

1 **An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by**
2 **hypermutation**

3

4 **Running Title:** Hypermutation and antibody specificity

5

6 Seoryeong Park^{1,2*}, Jaewon Choi^{3,4*}, Yonghee Lee⁵, Jinsung Noh^{5,6}, Namphil Kim⁵, JinAh Lee⁷,
7 Geummi Cho^{1,8}, Sujeong Kim^{1,8}, Duck Kyun Yoo^{1,8}, Chang Kyung Kang⁹, Pyoeng Gyun Choe⁹,
8 Nam Joong Kim⁹, Wan Beom Park⁹, Seungtaek Kim⁷, Myoung-don Oh⁹, Sunghoon Kwon^{3,5,6},
9 Junho Chung^{1,2,8}

10

11 ¹Department of Biochemistry and Molecular Biology, Seoul National University College of
12 Medicine, Seoul, Republic of Korea

13 ²Interdisciplinary Program in Cancer Biology Major, Seoul National University College of
14 Medicine, Seoul, Republic of Korea

15 ³Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of
16 Korea

17 ⁴Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of
18 Korea

19 ⁵Department of Electrical and Computer Engineering, Seoul National University, Seoul,
20 Republic of Korea

21 ⁶Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea

22 ⁷Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea

23 ⁸Department of Biomedical Science, Seoul National University College of Medicine, Seoul,

24 Republic of Korea

25 ⁹Department of Internal Medicine, Seoul National University College of Medicine, Seoul,

26 Republic of Korea

27

28 *These authors contributed equally to this work.

29

30 **Corresponding author**

31 S. Kim (seungtaek.kim@ip-korea.org), M. Oh (mdohmd@snu.ac.kr), S. Kwon

32 (skwon@snu.ac.kr) or J. Chung (jjhchung@snu.ac.kr).

33

34 **The immune escape of Omicron variants significantly subsides by the third dose of an**
35 **mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies**
36 **develop under repeated vaccination. We analyzed blood samples from 41 BNT162b2**
37 **vaccinees following the course of three injections and analyzed their B-cell receptor (BCR)**
38 **repertoires at six time points in total. The concomitant reactivity to both ancestral and**
39 **Omicron receptor-binding domain (RBD) was achieved by a limited number of BCR**
40 **clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third**
41 **dose. Our findings suggest that SHM accumulation in the BCR space to broaden its**
42 **specificity for unseen antigens is a counterprotective mechanism against virus variant**
43 **immune escape.**

44 **Main**

45 Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), over 14
46 million sequences of variants have been collected and shared via the Global Initiative on Sharing
47 All Influenza Data (GISAID)¹. While most mutations have little effect or are detrimental to the
48 virus, a small subset of mutations may provide a selective advantage leading to a higher
49 reproductive rate². The spike protein, a viral coat protein that mediates viral attachment to host
50 cells and fusion between the virus and the cell membrane, is the primary target of neutralizing
51 antibodies³. Serological analysis has shown that the receptor-binding domain (RBD) of the spike
52 protein is the target of 90% of neutralizing activity in the immune sera^{4,5}. In this context, the
53 RBD has become the essential component of most mRNA-, adenovirus-, and recombinant
54 protein-based vaccines⁶. However, Omicron variant BA.1 has accumulated 15 mutations in
55 RBD⁷, resulting in a 22-fold reduction in neutralization by plasma from vaccinees receiving two
56 doses of the BNT162b2 vaccine⁸. This has led to reduced efficacy of most commercially
57 available monoclonal antibodies and antibodies under development against BA.1^{7,9}. Although
58 bivalent vaccines have been developed to overcome the immune evasion of Omicron variant¹⁰⁻¹³,
59 the majority of the population has received only monovalent vaccines to date. Fortunately, it has
60 been proven that a third dose of the BNT162b2 monovalent vaccine can neutralize BA.1¹⁴⁻¹⁸.
61 However, the mechanism by which Omicron variant-neutralizing antibodies are generated
62 through repeated exposure to the ancestral spike protein remains unclear. In this study, we
63 analyzed the chronological B-cell receptor (BCR) repertoires of BNT162b2 vaccinees and traced
64 the development of Omicron variant-neutralizing antibodies.

65

66 **Vaccination and plasma antibody levels**

67 We followed 41 healthcare workers from Seoul National University Hospital who received two
68 doses of the BNT162b2 mRNA vaccine with a three-week interval and a third dose at
69 approximately nine months after the first dose (Fig. 1a). Peripheral blood samples were collected
70 six times: once before the first dose, three times after each dose, and two times between the
71 second and third doses. The vaccinees did not report a history of COVID-19 infection, and the
72 absence of plasma IgG against the nucleocapsid (N) protein of SARS-CoV-2 was confirmed in
73 all vaccinees (Extended Data Fig. 1). In an enzyme-linked immunosorbent assay (ELISA),
74 plasma levels of IgA and IgG against the ancestral RBD were significantly increased after the
75 second dose (Fig. 1b and Extended Data Fig. 2). However, when vaccination ELISA was
76 performed against BA.1 RBD, a third dose was essential to achieve elevated levels of IgA and
77 IgG, which also reacted to the RBD of Omicron subvariant BQ.1.1 (Fig. 1b, Extended Data Figs.
78 2 and 3). This observation was in accord with prior reports that neutralizing activity of plasma
79 against the Omicron variant was detectable only after the third dose^{19,20}, while the second dose
80 could induce Omicron variant-neutralizing memory B cells²¹.

81

82 **Selection and characterization of BA.1 RBD-binding antibody clones**

83 We selected six vaccinees and generated a single-chain variable fragment (scFv) phage display
84 library using cDNA prepared from the sixth blood sample. For the selection of these vaccinees,
85 we reconstituted the *in silico* chronological BCR repertoires of vaccinees by next-generation
86 sequencing (Supplementary Table 1) and compared the frequency of BCR heavy chain (HC)
87 clonotypes listed in the CoV-Ab Dab²² database binding the SARS-CoV-2 spike protein.
88 Vaccinee 32, 35, 39 and 43 and vaccine 22 and 27 showed a higher frequency of clonotypes

89 binding to the BA.1 and ancestral spike proteins, respectively, and were selected. In this study,
90 the BCR HC clonotype was defined as a set of immunoglobulin heavy chain sequences that
91 exhibit the same immunoglobulin heavy variable (IGHV) and immunoglobulin heavy joining
92 (IGHJ) genes and homologous heavy chain complementarity-determining region 3 (HCDR3)
93 amino acid sequences with a minimum sequence identity of 80% to a reference sequence.
94 From six libraries, nine BA.1 RBD-binding scFv clones were selected based on biopanning and
95 phage ELISA. A cluster of scFv clones composed of 27-60 clones and 51 other clones sharing
96 IGHV3-53/3-66, IGHJ6, and the same HCDR sequences at the amino acid level was selected
97 from five libraries (Table 1 and Supplementary Table 2). We have previously reported that an
98 IGHV3-53/3-66 and IGHJ6 BCR HC clonotype is present not only in the majority of
99 convalescent patients from ancestral strains but also in normal human populations not exposed to
100 SARS-CoV-2 and can neutralize the virus²³. The frequent use of the IGHV3-53/3-66 and IGHJ6
101 gene pair in SARS-CoV-2 neutralizing antibodies was further confirmed by a subsequent
102 report²⁴⁻²⁶. Six scFv clones carrying the IGHV1-69 gene were selected from two libraries, which
103 frequently encoded RBD-reactive antibodies found in convalescent patients from both the
104 ancestral strain and BA.1 variant²⁷. Two additional scFv clones were selected from the two
105 libraries.
106 In the recombinant scFv-human Fc-hemagglutinin (HA) fusion protein format, seven scFv clones
107 showed reactivity against the RBD of the ancestral virus, Alpha, Beta, Gamma, and Delta
108 variants and Omicron-sublineage variants (BA.1, BA.2, BA.4/5 and BQ.1.1) (Extended Data Fig.
109 4a), with half-maximal effective concentrations (EC50) below 350 pM. The 27-60 clone and 35-
110 15 clone showed dramatically reduced reactivity to BA.4/5 and BQ.1.1 RBDs and BQ.1.1 RBD,
111 respectively. In a microneutralization assay, all clones neutralized the ancestral SARS-CoV-2

112 strain with a half-maximal inhibition concentration (IC50) range of 0.44 to 10.03 μ g/ml
113 (Extended Data Fig. 4b). Four clones (35-8, 35-46, 35-68, and 35-78) showed slightly decreased
114 neutralizing activity against the BA.1 variant with an IC50 below 15 μ g/ml, while the activity of
115 others was increased to 25.79 to 74.12 μ g/ml. Three clones (35-8, 35-68, and 35-78) could also
116 neutralize Alpha, Beta, Gamma and Delta variants with less IC50 values under 12.12 μ g/ml.

117

118 **Omicron RBD-reactive clonotypes in BCR HC repertoires**

119 BCR HC clonotypes of Omicron RBD-binding clones (Omicron RBD-reactive BCR HC
120 clonotype) were mapped to 293 sequences in the repertoire of 23 vaccinees (Table 1 and
121 Supplementary Table 3). The most frequently identified BCR HC clonotype was 27-60, found in
122 19 vaccinees (46%), followed clonotypes by 43-09 and 35-46, found in five and two vaccinees
123 (12% and 5%), respectively (Supplementary Table 4). Six BCR HC clonotypes were found only
124 in one vaccinee. Five BCR HC clonotypes, including 27-60, were not found in vaccinees in
125 whom the antibody clones were found. This type of discrepancy is expected to inevitably
126 originate from the incomplete *in silico* reconstitution of the BCR HC repertoire due to the
127 limitation of the throughput of next-generation sequencing²⁸. In this regard, the BCR HC
128 clonotypes are expected to be present in a larger population than we observed herein.

129 Among the 293 BCR HC sequences, 57 and 216 BCR HC sequences were present in the third
130 and sixth repertoires, respectively. Only 20 BCR HC sequences were found in other
131 chronological BCR repertoires. This skewed distribution originated from the expansion and
132 proliferation of B cells encoding the Omicron RBD-reactive BCR HC clonotype immediately
133 after the second and third doses of the vaccine. Thus, we limited our statistical analysis to BCR
134 HC sequences present in the third and sixth repertoires. Rapid class switch recombination (CSR)

135 following vaccination was evident, as the main immunoglobulin subtype of Omicron RBD-
136 reactive BCR HC sequences was IgG₁ in the third repertoire, followed by IgG₂, which was
137 maintained in the sixth repertoire (Supplementary Table 4 and Extended Data Fig. 5a). This rapid
138 CSR resulting in the dominance of the IgG₁ subtype among RBD-reactive BCR HC sequences
139 was also observed in convalescent patients infected with the ancestral virus²³.
140 Additionally, somatic hypermutation (SHM) of Omicron RBD-reactive BCR HC clonotypes
141 occurred mainly after the third dose. The average number of SHMs in the IGHV gene of
142 Omicron RBD-reactive BCR HC clonotypes in the sixth repertoire was dramatically increased
143 compared to that in the third repertoire with statistical significance (Extended Data Fig. 5b). The
144 diversity of the HCDR3 sequence also increased from the third repertoire to the sixth repertoire
145 (Extended Data Fig. 5c). Five Omicron RBD-reactive BCR HC clonotypes were mapped to eight
146 vaccinees in both the third and sixth repertoires (Extended Data Fig. 5d). The increase in the
147 average number of SHMs was evident, and statistical significance was confirmed in three
148 vaccinees with the 27-60 clonotype and one vaccinee with the 43-34 clonotype.
149

150 **Development of concomitant reactivity to ancestral and BA.1 RBDs via SHM**

151 Clone 27-60 was encoded by IGHV3-53/IGHV3-66 (Fig. 2a), in which CDR1 and CDR2 are
152 known to have two key motifs providing reactivity to ancestral RBD^{23,29}. The BCR HC of clone
153 27-60 had two SHMs in its IGHV gene sequence, and when we back-mutated the V27 residue in
154 CDR1 or the F58 residue adjacent to CDR2 to the germline sequence, its affinity for the ancestral
155 and BA.1 RBDs was decreased 8.7-fold and greatly diminished, respectively (Fig. 2b). This
156 observation showed that the reactivity of clone 27-60 toward the BA.1 RBD depended on the
157 SHM to a greater degree than its reactivity to the ancestral RBD.

158 Thereafter, we selected the most frequent BCR HC sequences of the 27-60 clonotype in the third
159 and sixth BCR repertoires of six vaccinees and analyzed their sequences (Fig. 2a). All the BCR
160 HC sequences found in the sixth repertoires had more SHMs than their pairs in the third
161 repertoires. All six BCR HC sequences in the sixth repertoire gained the Y58F mutation,
162 increasing the affinity of IGHV3-53/IGHV3-66 antibodies for the ancestral RBD^{30,31}. There was
163 also diversity in their HCDR3 sequences limited to a motif of three amino acid residues. As the
164 HCDR3 sequence can diversify either at the stage of germline VDJ gene recombination by P-
165 and N-nucleotide addition/deletion or later by SHM, it was not possible to determine the
166 germline HCDR3 sequence of clones 27-60. To analyze the influence of the HCDR3 sequence on
167 reactivity to ancestral and BA.1 RBDs, we generated a scFv phage display with the randomized
168 HCDR3 sequence of ARDLXX(A/V)GGMDV, arbitrarily selected 672 phage clones and
169 checked their reactivity to both RBDs. For the ancestral RBD, 200 phage clones (30%) showed
170 positive reactivity (Fig. 2c, Extended Data Fig. 6 and Supplementary Table 5). However, for the
171 BA.1 RBD, only 18 phage clones (3%) were reactive. All 18 clones were dual-reactive to both
172 RBDs. Six mono-reactive and six dual-reactive phage clones were arbitrarily selected for
173 expression as recombinant scFv-hFc-HA fusion proteins and tested for their affinity for both
174 RBDs. The EC50 values of mono-reactive scFv proteins to the ancestral and BA.1 RBDs were in
175 the ranges of 0.84–3.80 nM and 3.83–17.25 nM, respectively. In addition, dual-reactive scFv
176 proteins showed EC50 values of 0.16–1.29 nM and 0.35–1.26 nM for the ancestral and BA.1
177 RBDs, respectively (Fig. 2d). These observations proved that it is relatively rare for ancestral
178 RBD-reactive BCR HC clonotypes encoded by the IGHV3-53/3-66 and IGHJ6 genes with the
179 HCDR3 sequence of ARDLXX(A/V)GGMDV (BCR HC XXA/V clonotypes) to develop
180 increased compatible reactivity to the BA.1 RBD. This dual reactivity is likely to be achieved

181 among the large population of antigen-stimulated and proliferating B cells through SHM, rather
182 than in a small number of B cells in the stage of germline VDJ gene rearrangement. Indeed, only
183 one BCR HC XXA/V sequence was found in only one vaccinee in the pre-immune repertoire
184 (Extended Data Fig. 7 and Supplementary Table 6). After the first, second, and third injections, 3,
185 58, and 138 BCR HC XXA/V sequences were found in two, ten and sixteen vaccinees,
186 respectively. The average frequency of BCR HC XXA/V sequences also increased from 6.06×10^{-6}
187 under pre-immune status to 2.85×10^{-5} , 1.91×10^{-5} , and 2.41×10^{-5} after the first, second, and third
188 doses, respectively.

189 To check the effect of SHM accumulation on the affinity for RBDs in 27-60 BCR HC
190 clonotypes, six pairs of BCR HC sequences were coupled with the light chain gene of clone 27-
191 60 (Supplementary Table 7) and expressed as recombinant scFv-hFc-HA fusion proteins. Then,
192 their affinity for the ancestral RBD and BA.1 RBD was determined by ELISA. For the ancestral
193 RBD, all six scFvs of the third repertoire showed notable affinities, with EC50 values less than
194 7.5 nM. However, only one scFv from vaccinee 1 showed comparable affinity for BA.1 RBD
195 (Fig. 2e and Supplementary Table 8). In the sixth repertoire, four additional scFvs showed
196 affinity for the BA.1 RBD, with EC50 values less than 4.5 nM.

197 We also analyzed the BCR HC sequences of four additional clonotypes (35-15, 35-46, 43-09 and
198 43-34) found in both the third and sixth repertoires of identical vaccinees (Extended Data Fig.
199 8a). All BCR HC sequences in the sixth repertoires showed more SHMs than their paired
200 sequences in the third repertoires. Then, we prepared eight recombinant scFv-hFc-HA fusion
201 proteins in pairs with the light chains of four scFv phage clones. In ELISA, all scFvs from the
202 third repertoire showed a remarkable level of affinity for the ancestral RBD, with EC50 values
203 less than 200 pM, which were well maintained within a 2-fold difference in their paired

204 sequences in the sixth repertoire (Extended Data Fig. 8b). It was exceptional that the BCR HC
205 sequences of the 35-46 clonotype in the third library were encoded by IGHV1-69/IGHJ3 genes
206 without any SHM and showed a significantly high affinity for BA.1 RBD. In the 35-15, 43-09
207 and 43-34 BCR HC clonotype pairs, the affinity for BA.1 RBD was significantly increased from
208 0.59, 1.12 and 7.91 nM in the third repertoire to 0.13, 0.09 and 0.14 nM in the sixth repertoire,
209 respectively.

210

211 **Expansion of the BCR HC repertoire to RBDs of Omicron subvariants by SHM**

212 We studied how the diversification of the BCR HC repertoire by SHM expands its reactivity to
213 RBDs of Omicron subvariants. We first searched the BCR HC sequences of the 27-60, 35-15,
214 35-46, 43-09 and 43-34 clonotypes in the third repertoire and found them in nine, one, one, one,
215 and one of the vaccinees, respectively (Supplementary Table 4). Then, we selected the BCR HC
216 sequences with the highest frequency in each vaccinee and used them to construct a new set of
217 BCR HC clonotypes (designated clonotypes-3rd) confined to each vaccinee. The greatest
218 numbers of BCR HC sequences in the 27-60, 35-15, 35-46, 43-09 and 43-34 clonotypes-3rd were
219 found in vaccinees 35, 43, 35, 23, and 43, consisting of 86, 8, 24, 2, and 18 sequences,
220 respectively. Based on their HCDR3 sequences, these sequences in the clonotypes-3rd were
221 subdivided into 11, 4, 11, 2, and 9 clusters, respectively. From each cluster, the BCR HC
222 sequences with the highest frequency that were present in the third and sixth BCR HC repertoires
223 were selected, and their genes were synthesized (Extended Data Fig. 9, 10 and Supplementary
224 Table 7, 9). As expected, all the scFv clones in the sixth BCR HC repertoires showed more SHM
225 than those in the third repertoires (Fig. 3), and some of them showed dramatically enhanced
226 binding toward specific types of Omicron variant RBDs. Two scFv clones (35-15/6th-43 and 35-

227 46/6th-35-2) showed potent reactivity confined to either BA.1 or XBB.1.5 RBD with an EC50
228 below 0.100 nM. The other two scFv clones (35-46/6th-35-1 or 43-09/6th-23) showed the
229 equivalent EC50 values toward RBDs of Omicron subvariants (either BA.1 or BQ.1.1 in addition
230 to XBB.1.5, individually). Another two scFv clones (43-34/6th-43-1 and 43-34/6th-43-3) reacted
231 with the RBDs of all Omicron subvariants tested with same potency. These findings suggest that
232 the accumulation of SHM after the third dose of ancestral SARS-CoV-2 vaccine generated clones
233 with divergent mosaic pattern of specificity toward three major Omicron subvariants. More
234 interestingly, clones reactive to BQ.1.1 and XBB.1.5 achieved their specificity much earlier than
235 their emergence.

236 Our study showed that the third dose of the mRNA vaccine encoding the ancestral viral spike
237 protein induced the accumulation of SHM in ancestral RBD-reactive antibody clones and
238 generated a panel of BCRs with additional divergent reactivity to RBDs of Omicron subvariants,
239 which may contribute to the dramatically increased plasma level of Omicron RBD-reactive
240 antibodies and may have the potential to counteract novel SARS-CoV-2 variants yet to emerge.
241 We believe that this expansion in the specificity of the BCR repertoire to unseen antigens via
242 SHM is a protective immune mechanism that evolved in response to the challenge of viral
243 immune escape.

244 **References**

- 245 1 Meredith, L. W. *et al.* Rapid implementation of SARS-CoV-2 sequencing to invest
246 igate cases of health-care associated COVID-19: a prospective genomic surveillanc
247 e study. *The Lancet Infectious Diseases* **20**, 1263-1271 (2020). [https://doi.org/10.1016/s1473-3099\(20\)30562-4](https://doi.org/10.1016/s1473-3099(20)30562-4)
- 249 2 Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape.
250 *Nature Reviews Microbiology* **19**, 409-424 (2021). <https://doi.org/10.1038/s41579-021-00573-0>
- 252 3 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and recep
253 tor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature Microbiology*
254 **5**, 562-569 (2020). <https://doi.org/10.1038/s41564-020-0688-y>
- 255 4 Liu, L. *et al.* Potent neutralizing antibodies against multiple epitopes on SARS-Co
256 V-2 spike. *Nature* **584**, 450-456 (2020). <https://doi.org/10.1038/s41586-020-2571-7>
- 257 5 Piccoli, L. *et al.* Mapping Neutralizing and Immunodominant Sites on the SARS-
258 CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serolo
259 gy. *Cell* **183**, 1024-1042.e1021 (2020). <https://doi.org/10.1016/j.cell.2020.09.037>
- 260 6 Jackson, L. A. *et al.* An mRNA Vaccine against SARS-CoV-2 - Preliminary Repo
261 rt. *N Engl J Med* **383**, 1920-1931 (2020). <https://doi.org/10.1056/NEJMoa2022483>
- 262 7 Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing
263 antibodies. *Nature* **602**, 657-663 (2022). <https://doi.org/10.1038/s41586-021-04385-3>
- 264 8 Cele, S. *et al.* Omicron extensively but incompletely escapes Pfizer BNT162b2 ne
265 utralization. *Nature* **602**, 654-656 (2022). <https://doi.org/10.1038/s41586-021-04387-1>
- 266 9 Dejnirattisai, W. *et al.* SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape

- 267 from neutralizing antibody responses. *Cell* **185**, 467-484.e415 (2022). <https://doi.org/10.1016/j.cell.2021.12.046>

268

269 10 Chalkias, S. *et al.* A Bivalent Omicron-Containing Booster Vaccine against Covid-19. *New England Journal of Medicine* **387**, 1279-1291 (2022). <https://doi.org/10.1056/nejmoa2208343>

270

271

272 11 Tseng, H. F. *et al.* Effectiveness of mRNA-1273 vaccination against SARS-CoV-2 omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. *Nature Communications* **14** (2023). <https://doi.org/10.1038/s41467-023-35815-7>

273

274

275 12 Zou, J. *et al.* Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with Bivalent Vaccine. *N Engl J Med* **388**, 854-857 (2023). <https://doi.org/10.1056/NEJMc2214916>

276

277

278 13 Scheaffer, S. M. *et al.* Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. *Nat Med* **29**, 247-257 (2023). <https://doi.org/10.1038/s41591-022-02092-8>

279

280

281 14 Evans, J. P. *et al.* Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. *Cell Host Microbe* **30**, 1093-+ (2022). <https://doi.org/10.1016/j.chom.2022.04.014>

282

283

284 15 Garcia-Beltran, W. F. *et al.* mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. *Cell* **185**, 457-466.e454 (2022). <https://doi.org/10.1016/j.cell.2021.12.033>

285

286

287 16 Nemet, I. *et al.* Third BNT162b2 Vaccination Neutralization of SARS-CoV-2 Omicron Infection. *New England Journal of Medicine* **386**, 492-494 (2022). <https://doi.org/10.1056/nejmc2119358>

288

289

- 290 17 Muik, A. *et al.* Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vac
291 cine-elicited human sera. *Science* **375**, 678-+ (2022). <https://doi.org/10.1126/science.abn7591>
- 292
- 293 18 Carreño, J. M. *et al.* Activity of convalescent and vaccine serum against SARS-C
294 oV-2 Omicron. *Nature* **602**, 682-688 (2022). <https://doi.org/10.1038/s41586-022-04399-5>
- 295
- 296 19 Yu, J. *et al.* Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants.
297 *New England Journal of Medicine* **386**, 1579-1580 (2022). <https://doi.org/10.1056/nejmc2201849>
- 298
- 299 20 Goel, R. R. *et al.* Efficient recall of Omicron-reactive B cell memory after a third
300 dose of SARS-CoV-2 mRNA vaccine. *Cell* **185**, 1875-1887.e1878 (2022). <https://doi.org/10.1016/j.cell.2022.04.009>
- 301
- 302 21 Kotaki, R. *et al.* SARS-CoV-2 Omicron-neutralizing memory B cells are elicited b
303 y two doses of BNT162b2 mRNA vaccine. *Science immunology* **7**, eabn8590 (202
304 2).
- 305
- 306 22 Raybould, M. I. J., Kovaltsuk, A., Marks, C. & Deane, C. M. CoV-AbDab: the c
307 oronavirus antibody database. *Bioinformatics* **37**, 734-735 (2021). <https://doi.org/10.1093/bioinformatics/btaa739>
- 308
- 309 23 Kim, S. I. *et al.* Stereotypic neutralizing V-H antibodies against SARS-CoV-2 spik
310 e protein receptor binding domain in patients with COVID-19 and healthy individu
311 als. *Sci Transl Med* **13** (2021). <https://doi.org/10.1126/scitranslmed.abd6990>
- 312
- 313 24 Barnes, C. O. *et al.* SARS-CoV-2 neutralizing antibody structures inform therapeut

- 313 ic strategies. *Nature* **588**, 682-687 (2020). <https://doi.org/10.1038/s41586-020-2852-1>
- 314 25 Cao, Y. *et al.* Potent Neutralizing Antibodies against SARS-CoV-2 Identified by H
315 igh-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. *Cell* **182**
316 , 73-84.e16 (2020). <https://doi.org/10.1016/j.cell.2020.05.025>
- 317 26 Zhang, Q. *et al.* Potent and protective IGHV3-53/3-66 public antibodies and their
318 shared escape mutant on the spike of SARS-CoV-2. *Nature Communications* **12** (2
319 021). <https://doi.org/10.1038/s41467-021-24514-w>
- 320 27 Yan, Q. *et al.* Shared IGHV1-69-encoded neutralizing antibodies contribute to the
321 emergence of L452R substitution in SARS-CoV-2 variants. *Emerging Microbes & a
322 mp; Infections* **11**, 2749-2761 (2022). <https://doi.org/10.1080/22221751.2022.2140611>
- 323 28 Lee, H. *et al.* Optimization of peripheral blood volume for in silico reconstitution
324 of the human B-cell receptor repertoire. *FEBS Open Bio* **12**, 1634-1643 (2022).
325 <https://doi.org/10.1002/2211-5463.13467>
- 326 29 Yuan, M. *et al.* Structural basis of a shared antibody response to SARS-CoV-2. *Sc
327 ience* **369**, 1119-1123 (2020). <https://doi.org/10.1126/science.abd2321>
- 328 30 Tan, T. J. C. *et al.* Sequence signatures of two public antibody clonotypes that bi
329 nd SARS-CoV-2 receptor binding domain. *Nature Communications* **12** (2021). <https://doi.org/10.1038/s41467-021-24123-7>
- 330
- 331 31 Tian, X. *et al.* The prominent role of a CDR1 somatic hypermutation for converg
332 ent IGHV3-53/3-66 antibodies in binding to SARS-CoV-2. *Emerging Microbes & a
333 mp; Infections* **11**, 1186-1190 (2022). <https://doi.org/10.1080/22221751.2022.2063074>
- 334
- 335

336 **Tables**

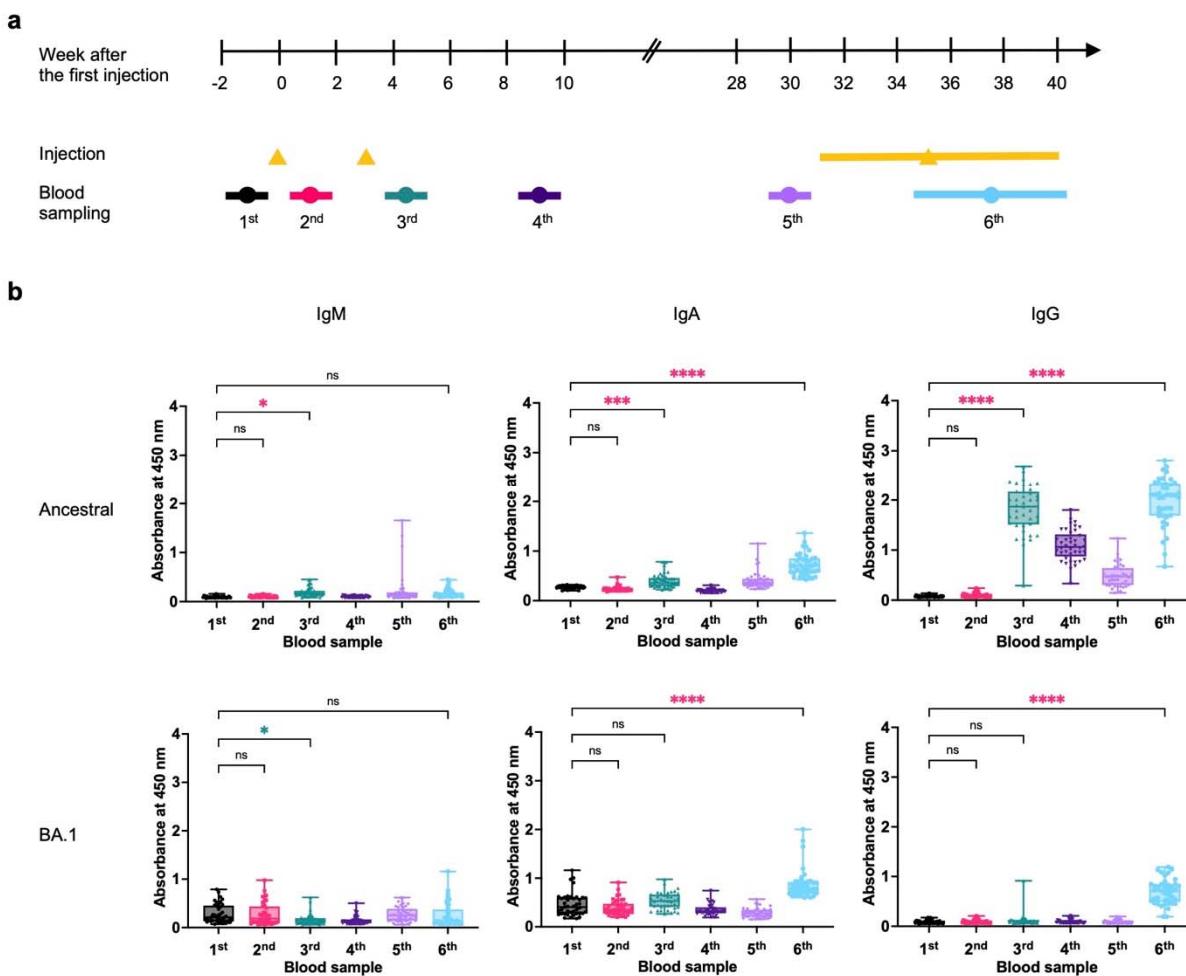
337 **Table 1.** Omicron RBD-reactive scFv clones and their BCR-HC clonotypes

scFv clone	scFv library (vaccinees)	HCDR3 sequences	No. of vaccinees with the corresponding BCR HC clonotype		
			IGHV	IGHJ	
27-60	22, 27, 32, 39, 43	ARDLMEAGGMDV	<i>IGHV3-53/3-66</i>	<i>IGHJ6</i> 19	
35-08	35	AREIGYSGSGSAKYFDP	<i>IGHV1-69</i>	<i>IGHJ5</i> 1	
35-15	35	ARAEDHGTYYSDSSGYHFDY	<i>IGHV1-69</i>	<i>IGHJ4</i> 1	
35-46	35	ARVHGYSGYGANDAFDI	<i>IGHV1-69</i>	<i>IGHJ3</i> 2	
35-68	35	AREVGYSFGASPKFDP	<i>IGHV1-69</i>	<i>IGHJ5</i> 1	
35-78	35	AREPGILGYCSSTSCYID	<i>IGHV1-69</i>	<i>IGHJ4</i> 1	
43-09	43	ARTGSGWTDAFDI	<i>IGHV3-30</i>	<i>IGHJ3</i> 5	
43-27	43	ATTYHYDTDGPYGEFYY	<i>IGHV5-51</i>	<i>IGHJ4</i> 1	

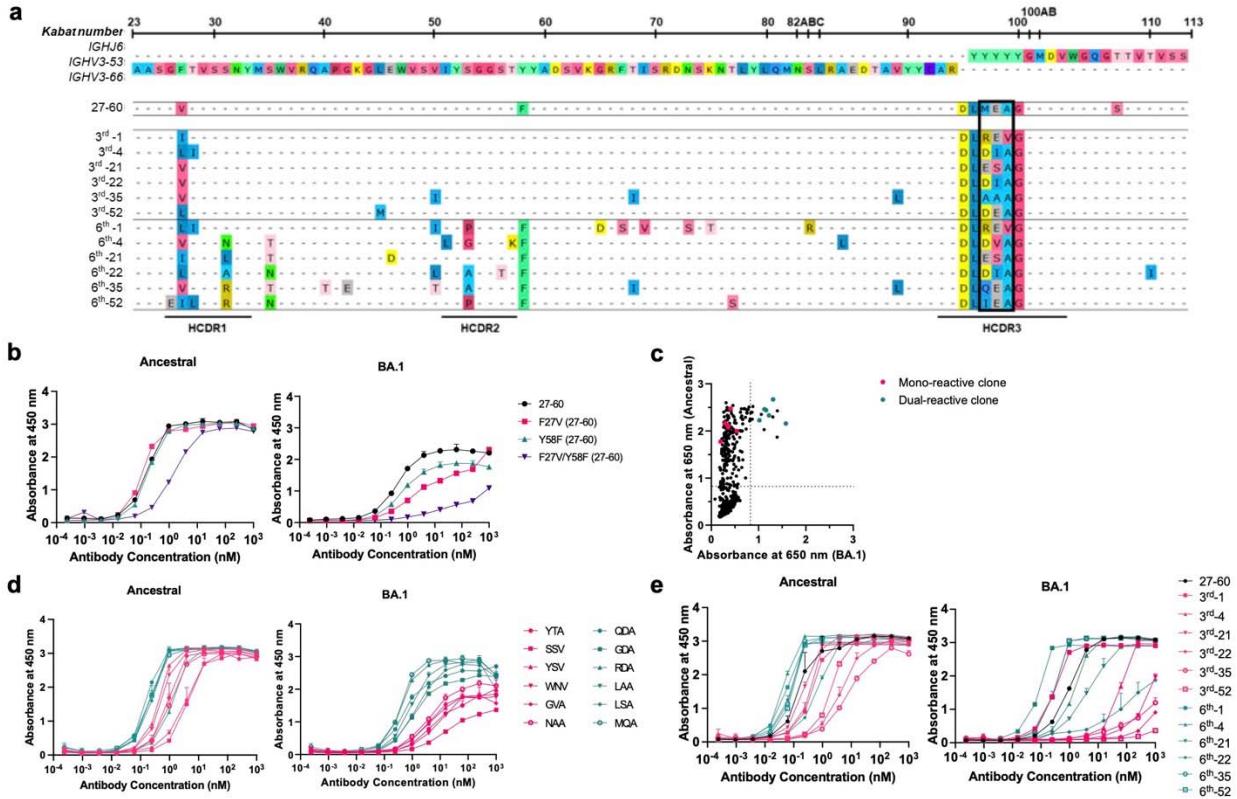
43-34 43

ARVRGYSGYGASGYFDN

IGHV1-

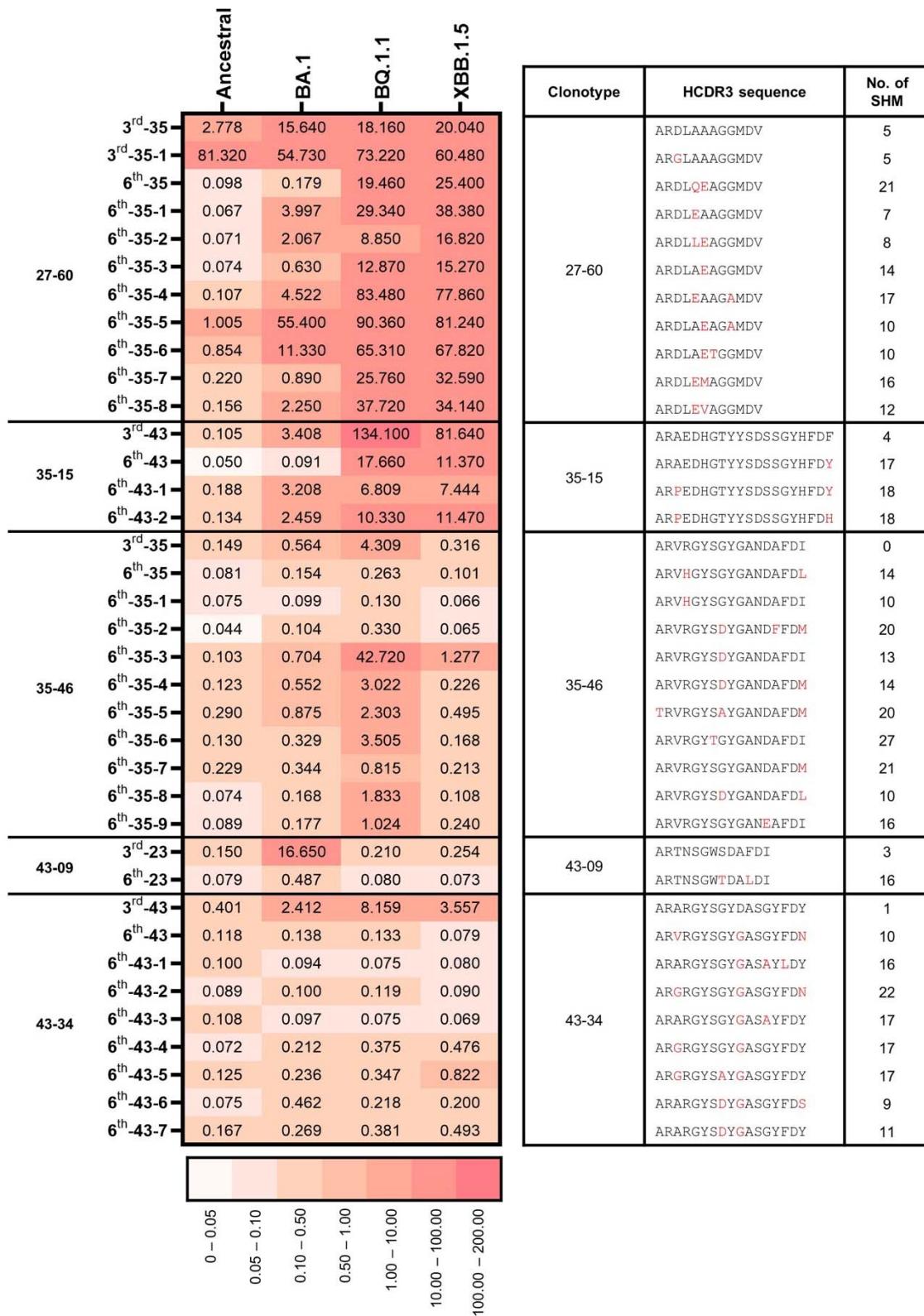

IGHJ4 1

69


338

339 **Figures**

340


Fig. 1. Vaccination, blood sampling and plasma antibody levels. **a**, Vaccinees received the first two doses at a three-week interval and the third dose between the 31st and 39th weeks after the first dose. Blood was collected six times: pre-vaccination (1st); 1 week after the first dose (2nd); 1, 6, and 30 weeks after the second dose (3rd, 4th, and 5th); and one to four weeks after the third dose (6th). **b**, Plasma levels of antibodies against SARS-CoV-2 ancestral and BA.1 RBDs were measured after 2,500-fold dilution. All experiments were performed in duplicate, and the average value for each vaccinee was plotted. The P value was calculated using one-way ANOVA. ns, not significant, $p > 0.05$; *, $p < 0.05$; ***, $p < 0.001$; ****, $p < 0.0001$. The increases and decreases in antibody levels are marked with red and green asterisks, respectively.

350

351 **Fig. 2. Characterization of the 27-60 BCR HC clonotype. a**, BCR HC sequences found in six
 352 vaccinees in their third and sixth BCR repertoires with the highest frequency. **b**, Reactivity of the
 353 recombinant 27-60 scFv-hFc-HA protein and its clones back mutated to the germline sequence.
 354 **c**, Reactivity of scFv-displaying phage clones from the HCDR3-randomized library to the
 355 ancestral and BA.1 RBDs. The clones labeled in red and green were selected for expression as
 356 recombinant scFv-hFc-HA protein. **d**, Reactivity of recombinant scFv fusion proteins of
 357 HCDR3-randomized (ARDLXX(A/V)GGMDV) clones to the ancestral and BA.1 RBDs. **e**,
 358 Reactivity of recombinant scFv-hFc-HA proteins encoded by individual BCR HC sequences and
 359 the light chain gene of clone 27-60 to the ancestral and BA.1 RBDs.

360

362 **Fig. 3. The reactivity of the scFv clones of HCDR3-based clusters in the 27-60, 35-15, 35-46,**
363 **43-09, and 43-34 BCR HC clonotypes-3rd.** The EC50 values to Ancestral, BA.1, BQ.1.1, and
364 XBB.1.5 RBDs of the scFv clones with the highest frequencies of HCDR3-based clusters in each
365 clonotype-3rd are displayed with their HCDR3 sequences and the quantities of SHM.

366 **Methods**

367

368 ***Study participants***

369 Peripheral blood sampling was approved by the Institutional Ethics Review Board of Seoul
370 National University Hospital (IRB approval number, 2102-032-1193). The vaccinees had a
371 median age of 30 years (range 23-62) and showed a nearly equal distribution of males and
372 females (46% and 54%, respectively). Peripheral blood mononuclear cells (PBMCs) and plasma
373 were separated using Lymphoprep (STEMCELL) Ficoll (Cytiva) following the manufacturer's
374 instructions. Total RNA was isolated using TRIzol Reagent (Invitrogen) according to the
375 manufacturer's instructions.

376

377 ***ELISA***

378 Plasma and phage ELISAs were performed in 96-well microtiter plates (Corning, 3690) coated
379 with 100 ng of recombinant SARS-CoV-2 proteins (Sino Biological, Ancestral RBD, 40592-
380 V08H; Alpha RBD, 40592-V08H82; Beta RBD, 40592-V08H85; Gamma RBD, 40592-V08H86;
381 Delta RBD, 40592-V08H90; Omicron BA.1 RBD, 40592-V08H121; Omicron BA.2 RBD,
382 40592-V08H123, Omicron BA.4/5 RBD, 40592-V08H130; Omicron BQ.1.1 RBD, 40592-
383 V08H143; Ancestral N, 40588-V08B) in coating buffer (0.1 M sodium bicarbonate, pH 8.6) as
384 described previously²³. Briefly, the plates were coated with the antigen by incubation at 4°C
385 overnight and blocked with 3% bovine serum albumin (BSA) in PBS for 1 hour at 37°C. Then,
386 serially diluted serum (100-, 500-, 2,500-fold) or phage supernatant (twofold) in blocking buffer
387 was added to the wells of microtiter plates, followed by incubation for 1 hour at 37°C. Then, the
388 plates were washed three times with 0.05% PBST. Horseradish peroxidase (HRP)-conjugated
389 goat anti-human IgM and IgA (Invitrogen, A18835 and A18781, 1:5,000), rabbit anti-human IgG

390 antibody (Invitrogen, 31423, 1:20,000) and HRP-conjugated anti-M13 antibody (Sino
391 Biological, 11973-MM05T-H, 1:4,000) were used to determine the amount of bound antibody or
392 M13 bacteriophage. A 3,3',5,5'-tetramethylbenzidine liquid substrate solution (Thermo Fisher
393 Scientific Inc.) was used as an HRP substrate, and the absorbance was measured at 450 or 650
394 nm using a microplate spectrophotometer (Thermo Fisher Scientific Inc., Multiskan GO)
395 depending on the use of 2 M sulfuric acid as the stop solution. All assays were performed in
396 duplicate.

397 In ELISA for the recombinant scFv-hFc-HA fusion proteins, the wells of microtiter plates
398 (Corning) were first coated with 100 ng of mouse anti-His antibody (Invitrogen, MA1-21315)
399 and blocked. Then, the recombinant SARS-CoV-2 RBD protein with a polyhistidine tag (100
400 nM) was added to the wells. After brief washing, the scFv-hFC-HA fusion proteins were serially
401 diluted fourfold from 1 M to 0.24 pM in blocking buffer and added to wells of a microtiter
402 plate. HRP-conjugated rat anti-HA antibody (Roche, 12013819001, 1:1,000) was used to
403 determine the amount of bound antibody. All assays were performed in duplicate.

404

405 ***Next-generation sequencing***

406 Genes encoding the variable domain of the heavy chain (V_H) and part of the first constant
407 domain of the heavy chain (CH1) domain (V_H -CH1) were amplified using specific primers, as
408 described previously²³. All primers used are listed in Supplementary Table 10. Briefly, total RNA
409 was used as a template to synthesize complementary DNA (cDNA) using the SuperScript IV
410 First-Strand Synthesis System (Invitrogen) with specific primers (primer No. 1–8) targeting the
411 CH1 domain of each isotype (IgM, IgD, IgG, IgA, and IgE) according to the manufacturer's
412 protocol. After cDNA synthesis, 1.8 volumes of SPRI beads (Beckman Coulter, AMPure XP)

413 were used to purify cDNA, which was eluted in 35 μ l of water. The purified cDNA (15 μ l) was
414 subjected to second-strand synthesis in a 25 μ l reaction volume using IGHV gene-specific
415 primers (primer No.9–14) and a KAPA Biosystems kit (Roche, KAPA HiFi HotStart). The PCR
416 conditions were as follows: 95°C for 3 min, 98°C for 30 s, 60°C for 45 s, and 72°C for 6 min.
417 After second-strand synthesis, dsDNA was purified using 1 volume of SPRI beads, as described
418 above. V_H-CH1 genes were amplified using purified dsDNA (15 μ l) in a 25 μ l reaction volume
419 using primers containing indexing sequences (primers 15 and 16) and a KAPA Biosystems kit.
420 The PCR conditions were as follows: 95°C for 3 min; 25 cycles of 98°C for 30 s, 60°C for 30 s,
421 and 72°C for 1 min; and 72°C for 5 min. PCR products were subjected to electrophoresis on a
422 1.5% agarose gel and purified using a QIAquick gel extraction kit (QIAGEN Inc.) according to
423 the manufacturer's instructions. The gel-purified PCR products were purified again using 1
424 volume of SPRI beads and eluted in 20 μ l water. The SPRI-purified sequencing libraries were
425 quantified with a 4200 TapeStation System (Agilent Technologies) using a D1000 ScreenTape
426 assay and subjected to next-generation sequencing on the Illumina NovaSeq platform.

427

428 ***NGS data processing***

429 Raw sequencing reads obtained from sequencing the V_H-CH1 region of B cells in peripheral
430 blood were processed using a custom pipeline. The pipeline included adapter trimming and
431 quality filtering; unique molecular identifier (UMI) processing; V(D)J gene annotation;
432 clustering; quality control; and diversity analysis.
433 The forward reads (R1) and reverse reads (R2) of the raw NGS data were merged using paired-
434 end read merger (PEAR) v0.9.10 with the default settings³². The merged reads were q-filtered
435 under the q20p95 condition, resulting in 95% of base pairs in the reads having a Phred score

436 greater than 20. Primer positions were identified in the quality-filtered reads, and primer regions
437 were trimmed to remove the effects of primer synthesis errors while allowing one substitution or
438 deletion.

439 Based on the primer recognition results, UMI sequences were extracted, and reads were clustered
440 according to the UMI sequences. To eliminate index misassignment, we subclustered the
441 clustered reads based on the similarity of the reads (allowing 5 mismatches in each subcluster)
442 and matched the majority subcluster to the UMI. The subclustered reads were aligned using the
443 multiple sequence alignment tool Clustal Omega v1.2.4 with the default settings^{33,34}. Consensus
444 calling was performed by selecting major frequency bases at every position of the aligned
445 sequences. The number of reads in the consensus sequence was redefined as the number of UMI
446 subclusters belonging to the consensus sequence.

447 Sequence annotation consisted of isotype annotation and V(D)J annotation. The consensus
448 sequence was divided into a V(D)J region and a constant region. The isotype of the consensus
449 sequence was annotated by aligning the extracted constant region with the constant gene of the
450 International Immunogenetics Information System (IMGT)³⁵. Then, the V(D)J region of the
451 consensus sequence was annotated using an updated version of IgBLAST (v1.17.1)³⁶. Among
452 the annotation results, the IGHV genes,IGHJ genes, HCDR3 sequences, and number of SHMs
453 were extracted for further analysis. The number of SHMs was counted only in the aligned IGHV
454 genes. The nonfunctional consensus reads were defined and filtered using the following criteria:
455 (i) sequence length shorter than 250 base pairs, (ii) presence of a stop codon or frameshift in the
456 entire amino acid sequence, (iii) failure to annotate one or more HCDR1, HCDR2 and HCDR3
457 regions, and (iv) failure to annotate the isotype.

458

459 ***Construction of scFv phage display library***

460 Six human scFv phage display libraries were constructed using the total RNA prepared from the
461 sixth blood sample for vaccine Nos. 22, 27, 32, 35, 39 and 43 as described previously²³. Briefly,
462 for the V_H and V_κ/V_λ genes, total RNA was employed to synthesize cDNA using the SuperScript
463 IV First-Strand Synthesis System (Invitrogen) with gene-specific primers targeting the J_H and
464 C_{κ/λ} genes (primer No.17–22), respectively. After cDNA synthesis, 1.8 volumes of SPRI beads
465 (Beckman Coulter) were used to purify cDNA, which was eluted in 20 µl of water. The purified
466 cDNA (11.25 µl) of the V_H gene was subjected to second-strand synthesis in a 25 µl reaction
467 volume using IGHV gene-specific primers (primer No. 23–32, 7.5 µl) and a KAPA Biosystems
468 kit (Roche). The reaction conditions were as follows: 95°C for 3 min, 98°C for 1 min, 60°C for 1
469 min, and 72°C for 5 min. In the case of the V_κ/V_λ gene, the eluted cDNA (17.25 µl) was used for
470 the first round of PCR synthesis in a 25 µl reaction volume using V_κ/V_λ and J_κ/J_λ gene-specific
471 primers (primer No. 33–69, 0.75 µl). The PCR conditions were as follows: 95°C for 3 min; 4
472 cycles of 98°C for 1 min, 60°C for 1 min, and 72°C for 1 min; and 72°C for 10 min. After
473 second-strand synthesis for the V_H gene or PCR amplification of the V_κ/V_λ gene, double-stranded
474 DNA (dsDNA) was purified with 1 volume of SPRI beads and eluted in 40 µl of water. V_H and
475 V_κ/V_λ genes were amplified using 10 µl of purified dsDNA, 2.5 pmol of the primers (primer No.
476 70–73), and KAPA Biosystems kit components in a 50 µl total reaction volume with the
477 following thermal cycling program: 95°C for 3 min; 30 cycles of 98°C for 30 s, 60°C for 30 s,
478 and 72°C for 1 min; and 72°C for 10 min. Then, the amplified V_H and V_κ/V_λ genes were
479 subjected to electrophoresis on a 1.5% agarose gel and purified using a QIAquick gel extraction
480 kit (QIAGEN Inc.) according to the manufacturer's instructions. The purified V_H and V_κ/V_λ gene
481 fragments (100 ng) were mixed and subjected to overlap extension PCR to generate scFv genes

482 using 2.5 pmol of the overlap extension primers (primer No. 74 and 75) using the KAPA
483 Biosystems kit. The PCR conditions were as follows: 95°C for 3 min; 25 cycles of 98°C for 20 s,
484 65°C for 15 s, and 72°C for 1 min; and 72°C for 10 min. The amplified scFv gene was purified
485 and cloned into a phagemid vector as described previously³⁷.

486

487 ***Selection of BA.1RBD-binding clones***

488 Human scFv phage display libraries with 7.1×10^8 , 6.1×10^8 , 8.1×10^8 , 8.3×10^8 ,
489 7.9×10^8 , and 7.4×10^8 colony-forming units were generated using cDNA prepared from
490 vaccinee Nos. 22, 27, 32, 35, 39 and 43, respectively. The libraries were subjected to five rounds
491 of biopanning against the recombinant SARS-CoV-2 BA.1 RBD protein (Sino Biological Inc.) as
492 described previously³⁸. Immune tubes (SPL, 43015) coated with 17 µg of the BA.1 RBD were
493 used for the first round, and 5×10^6 magnetic beads (Invitrogen, Dynabeads M-270 epoxy)
494 conjugated with 1.4 µg of the BA.1 RBD protein were used for the other rounds. After each
495 round of biopanning, the bound phages were eluted and amplified for the next round of
496 biopanning. For the selection of BA.1 RBD-reactive scFv phage clones, individual phage clones
497 were amplified from the titration plate of the last round and subjected to phage ELISA as
498 described previously³⁹. The genes encoding BA.1 RBD-reactive scFv clones were identified
499 using phagemid DNA prepared from phage clones and Sanger nucleotide sequencing as
500 described previously³⁸. A recombinant scFv protein fused with human IgG1 FC and the HA
501 peptide (scFv-hFc-HA) was expressed using a mammalian expression system and purified as
502 described previously³⁹.

503

504 ***HCDR3-randomized scFv phage display library***

505 The gene fragment encoding the V_H region with a randomized HCDR3 sequence and another
506 gene fragment encoding the rest of the scFv were amplified using phagemid DNA of clone 27-
507 60, primers for randomization (primer No.76-79) and the KAPA Biosystems kit. The PCR
508 conditions were as follows: 95°C for 3 min; 25 cycles of 98°C for 20 s, 65°C for 15 s, and 72°C
509 for 1 min; and 72°C for 10 min. Then, the amplified genes were subjected to electrophoresis on a
510 1.5% agarose gel and purified using a QIAquick gel extraction kit (QIAGEN Inc.) according to
511 the manufacturer's instructions. The purified gene fragments (200 ng) were mixed and subjected
512 to overlap extension PCR to generate scFv genes using 2.5 pmol of the overlap extension primers
513 (primer No.76 and 79) and the KAPA Biosystems kit. The PCR conditions were as follows: 95°C
514 for 3 min; 25 cycles of 98°C for 20 s, 65°C for 15 s, and 72°C for 1 min; and 72°C for 5 min.
515 The amplified scFv genes were purified and cloned into a phagemid vector as described
516 previously³⁷. For phage ELISA, individual phage clones were amplified from the titration plate
517 and subjected to phage ELISA as described previously⁴⁰.

518

519 ***Microneutralization assay***

520 The ancestral SARS-CoV-2 (βCoV/Korea/KCDC03/2020 NCCP43326), Alpha B.1.1.7 (hCoV-
521 19/Korea/KDCA51463/2021 (NCCP 43381), Beta B.1.351 (hCoV-19/Korea/KDCA55905/2021
522 (NCCP 43382), Gamma P.1 (hCoV-19/Korea/KDCA95637/2021 (NCCP 43388), Delta B.1.617.2
523 (hCoV-19/Korea/KDCA119861/2021 (NCCP 43390), and Omicron B.1.1.529 (hCoV-
524 19/Korea/KDCA447321/2021 NCCP43408) viruses were obtained from the Korea Disease
525 Control and Prevention Agency. The viruses were propagated in Vero cells (ATCC, CCL-81) in

526 Dulbecco's Modified Eagle's Medium (DMEM, Welgene) in the presence of 2% fetal bovine
527 serum (Gibco, Thermo Fisher Scientific Inc.), as described previously^{23,41}.
528 Neutralization assays were performed as described previously^{23,42}. Briefly, Vero cells were
529 seeded in 96-well plates (1.5×10^4 or 0.5×10^4 cells/well) in Opti-PRO SFM (Thermo Fisher
530 Scientific Inc.) supplemented with 4 mM L-glutamine and 1× Antibiotics-Antimycotic (Thermo
531 Fisher Scientific Inc) and grown for 24 h at 37°C in a 5% CO₂ environment. Recombinant scFv-
532 hFc proteins were diluted from 100 to 0.1953 µg/ml (twofold) in phosphate-buffered saline
533 (PBS, Welgene) and mixed with 100 or 500 TCID₅₀ of SARS-CoV-2. Then, the mixture was
534 incubated for 30 min at 37°C and added to the cells in tetrads, followed by incubation for 4 or 6
535 days at 37°C in a 5% CO₂ environment. The cytopathic effect (CPE) in each well was visualized
536 following crystal violet staining 4 or 6 days post infection. The IC₅₀ values were calculated using
537 the dose-response inhibition equation of GraphPad Prism 6 (GraphPad Software).

538

539 ***Construction of BCR HC clonotype-3rd***

540 The most frequent BCR HC sequences of the 27-60, 35-15, 35-46, 43-09, and 43-34 clonotypes
541 in the third BCR repertoires were mapped to the chronological BCR repertoires following the
542 same definition of BCR HC clonotypes. All the mapped nucleotide sequences were aligned using
543 the multiple sequence alignment tool Clustal Omega v1.2.4 with the default settings^{33,34}. The
544 aligned mapped nucleotide sequences were interpreted using a phylogenetic tree generated by
545 IgPhyML v1.1.3 052020 using the HLP model option⁴³. The phylogenetic trees were plotted
546 using Interactive Tree of Life (iTOL)⁴⁴.

547 **Data availability**

548 All sequencing data are available from the National Center for Biotechnology Information

549 (www.ncbi.nlm.nih.gov/) under accession number PRJNA945512 (SRA).

550

551 **Code availability**

552 NGS data preprocessing was performed as described in a previous study (Kim, S. I. *et al.* Sci

553 Transl Med 13 (2021)). The code use in this study is available upon request for academic

554 research purposes.

555 **Methods references**

- 556 23 Kim, S. I. *et al.* Stereotypic neutralizing V-H antibodies against SARS-CoV-2 spike
557 protein receptor binding domain in patients with COVID-19 and healthy individuals. *Sci Transl Med* **13** (2021). <https://doi.org/10.1126/scitranslmed.abb6990>
- 560 32 Zhang, J. J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate I
561 llumina Paired-End reAd mergeR. *Bioinformatics* **30**, 614-620 (2014). <https://doi.org/10.1093/bioinformatics/btt593>
- 563 33 Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence
564 alignments using Clustal Omega. *Mol Syst Biol* **7** (2011). <https://doi.org/10.1038/msb.2011.75>
- 566 34 Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many
567 protein sequences. *Protein Sci* **27**, 135-145 (2018). <https://doi.org/10.1002/pro.3290>
- 569 35 Lefranc, M. P. IMGT® databases, web resources and tools for immunoglobulin and
570 T cell receptor sequence analysis. *Leukemia* **17**, 260–266 (2003).
- 571 36 Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable
572 domain sequence analysis tool. *Nucleic Acids Res* **41**, W34-W40 (2013). <https://doi.org/10.1093/nar/gkt382>
- 574 37 Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C. & Barbas, C. F. Generation
575 of Human scFv Antibody Libraries: PCR Amplification and Assembly of Light
576 - and Heavy-Chain Coding Sequences. *Cold Spring Harbor Protocols* **2011**, pdb.prot065573
577 (2011). <https://doi.org/10.1101/pdb.prot065573>

- 578 38 Lee, Y., Kim, H. & Chung, J. An antibody reactive to the Gly63–Lys68 epitope o
579 f NT-proBNP exhibits O-glycosylation-independent binding. *Experimental & M*
580 *olecular Medicine* **46**, e114-e114 (2014). <https://doi.org/10.1038/emm.2014.57>
- 581 39 C. F. Barbas, D. R. B., J. K. Scott, G. J. Silverman. *Phage Display: A Laborator*
582 *y Manual*. Vol. 76 (2001).
- 583 40 Park, S., Lee, D. H., Park, J. G., Lee, Y. T. & Chung, J. A sensitive enzyme im
584 munoassay for measuring cotinine in passive smokers. *Clin Chim Acta* **411**, 1238-
585 1242 (2010). <https://doi.org/10.1016/j.cca.2010.04.027>
- 586 41 REED, L. J. & MUENCH, H. A SIMPLE METHOD OF ESTIMATING FIFTY P
587 ER CENT ENDPOINTS12. *American Journal of Epidemiology* **27**, 493-497 (1938)
588 . <https://doi.org/10.1093/oxfordjournals.aje.a118408>
- 589 42 Jiang, L. W. *et al.* Potent Neutralization of MERS-CoV by Human Neutralizing M
590 onoclonal Antibodies to the Viral Spike Glycoprotein. *Sci Transl Med* **6** (2014). ht
591 tps://doi.org:ARTN 234ra59 10.1126/scitranslmed.3008140
- 592 43 Hoehn, K. B. *et al.* Repertoire-wide phylogenetic models of B cell molecular evol
593 ution reveal evolutionary signatures of aging and vaccination. *Proceedings of the*
594 *National Academy of Sciences* **116**, 22664-22672 (2019). <https://doi.org/10.1073/pna>
595 s.1906020116
- 596 44 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phyl
597 ogenetic tree display and annotation. *Nucleic Acids Res* **49**, W293-W296 (2021). h
598 ttps://doi.org/10.1093/nar/gkab301
- 599

600 **Acknowledgements**

601 This research was supported by the Korea Dementia Research Center (KDRC, HU20C0339),
602 Korea Health Technology R&D Project through the Korea Health Industry Development Institute
603 (KHIDI, HI23C0521), the BK21 FOUR program, the National Research Foundation of Korea
604 (NRF-2020R1A3B3079653 NRF-2020M3H1A1073304, NRF-2017M3A9G6068245, NRF-
605 2022M3A9J1081343 and NRF-2023M3A9G6057281), the SNUH Research Fund (03-2021-
606 0080), and the Inter-university Semiconductor Research Center. The pathogen resources
607 (NCCP43326, NCCP43381, NCCP43382, NCCP43388, NCCP43390, NCCP43408) for this
608 study were provided by the National Culture Collection for Pathogens. J. Choi is grateful for
609 financial support from the Hyundai Motor Chung Mong-Koo Foundation.

610

611 **Author contributions**

612 S.P. designed and conducted all experiments, performed analyses, interpreted experimental
613 results, and wrote and revised the paper. J. Choi performed the bioinformatic analyses, visualized
614 and interpreted the results, and wrote and revised the paper. Y.L., J.N. and N.P.K. performed the
615 bioinformatic analysis. J.L. conducted experiments related to the microneutralization assay. D.Y.
616 conducted experiments related to the construction of repertoire libraries for NGS. G.C. and
617 S.J.K. contributed to experiments related to the expression of recombinant proteins. K.K., P.C.,
618 N.J.K., and W.P. enrolled the study participants and collected the study samples. M.O. conceived
619 and designed the study, and interpreted all results. S.T.K. supervised all the experiments with
620 infectious viruses and microneutralization assay. S. Kwon conceived the study and designed and
621 supervised the bioinformatics analysis. J. Chung conceived the study, designed and supervised
622 all experiments, interpreted all results, and wrote the paper.

623

624 ***Competing interests***

625 S.P., J. Choi, Y.L., J.N., N.P.K., J.L., G.C., W.P., S.T.K., M.O., S. Kwon and J. Chung are
626 inventors on a patent application for the antibodies described in this article. The remaining
627 authors declare no conflict of interest.

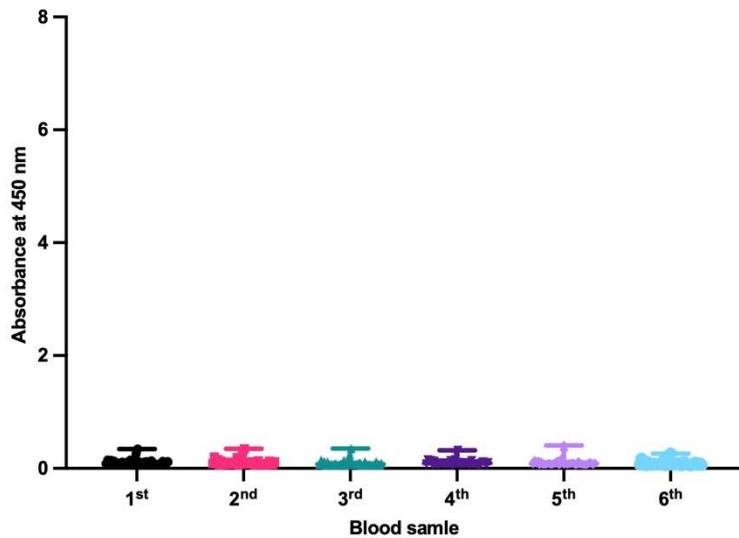
628

629 **Additional information**

630

631 Supplementary Information is available for this paper

632

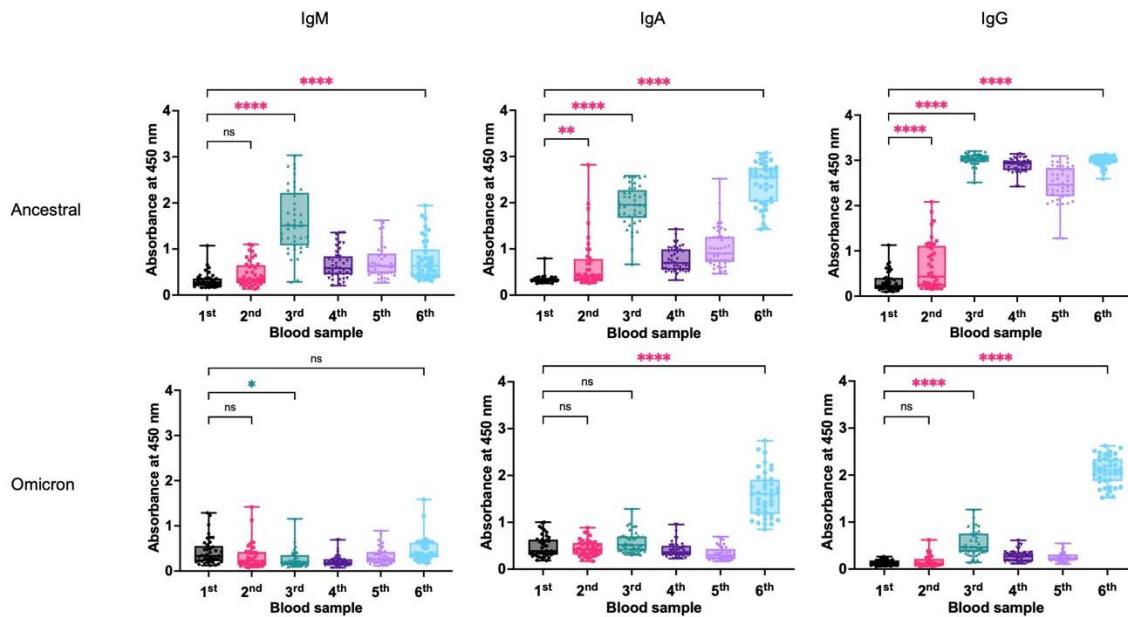

633 Correspondence and requests for materials should be addressed to J. Chung.

634

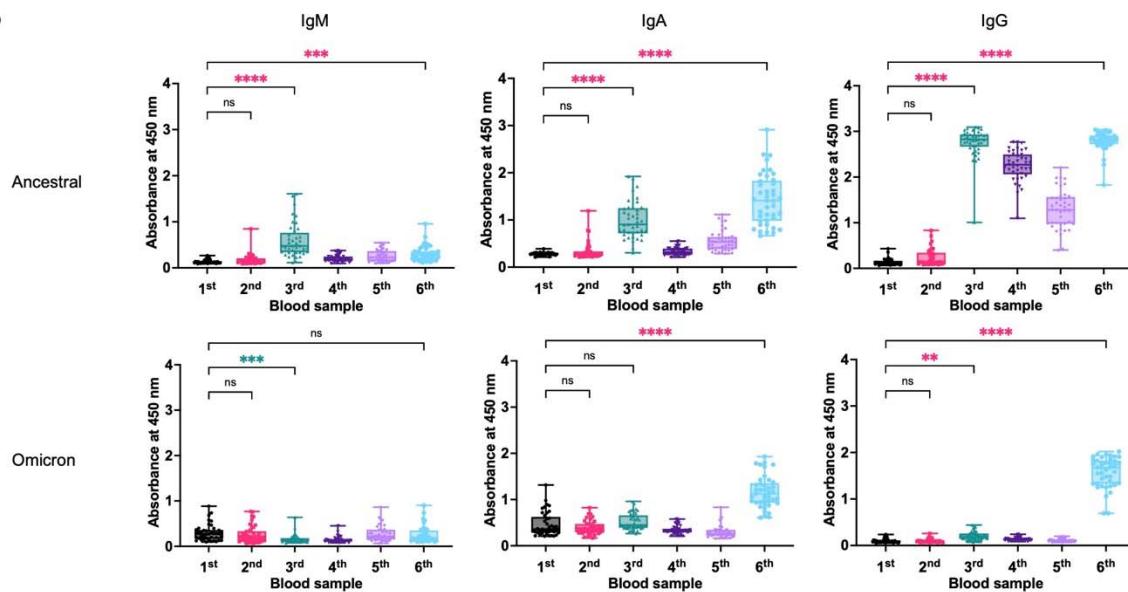
635 Reprints and permissions information is available at www.nature.com/reprints.

636

637 **Extended data**

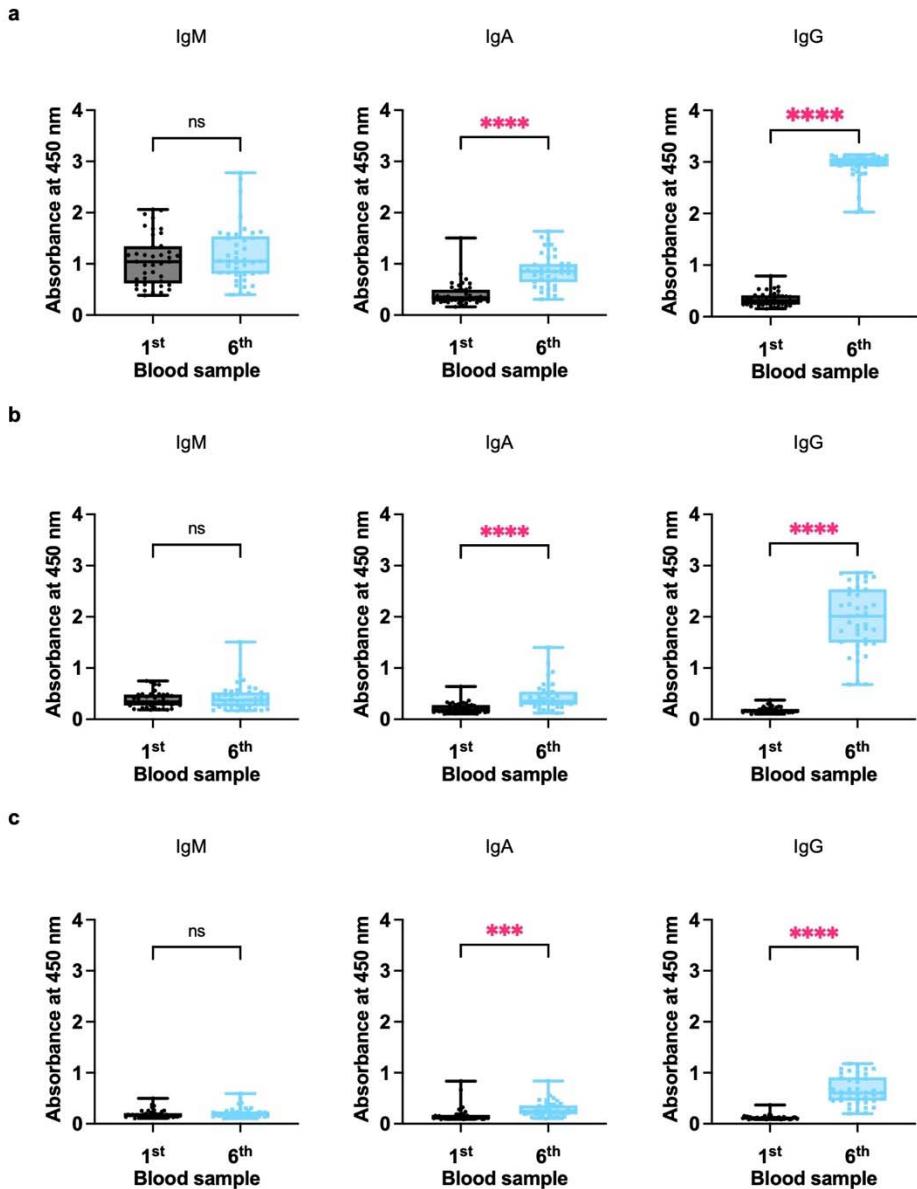

638

639 **Extended Data Fig. 1 Plasma levels of antibodies against the SARS-CoV-2 N protein.**


640 Reactivity of plasma from 41 vaccinees to the SARS-CoV-2 N protein (Sino Biological) was
641 tested by ELISA. The wells of microtiter plates were coated with the SARS-CoV-2 N protein and
642 blocked. After washing, plasma samples diluted in blocking buffer (1:2,500-fold) were added to
643 wells. The amount of bound antibody was determined using a horseradish peroxidase (HRP)-
644 conjugated rabbit anti-human IgG antibody (Invitrogen).

645

a



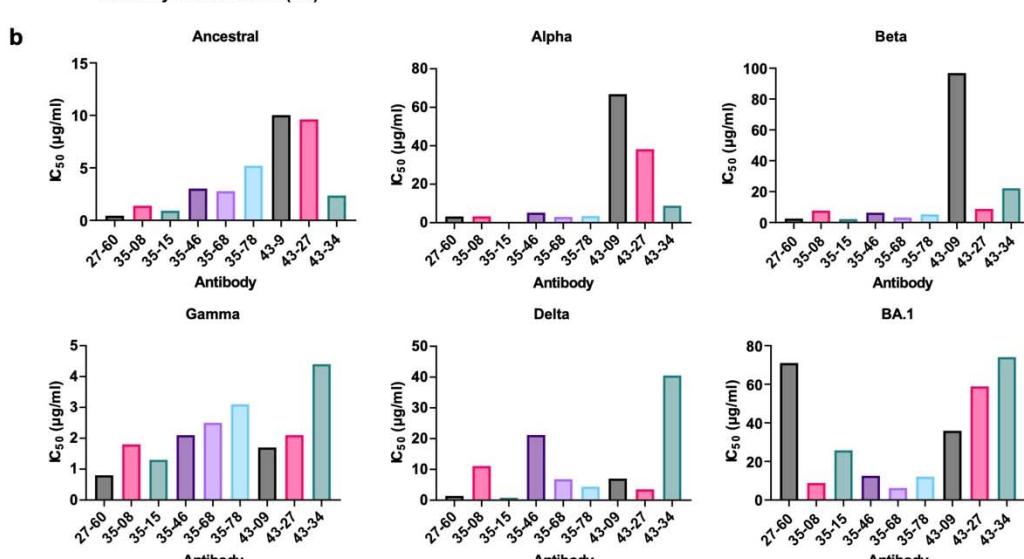
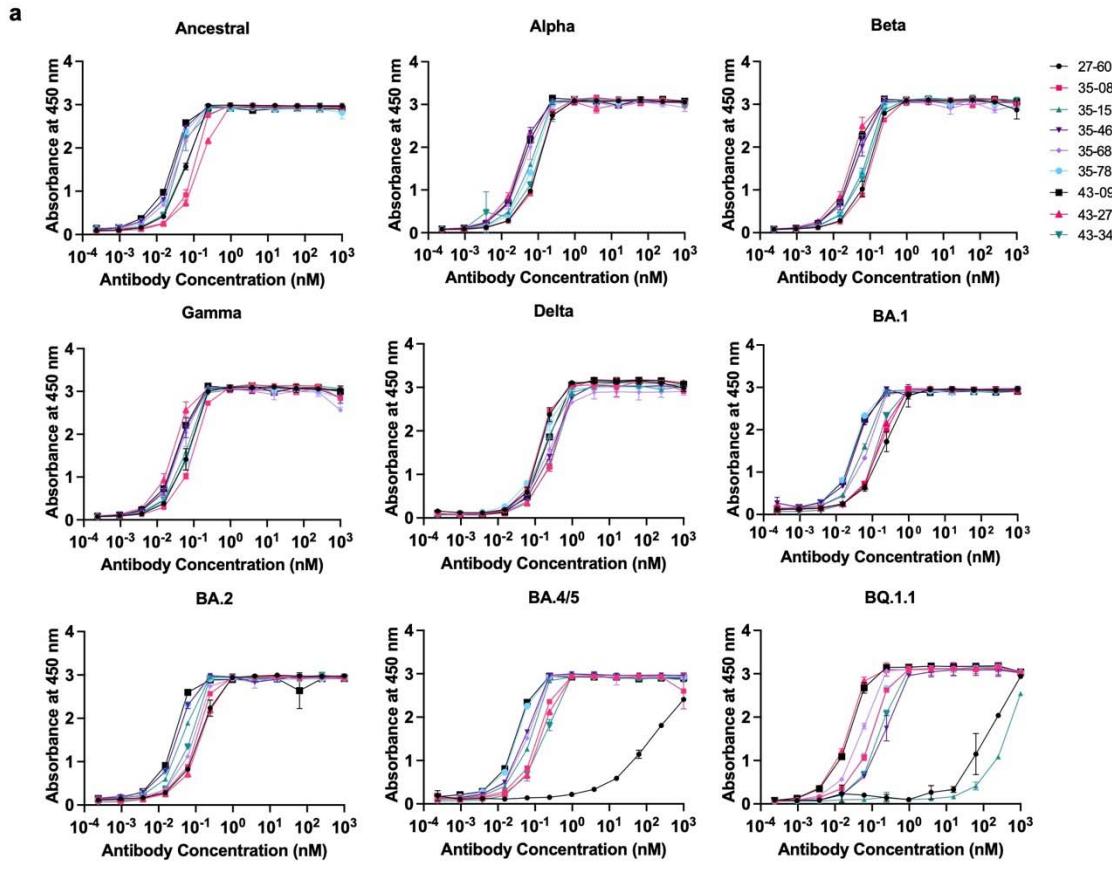
b

646

647 **Extended Data Fig. 2 Plasma levels of antibodies against ancestral and BA.1 RBD.** Plasma
648 levels of antibodies to SARS-CoV-2 ancestral and BA.1 RBDs were measured in 41 vaccinees
649 after (a) 100-fold or (b) 500-fold dilution. All experiments were performed in duplicate, and the
650 average value for each vaccinee was plotted. The P value was calculated using one-way ANOVA.
651 ns, not significant, $p > 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$. The increases and
652 decreases in antibody levels are marked with red and green asterisks, respectively

653

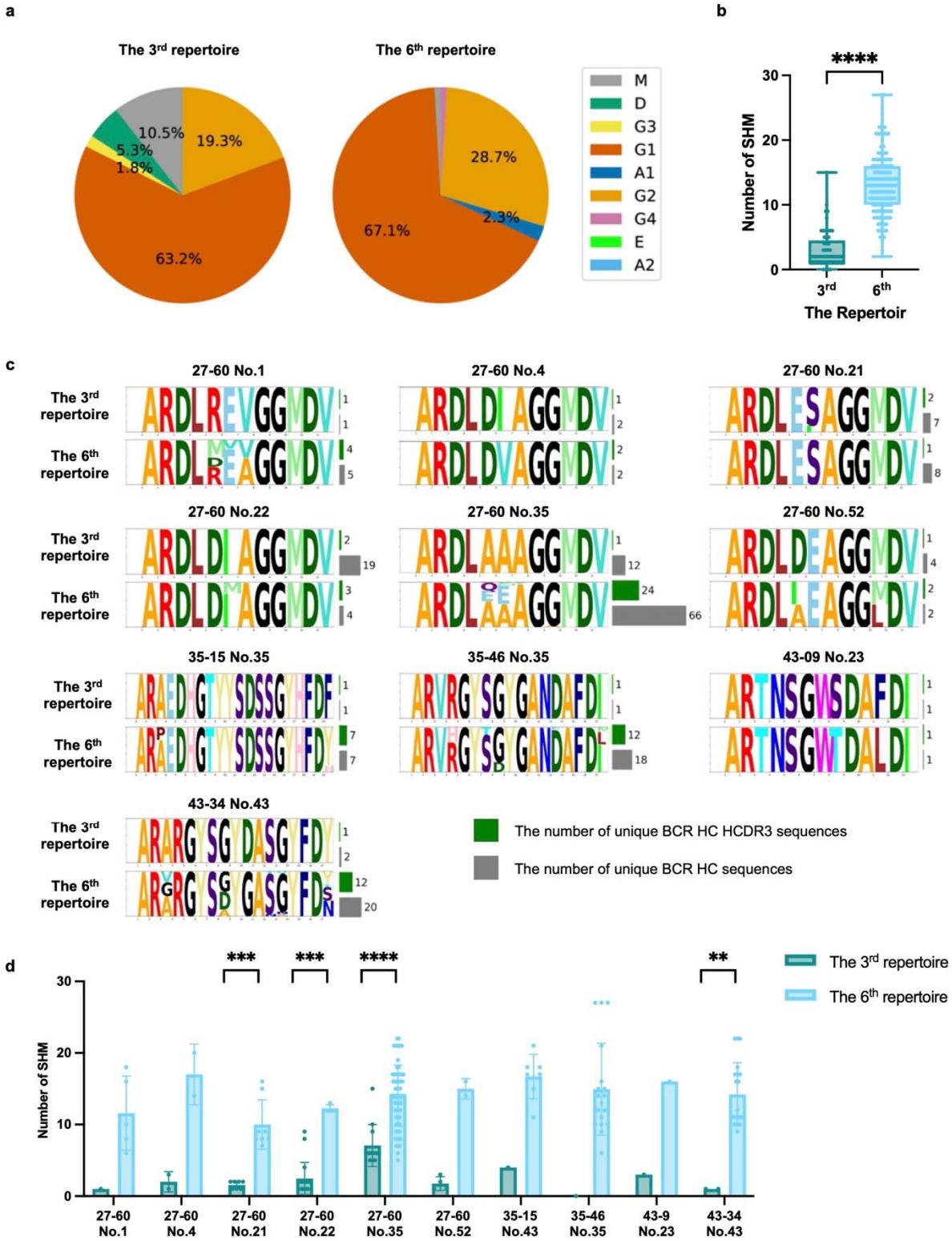
654 **Extended Data Fig. 3 Plasma levels of antibodies against the RBD of Omicron subvariant**



655 **BQ.1.1.** Plasma levels of antibodies to the Omicron subvariant BQ.1.1. RBD (Sino Biological)

656 were determined after (a) 100-, (b) 500- or (c) 2,500-fold dilution. All experiments were

657 performed in duplicate, and the average value for each vaccinee was plotted. The P value was

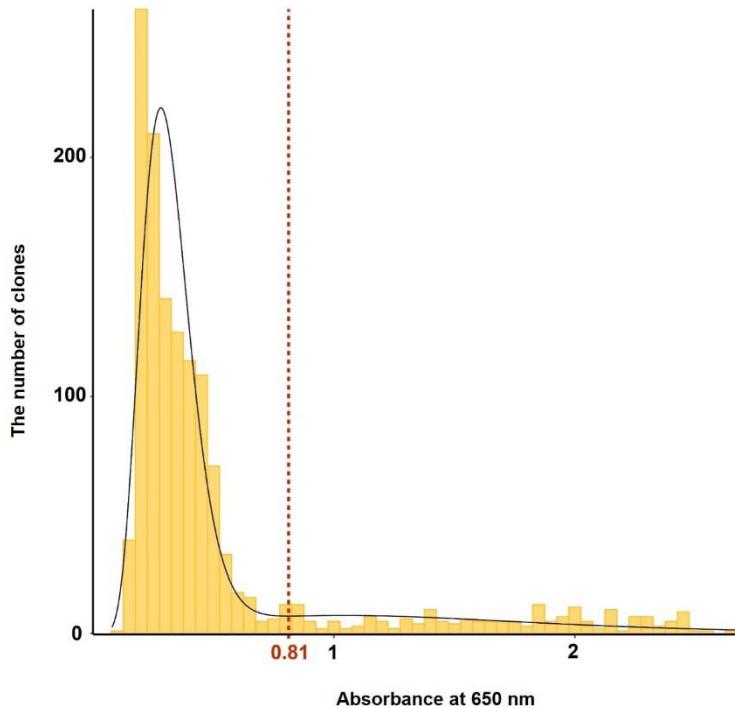
658 calculated using one-way ANOVA. ns, not significant, $p > 0.05$; ***, $p < 0.001$; ****, $p <$


659 0.0001.

661 **Extended Data Fig. 4 Characteristics of BA.1 RBD-binding scFv clones. a,** Reactivity of
662 BA.1 RBD-binding scFv clones from the phage display library was tested against SARS-CoV-2
663 ancestral, Alpha, Beta, Gamma, Delta, and Omicron-sublineage (BA.1, BA.2, BA.4/5, BQ.1.1
664 and XBB.1.5) RBD proteins in the form of a recombinant scFv-hFc-HA protein. **b,** The
665 neutralization efficacy of BA.1 RBD-reactive scFv clones was tested in a microneutralization
666 assay using ancestral SARS-CoV-2 (β CoV/Korea/KCDC03/2020 NCCP43326), Alpha B.1.1.7
667 (hCoV-19/Korea/KDCA51463/2021 (NCCP 43381), Beta B.1.351 (hCoV-
668 19/Korea/KDCA55905/2021 (NCCP 43382), Gamma P.1 (hCoV-19/Korea/KDCA95637/2021
669 (NCCP 43388), Delta B.1.617.2 (hCoV-19/Korea/KDCA119861/2021 (NCCP 43390), and
670 Omicron B.1.1.529 (hCoV-19/Korea/KDCA447321/2021 NCCP43408) strains.

671

672

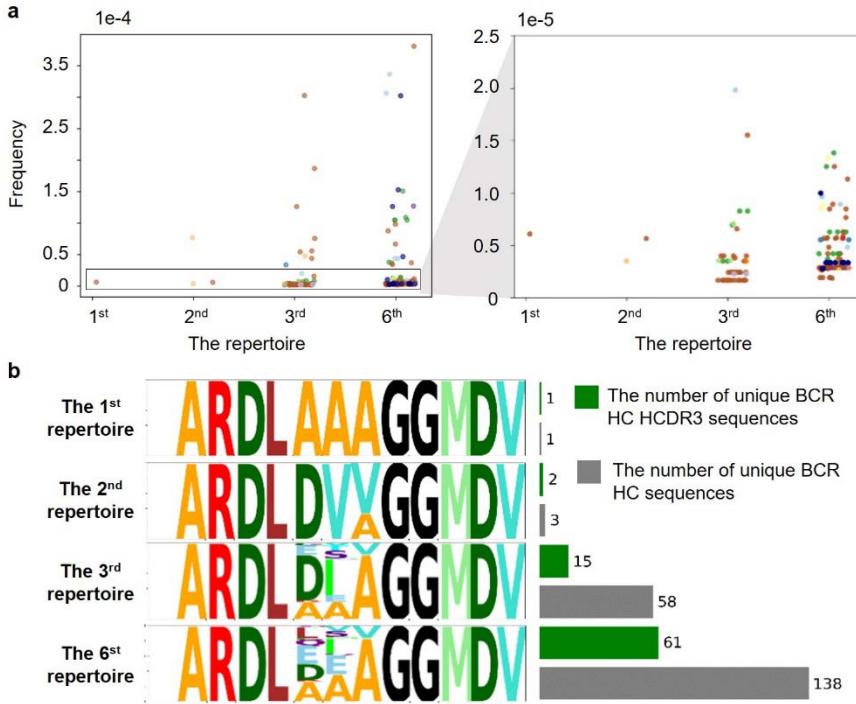

673

674 **Extended Data Fig. 5 The characteristics of the BCR HC sequences of nine Omicron RBD-
675 reactive clonotypes mapped to the third and sixth repertoires.** a, The isotype compositions of

676 the BCR HC sequences in the third and sixth repertoires (n = 57 and 216, respectively). **b**,
677 Numbers of SHMs in BCR HC sequences at the third and sixth repertoires (n = 57 and 216,
678 respectively). The P value was calculated using a two-tailed independent t test. ****, p < 0.0001.
679 **c**, Diversification of BCR HC sequences occurred from the third to the sixth repertoire through
680 SHM and HCDR3 sequence variation. The numbers of unique BCR HC sequences and HCDR3
681 sequences are counted at the nucleotide level. **d**, Numbers of SHMs in the BCR HC sequences of
682 clonotypes found in the third and sixth repertoires of the same vaccinee. The P value was
683 calculated using the Mann-Whitney U test. In the case of repertoires for which statistical
684 significance is not indicated, statistical significance was not calculated, as the number of clones
685 included in the third or sixth repertoire was only one or two. ns, not significant, p > 0.05; *, p <
686 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

687

688

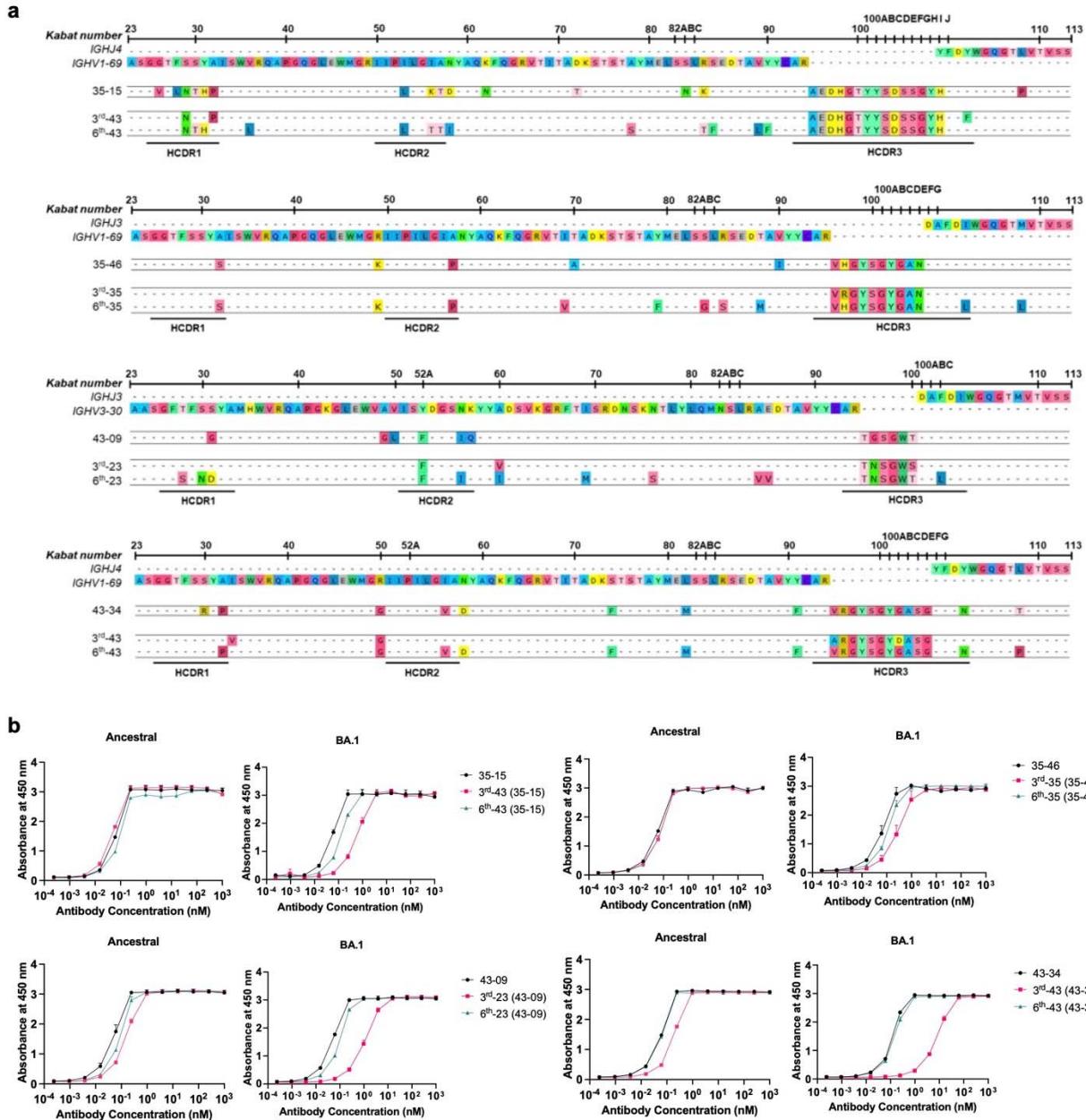


689

690 **Extended Data Fig. 6 Determination of the threshold for RBD-reactive clones in the**
691 **HCDR3-randomized scFv phage display library.** After phage ELISA using both ancestral and
692 BA.1 RBDs, the absorbance of each well was determined. The absorbance value was
693 approximated with a Gaussian distribution by the binned kernel estimation method under the
694 Gaussian kernel setting (black line). The chosen threshold absorbance value for a positive clone
695 was 0.81 (red vertical line), which corresponded to the valley point in the distribution plot.

696

697

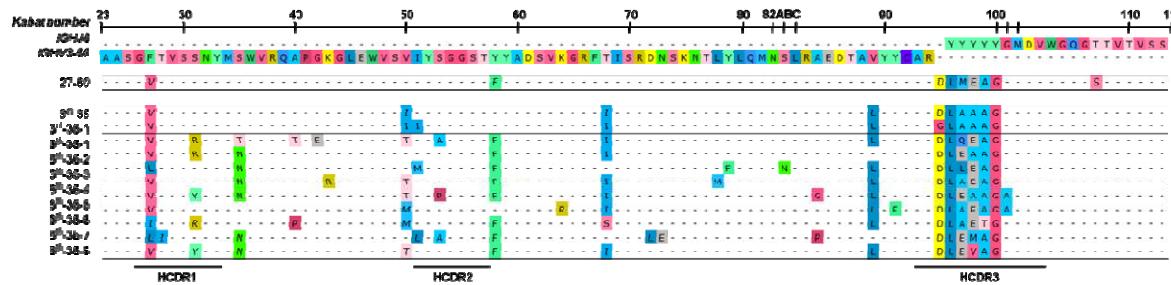


698

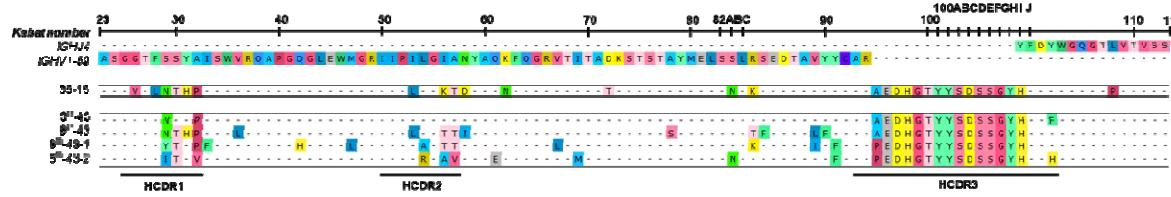
699 **Extended Data Fig. 7 The frequency distribution and sequence diversity of BCR-HC**

700 **XXA/V clonotypes after the first, second, and third injections.** **a**, The frequency distribution
701 of BCR HC XXA/V clonotypes. The BCR HC XXA/V clonotypes with the same HCDR3 amino
702 acid sequence are plotted in the same color. **b**, Diversity of BCR HC XXA/V sequences in
703 individual repertoires. The numbers of unique BCR HC sequences and HCDR3 sequences are
704 counted at the nucleotide level.

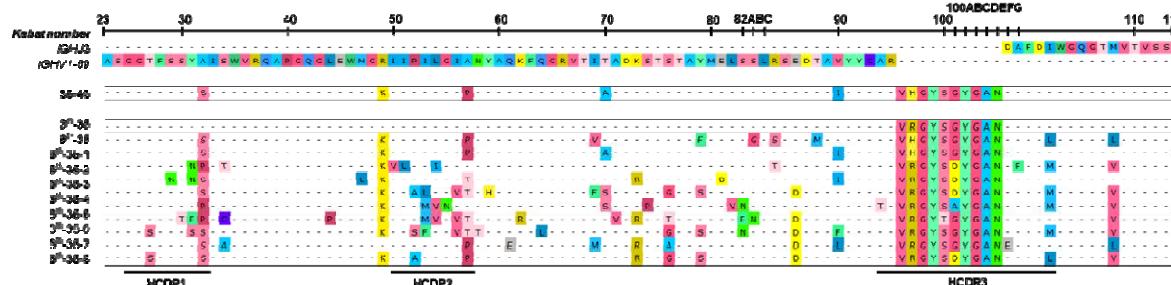
705

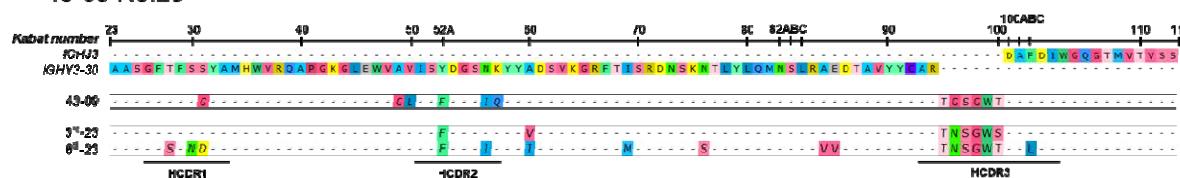


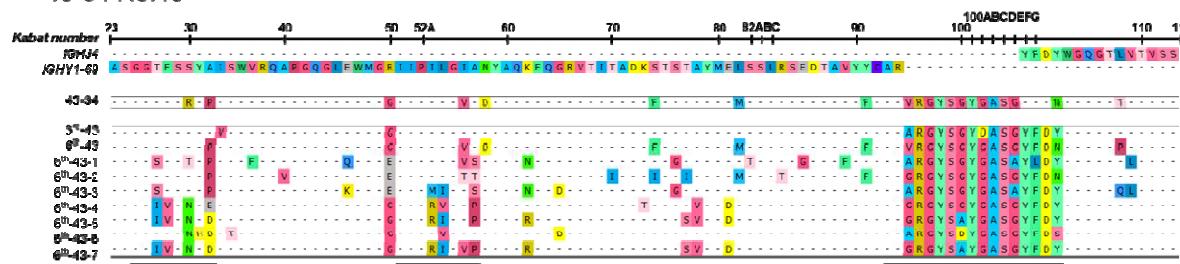
706


707 **Extended Data Fig. 8 a**, BCR HC sequences of four clonotypes found in vaccinees in their third
 708 and sixth BCR repertoires with the highest frequency. **b**, Reactivity of recombinant scFv-hFc-HA
 709 proteins encoded by individual BCR HC sequences and the light chain gene of each scFv clone
 710 to the ancestral and BA.1 RBDs.

711


27-60 No.35

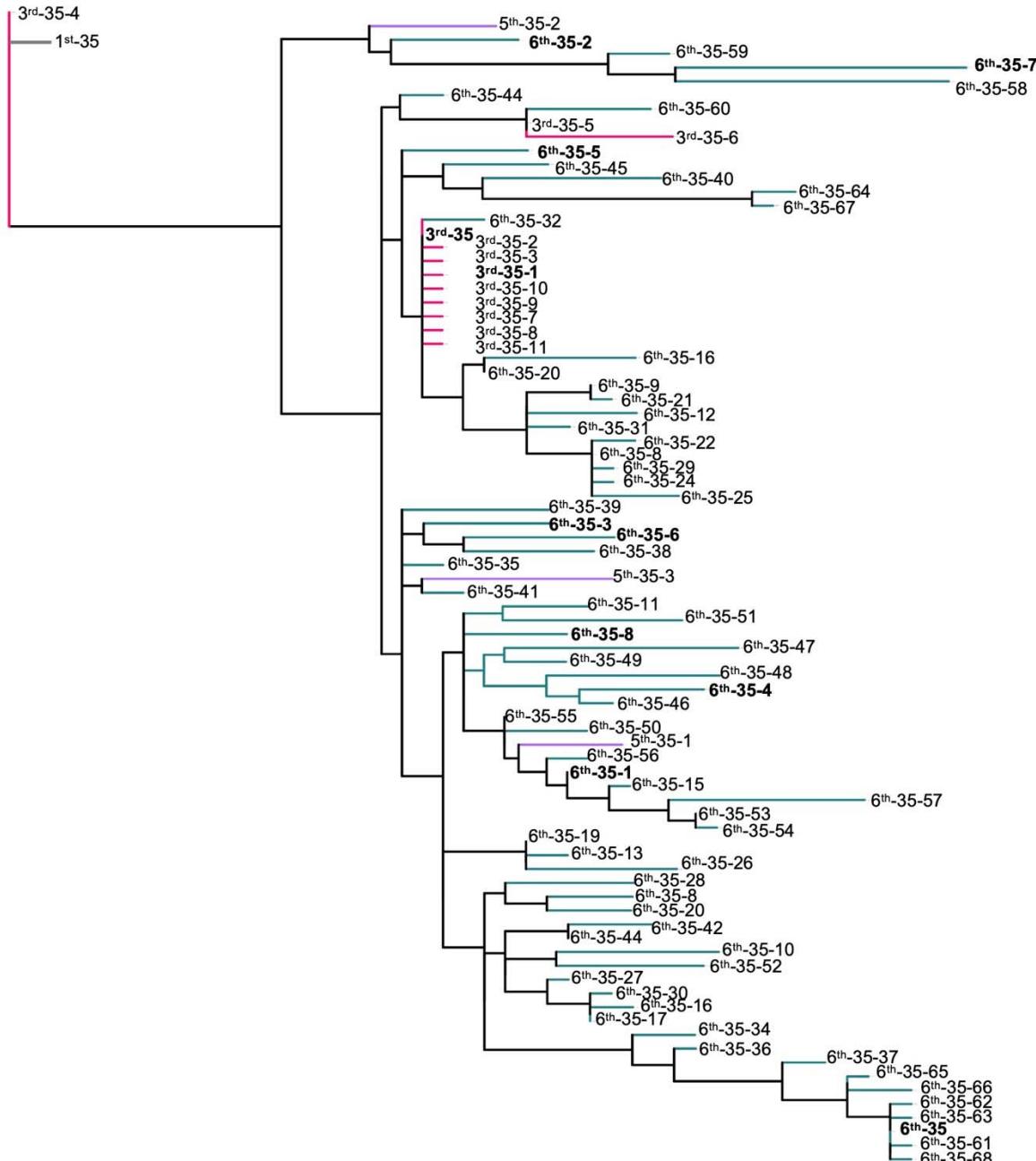

35-15 No. 43


35-46 No. 35

43-09 No.23

43-34 No.43

712


713 Extended Data Fig. 9 The BCR HC sequences of the 27-60, 35-15, 35-46, 43-09, and 43-34

714 clonotypes-3rd found in vaccinees 35, 43, 35, 23, and 43.

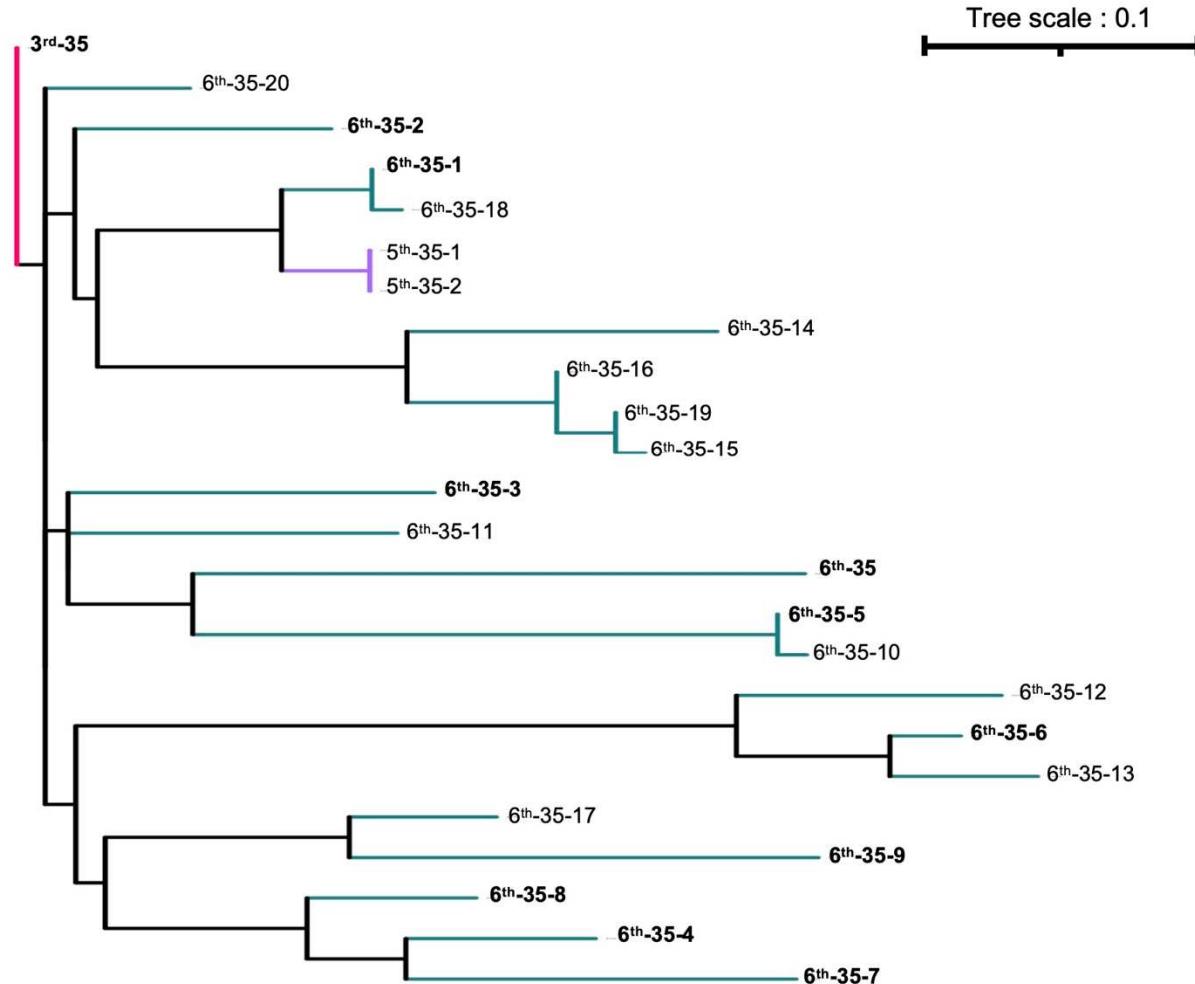
a

27-60 No.35

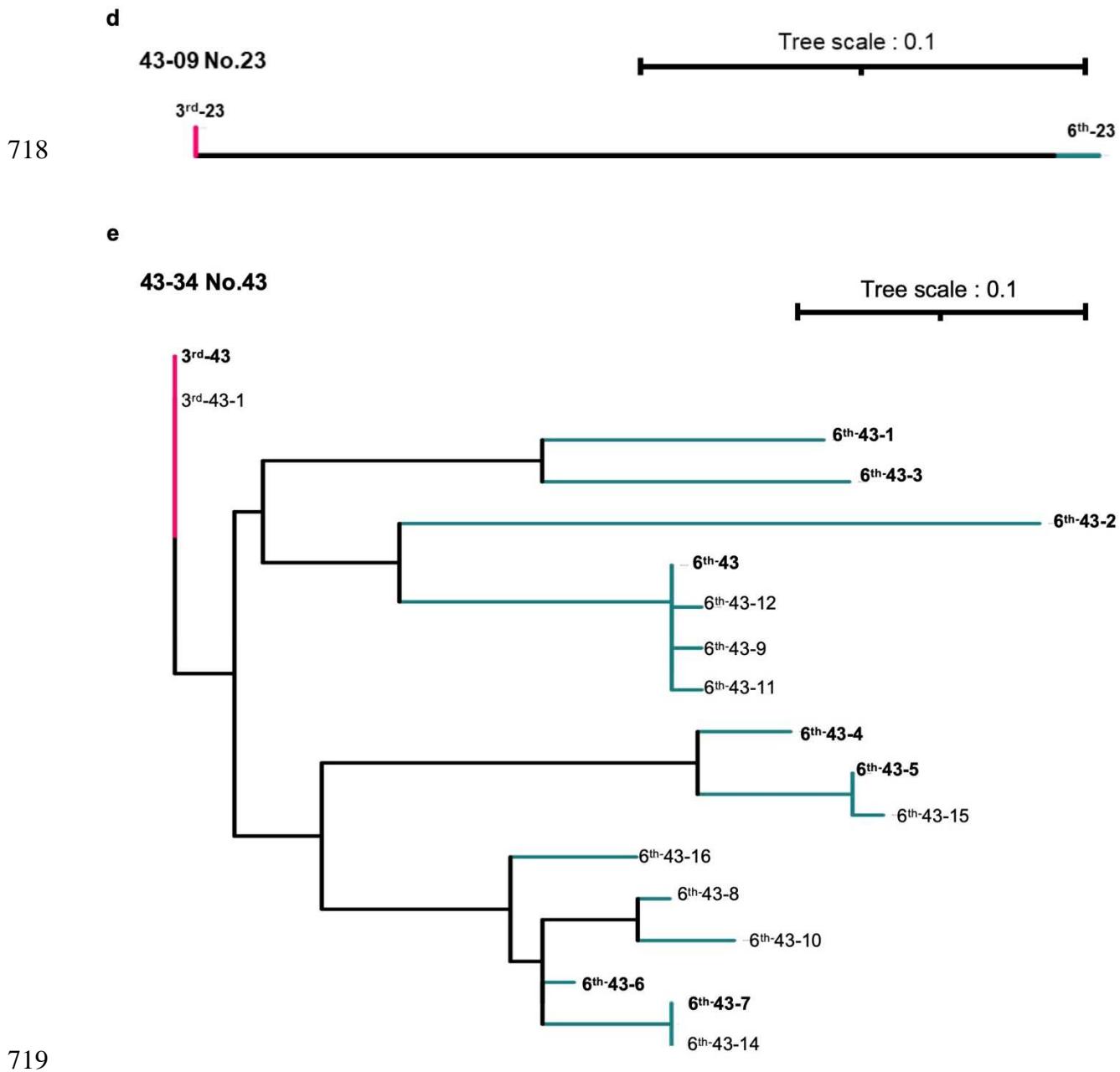
Tree scale : 0.1

b

35-15 No.43



716


Tree scale : 0.1

c

35-46 No.35

717

720 **Extended Data Fig.10 Phylogenetic trees of the 27-60, 35-15, 35-46, 43-09, and 43-34**
721 **clonotypes-3rd found in vaccinees 35, 43, 35, 23, and 43.** The BCR sequences that were
722 synthesized to confirm the reactivity to ancestral RBD and those of Omicron subvariants are
723 shown in bold.