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ABSTRACT

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability,
but the physiological roles of noise have remained difficult to determine in the absence of
generalized noise-modulation approaches. Previous single-cell RNA-sequencing (scRNA-
seq) suggested that the pyrimidine-base analog (5'-iodo-2’-deoxyuridine, IdU) could
generally amplify noise without substantially altering mean-expression levels but scRNA-seq
technical drawbacks potentially obscured the penetrance of 1dU-induced transcriptional
noise amplification. Here we quantify global-vs.-partial penetrance of IdU-induced noise
amplification by assessing scCRNA-seq data using numerous normalization algorithms and
directly quantifying noise using single-molecule RNA FISH (smFISH) for a panel of genes
from across the transcriptome. Alternate scRNA-seq analyses indicate IdU-induced noise
amplification for ~90% of genes, and smFISH data verified noise amplification for ~90% of
tested genes. Collectively, this analysis indicates which scRNA-seq algorithms are
appropriate for quantifying noise and argues that IdU is a globally penetrant noise-enhancer
molecule that could enable investigations of the physiological impacts of transcriptional

noise.
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INTRODUCTION

Cell-to-cell variability is an unavoidable consequence of the biochemical processes occurring in
individual cells !. While some portion of cell-to-cell variability arises from extrinsic factors (e.g.,
cell size, cycle phase, or microenvironment), a substantial body of literature has demonstrated that,
in isogenic populations of cells—particularly mammalian cells—a large fraction of the variability
originates from intrinsic sources, such as stochastic fluctuations (noise) in transcription >3. These
intrinsic stochastic fluctuations can be quantitatively accounted for by the ‘toggling’ of genes
between active and inactive expression periods leading to episodic bursts of transcription—
commonly referred to as the two-state random-telegraph model of gene expression +7. The
resulting transcriptional bursts are amplified upon nuclear export and cytoplasmic mRNA
processing 8. Ultimately, these stochastic transcriptional fluctuations can generate substantial
cellular variability, which has been implicated in cell-fate specification decisions ranging from

HIV latency to cancer *'!.

Although a few specific roles of transcriptional noise have been elucidated, it remains unclear how
broadly this phenomenon impacts generalized physiological processes, particularly in eukaryotic
and mammalian systems. Isolating the physiological roles of expression noise would typically
require one to modulate noise independent of the mean level of expression '2. While this

orthogonal perturbation of noise has been achieved in some notable cases '3-1°

, in practice, it is
non-trivial to implement. The complication stems in part from the fundamental linkage between
the variance (c?) and the mean (p) for most physical processes. For example, the common metric
for quantifying expression noise, the coefficient of variation (CV), defined as o/, typically scales
inversely with mean, such that CV decreases as the mean increases '6. Consequently, the
normalized variance, or Fano factor (6%/p) is often used to compare noise for processes with
different mean values as it does not scale with the mean !”-'8, Regardless of the metric, orthogonal

noise modulation remains challenging and generalized approaches to modulate noise would be

useful physiological probes.

To break the 1/p dependence of CV and orthogonally modulate noise, specific autoregulatory

d 19,20

architectures (e.g., feedback and feedforward) are typically require However, small

molecules called “noise enhancers” can also generate increased expression noise without altering

2

the mean-expression level ! by a process known as homeostatic noise amplification ?%; a notable
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contrast to transcriptional activators, which increase mean-expression levels. We reported the
molecular mechanism for one particular class of noise-enhancer molecule, pyrimidine-base
analogs such as 5’-iodo-2'-deoxyuridine (IdU), and used scRNA-seq to show that IdU increase
noise. However, scRNA-seq, despite its utility in measuring genome-wide expression 23, suffers
from well-established issues of technical noise due to small inputs of RNA, amplification bias, and
differences in capture ability >* that could obscure the penetrance of 1dU-mediated noise

enhancement.

To better understand the genome-wide effect of IdU, here we reanalyzed scRNA-seq data using
different normalization algorithms that minimize extrinsic and technical noise 2°. Each algorithm
identified a different proportion of the genes exhibiting amplified noise and—in the fraction of
genes with amplified noise—substantial differences in the magnitude of noise amplification. To
validate scRNA-seq measurements, we employed single molecule-RNA FISH (smFISH)—the
gold-standard for mRNA quantification due to its high sensitivity for mRNA detection *—to
probe a panel of genes—from across the transcriptome—that displayed the greatest differences in
noise between different sScRNA-seq algorithms. Collectively, these analyses indicate that IdU is
a globally penetrant noise-enhancer molecule and could, in principle, be a candidate to probe the

physiological roles of expression noise for diverse genes of interest.

RESULTS

Alternate scRNA-seq normalization algorithms generate differing profiles of expression

noise indicating noise amplification (AFano > 1) for ~90% of expressed genes

To examine how different scRNA-seq normalization methods influence the quantification of
transcriptional noise, we employed six commonly-used normalization algorithms to analyze
scRNA-seq data from IdU-treated versus DMSO-treated (control) mouse embryonic stem cells
(mESCs) ?2. In this dataset, cells were treated with the established noise-enhancer molecule IdU
2127 noise was quantified by examining CV? relative to the mean, and quality control was

performed using Seurat 2%, prior to all normalizations, to filter out low-expressing cells.
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Initially, we attempted to account for differences in sequencing depth between IdU and control
samples using a rudimentary random subsampling (or downsampling) algorithm ° to normalize
control and IdU-treated samples to the equal read depths. The rationale for random subsampling
is based upon reports that lower sequencing depth can be associated with increased variance *,
and subsampling reads to normalize the sequencing depth between samples can, in principle,
correct for this. Surprisingly, downsampling suggested that IdU-mediated noise amplification was
only partially penetrant, with ~78% of transcripts exhibiting amplified noise measured by Fano
factor—this is compared to over 96% of transcripts exhibiting amplified noise when a standard

log normalization without downsampling is used (Fig. S1A-B).

To determine if these subsampling results were consistent with other algorithms, we compared the
results to five other established scRNA-seq normalization algorithms (Fig 1): SCTransform 3!,
scran 32, Linnorm 33, BASiCS **, and SCnorm 3. SCTransform is a commonly used normalization
algorithm that accounts for changes in depth and includes a variance-stabilization transformation
step. scran and BASiCS are widely used normalization methods that use “size factors” to eliminate
technical noise while maintaining biological heterogeneity. Linnorm utilizes homogenously
expressed genes and scales the reads accordingly. SCrnorm, similar to SCTransform, groups genes

based on count-depth relationships and uses quantile regression to generate normalization factors.
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Figure 1: Common scRNA-seq normalization algorithms generate different quantifications of mRNA
noise. scRNA-seq analysis of CV2-vs-mean for ~5,000 transcripts in mESCs treated with IdU (red) or DMSO
control (black) as analyzed by commonly used normalization algorithms: (A) SCTransform, (B) scran, (C)
Linnorm, (D) BASICS, or (E) SCnorm. (F-J) Mean expression for each of the ~5,000 transcripts in presence
and absence of IdU using each normalization algorithm; none of the normalizations algorithms generate
substantial changes in mean expression for IdU-treated cells. (K-P) CV? for each transcript in presence and
absence of IdU using each normalization algorithm; different algorithms generate substantially different fractions
of transcripts with amplified noise ranging from ~70% of transcripts with amplified noise (SCTransform) to
~88% of transcripts with amplified noise (SCnorm). (Q) Quantification showing percentages of transcripts with
Fano factor fold change (A) <1, >1, >1.25 or >1.5 with IdU treatment. Calculations from all scRNA-seq
normalization algorithm are shown (see Fig. S1 for Downsampling analysis).
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Despite their substantially different technical schemes, analysis with each of these normalizations
indicated that IdU induces a substantial amplification of noise (CV?) for most expressed genes
(Fig. 1A-E). The IdU-induced noise amplification appeared to be homeostatic (Fig. 1F-J), with
mean-expression levels largely unchanged by IdU under all algorithms. However, each algorithm
calculated a somewhat different percentage of expressed genes with increased CV? ranging from
72% to 88% of genes exhibiting increased noise (Fig. 1K-P). Quantification of noise by analysis
of the normalized variance (i.e., Fano factor), which in principle eliminates the scaling dependence
on mean-expression level, showed a similar profile (Fig. 1Q). Whilst every algorithm showed a
majority of expressed genes exhibit amplified noise by Fano factor, each calculated a different
penetrance (i.e., percentage of noise-amplified genes) as well as substantial differences in the

magnitude of noise amplification among those transcripts with amplified noise.

Overall, scRNA-seq analysis by all normalization algorithms showed that IdU homeostatically
amplifies noise for the majority of expressed genes without observable changes in the mean-
expression level. However, each scRNA-seq normalization algorithm calculated a different
transcriptional penetrance for 1dU noise amplification, indicating that additional analysis of

transcriptional noise via an independent (i.e., non-scRNA-seq approach) was warranted.

RNA quantification by smFISH indicates widespread penetrance of IdU-induced noise

amplification

To directly quantify RNA levels in individual cells using a non-sequencing-based approach, we
employed smFISH, a well-established imaging method to assess noise and the gold standard for
quantitative assessment of mRNA expression . While smFISH enables quantification of mRNA
abundance in individual cells, it is a relatively low-throughput method requiring distinct
fluorescent probes and image quantification for each transcript species of interest. Consequently,
to generate a pseudo-global view of transcription using smFISH, we selected a panel of eight genes
(Fig. S1) that satisfied two criteria: (i) they displayed the greatest difference in noise amplification
as calculated by the different RNA-seq algorithms (Fig. S1C-D), and (ii) the genes were
compatible with smFISH probe design (i.e., a minimum of 30 probes were predicted to hybridize
to the transcript). The selected genes spanned a wide range of gene-expression levels (i.e., across
2-Logs and genome locations) (Fig. S1E) 37. We also included previously reported smFISH data

22 from a ninth gene, Nanog, to
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Figure 2: smFISH analysis of IdU-induced noise amplification for a subset of genes from across the
transcriptome. (A) Representative smFISH images of Wipi2 transcripts (white dots) in mESCs treated with
DMSO (top) or IdU (bottom). Nuclei are stained with DAPI (blue). (B) Distribution of per-cell mRNA
transcripts for eight representative genes +/- IdU. (C) CV2-vs.-mean analysis as calculated from smFISH +/-
IdU for each of the genes in the representative panel. (D) Direct comparison of CV? +/- IdU as calculated
from smFISH data. Inset: direct comparison of IdU-induced change in mean mRNA from smFISH data. (E)
Fold chanee in Fano Factor for IdU-treated samples compared to DMSO control from smFISH data.
benchmark the smFISH analysis. smFISH probe sets for each gene in the panel were generated,
cells were imaged in the presence/absence of IdU, and images (Fig. 2A, S2A) segmented and
analyzed using FishQuant *8. Extrinsic noise was filtered by analyzing cell size (i.e., cell-area
distribution in pixel number) by Kolmogorov-Smirnov test and excluding cells in the upper and
lower tails of cell-size distribution (Fig. S2B). For each gene, the per-cell mRNA abundance was
quantified for ~200 cells in order to generate the distribution of each mRNA per cell, in the
presence and absence of IdU (Fig. 2B). This analysis revealed greater variance in per-cell mRNA
levels in IdU-treated samples than controls, and the calculated CV? values verified that noise

increased for most genes (Fig. 2C). Direct comparison of mRNA CV? values showed significant

noise amplification for 8 of the 9 genes in the representative panel, without substantial changes in
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mean (Fig. 2D, S3A), in agreement with the sScRNA-seq analysis. Notably, Sox2 appeared to be

an exception that exhibited a reduction in mean expression (see Discussion).

To ensure that noise amplification, as reported by CV?, could not be explained by changes in mean
expression, we also analyzed the Fano factor calculated from the smFISH data (Fig. 2E, S3B).
Fano factor analysis verified that all but one gene in the panel (Wdr83) exhibited IdU-induced
amplification of noise (AFano factor > 1). The greatest increased in noise was for Nanog, Mtpap,
and Farsa (AFano factor > 1.5) whereas Sox2, Sndl, Stx7, Hiflan, and Wipi2 exhibited smaller

noise amplifications.

To further verify IdU-mediated noise amplification, we tested if the mechanistic underpinnings 2!
of homeostatic noise amplification were satisfied. Theory predicts that homeostatic noise
amplification requires reciprocal changes in transcriptional bursting parameters 2'; i.e., a decrease
in transcriptional burst frequency with a corresponding but reciprocal increase in transcriptional
burst size. Transcriptional burst frequency can be calculated by scoring the percentage of cells
with active transcriptional centers (TCs) in smFISH images, and the burst size can be similarly
calculated if other parameters, such as the decay rate of the specific mRNA, are also known ¥,
Consequently, we calculated burst frequency and burst size for two genes, Sox2 and Mtpap, for
which mRNA decay rates in mouse embryonic stem cells were known *°. In agreement with the
model of homeostatic transcriptional noise amplification, IdU substantially decreased the burst

frequency (Fig. S4A) and correspondingly increased the burst size (Fig. S4B) for both genes.
Overall, these smFISH data indicate that IdU generates a homeostatic amplification of

transcriptional noise for 8 out of 9 genes in the representative panel taken from diverse expression

profiles and locations in the genome.

DISCUSSION

This study set out to determine if the pyrimidine base analog IdU, which is incorporated into
cellular DNA and removed by the cellular base-excision repair (BER) surveillance machinery 4!,
is a globally penetrant noise-enhancer molecule. Analysis of scRNA-seq data using six different

normalization algorithms indicated that the amplification of noise by 1dU is globally penetrant and
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likely not an artifact of a particular scRNA-seq analysis algorithm. However, the scRNA-seq
analysis also indicated that scRNA-seq algorithms generate variable genome-wide noise profiles
(Fig. 1). To validate IdU’s genome-wide effect, we curated a panel of genes that exhibited high
sensitivity to individual scRNA-seq normalization algorithms and represented both high and low
expressing genes for downstream orthogonal analysis of transcriptional noise by smFISH. This
approach revealed that IdU increased transcriptional noise for 8 out of 9 genes (Fig. 2) and that
most published scRNA-seq algorithms (with the exception of rudimentary downsampling) were

fairly accurate compared to the smFISH direct measurement (compare Fig. S1C to Fig. 2E).

One technical limitation of this study is that smFISH analysis is necessarily low throughput and
limited to the subset of genes for which good probe sets can be designed, which limits the spectrum
of measurements and the number of genes that can be analyzed. We attempted to mitigate this by
exploring genes from across the expression spectrum (Fig. 2C), and by analyzing a substantial
number of cells per treatment (>170 cells per treatment after filtering extrinsic noise). Thus, our
data indicate that IdU likely acts as a noise-enhancer molecule for a large fraction of genes

irrespective of their mean-expression level.

Notably, our smFISH analysis did not detect an increase in noise for Wdr83. Considering that [dU
increases noise via BER, a genome-wide surveillance pathway, it may be surprising that any gene
fails to exhibit an increase in noise. It is possible that the low-throughput nature of smFISH may
have obscured IdU-induced noise amplification. However, a potential explanation for the selective
response lies in the putative mechanism by which BER increases noise via DNA topology changes.
Specifically, the BER enzyme AP endonuclease 1 (Apex1) generates DNA supercoiling which
leads to an accumulation of RNA Polymerase II; when released, this amplifies transcriptional burst
size; indeed, the IdU noise effect can be phenocopied by topoisomerase inhibitors, which increase
DNA supercoiling ?>. Consequently, regions which naturally have increased supercoiling and
corresponding high levels of topoisomerase may be less sensitive to changes in topology caused
by IdU and BER- induced supercoiling. It has been previously reported that Topologically
Associated Domain (TAD) boundaries are regions that exhibit substantial supercoiling and are
enriched in insulator binding protein CTCF #>43, and that Toposimerase IIB is prevalent at CTCF
sites 44, Intriguingly, Wdr83 has two relatively unique features among the panel of genes tested:

(i) it contains a relatively large CTCF binding region, and (ii) it is found at a TAD boundary +*.
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Together these two features may be consistent with IdU acting as a topology-dependent global

noise-enhancer molecule, as shown by scRNA-seq (Fig. 1) and smFISH (Fig. 2) analysis.

A second point of interest is the case of Sox2. Whilst most genes analyzed exhibited a homeostatic
increase in noise—without a substantial change in mean—smFISH revealed that IdU induced a
decrease in mean Sox2 mRNA, though we note the change in mRNA numbers was less than two-
fold. Notably, IdU did not alter single-cell Sox2 protein levels in our previous analysis 22, It is
possible that the reported negative-feedback regulation of Sox2 * acts to buffer changes at the

protein level.

From the practical perspective of quantifying expression noise, this study reveals that common
analyses can fail to resolve quantitative changes in intrinsic expression noise, particularly for
individual genes. A number of approaches have been proposed to overcome these types of sScRNA-
seq limitations, including elegant solutions using mathematical modeling methods to address
technical variability without compromising quantification of biological noise 46, though these can
be cumbersome to implement. The analyses herein indicate that it may be advisable to combine
high-throughput analyses (e.g., scRNA-seq) with lower-throughput direct quantification (e.g.,
smFISH) to quantify changes in transcriptional noise for individual genes as the “ground-truth”
may lie somewhere in between the results of each analysis. Regardless, both the scRNA-seq and
smFISH data argue that IdU appears to be a global noise enhancer which could be leveraged to

modulate noise without altering mean expression for the majority of genes.
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Six7 1.39 1.18 1.21 1.19 1.42 1.47 1.38
Sndf 1.23 0.94 1.01 1.01 1.17 0.98 127
Sox2 2.81 269 1.42 1.50 1.76 1.81 3.87
Nanog 2.40 227 1.78 1.88 2.03 2.05 2.81
D Fold Change in CV?2
Log Transform | Downsampling BASICS SCTransform Linnorm scNom scran
Wdr83 1.52 1.11 1.45 1.26 1.41 1.46 1.55
Mipap 1.51 1.09 1.33 1.29 1.40 1.44 1.49
Farsa 1.62 1.26 1.38 1.22 1.39 1.38 1.47
Hif1an 1.41 1.06 1.33 1.21 1.41 1.19 1.44
Wipi2 1.30 0.98 1.24 1.12 1.28 1.28 1.37
Sx7 1.45 1.07 1.31 1.27 1.39 135 1.36
Snd1 1.33 0.98 1.29 1.07 1.23 1.26 1.34
Sox2 406 3.89 292 2.56 2.54 2.84 5.11
Nanog 3.00 2.81 2.79 2.43 2.59 267 3.32
E Genomic Locations
Wadra3 Mtpap Farsa Hiflan Wipi2 Soe7 Snd1 Sox2 Nanog
chrB:85,075,035 | chr18:4,375,592 | chr8:84,856,980 | chr19:44 562,850 | chr5:142,629 | chr10:24,149,327 | chr6:28,480,359 | chr3:34,650,405 | chré:122,707,568

Figure S1: Single Cell RNA Sequencing algorithms show varying penetrance of IdU-induced
amplification of expression noise. Related to Figure 1. Direct comparison of Fano value for different single
cell sequencing normalizations. The 8 genes chosen for smFISH are labeled in (A) Data used from Desai et
al., 2021. (B) Downsampling algorithm that matches DMSO sequencing depth with IdU sequencing depth
using random subsampling. Table of values showing the fold change of IdU vs control for Fano (C) and CV?
(D) for the 8 genes selected for smFISH (together with Nanog from Desai et al. 2021) across the seven
normalization algorithms. (E) Genomic locations of genes selected for smFISH.
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Figure S2: Representative images and extrinsic-noise filtering (by cell-size) for smRNA FISH. Related
to Figure 2. (A) Representative smFISH images of mESCs treated with DMSO (top) or IdU (bottom) for 24
hours with DAPI stain (blue) and mRNA transcripts (gray) fluorescent labeled with TAMRA probe-set. Max
intensity projections are shown. (B) Left: The cell size distribution of 194 DMSO treated cells and 196 1dU
treated cells are significantly different (KS test p = 0.007). Right: the 5th and 95th percentile of the whole
population were removed. The cell size distribution for the remaining 178 DMSO Treated cells and 174 IdU

treated cells are not significantly different (KS test p=0.21)
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Figure S3: smRNA FISH shows significantly increased Fano Factor and CV? with IdU Treatment. (A) Fano
Factor comparison of samples +/- IdU compared using Wilcoxon matched-pairs signed rank test p =0.0117. (B)
CV? comparison of samples +/- IdU compared using Wilcoxon matched-pairs signed rank test p = .0078
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Figure S4: Changes in burst frequency and burst size with IdU treatment. (A) Transcriptional burst frequency
for Mtpap and Sox2 as calculated from the fraction of active transcription centers (TC) in smFISH images. (B)
Calculated transcriptional burst size for Mtpap and Sox2 (see Methods).
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Captions for supplementary table S1

Table S1 (attached separately)
Sequences of smRNA-FISH oligonucleotide probe for eight genes
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Data Availability

This study includes no new data deposited in external repositories.

Star Methods

Single-Cell RNA Sequencing Analysis

The scRNA-seq count matrix available at GSE176044_mesc_bulk_rnaseq_gene_counts was used
(Data ref: Desai et al, 2021). Before applying each normalization method, both DMSO and IdU
datasets were subjected to a quality control process. First, Seurat ® was used to filter for high-
quality cells using a minimum of 4000 detected genes, 10000 UMI counts, and <10% reads
mapping to mitochondrial genes per cell.. The resulting count matrix was then further filtered by
the BASiCS_Filter function from the BASiCS 3* R package with default parameters, which limited
the analysis to genes with sufficient sequencing coverage for reliable noise quantification. The
output count matrix consisted of 811 cells for DMSO and 732 cells for IdU across 4456 genes.
This output was then used to run 5 normalization pipelines according to their protocols:
SCTransform 3!, scran 32, Linnorm 3, BASiCS **, and SCnorm 3. BASiCS was run with default
parameters and recommended settings (N=20000, Thin=20 and Burn=10000) using the horizontal
integration strategy (no-spikes). The other packages were run with default parameters. To perform
rudimentary downsampling (Fig. S1B) the python random.seed function was used to simulate an
identical sequencing depth for both DMSO and IdU. 81% of DMSO reads were sampled, and
100% of 1dU reads were subsampled. From this subsampled matrix, the same 4445 genes and 1543
cells included previously were used for further quantification steps.

Single Molecule RNA FISH

Probes for the detection of transcripts were developed using the designer tool from Stellaris (LGC
Biosearch Technologies) (Table S1) setting the minimum number of probes to 30 (TAMRA

conjugated) for gene transcripts. 1x103 mouse embryonic stem cells were seeded into each well of
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a gelatin-coated, 8-well Ibidi dish (cat: 80826) in 2i/LIF media. 24 hours following seeding, media
was replaced with 2i/LIF containing 10mM IdU or equivalent volume DMSO. After 24 hours of
treatment, cells were then fixed with DPBS in 4% paraformaldehyde for 10 minutes. Fixed cells
were washed with DPBS and stored in 70% EtOH at 4°C for one hour to permeabilize the cell
membranes. Probes were diluted 200-fold and allowed to hybridize at 37°C overnight. Wash
steps and DAPI (Thermo, cat: D1306) staining were performed as described

(https://www.biosearchtech.com/support/resources/stellaris-protocols). To minimize photo-

bleaching, cells were imaged in a buffer containing 50% glycerol (Thermo, cat: 17904), 75 mg/mL
glucose oxidase (Sigma Aldrich, cat: G7141), 520 mg/mL catalase (Sigma Aldrich, cat: C3515),
and 0.5 mg/mL Trolox (Sigma Aldrich, cat: 238813). Images were collected on an inverted Nikon
TiE microscope (Nikon) run using Micromanager 2.0 4’ equipped with a CSU-W1 Spinning Disk
with Borealis Upgrade (Yokogawa, Andor), ILE Laser launch with 4 Jlaser lines
(450/488/561/646nm, Andor), quad-band dichroic ZT405/488/561/647 (Chroma), emission
filters for DAPI (ET447/60), GFP (ET525/50), RFP (ET607/36), and Cy5 (ET685/40)
(Chroma), piezo XYZ stage (ASI), and Zyla 4.2 CMOS camera (Andor), using a Plan Apo VC
60x/1.4 Oil objective (Nikon). Approximately 10 XY regions of interest were randomly selected
for each condition. For each image, XY pixel size was 108nm/px, and a Z-step size of 250nm was
used with over 60 image planes to fully cover the tissue. Image analysis and spot counting was
performed using FISH-quant 3. Cells were manually segmented and analysis was conducted on
cells of a similar size to minimize extrinsic noise. Active transcription sites were measured
according to ¥. Burst size was calculated as previously reported 8 using the following equation:

Burst Size = (AmrNA* tmRNA)/Koff Where Kot = 1- (% of active TC).
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