

1 Bamboozle: A bioinformatic tool for identification 2 and quantification of intraspecific barcodes

3
4 Matthew I M Pinder^{†a*}, Björn Andersson^{†a}, Karin Rengefors^b, Hannah Blossom^{b,c}, Marie
5 Svensson^b, and Mats Töpel^{ad}

6 [†]These authors contributed equally to the manuscript

7
8 ^aDepartment of Marine Sciences, University of Gothenburg, Göteborg, Sweden

9 ^bDepartment of Biology, Lund University, Lund, Sweden

10 ^cBigelow Laboratory for Ocean Sciences, Maine, USA

11 ^dIVL Swedish Environmental Research Institute, Göteborg, Sweden

12 *Corresponding author: mats.topel@ivl.se

13
14 **Keywords:** Metabarcoding, Population genomics, microbial evolution, microalgae,
15 polymorphism,

16 **Funding sources**

17 This project was funded by the Swedish Research Council VR grant number 2018-04555 (MT),
18 and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning
19 (FORMAS) grant numbers 2017-00466 (MT) 2016-00594 (Anna Godhe), and the Oscar and Lili
20 Lamm Foundation grant number FO2018-0042 (Helena L. Filipsson).

21
22 **Competing Interest Statement:** The authors declare no competing financial interests.

23
24

25 **Abstract**

26

27 Evolutionary changes in populations of microbes, such as microalgae, cannot be traced using
28 conventional metabarcoding loci as they lack intraspecific resolution. Consequently, selection
29 and competition processes amongst strains of the same species cannot be resolved without
30 elaborate isolation, culturing, and genotyping efforts. Bamboozle, a new bioinformatic tool
31 introduced here, scans a species' entire genome and identifies allele-rich barcodes that enable
32 direct identification of different strains from a common population, and a single DNA sample,
33 using amplicon sequencing. We demonstrate its usefulness by identifying hypervariable
34 barcoding loci (<500 bp) from genomic data in two microalgal species, the diploid diatom
35 *Skeletonema marinoi*, and the haploid chlorophyte *Chlamydomonas reinhardtii*. Across the
36 genomes, only 26 loci capable of resolving all available strains' genotypes were identified, all of
37 which are within protein-coding genes of variable metabolic function. Single nucleotide
38 polymorphisms (SNPs) provided the most reliable genetic markers, and amongst 55 strains of *S.*
39 *marinoi*, three 500 bp loci contained, on average, 46 SNPs, 103 unique alleles, and displayed
40 100% heterozygosity. The prevalence of heterozygosity was identified as a novel opportunity to
41 improve strain quantification and detect false positive artefacts during denoising of amplicon
42 sequences. Finally, we illustrate how metabarcoding of a single genetic locus can be used to
43 track strain abundances of 58 strains of *S. marinoi* in an artificial selection experiment. As future
44 genomics datasets become available and DNA sequencing technologies develop, Bamboozle has
45 flexible user settings enabling optimal barcodes to be designed for other species and applications.

46 **Introduction**

47 Microalgae are a diverse paraphyletic group of aquatic microbes responsible for half of global
48 primary production (Falkowski et al. 1998; Field et al. 1998). Many species have enormous
49 population sizes compared with multicellular organisms and contain some of the highest
50 intraspecific genetic diversity observed within eukaryotes (Flowers et al. 2015). Despite their
51 ecological importance, knowledge about individual species' functional diversity and evolutionary
52 potential is limited (Godhe and Ryneanson 2017). Microalgal blooms can contain thousands to
53 millions of different clones (Sassenhagen et al. 2021), but designs of evolution experiments are
54 currently constrained to only one or a few strains as they generally utilise clonal cultures, e.g.,
55 (Lohbeck et al. 2012; Schaum et al. 2017; Schaum et al. 2018; Sefbom et al. 2015; Wolf et al.
56 2019). If these strains are co-cultured in competition or *in situ*, as needed for many evolutionary
57 and ecological questions, the individual strains cannot readily be identified or quantified using
58 existing microscopic or genotyping technologies. Currently, genotyping of microalgae relies
59 heavily on microsatellites (Rengefors et al. 2017), although newer sequencing methods such as
60 RAD-seq provide a method for fine-scale genotyping and genomic information (Rengefors et al.
61 2021). Although suitable for population genetic and genomic studies, these methods still rely on
62 single DNA samples from each strain for genotype identification. This severely restricts these
63 methods' usefulness in quantitative evolutionary studies, where strain isolation is time-
64 consuming or even impossible if the species is difficult to culture (Rengefors et al. 2021), or if
65 the population's clonal diversity is large (Schaum et al. 2017; Scheinin et al. 2015).

66 An alternative approach to track cellular abundances involves using massively parallel amplicon
67 sequencing of a diverse locus. The main advantage of such an approach is that millions of
68 individual DNA molecules, and by extension the cells they originate from, can be quantified

69 from a single DNA sample. This simple principle - metabarcoding - has revolutionised the field
70 of microbial ecology in the past decade (Hebert et al. 2003; Taberlet et al. 2012). Depending on
71 the taxonomic group and the resolution required, various highly conserved genes are commonly
72 used in metabarcoding, including ribosomal RNA genes (16S, 18S, 23S, or 28S), mitochondrial
73 cytochrome c-oxidase subunit 1 (COI), and the chloroplastic ribulose-1,5-bisphosphate
74 carboxylase/oxygenase large subunit (*rbcL*) (Guo et al. 2015; Pujari et al. 2019; Yamada et al.
75 2017). Metabarcoding enables a relatively simple and standardised quantification of ecosystem-
76 wide parameters, such as diversity, presence of low abundance or cryptic taxa, and community
77 composition. However, the conserved nature of the available metabarcoding loci restricts their
78 usefulness as intraspecific markers (Canesi and Rynearson 2016; Godhe et al. 2006; Guo et al.
79 2015).

80 With a sufficiently diverse intraspecific barcode marker it should be possible to track the
81 abundances and quantify fitness of individual strains from a mixed microbial population. Such
82 an approach would be analogous to 'barcoding analysis by sequencing', or Bar-seq experiments,
83 where unique barcodes are used to replace genes in knock-out mutants (Robinson et al. 2014).
84 Bar-seq experiments then uses amplicon sequencing to quantify fitness changes in thousands of
85 non-lethal gene deletion mutants simultaneously, using a co-culture experimental design (Kim et
86 al. 2010; Li et al. 2019; Robinson et al. 2014; Smith et al. 2009), and it has accelerated the
87 functional annotations of several microbial species' genomes (Dent et al. 2005; Giaever and
88 Nislow 2014; Han et al. 2010). Access to 'intraspecific' DNA barcode loci in microalgae and
89 other microbes would provide a powerful tool to address fundamental questions about their
90 evolution and population structures, analogous to how metabarcoding and Bar-seq have radically

91 changed our understanding of microbial ecology and phenotypic functions of genes in the last
92 decade.

93 Genome sequencing projects are beginning to resolve the genetic diversity between species of
94 microalgae (Armbrust et al. 2004; Bowler et al. 2008; Merchant et al. 2007; Mock et al. 2017;
95 Read et al. 2013; Worden et al. 2009), and population genomic datasets are becoming
96 increasingly available (Blanc-Mathieu et al. 2017; Flowers et al. 2015; Osuna-Cruz et al. 2020;
97 Rastogi et al. 2020; von Dassow et al. 2015), providing information about intraspecific genetic
98 diversity. From this data, it should be possible to identify novel barcoding loci with intraspecific
99 resolution. Here we introduce Bamboozle, a bioinformatic approach that uses whole genome
100 sequencing data to identify intraspecific barcodes by scanning a species' entire genome for the
101 most suitable sites. As a proof-of-concept, we identify and design primers for a set of barcodes in
102 the diploid marine diatom *Skeletonema marinoi* and the haploid model chlorophyte
103 *Chlamydomonas reinhardtii*. Furthermore, we demonstrate how one single barcode locus can be
104 used to track strain selection in an artificial evolution experiment incorporating 58 environmental
105 strains of *S. marinoi* from two Baltic Sea inlets on Sweden's east coast. Based on the data from
106 this experiment we identify opportunities, as well as challenges, in employing amplicon
107 sequencing to address questions regarding evolutionary processes in microbes. Although we see
108 obvious applications in microalgae and other microbes, Bamboozle can identify intraspecific
109 barcodes for both haploid and diploid species when provided with a reference genome and whole
110 genome sequencing data from multiple individuals.

111 **New approaches**

112 Our aim with the Bamboozle tool was to enable identification of novel intraspecific barcoding
113 loci with resolution down to the level of genotypes originating from one common population. To
114 this end, we needed to identify loci fulfilling three criteria that render them suitable as barcoding
115 loci, as outlined by Kress and Erickson (2008): 1) they should be short enough to allow
116 amplification and sequencing with current technologies, 2) they should have significant
117 interspecific (in our case intraspecific) variability, and 3) they should have conserved flanking
118 regions that allow the binding of primers. Our approach builds on existing approaches for
119 identifying novel barcoding loci by scanning the entire genome (Angers-Loustau et al. 2016;
120 Paracchini et al. 2017). In contrast to the aforementioned studies, we focus on identification of
121 barcodes with intraspecific resolution, implement several filters to optimise allele richness,
122 exclude unsuitable genomic regions, and minimise the amount of manual screening needed.

123 The steps of the Bamboozle approach for barcode identification are outlined in Fig. 1 and
124 described in detail below. The required input data includes a reference genome for the organism
125 of interest, and whole genome sequencing (WGS) data from the strains to be analysed.
126 Throughout the paper we use the strain concept (Lakeman et al. 2009), which for most practical
127 purposes is synonymous with genotype in multicellular organisms. The WGS data is required in
128 two formats, one pair per strain: 1) a sorted BAM file generated by aligning the WGS reads to
129 the reference, and 2) single nucleotide polymorphism (SNP) data in VCF format generated from
130 the aforementioned BAM file using GATK (Van der Auwera and O'Connor 2020).

131 In the case of diploid species, phased BAM and VCF files (i.e., where data from each allele is in
132 a separate file) are also required to analyse the sequences of individual alleles. The main

133 Bamboozle tool, written and tested in Python version 3.7.10, consists of six main steps, detailed
134 below.

135 1. *Identification of regions of unusual coverage.* When mapping whole genome shotgun
136 sequencing reads to a reference genome, one expects a similar read coverage across the
137 entirety of the reference. While short regions deviating from this expectation could result
138 from potentially informative deletions or insertions in the mapped strain versus the reference,
139 longer such regions could be due to misassemblies in the reference genome, repeat regions
140 with significant length differences between strains, or gene duplications. As these
141 phenomena could be problematic in identifying appropriate barcoding loci and downstream
142 amplicon sequencing, SAMtools (Danecek et al. 2021) and Bedtools (Quinlan and Hall 2010)
143 are called by Bamboozle and used to determine the median read depth of each contig in each
144 strain (`samtools depth`), and to identify regions which deviate heavily from this median
145 value (`bedtools genomecov`). By default, regions with coverage less than 50% or more than
146 200% of the contig median in that strain are flagged, in order to filter out large heterozygous
147 deletions and gene duplications, respectively.

148 2. *Identification of variant positions.* Using a custom algorithm written in Python version
149 3.7.10, the locations of all variants in each strain are extracted from their respective VCF
150 files and consolidated.

151 3. *Genome screening based on conserved sites.* As one of the core requirements for a suitable
152 barcode is conserved flanking regions for primer binding, windows containing such
153 conserved regions are identified in this step. Bamboozle traverses each contig/chromosome
154 (step size 1; window size defined by the user), saving for further analysis those windows with

155 conserved regions (i.e., regions without any SNP's) at each end, based on the variant list
156 from step 2. The size of the window and the conserved end regions can be defined by the
157 user with the `--window_size` and `--primer_size` options, respectively, to account for
158 different amplification and sequencing strategies.

159 4. *Merging of overlapping windows.* Where both conserved end regions of two windows
160 overlap, these two are merged. For example, a 500 bp window with conserved regions from
161 contig positions 1-21 and 480-500, and a second such window with conserved regions from
162 contig positions 2-22 and 481-501, would be merged to form a single 501 bp window with
163 conserved regions from contig positions 1-22 and 480-501. This is done to reduce the
164 number of overlapping windows to be screened manually after Bamboozle outputs the end
165 results. For a visual example, see step 4 of Fig. 1.

166 5. *Exclusion of windows with unusual read coverage.* The merged windows are now compared
167 to the coverage data generated in step 1, and windows that overlap with a region of read
168 coverage fluctuation by ten or more bases are excluded. As length variations can be
169 potentially valuable in terms of differentiating between strains, allowing short (<10 bp)
170 stretches of irregular coverage (indicative of short indel regions) is intended as a compromise
171 between the potential for informative windows and the complications such regions may
172 introduce, as noted in step 1.

173 6. *Identifying informative loci.* As a unique sequence is required to identify and quantify each
174 strain in, for example, a strain selection or phenotyping experiment, SAMtools (`samtools`
175 `faidx`) and BCFtools (`bcftools consensus`) (Danecek et al. 2021) are applied to each
176 remaining window to generate consensus sequences for each strain (and each allele, in the

177 case of a diploid organism) using the reference genome and the respective VCF files. The
178 individual allele sequences are then analysed to determine if each strain in the dataset
179 contains at least one unique allele, in which case the window is reported to the user as a
180 potentially suitable barcoding locus.

181 As output, Bamboozle reports the identified barcoding loci in 1) a tab-separated file, giving
182 coordinates and metadata for each locus, 2) a BED file of locus coordinates, intended for easy
183 visualisation, such as in a genome browser, and 3) a multi-FASTA file for each locus, containing
184 the sequence of each allele in each strain. This enables quick and easy manual quality control of
185 the output, and design of primers for PCR tests and amplicon sequencing. As a proof-of-concept,
186 we performed amplicon sequencing on one locus identified in the diploid *S. marinoi* and used a
187 custom-made script that merges amplicons from paired-end Illumina data using BBMerge
188 (Bushnell et al. 2017), denoises the data using DADA2 (Callahan et al. 2016), and takes
189 advantage of heterozygosity to quality control the output and translate allele abundances into
190 counts of individual strains. Bamboozle offers a complete pipeline from WGS data through to
191 amplicon sequencing analysis of the barcoding loci, and its performance has been fine-tuned and
192 benchmarked using the diploid diatom *S. marinoi*.

193 **Results**

194 *Performance of the bioinformatic pipeline: millions of potential barcoding loci reduced to*
195 *twenty-six*

196 As expected, common metabarcoding loci lacked intraspecific resolution in *S. marinoi*, with 80-
197 100% of strains having the same single allele (Table S1). We applied Bamboozle to WGS data
198 from 54 strains of *S. marinoi*, to identify novel barcoding loci for use with 2x301 bp paired-end
199 Illumina MiSeq sequencing. Two of the initial 56 datasets were excluded from the analysis, one
200 due to low WGS read coverage, and one for being a clone of another strain in the study. Initial
201 attempts to identify suitable barcoding loci of 300-400 bp failed in this species (data not shown),
202 so we scanned for loci of 500 bp. Within the *S. marinoi* genome, most (99.5%) of the 54,753,029
203 possible 500 bp windows were filtered out due to either coverage fluctuations (main problem,
204 Table 1) or unconserved flanking regions. Of the remaining 263,000 windows, the average
205 frequency of SNP positions was 12±11, and the average number of alleles was 14 (Table 1). Four
206 potential barcoding loci were identified as containing at least one unique allele per strain and
207 passing all filters (Table 1). Three of these, plus an additional hypervariable locus (*Sm_C2W24*)
208 from a previous iteration of Bamboozle that did not include a coverage filter (step 1, Fig. 1),
209 were selected for further evaluation. Compared to other 500 bp windows passing the read depth
210 and conserved flanking region filters, three barcodes proved especially rich in terms of SNPs and
211 unique alleles, falling in the 97.6th to 99.9th percentiles, respectively (Fig. 2A and B).
212 *Sm_C2W24* was predicted to contain an even higher SNP frequency (Fig. 2B). The *Sm_C2W24*
213 locus was retained through the analysis to assess the performance of Bamboozle in identifying
214 loci without coverage filter implementation.

215 The Bamboozle tool was also applied to seventeen haploid *C. reinhardtii* strains to identify loci
216 of ~300 bp. While the initial analysis on all strains returned no suitable barcoding loci,
217 separation by mating type (eight mt+ strains and nine mt- strains) was successful. From a
218 reference genome of 107,613,365 bp [nuclear genome, mitochondrion, plastid, and mt- locus
219 (Merchant et al. 2007)], with 107,161,335 potential 300 bp windows, only 137,000 loci (0.13%)
220 contained less than two-fold coverage deviation compared with the contig median (again the
221 main issue, Table 1) and had conserved flanking regions. About 40% of remaining windows
222 contained only one allele in the population, and less than 1% contained more than seven (Fig. 2C
223 and E). Only 22 of these loci were identified by Bamboozle as having one unique allele for all
224 strain genomes - fifteen for mt+ and seven for mt- (Table S2). In addition to being significantly
225 more diverse in allelic richness, these Bamboozle-identified loci also contained a much higher
226 number of SNPs than other loci across the genome (three out of four ranked in the 99.8th
227 percentile; Fig. 2D and F).

228 *In silico annotation of intraspecific barcodes and common features*

229 All 26 barcodes identified in *S. marinoi* and *C. reinhardtii* were inside predicted protein-coding
230 genes (Table S2). Several barcodes were also in close physical proximity within the same, or
231 adjacent genes, e.g., *Sm_C12W1*, -2, and -3, located within a 2,197 bp region containing two
232 gene models (Sm_t00009768-RA and Sm_t00009769-RA), as well as *Cr_Ch9W-12* and -13
233 inside *CHLRE_09g389134v5*, and *Cr_Ch11W-16*, -17, and -18, inside *CHLRE_11g467528v5*.
234 The predicted function of the proteins did not have a consistent pattern across the two species,
235 and ranged from ribosomal proteins (Sm_t00008465-RA [ribosome biogenesis protein WDR12]
236 and *CHLRE_10g447800v5* [60kDa SS-A/Ro ribonucleoprotein]), to enzymes
237 (*CHLRE_03g207250v5* [putative glutamine synthetase] and *CHLRE_13g592050v5*

238 [allantoinase]) and ion transporters (*CHLRE_11g467528v5* [calcium channel]). Eleven barcodes
239 were located inside genes without conserved domains or with conserved Domains of Unknown
240 Function (DUF).

241 Four barcodes of each species were selected for primer design and further barcode development
242 (Fig. 3). Among these, no part of the ~500 bp barcoding loci was intronic in *S. marinoi*. Instead,
243 three out of four barcodes spanned domains with repetitive amino acid regions (*Sm_C2W24*,
244 *Sm_C12W1*, and *Sm_C16W4*) with the conserved primer sites anchored inside the same or
245 flanking conserved domains (Fig. 3A). In contrast, for *C. reinhardtii*, the major part of the 300
246 bp barcoding loci was intronic, while the conserved primer sites were located either in introns or
247 exons (Fig. 3C). A more detailed annotation of the barcode-containing genes is provided in the
248 Supplemental Information.

249 As future barcode applications may involve co-cultivation with other species, or *in situ*
250 experiments in natural microalgal communities, we evaluated to what extent the primers were
251 species-specific. In the target species, primers could be designed to amplify the selected loci
252 around the 21 bp conserved regions (Fig. 3B and D), although strain amplification appeared
253 uneven between strains for *Sm_C12W2*, *Sm_C16W4*, *Cr_Ch3W1*, and *Cr_Ch1W3*, suggesting
254 possible PCR amplification bias. Homologous genes for the *S. marinoi* barcode loci were
255 identified in three other species of centric diatoms within the order *Thalassiosirales*
256 (*Thalassiosira pseudonana* and *Thalassiosira oceanica*, and *Skeletonema subsalsum*) (Table S3).
257 In the two *Thalassiosira* species, each locus's primer sites contained mismatches in at least three
258 positions. However, in *S. subsalsum* the *Sm_C12W2* locus contained only one mismatch, and this
259 was also the only locus that yielded a PCR product using *S. subsalsum* DNA as template. None
260 of the primer pairs amplified in eleven other Baltic Sea phytoplankton species (Fig. S1A and B).

261 Although the 54 strains of *S. marinoi* all came from a remote population of *S. marinoi* inside the
262 Baltic Sea, the primer sites were conserved also in three strains from the American Atlantic
263 Coast and the Mediterranean Sea (Table S3), suggesting that the barcodes will function outside
264 the local Baltic Sea population. PCRs of the *C. reinhardtii* barcode loci *Cr_Ch9W12* and
265 *Cr_Ch3W10* did not amplify in two other chlorophytes, including another *Chlamydomonas* sp.
266 strain, suggesting they could also be species-specific (Fig. S1C).

267 *Accuracy of bioinformatic predictions and amplicon sequencing of barcodes in S. marinoi*

268 The allele sequences predicted by Bamboozle were validated using amplicon sequencing of
269 individual strains' PCR products, or Sanger sequencing for the haploid *C. reinhardtii*. This was
270 done for two reasons: firstly, to generate the accurate allele sequences in the strains and contrast
271 this with Bamboozle's predictions based on genomic shotgun sequences, and secondly, to assess
272 what PCR and sequencing artefacts were prevalent.

273 Although *Sm_C2W24* was identified by an earlier version of Bamboozle that did not employ a
274 coverage filter, we retained this locus throughout the analysis to illustrate issues that micro- or
275 minisatellite-like loci can produce in the pipeline. Bamboozle predicted that *Sm_C2W24*
276 contained 95 SNPs and five indels within our studied population, but manual inspection
277 indicated that some strains had low sequencing coverage across the most variable region.
278 Amplicon sequencing revealed length differences of 198 bp amongst alleles of *Sm_C2W24* in the
279 *S. marinoi* population, caused by variable copy number (2 to 24 copies) of a 9 bp repeat
280 encoding Alanine- Asparagine- Glutamic acid (AN(E)) (length difference also confirmed by gel-
281 electrophoresis, Fig. 3B). The variant calling algorithm of GATK, and by extension Bamboozle,
282 had misinterpreted these repeats as a high abundance of SNPs (Table 2). Consequently, almost

283 all allele-sequences in the different strains were incorrectly predicted, and per-base accuracy
284 across the locus was only 82.6%. Hence, as outlined in Fig. 1, adjustments were made to
285 Bamboozle to filter out similar regions, and *Sm_C2W24*, together with 90-99% of the genomes
286 (Table 1), was disregarded in subsequent analysis.

287 All strain-specific sequences of the three *S. marinoi* barcoding loci, as well as *Cr_Ch9W12* and
288 *Cr_Ch3W10* in *C. reinhardtii*, identified with the coverage filter were predicted with >99.9%
289 accuracy (Table 2). Looking into the reason for the remaining discrepancies, we discovered that
290 some of the strains were triploid (GP2-4_54 and VG1-2_78; Fig. 4), confounding the software's
291 expectations of diploidy. In other cases, the inaccuracies were caused by insufficient filtering of
292 the variant calling data, resulting in spurious base-calling errors.

293 Once the inaccuracies in the reference alleles were corrected using the confirmed sequences,
294 merged amplicons that still did not match the expected allele sequences were investigated to
295 determine the sources of error. This artifact search was limited to *S. marinoi* genotype samples
296 with coverage >100 amplicons per locus. A detailed description of the analysis and its findings
297 can be found in the Supplemental Information (Fig. S2, S3 and text). Briefly, 61-89% of
298 amplicons contained sequencing-errors, with 39-76% failing to merge. 11 to 40% of merged
299 amplicons mapped perfectly to known alleles, while remaining sequences were explained by
300 erroneous base-calling (10-40%), off-target amplification (0.1-12%), and PCR chimeras (1-3%).

301 Most amplicon sequence-errors could be either corrected or filtered out using the denoising
302 algorithm of DADA2 (Callahan et al. 2016). We finetuned the settings for the 523 bp
303 *Sm_C12W1* locus to minimize false negative (alleles not predicted as real Amplicon Sequence
304 Variants [ASV]) and false positive (any ASVs not corresponding to a biological allele)

305 observations (Table S6). From mixed DNA samples, the most stringent settings evaluated failed
306 to predict three out of 110 alleles, while 16 artefact sequences were retained as ASV, although
307 they comprised only 0.03% of all merged sequences. By analysing the patterns of the remaining
308 false positive ASVs across these samples, searching for linked alleles, we were able to iteratively
309 identify the heterozygous alleles of three strains for which we lacked genotype sequencing data
310 (GP2-4_32, VG1-2_65, VG1-2_99). The remaining false positives were annotated as either
311 chimeras that DADA2's *de novo* chimera filter failed to remove, or one bp sequencing errors
312 from an abundant allele. Relaxing filtering settings, resulted in higher false positive ASVs (346,
313 totalling 1.2% of all amplicons), but detection of all known alleles as ASVs (Table S6). Using
314 the later settings on a mixed DNA sample, the *Sm_C12W1* alleles could be used to enumerate the
315 abundance of 58 strains accurately (Fig. 4).

316 *Implementation of an intraspecific metabarcoding method in a microbial evolution experiment*

317 The quantitative performance of *Sm_C12W1* as a metabarcoding locus was further evaluated in
318 an artificial evolution experiment using *S. marinoi*. In the artificial evolution experiment, 30
319 strains from Gåsfjärden (VG) and 28 strains from Gropviken (GP) were density normalised
320 (relative cell abundance of each strain was $3.4 \pm 0.89\%$ based on cell counts using microscopy),
321 pooled separately for each population, and subjected to 42 days (50-100 generations) selection
322 with and without toxic copper stress. This data was used to evaluate the quantitative performance
323 of *Sm_C12W1*'s ability to track strain abundances.

324 Despite our expectations of diploidy in the *S. marinoi* strains, there were signs of polyploidy in
325 the experimental data. Some strains exhibited a skewed allele ratio closer to 1:3 (GP2-4_43,
326 GP2-4_55, GP2-4_63, VG1-2_45, and VG1-2_61; Fig. 5) suggesting that they could be

327 polyploids or that the PCR reaction amplified alleles with slightly different efficiencies. The
328 combined allele abundance of strains was sometimes over-represented two- to three-fold (e.g.,
329 GP2-4_57, VG1-2_45, VG1-2_90; Fig. 4) while others were underrepresented at a similar
330 magnitude (VG1-2_103, VG1-2_105, VG1-2_56; Fig. 4). This could not be explained by
331 differences in cell density ($R^2=0.0003$, slope=-0.0059, $N=58$), again suggesting ploidy
332 differences, or different DNA extraction efficiencies between cells of strains. Despite these
333 subtle deviations from expectations, the barcode *Sm_C12W1* could be used to identify all strains
334 at close to the expected relative abundances, most often with strains two alleles at close to a 1:1
335 ratio (Fig. 4). As the populations evolved through selection on strain diversity, one or two strains
336 ultimately became dominant in each treatment, and during this process, their allelic ratio was
337 conserved at 1:1 (Fig. 5). These observations show that relative changes in allele frequencies
338 should reflect changes in the relative abundance of strains.

339 Throughout the experiment, most strains experienced negative selection. At around 10 ASV
340 observations per sample, DADA2's algorithm started filtering out observations (compare Fig. 5,
341 with non-denoised sequence matches in Fig. S4), indicating that false-negative artefacts were
342 created. However, DADA2 effectively removed all but four false-positive observations in the
343 experiment (allele of GP population seen in the VG population, and vice versa: Tables S6). The
344 remaining four false positives appeared to be chimeric, as did allele GP2-4_44#1, which
345 displayed a skewed allelic ratio representing up to 5% (>1,000 copies) of amplicons in several
346 replicate samples, while GP2-4_44#2 was not detected at all (Fig. 5). As the first 316 bp of this
347 allele are identical with GP2-4_27#1, and the last 354 bp with GP2-4_27#2 (the two alleles of
348 the most dominant strain in the same samples), there is a central 147 bp region where a PCR
349 chimera from these two alleles would produce GP2-4_44#1. In addition to enabling chimera

350 detection in situations like the one above, heterozygosity provided an additional analytical
351 advantage, enabling differential equations to accurately partition alleles that were shared between
352 two or three strains (Fig. 4 and 5). These results show that heterozygosity can be used to both
353 filter out chimeric observations, and to enable improved quantification of strains, even if they
354 lack a unique allelic marker.

355 **Discussion**

356 By scanning the entire genome for suitable loci, we illustrate how the Bamboozle approach can
357 identify hyper-variable barcodes with intraspecific resolution. In the case of both *S. marinoi* and
358 *C. reinhardtii*, most of the genome (>90%) was not suitable for barcoding and was effectively
359 filtered out by the algorithm. Of the remaining loci fulfilling the criteria for barcodes (Kress and
360 Erickson 2008), only a fraction contained sufficient allelic richness to provide allele-rich markers
361 for strain quantification, highlighting the power of a whole-genome scan approach for
362 development of novel intraspecific barcodes. Using a combination of original (54) and published
363 [17: (Flowers et al. 2015; Ness et al. 2016)] WGS datasets, we illustrate how such intraspecific
364 barcodes can be designed from either publicly available sequencing data, or through the
365 generation of new data for a species or population of interest.

366 Within our amplicon sequencing data, many amplicons (~40%) did not correspond to any known
367 allele in our database. Therefore, we attempted to identify the sources of these artefacts, and how
368 to address them. This was done in order to make recommendations for future studies using
369 workflows similar to ours.

370 First, we note that the 523 bp *Sm_CI2WI* locus, paired with Illumina MiSeq's 2×300 bp
371 sequencing technology, creates some challenges that may not be encountered in shorter loci. For
372 example, we could not use DADA2 as a stand-alone tool to process reads since it truncated
373 100% of all amplicons during merging (Table S6). BBMerge performed better but still failed to
374 merge 78% of all reads, due to the short overlapping region and low base-call quality at the 3'
375 end of reads. By pairing BBMerge with DADA2, we found a flexible approach that could correct
376 99-99.97% of all sequencing errors in reads that had merged, with only spurious false-positive

377 allelic observations (Fig. 5). Although a shorter locus is preferable and will likely perform better
378 than this, our analysis shows that the tools available to make robust biological inferences from
379 noisy amplicon data extend to 500 bp barcode loci, albeit with a loss of four-fifths of the
380 sequence data. If future studies cannot identify window sizes smaller than 500 bp, accurate long-
381 read sequencing of barcodes (e.g., PacBio's Circular Consensus Sequences technique (Rhoads
382 and Au 2015)), or paired end 300 bp sequences from the newer platform Illumina NovaSeq 6000
383 could be options worth considering. Long-read sequencing, in combination with DADA2's error
384 correction, has enabled differentiation between pathogenic and benign *E. coli* strains using single
385 SNP markers and metabarcoding of the whole ~1450 bp 16S rRNA gene (Callahan et al. 2019).
386 Such a sequencing approach opens up for loci of several kb to be used as intra-specific barcodes.

387 In contrast to sequencing errors, PCR chimeras provided a more problematic type of artefact. We
388 found that PCR chimeras could not be removed effectively using software built for processing
389 metabarcoding data, such as Mothur (Rognes et al. 2016; Schloss et al. 2009), UCHIME2 (Edgar
390 2016), or DADA2s chimera removal algorithm (Callahan et al. 2016). Exacerbating this issue is
391 the potential for 'perfect fake' sequences (chimeras identical to another, non-chimeric sequence in
392 the dataset (Edgar 2016)). Out of the 110 alleles in *Sm_CI2WI*, we identified several cases of
393 such 'perfect fakes' (e.g., allele 1 in GP2-4_44; Fig. 5), and these instances should become
394 progressively more numerous if more strains and alleles are included in the experiments and
395 analysis. However, we could identify these PCR chimeras in our experimental design primarily
396 by looking at deviation from the expected heterozygous allelic ratios of individual strain (Fig. 5).
397 Depending on the research question and experimental design, chimeras can be more or less
398 effectively filtered out using similar approaches in future studies. If chimeras risk causing
399 erroneous biological interpretations from the data, approaches to reduce the number of chimeras

400 produced includes optimising a low PCR cycle threshold (Smyth et al. 2010) or using chimer-
401 free PCR kits, such as emulsion PCR (Williams et al. 2006).

402 The allele phasing step (upstream of Bamboozle) also created some problems, as it could not
403 handle cases of triploidy (Fig. 4). Haplotype phasing of polyploids is non-trivial and benefits
404 greatly from long-read data (Abou Saada et al. 2021). However, as long as polyploidy is
405 accurately identified (e.g., by amplicon sequencing of each strain's barcode individually), it
406 should not provide any issues with downstream analysis of strain abundances and may even aid
407 in providing increased allelic diversity for quantification purposes. Consequently our evaluation
408 of Bamboozle as both a tool to identify intra-specific barcodes suggest it can accurately locate
409 such hypervariable regions. Our quantitative analyse show that with appropriate choice of
410 barcode lengths, PCR kits, sequencing platforms and denoising strategies, amplicon sequencing
411 of intra-specific barcodes can be used to track the abundances of large numbers of strains from
412 mixed DNA samples.

413
414 **Conclusions**

415 We built and employed the Bamboozle tool to develop metabarcoding loci that provide
416 intraspecific resolution in the diploid diatom *S. marinoi*. This allowed us to identify and quantify
417 the abundance of 58 environmental strains from mixed DNA sample. We illustrated the
418 usefulness of such an intraspecific barcode locus in an artificial evolution experiment where we
419 tracked the abundance of all strains during co-cultivation. Although further tests are needed to
420 assay performance in new populations and environmental samples, as well as the amplicon
421 sequencing performance of the *C. reinhardtii* loci, our preliminary tests suggest that intra-
422 specific metabarcoding can simplify or enable novel studies of microbial ecology and evolution

423 in natural and artificial settings. This is not limited to artificial selection experiments like ours
424 but possibly also to determine genotype diversity in natural populations, studies of ancient DNA
425 from sediment cores (Adams et al. 2019; Härnström et al. 2011), mesocosm incubations of
426 natural phytoplankton communities (Scheinin et al. 2015; Tatters et al. 2013), effects of
427 predation (Sjöqvist et al. 2014), nutrient competition within (Collins 2011) and between species
428 (Descamps-Julien and Gonzalez 2005), or other drivers that are challenging or impossible to
429 observe in mono-culture experiments (Baert et al. 2016; Collins and Schaum 2021). Using the
430 haploid chlorophyte *C. reinhardtii*, we illustrate how the Bamboozle tool should, if possible, be
431 able to identify loci in both haploid and diploid organisms with a reference genome and whole
432 genome sequencing data from multiple genotypes. Our comparative analysis of barcoding loci
433 identified in *S. marinoi* and *C. reinhardtii* suggests that much of the genome is unsuitable for
434 barcode design, and that different species have different optimal barcode loci. Consequently,
435 Bamboozle's strategy of scanning the entire genome of a species is a suitable approach to
436 identify novel barcodes for evolutionary studies.

437 **Acknowledgments**

438 The authors would like to thank André Soares and Vilma Canfjorden who have developed
439 additional functionality of the Bamboozle tool. Olga Kourtchenko, Lara Hoepfner, and Nora
440 Klasen, assisted in experiments or DNA sample preparation. The manuscript benefited from
441 revision suggestions and thoughtful comments by Kerstin Johannesson.

442 **Data availability**

443 The code for Bamboozle is available at <https://github.com/topel-research-group/Bamboozle> and
444 the WGS and amplicon sequencing data has been deposited at NCBI under BioProject
445 PRJNA939970.

446

447 **Materials and Methods**

448 *Strain retrieval and whole genome sequencing*

449 Individual strains of *S. marinoi* were germinated and isolated from sediment resting stages using
450 standard micropipetting techniques (Härnström et al. 2011). Surface sediment was collected from
451 two semi-enclosed inlets of the brackish Baltic Sea, where one (Gåsfjärden [VG]; 57°34.35'N
452 16°34.98'E) has been exposed to historical copper mining (Söderhielm and Sundblad 1996)
453 while the other (Gropviken [GP]; 58°19.92'N 16°42.35'E) has not. A total of 69 and 55 strains
454 were isolated from VG and GP, with 88% and 94% survival, respectively. Strains were cultured
455 in locally-sourced seawater (salinity 7), which had been sterile-filtered (Sarstedt's [Helsingborg,
456 Sweden] 0.2 mm polyethersulfone membrane filter), and amended with f/2 nutrients (Guillard
457 1975) and 106 µM SiO₂. Cultures were continuously screened for contamination by other
458 microalgae, and auxospore formation or bimodal cell sizes, which indicate sexual inbreeding in
459 *S. marinoi* (Ferrante et al. 2019), and such cultures were discarded.

460 DNA extraction was performed within one month of revival from resting stages in a total of 28
461 strains from GP and 30 from VG. Cultures were made temporarily axenic via a combination of
462 mechanical cleaning (triple washing in 20 µg mL⁻¹ Triton X-100 media and cell collection on a
463 3.0-µm polycarbonate filter), followed by a five-day antibiotic cocktail treatment (90 µg mL⁻¹
464 Paromomycin, ten µg mL⁻¹ Ciprofloxacin, and 40 µg mL⁻¹ Cefotaxime). On day six, cells were
465 collected via centrifugation in 50 mL Falcon tubes (10 000 x g, for ten min.), flash-frozen in
466 liquid nitrogen, and stored at -80°C. DNA was extracted using a CTAB-phenol-chloroform
467 protocol as described in (Godhe et al. 2001), but with additional RNA digestion during cell lysis
468 (65°C for 60 min. using 1 mg RNaseA mL⁻¹ CTAB buffer). DNA yield was quantified using

469 Qubit (Thermo Fisher Scientific). In two subsequent attempts, strains VG1-2_65 and VG1-
470 2_99 did not survive the antibiotic treatment, and extractions yielded insufficient amounts of
471 DNA for PCRs.

472 Whole genome sequencing was performed on the remaining 56 *S. marinoi* strains using 1/2 lane
473 of an Illumina NovaSeq S4 flowcell. Library preparation was done using Nextera's PCR-based
474 protocol with enzymatic fragmentation. This resulted in 722.82 Mreads (2x150 bp paired-end).

475 *Data preparation for the pipeline – S. marinoi*

476 Trimming of reads was performed on the whole genome sequencing data to remove the first 15
477 bases of each read. The trimmed reads were mapped to the *S. marinoi* reference genome version
478 1.1.2 (https://albiorix.bioenv.gu.se/Skeletonema_marinoi.html) using Bowtie2 version 2.3.4.3
479 (Langmead and Salzberg 2012), and the resultant SAM files were converted to sorted BAM files
480 and indexed using SAMtools version 1.9 (Danecek et al. 2021). Variant calling was performed
481 using GATK version 4.1.8.0 (Van der Auwera and O'Connor 2020), following the Best Practices
482 recommendations on the tool's website, and the resultant VCF files were indexed using
483 BCFtools version 1.10.2 (Danecek et al. 2021). In addition, SAMtools version 1.10 was used to
484 phase the BAM files, and GATK was re-run on each of these phased BAM files individually.
485 These phased files were indexed as described above.

486 *Data preparation for the pipeline – C. reinhardtii*

487 Sequencing data from the strains of interest was downloaded from either the NCBI Sequence
488 Read Archive (SRA; downloaded using the prefetch and fastq-dump tools from the SRA
489 toolkit version 2.9.6 (Leinonen et al. 2010)) or the European Nucleotide Archive (ENA;

490 downloaded using the `enaDataGet` tool from `enaBrowserTools` version 1.6
491 [<https://github.com/enasequence/enaBrowserTools>]) (Table S4; retrieved 22 February 2021).
492 PCR duplicates were removed using the `filterPCRdupl` Perl script version 2.3
493 (<https://github.com/linneas/condetri>), then trimmed with Cutadapt version 3.2 (Martin 2011),
494 using a quality threshold of 30 and a post-trimming length threshold of either 90 (ENA reads) or
495 45 (SRA reads).

496 The trimmed reads were mapped to a reference consisting of the following sequences from
497 *C. reinhardtii*: the contig-level assembly of the reference nuclear genome version 5.5 (accession
498 no. ABCN00000000.2); the mitochondrial genome (accession no. NC_001638.1); the plastid
499 genome (accession no. NC_005353.1); and the mating type minus locus (accession no.
500 GU814015.1). Mapping was performed using Bowtie2 version 2.3.4.3 (Langmead and Salzberg
501 2012), with the resultant SAM files being converted to sorted BAM files and indexed using
502 SAMtools version 1.10 (Danecek et al. 2021). Variant calling and VCF indexing were performed
503 as described above for *S. marinoi*.

504 *Bamboozle workflow*

505 Barcodes for *S. marinoi* were obtained using commit 75467da of the Bamboozle main branch
506 (except for *Sm_C2W24*, which was obtained using commit ae28b1b). Barcodes for *C. reinhardtii*
507 were obtained using commit db64632 of the `matt_improvement` branch. The latter commit has
508 the fourth and fifth steps of the pipeline reversed (i.e., windows with irregular coverage are
509 excluded prior to window merging), along with other minor improvements.
510 The input files (reference genome FASTA files, plus BAM and VCF files [and respective
511 indexes] for each strain) were prepared as described above.

512 Bamboozle was run in both species with a `-window_size` parameter of both 500 and 300, and a
513 `-primer_size` parameter of 21.

514 *Development of the bioinformatic pipeline*

515 The predicted barcodes were first visualised against the reference genomes using IGV version
516 2.6.3 (Robinson et al. 2011) to look for anomalies. In an early iteration of the pipeline (commit
517 ae28b1b) without coverage depth filters (steps 1 and 5, Fig. 1), many loci contained obvious
518 errors in the conserved primer sites, or spanned regions of low read coverage (e.g., *Sm_C2W24*)
519 suggesting the pipeline could not effectively process regions with large indels (e.g. micro- or
520 mini-satellites). This issue has largely been resolved by adding the coverage depth filter, as
521 evidenced by the reduction of identified barcodes in *S. marinoi* from 245 to 4.

522 Additional adjustments of the pipeline used for analysing both *S. marinoi* and *C. reinhardtii*,
523 included extending the code to allow analysis of haploid genomes, and steps 4 and 5 of the
524 pipeline were switched (i.e., windows with irregular coverage are excluded prior to window
525 merging), in order to avoid excluding potentially informative windows without coverage issues.

526 *In silico annotation of intraspecific barcodes*

527 The gene models of the predicted barcodes were retrieved from version 5.5 of the *C. reinhardtii*
528 reference genome (https://ensembl.gramene.org/Chlamydomonas_reinhardtii) and version 1.1.2
529 of the *S. marinoi* reference genome (https://albiorix.bioenv.gu.se/Skeletonema_marinoi.html).
530 Functional domains were annotated using NCBI's CD-Search webtool (Marchler-Bauer and
531 Bryant 2004). When gene models lacked a functional annotation, putative functions were
532 assigned by a homology search using BLASTp against the NCBI database (Altschul et al. 1990),
533 and comparison of functional domain structure.

534 To assess primer specificity outside our Baltic Sea strains of *S. marinoi*, we mapped
535 transcriptional data from three strains from global culture collections (Keeling et al. 2014), and
536 manually looked for variants within the predicted conserved regions. A targeted BLASTn search
537 was used to identify orthologous genes in three species within the order *Thalassiosirales* with
538 reference genomes, namely: *Thalassiosira oceanica* (Lommer et al. 2012), *Thalassiosira*
539 *pseudonana* (Armbrust et al. 2004), and the closely related *Skeletonema subsalsum* (Sarno et al.
540 2005) using an in-house draft genome for the latter (Pinder et al. unpublished data).

541 *Confirmation of the bioinformatic predictions*

542 Illumina amplicon sequencing was used to assess the sequence accuracy of each of Bamboozle's
543 locus predictions in the diploid *S. marinoi*, and Sanger sequencing for the haploid *C. reinhardtii*.
544 Primers (standard de-salted oligos) were designed for the 21 bp conserved regions flanking the
545 variable region (Table S5) and extended with Illumina adapter sequences for *S. marinoi*. *rbcL*
546 was used as a positive control of amplification in all diatoms (Guo et al. 2015), and 16s or 18S
547 rRNA across other phytoplankton taxa (Stoeck et al. 2010; Sundberg et al. 2013). The barcodes
548 were amplified from 100 ng DNA and a final primer concentration of 0.1 μ M using the
549 Phusion® High-Fidelity PCR Kit (Thermo Scientific) with individually optimised annealing
550 temperatures between 62 and 65°C. A one-step PCR reaction, with adapter extended primers,
551 was run for 30 cycles, with 5 s denaturation (98°C), 5 s annealing, 30 s extension (72°C), and a
552 final 5 min extension. The evenness of amplification across strains was qualitatively assessed
553 using gel electrophoresis. Strains with poor barcode amplification were re-run with either
554 increased DNA concentration or up to 35 PCR cycles. Species specificity of the primers was
555 assessed using DNA from two strains of *Skeletonema subsalsum*, as well as a mixture of other
556 common phytoplankton species from the Baltic Sea (see Supplemental information). The *C.*

557 *reinhardtii* primers were only tested on two other green algae strains; *Chlamydomonas* sp and
558 *Microglena* sp.

559 For the 56 *S. marinoi* strains, the barcode alleles were sequenced individually using 2x301 bp
560 reads on 1/10 of a lane on the Illumina MiSeq platform with v3 chemistry (expected 1.8 million
561 reads in total). The four PCR reactions were run independently for each barcode, and the
562 products pooled based on volume. Further library preparation, including amplicon size selection
563 >300 bp, Nextera dual-indexing, and amplicon sequencing were performed at SciLifeLab (NGI
564 Stockholm), according to the manufacturer's instructions.

565 *Identifying sources of error in the amplicon sequencing results*

566 Paired end reads were first quality filtered and trimmed using Cutadapt version 3.2 to remove
567 adapter and primer sequences, with a quality threshold of 28 and a minimum read length of 180
568 bp. The resultant trimmed reads were merged using BBMerge version 38.86 (Bushnell et al.
569 2017). Amplicon sequences from the individually strains that did not match the two expected
570 allele sequences were investigated to determine the sources of error. Chimera detection was
571 initially performed using the `chimera.vsearch` function of Mothur version 1.47.0 (Schloss et al.
572 2009). However, as this highlighted fewer chimeras than we knew to exist through manual
573 inspection, we instead switched to the `uchime2_ref` function of Usearch version 11.0.667
574 (Edgar 2016). This was run with the options '`-strand plus -mode sensitive`' against a
575 database containing all alleles expected to appear in that strain.

576 Identification of truncated sequences, sequences containing Ns, off-targets, and localisation of
577 sequencing errors and SNPs along the amplicons, was performed using a custom Python script,

578 incorporating Bowtie2 version 2.3.4.3 (Langmead and Salzberg 2012), SAMtools version 1.12,
579 and BCFtools version 1.12 (Danecek et al. 2021).

580 *Performance of intraspecific metabarcoding in a selection experiment*

581 The quantitative performance of *Sm_C12WI* barcodes locus was validated in a selection
582 experiment using the 58 *S. marinoi* strains. A detailed description of this experimental design
583 and the results will be published elsewhere (Andersson et al, unpublished). Briefly, the single
584 strain cultures (non-axenic) were pooled back to their original populations (Gropviken: GP and
585 Gåsfjärden: VG) at even densities, and maintained in exponential growth phase via a semi-
586 continuous dilution scheme as outlined in Andersson et al. (2020) through dilutions every third
587 day for a total of 42 days. Five 100 mL replicates per population were grown with toxic copper
588 stress of 8.65 µM CuSO₄, and five replicates were grown without toxic stress. The dilution
589 bottleneck was ~10,000 chains of cells per replicate. Cultures were harvested at the start of the
590 experiment, after nine, and 42 days of selection. DNA was extracted from experimental samples
591 as for the WGS preparation outlined above, but without the axenic treatment. Barcodes were
592 PCR amplified from each replicate timepoint. For the single time 0 sample, two technical DNA
593 extractions replicates × two PCR replicates were processed and analysed in parallel (i.e., N=4
594 technical replicates). The selection experiment samples were indexed and pooled together with
595 the individual genotypes, on the same MiSeq run using 9/10 of the read capacity (i.e., an
596 expected 16.2 million reads).

597 The individual strains' genotype samples were used to create a database of all strains' alleles,
598 and amplicons from the selection experiment samples were compared against this database
599 (script available at: <https://github.com/topel-research-group/Live2Tell>). As the experimental

600 samples contained mixtures of strains at variable densities, and allele calling was expected to
601 require single SNP resolution across long amplicons (up to 523 bp), we explored avenues to
602 denoise the data. Initial attempts to use the nf-core/ampliseq pipeline version 2.4.0 (Straub et al.
603 2020) failed to detect all expected alleles. Running DADA2 version 1.16.0 (Callahan et al. 2016)
604 – a component of the nf-core/ampliseq pipeline – as a standalone program for identifying
605 amplicon sequence variants (ASVs) proved more successful. Different settings and combinations
606 of steps were iteratively explored (described in detail in Supplemental information). We used
607 four criteria to evaluated the quality of the output including: 1) how many known allele
608 sequences were not identified as ASVs (false negatives); 2) how many unexpected ASVs were
609 outputted (false positives); 3) what fraction of total raw reads assembled into amplicons
610 matching either known alleles or false positives; and 4) if false positive or false negative
611 observations risked affecting the biological interpretation of the artificial evolution experiment.

612 The relative abundances of strains were quantified based on the number of amplicons matching
613 its two alleles. In this step, a set of differential equations were used to parse out the observations
614 of alleles shared between strains. In general, the proportion of shared allele i_1 belonging to a
615 specific strain x, y, and z was computed individually for each sample based on strains second
616 unique allele (x_2 , y_2 , and z_2):

617 Eq. 1: Reads of i_1 belonging to strain $x = i_1 \times \frac{\text{strain } x \text{ allele } x_2}{(\text{strain } x \text{ allele } x_2 + \text{strain } y \text{ allele } y_2 + \text{strain } z \text{ allele } z_2)}$

618 The two heterozygous allele counts were then summed up to represent the abundance of each
619 strain, with the third allele of triploid strains omitted. Amplicon counts per strain were
620 simultaneously normalized to relative abundance (RA) as:

621 Eq. 2:

$$\text{RA strain } x = \frac{\text{counts allele } x_1 + \text{counts allele } x_2}{\sum \text{counts alleles } a-z}$$

622 To validate the approach, we assessed how closely the barcode enumeration of strains matched
623 with microscopic cell counts in the time zero samples and how closely the abundance of each
624 strain's two alleles correlated throughout the selection experiment.

625 **References**

626

627 Abou Saada, O., A. Tsouris, C. Eberlein, A. Friedrich, and J. Schacherer. 2021. nPhase: an
628 accurate and contiguous phasing method for polyploids. *Genome Biol.* **22**: 1-27.
629 doi:10.1186/s13059-021-02342-x

630 Adams, C. I., M. Knapp, N. J. Gemmell, G.-J. Jeunen, M. Bunce, M. D. Lamare, and H. R.
631 Taylor. 2019. Beyond biodiversity: can environmental DNA (eDNA) cut it as a
632 population genetics tool? *Genes* **10**: 192. doi:10.3390/genes10030192

633 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment
634 search tool. *J. Mol. Biol.* **215**: 403-410. doi:10.1016/S0022-2836(05)80360-2

635 Andersson, B., A. Godhe, H. L. Filipsson, K. Rengefors, and O. Berglund. 2020. Differences in
636 metal tolerance among strains, populations, and species of marine diatoms-importance of
637 exponential growth for quantification. *Aquat. Toxicol.* **226**: 105551.
638 doi:10.1016/j.aquatox.2020.105551.

639 Angers-Loustau, A., M. Petrillo, V. Paracchini, D. M. Kagkli, P. E. Rischitor, A. Puertas
640 Gallardo, A. Patak and others 2016. Towards plant species identification in complex
641 samples: a bioinformatics pipeline for the identification of novel nuclear barcode
642 candidates. *PLoS one* **11**: e0147692. doi:10.1371/journal.pone.0147692

643 Armbrust, E. V., J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. Zhou and
644 others 2004. The genome of the diatom *Thalassiosira pseudonana*: ecology, evolution,
645 and metabolism. *Science* **306**: 79-86. doi:10.1126/science.1101156

646 Baert, J. M., F. De Laender, K. Sabbe, and C. R. Janssen. 2016. Biodiversity increases functional
647 and compositional resistance, but decreases resilience in phytoplankton communities.
648 *Ecology* **97**: 3433-3440. doi:10.1002/ecy.1601

649 Blanc-Mathieu, R., M. Krasovec, M. Hebrard, S. Yau, E. Desgranges, J. Martin, W. Schackwitz
650 and others 2017. Population genomics of picophytoplankton unveils novel chromosome
651 hypervariability. *Sci. Adv.* **3**: e1700239. doi:10.1126/sciadv.1700239

652 Bowler, C., A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari, A. Kuo, U. Maheswari and
653 others 2008. The *Phaeodactylum* genome reveals the evolutionary history of diatom
654 genomes. *Nature* **456**: 239-244. doi:10.1038/nature07410

655 Bushnell, B., J. Rood, and E. Singer. 2017. BBMerge—accurate paired shotgun read merging via
656 overlap. *PloS one* **12**: e0185056. doi:10.1371/journal.pone.0185056

657 Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes.
658 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nat.*
659 *Methods* **13**: 581-583. doi:10.1038/nmeth.3869

660 Callahan, B. J., J. Wong, C. Heiner, S. Oh, C. M. Theriot, A. S. Gulati, S. K. McGill and others
661 2019. High-throughput amplicon sequencing of the full-length 16S rRNA gene with
662 single-nucleotide resolution. *Nucleic Acids Res.* **47**: e103-e103. doi:10.1093/nar/gkz569

663 Canesi, K. L., and T. A. Rynearson. 2016. Temporal variation of *Skeletonema* community
664 composition from a long-term time series in Narragansett Bay identified using high-
665 throughput DNA sequencing. *Mar. Ecol. Prog. Ser.* **556**: 1-16. doi:10.3354/meps11843

666 Collins, S. 2011. Competition limits adaptation and productivity in a photosynthetic alga at
667 elevated CO₂. *Proc. R. Soc. B.* **278**: 247-255. doi:10.1098/rspb.2010.1173

668 Collins, S., and C. E. Schaum. 2021. Growth strategies of a model picoplankter depend on social
669 milieu and p CO₂. *Proc. R. Soc. B* **288**: 20211154.

670 Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham and
671 others 2021. Twelve years of SAMtools and BCFtools. *Gigascience* **10**: giab008.
672 doi:10.1093/gigascience/giab008

673 Dent, R. M., C. M. Haglund, B. L. Chin, M. C. Kobayashi, and K. K. Niyogi. 2005. Functional
674 genomics of eukaryotic photosynthesis using insertional mutagenesis of *Chlamydomonas*
675 *reinhardtii*. *Plant Physiol.* **137**: 545-556. doi:10.1104/pp.104.055244

676 Descamps-Julien, B., and A. Gonzalez. 2005. Stable coexistence in a fluctuating environment: an
677 experimental demonstration. *Ecology* **86**: 2815-2824. doi:10.1890/04-1700

678 Edgar, R. C. 2016. UCHIME2: improved chimera prediction for amplicon sequencing. *BioRxiv*:
679 074252. doi:10.1101/074252

680 Falkowski, P. G., R. T. Barber, and V. V. Smetacek. 1998. Biogeochemical Controls and
681 Feedbacks on Ocean Primary Production. *Science* **281**: 200-207.
682 doi:10.1126/science.281.5374.200

683 Ferrante, M. I., L. Entrambasaguas, M. Johansson, M. Töpel, A. Kremp, M. Montresor, and A.
684 Godhe. 2019. Exploring Molecular Signs of Sex in the Marine Diatom *Skeletonema*
685 *marinoi*. *Genes* **10**: 494. doi:10.3390/genes10070494

686 Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary production of
687 the biosphere: integrating terrestrial and oceanic components. *Science* **281**: 237-240.
688 doi:10.1126/science.281.5374.237

689 Flowers, J. M., K. M. Hazzouri, G. M. Pham, U. Rosas, T. Bahmani, B. Khraiwesh, D. R. Nelson
690 and others 2015. Whole-genome resequencing reveals extensive natural variation in the
691 model green alga *Chlamydomonas reinhardtii*. *Plant Cell* **27**: 2353-2369.
692 doi:10.1105/tpc.15.00492

693 Giaever, G., and C. Nislow. 2014. The yeast deletion collection: a decade of functional
694 genomics. *Genetics* **197**: 451-465. doi:10.1534/genetics.114.161620

695 Godhe, A., M. R. McQuoid, I. Karunasagar, I. Karunasagar, and A. S. Rehnstam-Holm. 2006.
696 Comparison of three common molecular tools for distinguishing among geographically
697 separated clones of the diatom *Skeletonema marinoi* Sarno et Zingone
698 (Bacillariophyceae) 1. *J. Phycol.* **42**: 280-291. doi:10.1111/j.1529-8817.2006.00197.x

699 Godhe, A., S. K. Otta, A. S. Rehnstam-Holm, I. Karunasagar, and I. Karunasagar. 2001.
700 Polymerase chain reaction in detection of *Gymnodinium mikimotoi* and *Alexandrium*
701 *minutum* in field samples from southwest India. *Mar. Biotechnol.* **3**: 152-162.
702 doi:10.1007/s101260000052

703 Godhe, A., and T. Rynearson. 2017. The role of intraspecific variation in the ecological and
704 evolutionary success of diatoms in changing environments. *Phil. Trans. R. Soc. B.* **372**:
705 20160399. doi:10.1098/rstb.2016.0399

706 Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates., p. 29–60. In
707 W. L. Smith and M. H. Chanley [eds.], *Culture of marine invertebrate animals*. Springer.

708 Guo, L., Z. Sui, S. Zhang, Y. Ren, and Y. Liu. 2015. Comparison of potential diatom
709 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in
710 discriminating and determining species taxonomy in the Bacillariophyta. *Int. J. Syst.*
711 *Evol. Microbiol.* **65**: 1369-1380. doi:10.1099/ijsm.0.000076

712 Han, T. X., X.-Y. Xu, M.-J. Zhang, X. Peng, and L.-L. Du. 2010. Global fitness profiling of
713 fission yeast deletion strains by barcode sequencing. *Genome Biol.* **11**: 1-13.
714 doi:10.1186/gb-2010-11-6-r60

715 Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications
716 through DNA barcodes. Proc. R. Soc. B. **270**: 313-321. doi:10.1098/rspb.2002.2218

717 Härnström, K., M. Ellegaard, T. J. Andersen, and A. Godhe. 2011. Hundred years of genetic
718 structure in a sediment revived diatom population. Proc. Natl. Acad. Sci. USA **108**:
719 4252-4257. doi:10.1073/pnas.1013528108

720 Keeling, P. J., F. Burki, H. M. Wilcox, B. Allam, E. E. Allen, L. A. Amaral-Zettler, E. V.
721 Armbrust and others 2014. The Marine Microbial Eukaryote Transcriptome Sequencing
722 Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans
723 through transcriptome sequencing. PLoS Biol. **12**: e1001889.
724 doi:10.1371/journal.pbio.1001889

725 Kim, D.-U., J. Hayles, D. Kim, V. Wood, H.-O. Park, M. Won, H.-S. Yoo and others 2010.
726 Analysis of a genome-wide set of gene deletions in the fission yeast
727 *Schizosaccharomyces pombe*. Nat. Biotechnol. **28**: 617-623. doi:10.1038/nbt.1628

728 Kress, W. J., and D. L. Erickson. 2008. DNA barcodes: genes, genomics, and bioinformatics.
729 Proc. Natl. Acad. Sci. USA **105**: 2761-2762. doi:10.1073/pnas.0800476105

730 Lakeman, M. B., P. von Dassow, and R. A. Cattolico. 2009. The strain concept in phytoplankton
731 ecology. Harmful Algae **8**: 746-758. doi:10.1016/j.hal.2008.11.011

732 Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat.
733 Methods **9**: 357-359. doi:10.1038/nmeth.1923

734 Leinonen, R., H. Sugawara, M. Shumway, and I. N. S. D. Collaboration. 2010. The sequence
735 read archive. Nucleic Acids Res. **39**: D19-D21. doi:10.1093/nar/gkq1019

736 Li, X., W. Patena, F. Fauser, R. E. Jinkerson, S. Saroussi, M. T. Meyer, N. Ivanova and others
737 2019. A genome-wide algal mutant library and functional screen identifies genes required
738 for eukaryotic photosynthesis. Nat. Genet. **51**: 627-635. doi:10.1038/s41588-019-0370-6

739 Lohbeck, K. T., U. Riebesell, and T. B. Reusch. 2012. Adaptive evolution of a key
740 phytoplankton species to ocean acidification. Nat. Geosci. **5**: 346. doi:10.1038/ngeo1441

741 Lommer, M., M. Specht, A. S. Roy, L. Kraemer, R. Andreson, M. A. Gutowska, J. Wolf and
742 others 2012. Genome and low-iron response of an oceanic diatom adapted to chronic iron
743 limitation. Genome Biol. **13**: R66. doi:10.1186/gb-2012-13-7-r66

744 Marchler-Bauer, A., and S. H. Bryant. 2004. CD-Search: protein domain annotations on the fly.
745 Nucleic Acids Res. **32**: W327-W331. doi:10.1093/nar/gkh454

746 Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
747 EMBnet. journal **17**: 10-12. doi:10.14806/ej.17.1.200

748 Merchant, S. S., S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz, G. B. Witman, A.
749 Terry and others 2007. The *Chlamydomonas* genome reveals the evolution of key animal
750 and plant functions. Science **318**: 245-250. doi:10.1126/science.1143609

751 Mock, T., R. P. Ollilar, J. Strauss, M. McMullan, P. Paajanen, J. Schmutz, A. Salamov and
752 others 2017. Evolutionary genomics of the cold-adapted diatom *Fragilariaopsis cylindrus*.
753 Nature **541**: 536-540. doi:10.1038/nature20803

754 Ness, R. W., S. A. Kraemer, N. Colegrave, and P. D. Keightley. 2016. Direct estimate of the
755 spontaneous mutation rate uncovers the effects of drift and recombination in the
756 *Chlamydomonas reinhardtii* plastid genome. Mol. Biol. Evol. **33**: 800-808.
757 doi:10.1093/molbev/msv272

758 Osuna-Cruz, C. M., G. Bilcke, E. Vancaester, S. De Decker, A. M. Bones, P. Winge, N. Poulsen
759 and others 2020. The *Seminavis robusta* genome provides insights into the evolutionary

760 adaptations of benthic diatoms. *Nat. Commun.* **11**: 3320. doi:10.1038/s41467-020-17191-
761 8

762 Paracchini, V., M. Petrillo, A. Lievens, A. P. Gallardo, J. T. Martinsohn, J. Hofherr, A. Maquet
763 and others 2017. Novel nuclear barcode regions for the identification of flatfish species.
764 *Food Control* **79**: 297-308. doi:10.1016/j.foodcont.2017.04.009

765 Pujari, L., C. Wu, J. Kan, N. Li, X. Wang, G. Zhang, X. Shang and others 2019. Diversity and
766 Spatial Distribution of Chromophytic Phytoplankton in the Bay of Bengal Revealed by
767 RuBisCO Genes (rbcL). *Front. Microbiol.* **10**: 1501. doi:10.3389/fmicb.2019.01501

768 Quinlan, A. R., and I. M. Hall. 2010. BEDTools: a flexible suite of utilities for comparing
769 genomic features. *Bioinformatics* **26**: 841-842. doi:10.1093/bioinformatics/btq033

770 Rastogi, A., F. R. J. Vieira, A.-F. Deton-Cabanillas, A. Veluchamy, C. Cantrel, G. Wang, P.
771 Vanormelingen and others 2020. A genomics approach reveals the global genetic
772 polymorphism, structure, and functional diversity of ten accessions of the marine model
773 diatom *Phaeodactylum tricornutum*. *ISME J* **14**: 347-363. doi:10.1038/s41396-019-0528-
774 3

775 Read, B. A., J. Kegel, M. J. Klute, A. Kuo, S. C. Lefebvre, F. Maumus, C. Mayer and others
776 2013. Pan genome of the phytoplankton *Emiliania* underpins its global distribution.
777 *Nature* **499**: 209-213. doi:10.1038/nature12221

778 Rengefors, K., R. Gollnisch, I. Sassenhagen, K. Harnstrom Aloisi, M. Svensson, K. Lebret, D.
779 Certnerova and others 2021. Genome-wide single nucleotide polymorphism markers
780 reveal population structure and dispersal direction of an expanding nuisance algal bloom
781 species. *Mol. Ecol.* **30**: 912-925. doi:10.1111/mec.15787

782 Rengefors, K., A. Kremp, T. B. Reusch, and A. M. Wood. 2017. Genetic diversity and evolution
783 in eukaryotic phytoplankton: revelations from population genetic studies. *J. Plankton
784 Res.* **39**: 165-179. doi:10.1093/plankt/fbw098

785 Rhoads, A., and K. F. Au. 2015. PacBio Sequencing and Its Applications. *Genom. Proteom.
786 Bioinform.* **13**: 278-289. doi:10.1016/j.gpb.2015.08.002

787 Robinson, D. G., W. Chen, J. D. Storey, and D. Gresham. 2014. Design and analysis of Bar-seq
788 experiments. *G3-Genes Genom. Genet.* **4**: 11-18. doi:10.1534/g3.113.008565

789 Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P.
790 Mesirov. 2011. Integrative genomics viewer. *Nat. Biotechnol.* **29**: 24-26.
791 doi:10.1038/nbt.1754

792 Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. VSEARCH: a versatile open
793 source tool for metagenomics. *PeerJ* **4**: e2584. doi:10.7717/peerj.2584

794 Sarno, D., W. H. Kooistra, L. K. Medlin, I. Percopo, and A. Zingone. 2005. Diversity in the
795 genus *Skeletonema* (Bacillariophyceae). II. An assessment of the taxonomy of *S.*
796 *costatum* like species with the description of four new species 1. *J. Phycol.* **41**: 151-176.
797 doi:10.1111/j.1529-8817.2005.04067.x

798 Sassenhagen, I., D. Erdner, B. Lougheed, M. Richlen, and C. Sjöqvist. 2021. Estimating
799 proportion of clones and genotype richness in aquatic microalgae. *Authorea Preprints.*
800 doi:10.22541/au.161876383.32271114/v1

801 Schaum, C.-E., S. Barton, E. Bestion, A. Buckling, B. Garcia-Carreras, P. Lopez, C. Lowe and
802 others 2017. Adaptation of phytoplankton to a decade of experimental warming linked to
803 increased photosynthesis. *Nat. Ecol. Evol.* **1**: 1-7. doi:10.1038/s41559-017-0094

804 Schaum, C.-E., A. Buckling, N. Smirnoff, D. Studholme, and G. Yvon-Durocher. 2018.
805 Environmental fluctuations accelerate molecular evolution of thermal tolerance in a
806 marine diatom. *Nat. Commun.* **9**: 1719. doi:10.1038/s41467-018-03906-5

807 Scheinin, M., U. Riebesell, T. A. Ryneanson, K. T. Lohbeck, and S. Collins. 2015. Experimental
808 evolution gone wild. *J. R. Soc. Interface* **12**: 20150056. doi:10.1098/rsif.2015.0056

809 Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A.
810 Lesniewski and others 2009. Introducing mothur: open-source, platform-independent,
811 community-supported software for describing and comparing microbial communities.
812 *Appl. Environ. Microbiol.* **75**: 7537-7541. doi:10.1128/AEM.01541-09

813 Sefbom, J., I. Sassenhagen, K. Rengefors, and A. Godhe. 2015. Priority effects in a planktonic
814 bloom-forming marine diatom. *Biol. Lett.* **11**: 20150184. doi:10.1098/rsbl.2015.0184

815 Sjöqvist, C., A. Kremp, E. Lindehoff, U. Båmstedt, J. Egardt, S. Gross, M. Jönsson and others
816 2014. Effects of grazer presence on genetic structure of a phenotypically diverse diatom
817 population. *Microb. Ecol.* **67**: 83-95. doi:10.1007/s00248-013-0327-8

818 Smith, A. M., L. E. Heisler, J. Mellor, F. Kaper, M. J. Thompson, M. Chee, F. P. Roth and others
819 2009. Quantitative phenotyping via deep barcode sequencing. *Genome Res.* **19**: 1836-
820 1842. doi:10.1101/gr.093955.109

821 Smyth, R. P., T. E. Schlub, A. Grimm, V. Venturi, A. Chopra, S. Mallal, M. P. Davenport and
822 others 2010. Reducing chimera formation during PCR amplification to ensure accurate
823 genotyping. *Gene* **469**: 45-51. doi:10.1016/j.gene.2010.08.009

824 Stoeck, T., D. Bass, M. Nebel, R. Christen, M. D. Jones, H. W. Breiner, and T. A. Richards.
825 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly
826 complex eukaryotic community in marine anoxic water. *Mol. Ecol.* **19**: 21-31.
827 doi:10.1111/j.1365-294X.2009.04480.x

828 Straub, D., N. Blackwell, A. Langarica-Fuentes, A. Peltzer, S. Nahnsen, and S. Kleindienst.
829 2020. Interpretations of Environmental Microbial Community Studies Are Biased by the
830 Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. *Front. Microbiol.* **11**.
831 doi:10.3389/fmicb.2020.550420

832 Sundberg, C., W. A. Al-Soud, M. Larsson, E. Alm, S. S. Yekta, B. H. Svensson, S. J. Sørensen
833 and others 2013. 454 pyrosequencing analyses of bacterial and archaeal richness in 21
834 full-scale biogas digesters. *FEMS Microbiol. Ecol.* **85**: 612-626. doi:10.1111/1574-
835 6941.12148

836 Söderhielm, J., and K. Sundblad. 1996. The Solstad Cu□Co□Au mineralization and its relation
837 to post□Svecfennian regional shear zones in southeastern Sweden. *GFF* **118**: 47-47.
838 doi:10.1080/11035899609546323

839 Taberlet, P., E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev. 2012. Towards
840 next□generation biodiversity assessment using DNA metabarcoding. *Mol. Ecol.* **21**:
841 2045-2050. doi:10.1111/j.1365-294X.2012.05470.x

842 Tatters, A. O., M. Y. Roleda, A. Schnetzer, F. Fu, C. L. Hurd, P. W. Boyd, D. A. Caron and
843 others 2013. Short-and long-term conditioning of a temperate marine diatom community
844 to acidification and warming. *Phil. Trans. R. Soc. B.* **368**: 20120437.
845 doi:10.1098/rstb.2012.0437

846 Van der Auwera, G. A., and B. D. O'Connor. 2020. Genomics in the cloud: using Docker,
847 GATK, and WDL in Terra, 1st ed. Sebastopol, CA: O'Reilly Media Inc.

848 von Dassow, P., U. John, H. Ogata, I. Probert, M. Bendif el, J. U. Kegel, S. Audic and others
849 2015. Life-cycle modification in open oceans accounts for genome variability in a
850 cosmopolitan phytoplankton. *ISME J* **9**: 1365-1377. doi:10.1038/ismej.2014.221
851 Williams, R., S. G. Peisajovich, O. J. Miller, S. Magdassi, D. S. Tawfik, and A. D. Griffiths.
852 2006. Amplification of complex gene libraries by emulsion PCR. *Nat. Methods* **3**: 545-
853 550. doi:10.1038/nmeth896
854 Wolf, K. K., E. Romanelli, B. Rost, U. John, S. Collins, H. Weigand, and C. J. Hoppe. 2019.
855 Company matters: The presence of other genotypes alters traits and intraspecific selection
856 in an Arctic diatom under climate change. *Global Change Biol.* **25**: 2869-2884.
857 doi:10.1111/gcb.14675
858 Worden, A. Z., J.-H. Lee, T. Mock, P. Rouzé, M. P. Simmons, A. L. Aerts, A. E. Allen and
859 others 2009. Green evolution and dynamic adaptations revealed by genomes of the
860 marine picoeukaryotes *Micromonas*. *Science* **324**: 268-272. doi:10.1126/science.1167222
861 Yamada, M., M. Otsubo, Y. Tsutsumi, C. Mizota, Y. Nakamura, K. Takahashi, and M. Iwataki.
862 2017. Utility of mitochondrial-encoded cytochrome c oxidase I gene for phylogenetic
863 analysis and species identification of the planktonic diatom genus *Skeletonema*. *Phycol.*
864 *Res.* **65**: 217-225. doi:10.1111/pre.12179
865
866

867 Table 1. Statistical parameters from Bamboozles genomic scan for barcode windows. Shown are
868 average (standard deviation) for the variable barcoding loci identified by Bamboozle (selected
869 windows), with regard to the number of predicted SNPs, indels, and unique alleles per locus, in
870 contrast to average statistics for the genome as a whole, obtained using a sliding-window
871 approach (other windows). Where two sets of values are given, the first gives statistics are for
872 those windows where only the coverage filter is applied, and the second (in square brackets)
873 gives statistics for those windows where both the coverage filter and the conserved end region
874 filter are applied.

875

	<i>S. marinoi</i>	<i>C. reinhardtii</i>	
		Mating type + Mating type -	
Reference genome size (nuclear, mitochondrion, and plastid)	54,794,446 bp	107,613,365 bp	
Number of strains included	54	8	9
Length of genome conforming to coverage filtering	4,740,972	630,835	464,867
SNP density of selected windows	45.0 (9.13) [†]	17.4 (3.25)	22.86 (4.74)
SNP density of other windows	26.26 (14.53) [12.36 (10.83)]	5.30 (6.02) [2.17 (3.42)]	4.68 (5.87) [1.92 (2.95)]
Indel density of selected windows	2.75 (4.27)	1.47 (0.83)	1.71 (1.98)
Indel density of other windows	3.27 (4.55) [1.38 (2.76)]	0.53 (1.03) [0.27 (0.73)]	0.46 (0.98) [0.23 (0.67)]
Number of unique alleles in selected windows	100 (4.27)	8 (0) ^{††}	9 (0) ^{††}
Number of unique alleles in other windows	30.56 (20.41) [14.30 (13.89)]	2.87 (1.58) [2.08 (1.23)]	2.99 (1.85) [2.11 (1.31)]

876 [†]Note that in the case of *S. marinoi*, these statistics exclude *Sm_C2W24* (identified using an older version
877 of the pipeline) but include *Sm_C12W3* (identified in the more recent version).

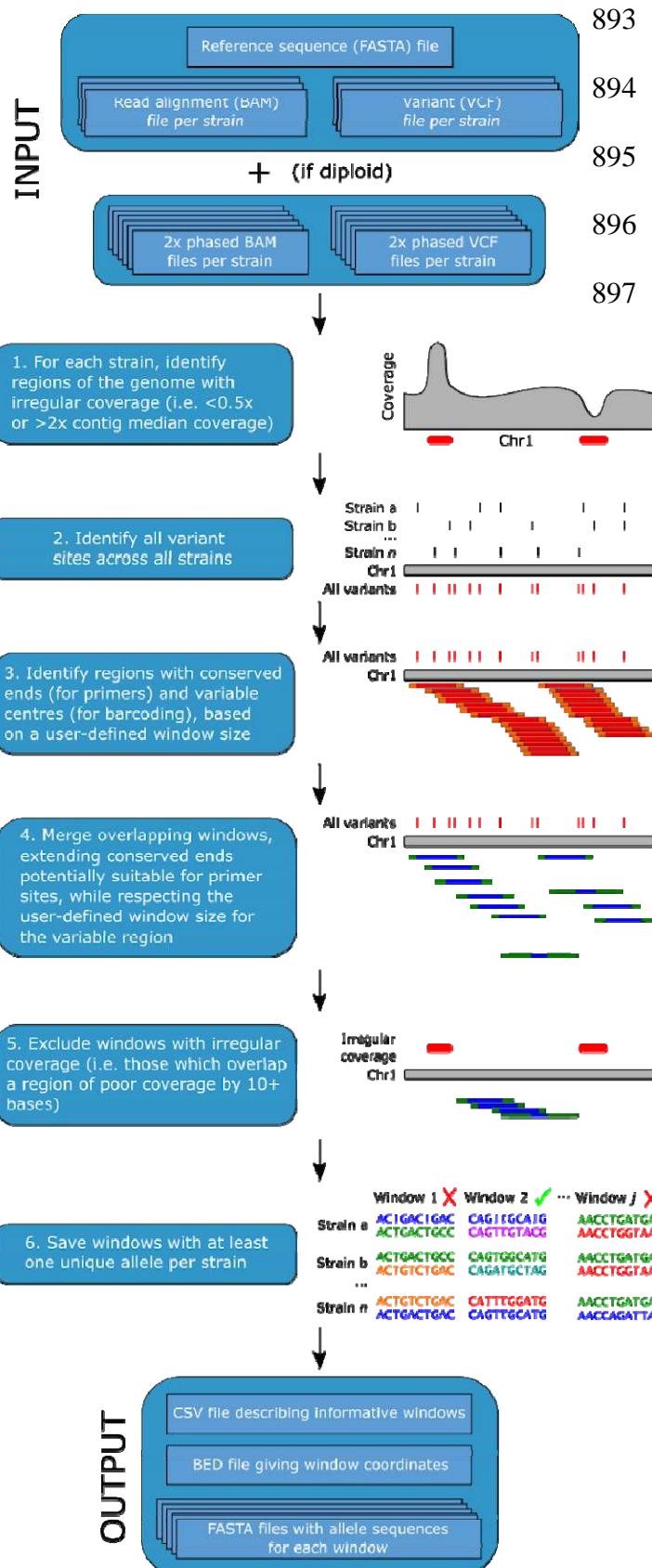
878 ^{††}When comparing all *C. reinhardtii* selected windows among all 17 strains (i.e., not separated by mating
879 type), there are 12.55 (1.79) alleles per locus.

880

881 Table 2: Accuracy of Bamboozle's allele sequence predictions for selected barcodes in *S.*
 882 *marinoi* and *C. reinhardtii*. 'Predictions' corresponds to Bamboozle's output sequences based on
 883 WGS data, and 'observations' are confirmations based on targeted PCR-based sequencing. *C.*
 884 *reinhardtii* loci with poor amplification and lack of Sanger sequencing data are shown as n/a.
 885 *Sm_C2W24* results marked with * indicate results from an earlier iteration of the pipeline, which
 886 didn't take coverage or allele phasing into account, and was variant-called using BCFtools (cf.
 887 GATK in the most recent iteration).

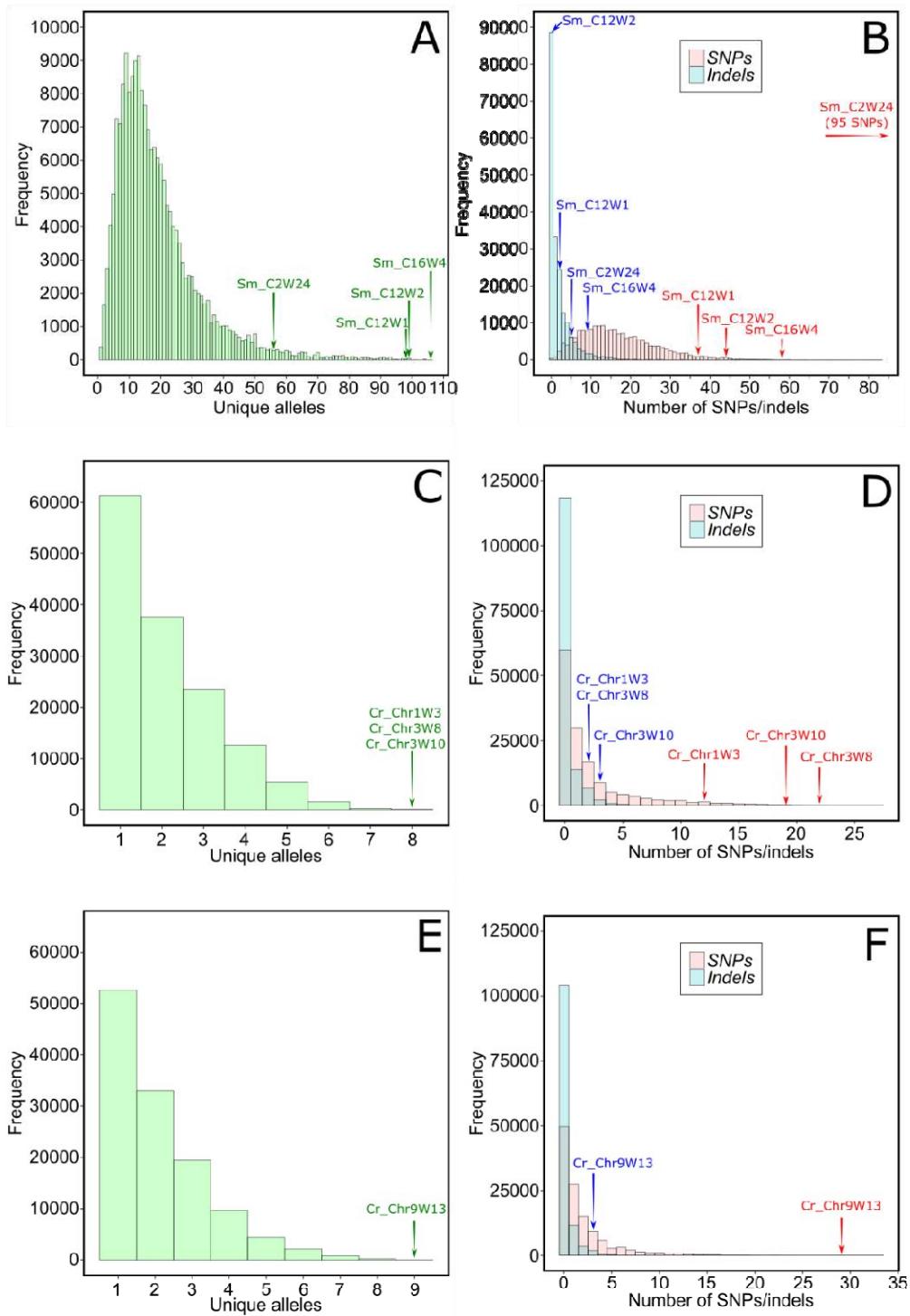
888

<i>Skeletonema marinoi</i> [†]	<i>Sm_C2W24</i>	<i>Sm_C12W1</i>	<i>Sm_C12W2</i>	<i>Sm_C16W4</i>
Gene model	Sm_t00004275- RA	Sm_t00009768- RA	Sm_t00009769- RA	Sm_t00008465- RA
Barcode length in reference (2 alleles in ref. genome)	471 (471/471)	523 (523/523)	494 (494/494)	504 (501/504)
Predicted SNP positions	95*	37	44	58
Predicted indel positions	5*	2	0	9
Predicted unique alleles	56*	98	99	106
Observed SNP positions	19	38	44	54
Observed indel positions	198	0	0	18
Mean WGS sequencing depth (range, N=55)	49 (13-101)	60 (17-140)	59 (17-131)	63 (19-131)
Mean amplicon sequencing depth (range, N=55)	5,391 (5- 35,434)	4,156 (15- 10,934)	1,693 (5-6,960)	3,591 (6- 19,143)
Accuracy of prediction across all strains and bases	82.65%	99.91%	99.93%	99.88%

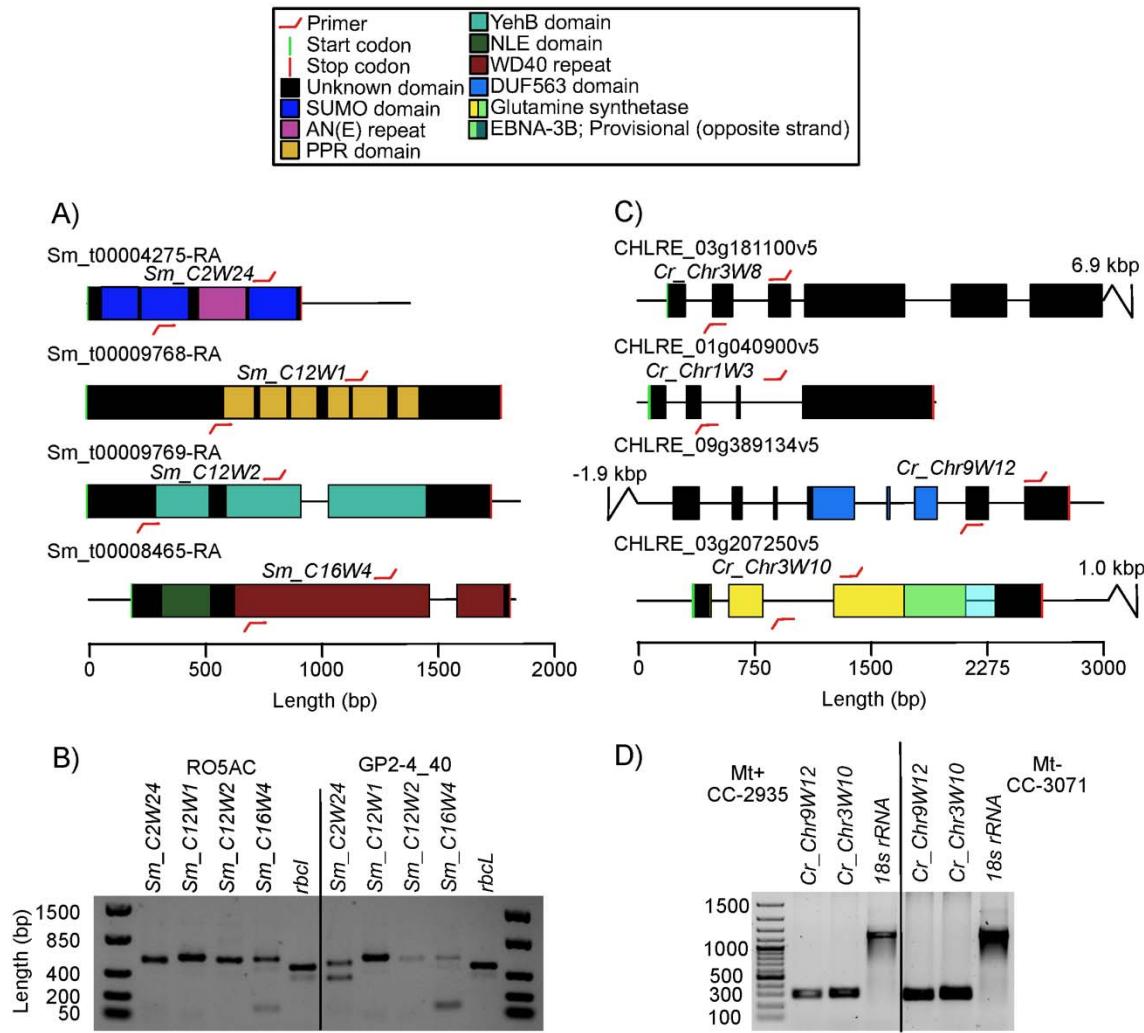

889

<i>Chlamydomonas reinhardtii</i> ^{††}	mt+				mt-
	<i>Cr_Chr1W3</i>	<i>Cr_Chr3W8</i>	<i>Cr_Chr3W10</i>	<i>Cr_Chr9W12</i>	
Gene model	CHLRE_01g040900v	CHLRE_03g181100v	CHLRE_03g207250v	CHLRE_09g389134v	
Barcode length	5	5	5	5	
Predicted SNP positions	298	297	299	290	
Predicted indel positions	21	23	28	32	
Observed SNP positions	n/a	n/a	27	32	
Observed indel positions	n/a	n/a	8	3	
Mean WGS coverage (range N=19)	29 (11-48)	37 (17-58)	32 (16-52)	33 (14-53)	
Accuracy of prediction across all strains and bases	n/a	n/a	99.98	99.88	

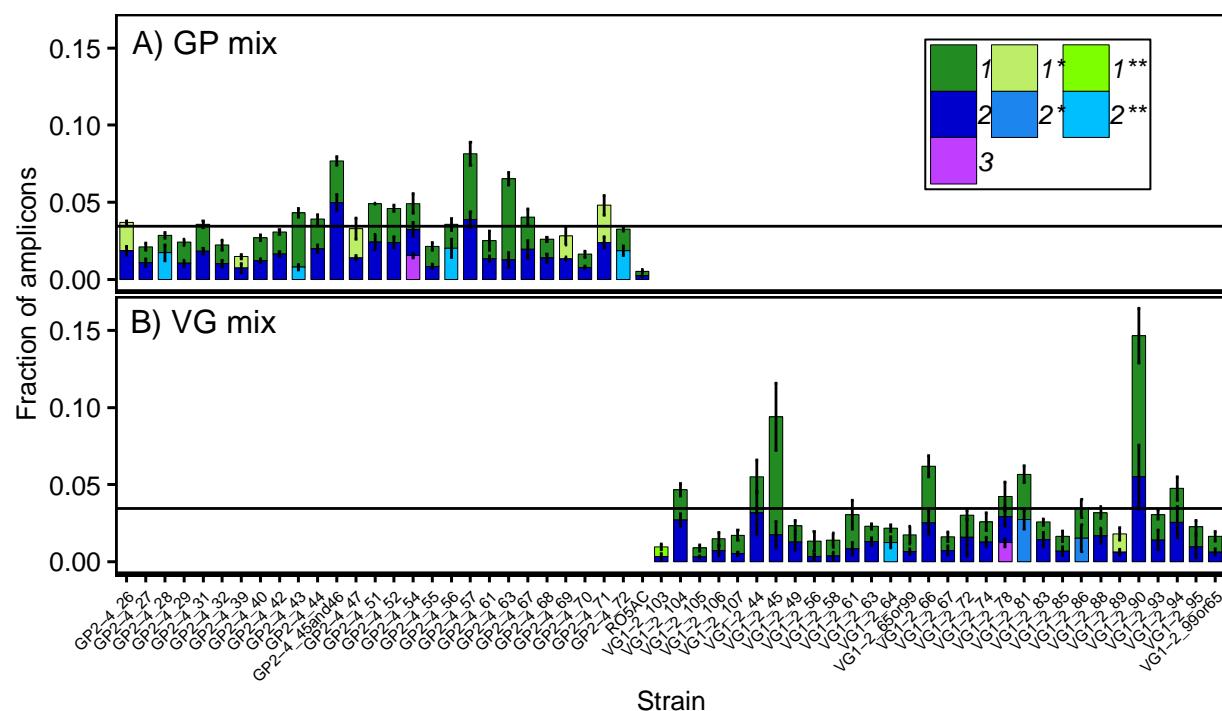
890 [†]One strain (GP2-4_32) was excluded from this analysis due to a failed sequencing.


891 ^{††}One strain (CC-2938) was excluded from this analysis due to failed DNA extraction.

892

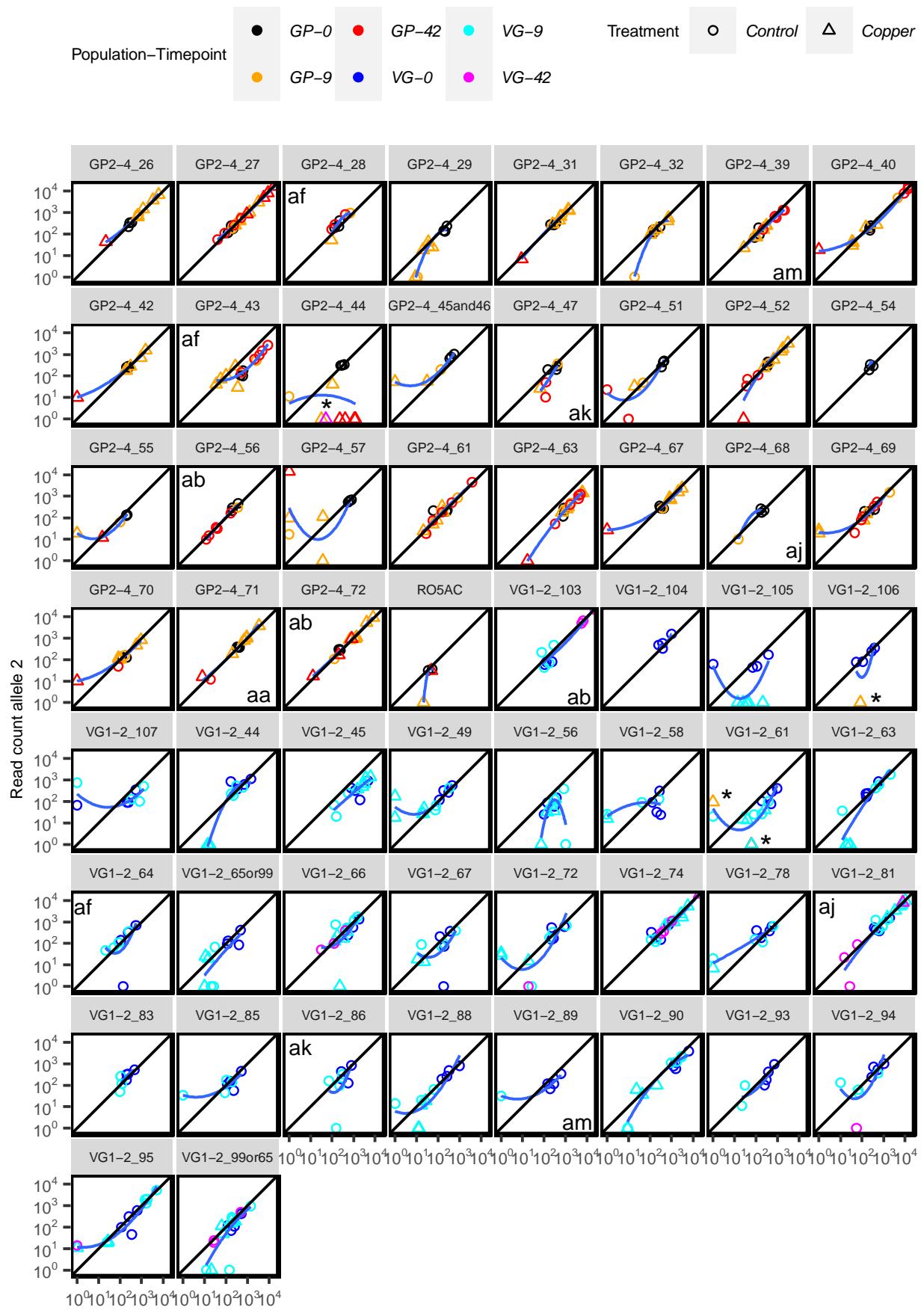

893 Figure 1: Schematic summarising the
894 steps of the Bamboozle pipeline, as
895 well as input and output files. Each
896 step is described in more detail in the
897 New Approaches section.

898 Figure 2: Histograms showing the predicted number of unique alleles (panels A, C, and E), and
899 predicted frequency of SNPs and indels (panels B, D, and F), at each window of 500 bp (*S.*
900 *marinoi*) or 300 bp (*C. reinhardtii*). Shown are data from all genomic windows that passed
901 Bamboozle's filters for coverage depth and flanking region conservation, as described in the New
902 Approaches section. In the case of *S. marinoi*, only nuclear contigs are included. Panels A and B
903 depict figures from *S. marinoi*; panels C and D depict figures from *C. reinhardtii* mating type +;
904 panels E and F depict figures from *C. reinhardtii* mating type -. Arrows indicate the relative
905 locations of the selected barcoding loci in terms of predicted SNP (red) and indel (blue)
906 frequency, and unique alleles (green). Note that *Sm_C2W24* was predicted with an earlier
907 version of Bamboozle, resulting in deviant values compared to other loci.



910 Figure 3: Genomic location of the four barcoding loci identified in *S. marinoi* and selected four
911 loci in *C. reinhardtii*, corresponding to those that primers were designed and evaluated for (for
912 complete list of all loci, and brief gene model annotations, see Table S2). A and C) Gene models
913 with functional domains, primer sites, and variable regions in *S. marinoi* and *C. reinhardtii*,
914 respectively. B and D) Gel electrophoresis of PCR products in two strains of *S. marinoi* and one
915 strain each of mating type + and - in *C. reinhardtii*, of loci with good amplification results.
916 Abbreviations – SUMO: Small Ubiquitin-like Modifier; AN(E): the three amino acids Alanine,
917 Asparagine, and Glutamic acid [occasionally replaced by Glycine]; PPR: pentatricopeptide
918 [RNA binding]; YehB: Uncharacterised membrane protein [partial, UPF0754 family]; NLE:
919 NUC135 domain located in N terminal of WD40 repeats; WD40: domain involved in various
920 cellular function including signal transduction, pre-mRNA processing and cytoskeleton
921 assembly; DUF563: Domain of Unknown Function; EBNA-3B: PHA03378 superfamily domain
922 (located on the reverse strand). Glutamine synthetase is represented by its PLN02284
923 superfamily domain and overlap with EBNA-3B is shown in green. Note that the primer symbols
924 are not drawn to scale but the tip of each symbol indicates the exact location where they end and
925 the variable region begins.

926 Department of Biology, Lund University, Lund, Sweden



929 Figure 4: Metabarcoded relative abundance of strains alleles using the barcode loci *Sm_C12W1*.
930 Shown are two mixed populations of *S. marinoi*. A) a mixture of 28 strains from Gropviken
931 (GP), and B) 30 strains from Gåsfjärden (VG). Legend numbers indicate whether this is the first,
932 second, or third allele in each strain, with colours/asterisks indicating if alleles are homologous
933 in two (*) or three (**) other strains. For asterisk-marked alleles, the abundance has been
934 partitioned between strains using differential equations. The horizontal line indicates the
935 expected fraction of amplicons (allele 1+2) per strain, assuming even cell densities, Error bars
936 show standard deviation, with N=3 technical PCR replicates for panel A, and N=4 for B. Data
937 has been denoised using the settings for 'Relaxed DADA2 on amplicons' as outlined in the
938 Supplementary Information.

939
940

941 Figure 5: Correlations between heterozygous allele of 58 strains of *S. marinoi* across the 42-day
942 selection experiment. For visibility, data has been transformed ($x + 1$) with removal of 0+0 cases.
943 Shared homologous alleles are indicated by alphabetical indexes in the corner of each allele (i.e.,
944 lower right equals allele one, upper left allele two), and their abundances have been allocated
945 between strains using differential equations. All such equations assume a 1:1 ratio between
946 alleles, except allele two in GP2-4_43, where a ratio of 0.15 is used based on the genotype
947 sample. The black line across panels corresponds to the expected 1:1 ratio between heterozygous
948 alleles. The blue line is a second order polynomial function fitted to the data, with shaded area
949 corresponding to 95% confidence interval. Data has been denoised using the settings for
950 'Relaxed DADA2 on amplicons' as outlined in the Supplemental Information. Asterisks
951 highlight false-positive observations that the denoising pipeline failed to remove. Fig. S4 shows
952 the same figure without denoising (i.e. 'exact matches' settings in Table S6).
953

