0.8&build=37 
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Table 2: Associations with SRD lower or equal to 8 for the SCD study, illustrating potential false negative hits discovered by manual 

verification. 

Column 1: SNP information formatted as CHROMOSOME_POSITION_ALLELE1_ALLELE2 in hg19. Column 2: Gene symbol found the in the 

KEGG ID entry. Column 3: Metabolite common name found the in the KEGG ID entry. Column 4: P-value of the association between the SNP 

and the metabolite. Column 5: SRD annotation of the gene-metabolite pair using KEGG graph hsa01100.  Column 6: Miscellaneous information 

for the association: rsID if available; PMID of the publications reporting association between the gene, or the SNP with the associated metabolite; 

link to the query used in Phenoscanner website. Abbreviations: ID = Identifier; SNP = Single-nucleotide polymorphism; SRD = Shortest 

Reactional Distance, PMID = PubMed Identifier. * CoA are representatives of the measured carnitines. 
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SUPPLEMENTAL INFORMATION 

Supplementary figures and legends. 

 

 
Supplementary Figure 1. SRD of stringently and suggestive associated gene-metabolite pairs in the 

HMC study. (A) Comparison of SRD annotations for reported genome-wide significant associations from 

the HMC study (orange) and the distribution of all SRD values within KEGG overview graph (hsa01100) 

(B) Distribution of SRD values computed from permuted gene-metabolite pairs from HMC study, with a 

median SRD of 10 (black dotted line).  The median SRD of 0 (orange dotted line) represents an empirical 

p-value of p=0. (C) Heatmap representing all genes and metabolites included in reported stringent and 

suggestive associations from the HMC study. The 24 mapped gene-metabolite associations are enclosed: a 

black box indicates a reported stringent or a suggestive pair for which either the gene, the metabolite or 

both have been reported in the dataset (n=23) while a red enclosed box indicates a suggestive pair for which 

the gene and the metabolite have not been reported in the study (n=1).  
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Supplementary Figure 2. QQplots for the TK and SCD studies.  
(A/C) QQplots using all p-values from mGWAS files available, before any pre-processing steps for TK 

study (A) and for the SCD study (C). (B/D) QQplots using p-values at the end of the pipeline (See Methods) 

for the TK study (B) and for the SCD study (D). Vertical lines indicate the graphically determined cut-offs 

we used in our Results section. Abbreviations: MAF = Minor Allele Frequency, QQplot = Quantile-

Quantile plot.  
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Supplementary Figure 3. Manhattan plot of the SCD study. 
Manhattan plot of the SCD study with a p-values below 1x10-4 cutoff, each dot represents an association 

between a variant and a metabolite. Black and white is an alternating color palette for chromosomes. The 

first line from plot bottom (dark plain) indicates the genome-wide threshold at 1x10-7, and the second line 

(light plain) at 7.8125x10-10, indicates the first threshold corrected by Bonferroni (See Methods). Top hits 

for each mapped gene above the Bonferroni threshold are labelled with two distinct colors: blue if the 

association has not been previously reported, or orange if the association has been already reported in the 

literature.  Gene symbols are separated to metabolite name(s) by "/" symbol.  
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Supplementary Figure 4. Summary statistics of the null distribution of SRD values within the KEGG 

overview graph.  

Boxplot of the SRD values and table of summary statistics for the null distribution of SRD values within 

the KEGG overview graph (hsa01100). The mean SRD within this graph is 14.89, with a maximum value 

of 66. The first quartile (SRD <8) is used as the threshold to categorize any pair with a close or far biological 

relationship label.  
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SUPPLEMENTARY METHODS 

 

PathQuant tool to compute shortest reactional distances (SRD).   

  

The method was developed using R and delivered as an R package. PathQuant (for Pathway 

Quantity).  

  

1.1 Input parameters  

Gene-metabolite pairs: PathQuant accepts the following input for SRD computation: 1) gene(s); 

and 2) their associated metabolite(s) in columns, each with their specific KEGG identifiers (IDs). 

Each row represents a unique gene-metabolite association. Only associations between genes and 

individual metabolites are taken as entry, hence associations between a gene and a ratio of 

metabolites must be separated prior to analysis (usually by generating gene-

numerator/denominator pairs).  

Selected metabolic pathways: PathQuant accepts a list of metabolic pathways, each with its 

specific KEGG IDs. For this application, we used the map ID: hsa: 01100 in KEGG (referred 

herein as the 8overview9 or 8hsa011009 throughout this article).  

  

1.2 Association classification  

PathQuant can classify each association of the input by gene product into four broad categories: 

enzyme, transporter, other (other proteins, transcription factor, and more) and not classified using 

KEGG Brite database.   

  

1.3 Metabolic network modelling  

The selected KEGG pathway, encoded in KEGG XML file format (KGML), is downloaded using 

the KEGG API, from the most up-to-date KEGG pathways available, and then moved to a specific 

version folder in order to keep track, or use a specific version of interest. Users can choose which 

downloaded version to use or let PathQuant use the up-to-date version. The pathway is then 

converted into a graph of biochemical reactions (also called compound graph) with metabolites, 

as nodes and genes, mapped to their corresponding encoded enzymes, as edges. The topology of 

the pathway is captured in the constructed graph. Genes encoding enzymes catalysing multiple 
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reactions are mapped to multiple edges. The constructed graph represents exactly the metabolic 

pathways of KEGG which are built mainly with metabolites that are the main reactants of a 

reaction, dismissing cofactor metabolites, such as NAD, or common co-substrates/products, such 

as ATP or H2O. Finally, we use a non-oriented graph as the KEGG standards are not consistent in 

this matter.   

  

1.4 SRD computation  

Our method computes the SRD, which is defined as the shortest reactional distance path between 

a given gene and a metabolite. The SRD is computed using each metabolic pathway received in 

input, in which a given pair is mapped. The SRD is computed as described in the workflow figure 

(Figure1): A distance of 0 is assigned to metabolites, which are the main substrates or products of 

the reaction catalysed by the enzyme encoded by the selected gene of interest. The SRDs to all 

other metabolites are obtained using the breadth-first search algorithm. The algorithm is used to 

find the SRD starting from the substrate and from the product of the mapped gene to the paired 

metabolite, thereby selecting the smallest SRD between these two. Figure1 depicts an example of 

SRD computation for a hypothetical reaction The main reactants of this reaction: the substrate and 

the product are set at an SRD of 0. Everything running deeper than the substrate and the product 

within the graph is adding a distance of one for each depth: SRD = 1 for the green hypothetical 

metabolites and SRD = 2 for the blue hypothetical metabolite.    

  

1.5 SRD metric analysis  

The utility of the computed SRD metric for the annotation of gene-metabolite associations 

reported by mGWAS was assessed using different approaches (See Methods).   

  

1.6 Data outputs and visualisation  

PathQuant outputs a text file containing gene and metabolite classification, Enzyme Commission 

number (EC), KEGG Brite, KEGG IDs of used pathways for the SRD computation, and SRD 

values for all associations. These SRD values can also be visualised in a heatmap and global or 

multiple distribution plots; a few examples are available at in this manuscript (Results).  
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TK datasets and naming.  

   

For the TK study, we downloaded the file named <NIHMS58114-supplement-2.xlsx= from the 

supplementary section of the publication. This first file contains only stringently associated pairs. 

We make a distinction between the TK and the <TK None= datasets as they do not use the same 

files from the original publication. The TK None is referring to the GWAS summary stats, without 

any p-value cut-off, directly downloaded from here: https://metabolomics.helmholtz-

muenchen.de/gwas/index.php?task=download. We downloaded and merge the files named: 

shin_et_al.metal.out.tar.gz, shin_et_al.xeno.metal.out.tar.gz. As the positions were coming from 

NCBI Build 36, we performed a lift over to hg19 in order to have same build across all different 

studies.  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533869doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533869
http://creativecommons.org/licenses/by-nc/4.0/

