

[Type here]

1 **Su(var)3-9 mediates age-dependent increase in H3K9 methylation on TDP-
2 43 promoter triggering neurodegeneration**

3

4 Marta Marzullo^{#1,2}, Giulia Romano^{#3}, Claudia Pellacani^{1,2}, Federico Riccardi³, Laura
5 Ciapponi^{2*} and Fabian Feiguin^{4*}

6

7 ¹Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy.

8 ²Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy.

9 ³International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy.

10 ⁴Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy.

11

12

13

14

15

16

17

18

19

20 [#]Equally contributing authors

21

22 ^{*}Corresponding authors

23

24 E-mail: laura.ciapponi@uniroma1.it or fabian.feiguin@unica.it

25

26

27

28

[Type here]

29 **Abstract**

30 Aging progressively modifies the physiological balance of the organism increasing
31 susceptibility to both genetic and sporadic neurodegenerative diseases. These changes include
32 epigenetic chromatin remodeling events that may modify gene transcription. However, how
33 aging interconnects with disease-causing genes is not well known. Here, we found that
34 Su(var)3-9 causes increased methylation of histone H3K9 in the promoter region of TDP-43,
35 the most frequently altered factor in amyotrophic lateral sclerosis (ALS), affecting the mRNA
36 and protein expression levels of this gene through epigenetic modifications in chromatin
37 organization that appear to be conserved in aged *Drosophila* brains, mouse and human cells.
38 Remarkably, augmented Su(var)3-9 activity causes a decrease in TDP-43 expression
39 followed by early defects in locomotor activities. In contrast, decreasing Su(var)3-9 action
40 promotes higher levels of TDP-43 expression and reinvigorates motility parameters in old
41 flies, uncovering a novel role of this enzyme in regulating TDP-43 expression and locomotor
42 senescence. The data indicate how conserved epigenetic mechanisms may link aging with
43 neuronal diseases and suggest that Su(var)3-9 may play a role in the pathogenesis of ALS.

44

45

46

47

48

49

50

51

52

53

[Type here]

54 **Introduction**

55 Aging is associated with a series of molecular changes, that lead to functional tissue
56 deterioration and predispose to an increased likelihood of disease and death. This process,
57 interestingly, does not seem to happen randomly, but follows a programmed sequence of
58 events that appear to be conserved among evolutionarily divergent species (1–3). In the
59 nervous system, neuronal aging or senescence can be functionally quantified through two
60 main phenotypes, the deterioration of cognitive functions and the reduction of locomotory
61 capacities. These alterations, on the other hand, coincide with the insidious symptoms that
62 signal the onset and progression of the most common neurodegenerative diseases such as
63 Alzheimer's disease (AD), Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS)
64 (4,5) endorsing the idea that aging and pathological neurodegeneration may be regulated by a
65 common set of genes (6,7).

66 Molecularly, a common feature of aging is the epigenetic changes in chromatin organization
67 that occur after the post-translational modifications of histones (8,9). These modifications are
68 conserved, affect the expression parameters of numerous genes, and may provoke alterations
69 in the expression levels of proteins that constitute risk factors for neurodegenerative diseases.
70 In support of this view, we and others have described that defects in the conserved TDP-43
71 (encoded by the *TARDBP* gene), a member of the heterogeneous nuclear ribonucleoproteins
72 (hnRNPs) family and largely associated with the pathogenesis of ALS (10–12), is
73 permanently required in the nervous system to maintain locomotor activity and becomes
74 downregulated during aging in *Drosophila* and mammalian brains (13–16). Moreover, TDP-
75 43 tight regulation in humans is required also in other tissues (such as glia and skeletal
76 muscles) to maintain the correct molecular organization of the neuromuscular synapses and
77 muscular innervation, all aspects critical for the motor system functioning (17–21). Even
78 though these fluctuations in protein levels appear to be consistent and conserved in highly

[Type here]

79 different species, the physiological relevance of reduced TDP-43 expression during aging, the
80 molecules involved, and their contribution to neuronal senescence is not known. In this study,
81 we investigated the mechanisms by which TDP-43 becomes downregulated during aging and
82 the functional implications of these modifications in the onset and progression of locomotor
83 waning.

84

85 **Results**

86 **Recovery of TDP-43 function during aging prevents locomotor decline**

87 Progressive degeneration in locomotor activity, also known as locomotor senescence, is one
88 of the main phenotypes used to quantify the impact of age on the functional organization of
89 the nervous system and negative geotaxis (the ability of flies to vertically climb a test
90 cylinder) a well-accepted assay for measuring neuromuscular capacity *in vivo* (22,23). Using
91 this methodology, we have described that the progressive decrease in *Drosophila* locomotor
92 activity during aging correlates with a physiological decrease in the expression of the TBPH
93 protein, homologous to the human TDP-43 (15). Consistently, we and others showed that also
94 in mice TDP-43 undergoes an aging-dependent decrease (15,16), highlighting the
95 evolutionary relevance of this phenomenon. However, the relationships between these events
96 have not been clarified yet. To determine whether the drop in TBPH/TDP-43 expression
97 during aging plays any role in locomotor senescence, we used the GeneSwitch (GS) system
98 to generate flies carrying the neuronal driver *elav*-GS-GAL4 and the transgene UAS-TBPH
99 (w^{1118} ; UAS-TBPH $^{+/+}$; *elav*-GS-GAL4 $^{+/+}$) to modulate the expression of TBPH in a
100 temporally controlled manner by adding the RU-486 (mifepristone) activator in the fly food
101 (14,24,25). As controls, we utilized the TBPH FL allele unable to bind the RNA (w^{1118} ; UAS-
102 TBPH FL $^{+/+}$; *elav*-GS-GAL4 $^{+/+}$) and the unrelated protein GFP (w^{1118} ; UAS-EGFP $^{+/+}$; *elav*-GS-
103 GAL4 $^{+/+}$) (26). Thus, we detected that GS-flies in which the promoter was not activated,

[Type here]

104 showed a significant decrease in locomotor activity around 7 days post eclosion (dpe). This
105 diminution in fly motility increases progressively during aging (50% at 14 dpe to 30% of
106 their initial capacity at 21 dpe) and correlates with a decrease in TBPH/TDP-43 mRNA and
107 protein levels (Supplementary Figure S1). Thus, to determine whether TBPH reintroduction
108 in aged animals may prevent locomotor senescence, we induced the expression of the UAS-
109 TBPH transgene (w^{1118} ; UAS-TBPH/+; *elav-GS-GAL4*+/+) in 18 days old flies during 72
110 hours, by adding the RU486 activator to the fly food (Figure 1A-B). Notably, we found that
111 induction of TBPH expression improved climbing abilities and slowed the locomotor decline
112 in aged flies compared to UAS-TBPH^{F/L} (Figure 1C), establishing a direct correlation
113 between the age-related decrease in TBPH expression and locomotor deterioration.

114

115 **H3K9 methylation at the *TARDBP/TBPH* promoter increases with aging and is
116 conserved in both flies and mammals**

117 Gene expression is a tightly regulated process influenced by the epigenetic modifications of
118 the histones, that control the accessibility to the DNA (in particular those located in promoter
119 regions) to a large number of proteins that can directly promote the regulation of transcription
120 (27,28). Mechanistically, the methylation of the histone H3K9 (H3K9me) by specific
121 methyltransferase enzymes, constitutes the initial event that triggers the formation of
122 repressive heterochromatin domains in the DNA (29,30). Thus, to determine if the
123 downregulation of *TBPH* during *Drosophila* aging is related to changes in the methylation
124 patterns of H3K9, we performed chromatin immunoprecipitation (ChIP) studies and assessed
125 the binding profile of H3K9me3 on the *TBPH* promoter. Remarkably, we found a significant
126 enrichment in H3K9me3 amounts sited on the *TBPH* promoter in chromatin samples
127 extracted from old flies compared to young controls (Figure 2A), revealing an increase in the
128 levels of repressive heterochromatin modifications on the *TBPH* promoter *in vivo* during

[Type here]

129 aging (16,30,31). In support of this observation, we noted that these epigenetic changes do
130 not appear to be due to a generalized and/or nonspecific increase in H3K9 methylation caused
131 by age, as its overall biochemical levels appear to decrease in old brains (Supplementary
132 Figure S2), suggesting that the modifications described on the *TBPH* promoter are rather
133 specific and may promote transcriptional repression of this gene. Importantly, we observed
134 that similar modifications in H3K9 methylation levels of the TDP-43 promoter, take place
135 also in the mammalian brain. Thus, H3K9me3 chromatin immunoprecipitation assays in C57
136 mice brains at post-natal day 10 (PND 10) and PND 365, showed a very significant increase
137 (~20 fold) in the methylation levels of the *TARDBP* promoter in old mice compared to young
138 samples or to unrelated controls (Figure 2B), revealing that these modifications follow well-
139 conserved designs.

140

141 ***Su(var)3-9* mediated H3K9 methylation of the *TBPH* promoter regulates gene
142 expression levels and locomotor aging in flies**

143 In order to explore the physiological significance of increased H3K9 methylation in the
144 *TBPH* promoter region, we decided to modulate the activity of *Su(var)3-9*, the well-described
145 and conserved histone methyltransferases capable of methylating H3K9 *in vivo* (30,32).
146 Strikingly, we found that null alleles of *Su(var)3-9*, in trans-heterozygous combinations
147 (*Su(var)3-9⁶*/ *Su(var)3-9¹*), sired viable and fertile flies that present a significant increase in
148 their locomotor capacities in adulthood compared to age-matched controls in climbing assays
149 (Figure 3A; Supplementary video V1). Accordingly, the locomotor performance of either 20,
150 30, or 40 days old *Su(var)3-9* mutant flies significantly exceeded the climbing abilities of
151 wildtype flies of the same age. Along these lines, we quantified that the loss of locomotor
152 capacity in *Su(var)3-9* mutant flies between 3 and 30 days after hatching (from 84% of flies
153 reaching the top to 66%, respectively) was much less pronounced than in wildtype controls

[Type here]

154 (from 83% to 12%, respectively), underlining the unexpected role of this enzyme in
155 regulating locomotor performances and neurological senescence (Figure 3A). Furthermore,
156 biochemical analyses performed on fly head extracts obtained from the flies described above
157 (3 and 20 days-old trans-heterozygous combinations *Su(var)3-9⁶*/*Su(var)3-9¹* or *w¹¹¹⁸*
158 wildtype controls), revealed that both *TBPH* mRNA and protein levels are higher in *Su(var)3-*
159 *9* mutants compared to the wildtype controls (Figure 3B-C). Moreover, ChIP analyses,
160 showed that *Su(var)3-9* old mutant flies presented reduced levels of H3K9 methylation in the
161 promoter and coding regions of *TBPH* compared to controls (Figure 3D), indicating that these
162 molecular differences in methylation and expression levels may underlie the phenotypic
163 changes in motility. In support of this hypothesis, we found that overexpression of *UAS-*
164 *Su(var)3-9* or its human counterpart *UAS-SUV39H1*, under the control of the neuronal driver
165 *elav-GAL4* (Supplementary Figure S3A), was sufficient to deeply affect the locomotor
166 capacities of these flies, inducing early locomotor decline and provoking a strong reduction in
167 the levels of *TBPH* protein expression in *Drosophila* brains (Figure 3E-F), revealing that
168 *Su(var)3-9* plays a major role in the epigenetic control of *TBPH* expression. Additionally, we
169 found that incubation of wildtype *Drosophila* brains with chaetocin (unfortunately the
170 compound, in the present formulation, does not pass the gastric barrier to be tested *in vivo*)
171 causes an increase in *TBPH* expression and a reduction in H3K9 methylation, mimicking the
172 effect caused by the loss of *Su(var)3-9* (Supplementary Figure S3B). Remarkably, we
173 observed that the role of *Su(var)3-9* in the regulations of *TBPH* promoter was rather specific
174 since the loss of two additional enzymes able to methylate H3K9, like eggless and G9a in
175 *Drosophila* (30), was unable to modify the expression levels of *TBPH* in fly heads or affect
176 locomotor behaviors *in vivo* (Supplementary Figure S3C-E). Curiously, we observed that the
177 expression of the *Drosophila* homolog of *Fus* (*dFUS-cabeza*), a gene epistatically related to

[Type here]

178 TBPH and ALS-related factor (12,33), does not change over time (Supplementary Figure
179 S3F), suggesting that the age-dependent decline is specifically related to *TBPH* transcription.

180

181 **The conserved SUV39H1 enzyme regulates TDP-43 expression levels in human cells**

182 To determine if the conserved SUV39H1 histone methyltransferase is able to regulate the
183 methylation of the TDP-43 promoter and modulate protein expression also in human cells, we
184 took advantage of a HaCaT cell line carrying a CRISPR-Cas9 mutation in the *SUV39H1* gene
185 (*SUV39H1 KO*; (34). Interestingly, we observed that in these cells the absence of SUV39H1
186 causes an increase in the levels of TDP-43 protein expression (Figure 4A). In the same
187 direction, H3K9me3 ChIP analyses revealed a significant reduction in H3K9me3 amounts
188 sited on the *TARDBP* promoter in chromatin samples extracted from SUV39H1 KO cells
189 compared to wildtype cells (Figure 4B), suggesting that epigenetic modifications mediated by
190 SUV39H1 might be responsible for the transcriptional repression of *TARDBP* and, above all,
191 underlining the remarkable conservation found in the regulation of this locus. To challenge
192 whether aging-induced modifications would also play a role in the regulation of human TDP-
193 43, we treated wildtype or SUV39H1 KO cells with H₂O₂ a classic and well-accepted
194 treatment for inducing cellular senescence (35–37); (Supplementary Figure S4). As a result,
195 we found that H₂O₂ induced a significant reduction in TDP-43 protein expression which is
196 prevented by the deletion of the *SUV39H1* gene (Figure 4C), indicating that similar age-
197 dependent regulatory mechanisms might be present in human cells.

198

199 **Discussion**

200 One of the most fundamental features of aging is the progressive deterioration in locomotor
201 skills. Despite some studies, in both mice and flies revealing that TDP-43/TBPH levels
202 decrease during aging (15,16,38), the mechanism underlying aging-dependent locomotor

[Type here]

203 senescence and the accompanying physiological decrease of TDP-43 is unclear. Likewise, it
204 is not obvious whether the lowering of TDP-43 levels leads to a locomotor decline in the
205 elderly. In this manuscript, we found that induction of the TDP-43 fly counterpart, TBPH,
206 expression in old fly neurons, but not of the TBPH^{F/L} mutated form (unable to bind RNA), is
207 sufficient to rescue locomotor senescence, demonstrating a direct correlation between these
208 events and revealing a novel role for TDP-43/TBPH in the regulation of age-dependent
209 locomotor degeneration. In that direction, alteration in the function of TDP-43 is considered
210 one of the main causes of ALS and it has been shown that pathological variations in the
211 intracellular levels of this protein (both gain or loss of function) were able to cause neuronal
212 death indicating that tight control of TDP-43 expression is crucial to prevent neurological
213 phenotypes (39–41). These observations, therefore, highlight the importance that the
214 knowledge of novel genes or molecules capable to modulate TDP-43 activity could have for
215 understanding the pathogenesis of ALS (42–45). According to that, we found an age-
216 dependent increase in H3K9 methylation at the TBPH/TDP-43 promoter region mediated by
217 *Su(var)3-9* in *Drosophila* and confirmed that these modifications are conserved in mice
218 brains and human cells. Moreover, we established that these regulatory mechanisms were
219 sufficient to modulate the expression levels of TDP-43 in both flies and human cells and to
220 affect locomotor behaviors. Interestingly, a similar outcome was detected using chaetocin, a
221 chemical compound capable of inhibiting *Su(var)3-9*-mediated H3K9 methylation (46).
222 These data reinforce the idea that *Su(var)3-9* plays a fundamental role in the epigenetic
223 regulation of *TBPH* expression and identifies a compound capable of regulating the
224 expression levels of this gene *in situ*, contributing to the development of potential
225 pharmacological interventions against ALS or locomotor weakening in the future.
226 In connection with the mechanisms involved, it is unclear how aging might influence the
227 activity of *Su(var)3-9* or the methylation status of the TBPH/TDP-43 promoter considering

[Type here]

228 that the total amount of H3K9 methylation in the genome decreases with age (Supplementary
229 Figure S2) (47). Intriguingly, we found that the presence of aging-related factors able to
230 induce early senescence in cultured human cells, such as H₂O₂ accumulation, leads to a
231 reduction in TDP-43 protein expression mediated by the human-homolog gene *SUV39H1*
232 (Figure 4C), suggesting that the metabolic changes that precede and drive aging could
233 modify/increase the function of this enzyme in specific regions or loci of the chromosome
234 (48,49). In agreement with this idea, ChIP array analyses performed in *Drosophila* brains
235 found the increased accumulation of the *Su(var)3-9* protein itself at the promoter region of
236 *TBPH* during aging (50,51). In addition, we detected a slight but significant increase in
237 *Su(var)3-9* expression in old flies (Supplementary Figure S3G), explaining how the
238 accumulation of epigenetic modifications in this locus could happen over time (Figure 5). In
239 any case, additional experiments are necessary to deepen our knowledge of the issues
240 discussed above.

241 In conclusion, we have identified an unprecedented mechanism whereby *Su(var)3-9*
242 regulates the epigenetic status of the *TARDBP/TBPH* promoter and drives the progression of
243 locomotor aging through the regulation of TDP-43/TBPH expression levels. This role of
244 SUV39 seems to be evolutionarily conserved from *Drosophila* to vertebrates and may help to
245 understand the interrelationships between human aging and neurodegenerative diseases.

246

247 **Acknowledgments**

248 We thank Dr. Wiesława Leśniak (Nencki Institute of Experimental Biology, Warsaw, Poland)
249 for the SUV39H1 mutant cell lines. Prof. Gunter Reuter (Institute of Biology and
250 Developmental Genetics, Halle, Germany), Dr. Marion Delattre (Department of Genetics and
251 Evolution, University of Geneva, Geneva, Switzerland) for the *Su(var)3-9⁶* and *G9a^{RG5}* fly
252 stocks respectively, and Prof. Franco Pagani (ICGEB-Trieste) for sharing reagents. This work

[Type here]

253 was supported by AFM-Telethon (project 21025) and AriSLA (NOSRESCUEALS) awards
254 to L.C., and F.F.

255

256 **Author contributions**

257 M.M., G.R., L.C., and F.F. designed the experiments. M.M., G.R., C.P., and F.R. performed
258 the experiments and collected the data, and analyzed the results together with L.C., and F.F.
259 M.M., G.R., L.C., and F.F. wrote the manuscript.

260 **Competing Interests**

261 The authors declare no competing financial interests.

262 **Methods**

263 **Drosophila strains and rearing conditions**

264 Drosophila stocks were maintained on standard fly food (25 g/L corn flour, 5 g/L lyophilized
265 agar, 50 g/L sugar, 50 g/L fresh yeast, 2,5 mL/L Tegosept [10% in ethanol], and 2.5 mL/L
266 propionic acid) at 25 °C in a 12h light/dark cycle. All experiments were performed in the
267 same standard conditions, otherwise differently specified. The following fly strains were
268 purchased from the Bloomington Drosophila Stock Center (BDSC, Indiana University,
269 Bloomington, IN, USA): *w¹¹¹⁸* (BDSC #3605); *elav-GS* (BDSC #43642); *UAS-TBPH* (BDSC
270 #93601); *UAS-TBPH.F-L* (BDSC #93781); *UAS-mCD8-GFP* (BDSC #30002); *Su(var)3-*
271 *9¹/TM3* (BDSC #6209); *UAS-Su(var)3-9.lacI* (BDSC #93147); *UAS-hSUV39H1.HA* (BDSC
272 #84799); *elav-GAL4* (BDSC #77894); *egg¹⁴⁷³/SM1* (BDSC #30565). The *Su(var)3-9⁶/TM6B*
273 allele was a kind gift of Gunter Reuter (52), the *G9a^{RG5}* allele was a kind gift of Marion
274 Delattre (53).

275 **Climbing assays**

[Type here]

276 The locomotion activity was measured by quantification of geotactic response. Equal ratio of
277 male and females of the desired ages will be transferred, without anesthesia, to a 15 ml
278 conical tube, tapped to the bottom of the tube, and their subsequent climbing activity
279 quantified as the percentage of flies reaching the top of the tube in 10s (54). The number of
280 climbing events was scored for 5 consecutive times. Flies were assessed in batches of 15, at
281 least three biological replicates were performed for each condition (13).

282 **RU486-Induction protocol**

283 The Gene Switch system was activated by adding the RU486 (Sigma-Aldrich #M8046)
284 activator to the fly food. A stock solution of 50 mM RU486 in 95% ethanol was diluted to the
285 final concentration of 0.5 mM in 2% sucrose and the solution was been added on the surface
286 of standard cornmeal medium to feed adults.

287 **Chaetocin treatment**

288 Adult fly heads were separated from the bodies and incubated with 100 nM chaetocin
289 (Sigma-Aldrich #C9492) or 100% Ethanol in Schneider's Medium supplemented with 10%
290 FBS for 2 h at room temperature. Heads were then washed in PBS1x and collected for
291 subsequent analysis.

292 **Chromatin immunoprecipitation**

293 *Fly heads*

294 Heads of frozen flies were separated by vortexing for 15 sec and isolated using 630 μ m and
295 400 μ m sieves. 400 – 600 fly heads were homogenized in homogenization buffer [350 mM
296 sucrose, 15 mM HEPES pH 7.6, 10 mM KCl, 5 mM MgCl₂, 0.5 mM EGTA, 0.1 mM EDTA,
297 0.1% Tween, with 1 mM DTT and Protease Inhibitor Cocktail (PIC, Roche) added
298 immediately prior to use] at 4 °C. The homogenate was fixed using 1% formaldehyde for 10
299 min at RT and then quenched with glycine. The tissue debris was removed by filtration with
300 60 μ m nylon net (Millipore). Nuclei were collected and washed with RIPA buffer at 4 °C

[Type here]

301 (150 mM NaCl, 25 mM HEPES pH 7.6, 1 mM EDTA, 1% Triton-X, 0.1% SDS, 0.1% DOC,
302 with protease inhibitors added prior to use). The extract was sonicated 6 times with 2 min
303 cycles (Branson Sonifier 250, output=50%). Sonicated samples were centrifuged for 10 min
304 at 12,000 \times g. Two hundred and fifty micrograms of chromatin DNA were subjected to a 1 h
305 preclearing with 50 μ l of a 50% protein G-Sepharose (GE healthcare) bead slurry containing
306 1% BSA. Before the Immunoprecipitation, 5% of the total extract was collected as INPUT.
307 The precleared samples were then immunoprecipitated overnight with 5 μ g of anti-H3K9me3
308 (Abcam ab8898) or anti-rabbit IgGs (Sigma, 15006) at 4 °C. The immune complexes were
309 incubated for 4 h at 4 °C with 50 μ l of fresh protein G-Sepharose beads. After
310 immunopurification, beads were washed four times with RIPA and once with LiCl wash
311 buffer (250 mM LiCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.5% NP-40, protease
312 inhibitors PIC (Roche). Beads were re-suspended in TE buffer and incubated ON at 65°C.
313 Proteins were digested with Proteinase K (10 mg/ml) at 55 °C for 1 h. Immunoprecipitated
314 DNA was purified using Phenol:Chlorophorm:Isoamyl alchol extraction. Immunoprecipitated
315 DNA and 5% input DNA were analyzed by SYBR-Green real-time qPCR. The run was
316 performed by using the Applied Biosystems (Waltham, MA) Quant-Studio 3 Real-Time PCR
317 System 36 instrument. Primer Sequences described previously are reported in Table S1.

318 *Mouse brain*

319 Chromatin immunoprecipitation in brain of C57 mice at post-natal day 10 (PND 10) and
320 PND 365 was performed using EpiQuik Tissue Chromatin Immunoprecipitation kit
321 (Epigentek #P-2003) according to manufacturer's instructions. Briefly, 150 mg of frozen
322 tissue were cut into small pieces (<1 mm³) and cross-linked with 1% formaldehyde for 10
323 min at room temperature and then quenched in PBS 1X-Glycine 1.25M for 10 min at room
324 temperature. The samples were homogenized using a Dounce homogenizer and centrifuged
325 to pellet nuclei. After homogenization, lysis buffer was added to nuclei. Chromatin was

[Type here]

326 prepared and sonicated using a water bath Bioruptor (Diagenode; 30" ON/30" OFF, High
327 power, 3 x 10 cycles) to a size range of 200 -1000 bp. To pre-cleared cell debris, sonicated
328 chromatin was centrifuged at 12,000 x g at +4°C for 10 minutes. Chromatin was diluted and
329 ChIP performed according to manufacturer's instructions using antibodies against H3K9me3
330 (ab8898, Abcam), histone H3 (ab1791, Abcam), IgG1 (G3A1, Cell Signalling) was used as
331 negative control in the immunoprecipitation. Immunoprecipitated DNA was purified by
332 phenol-chloroform extraction and in parallel 5 ul (5%) were taken to be used as input in the
333 quantification analysis. qPCRs were performed using iQ SYBR Green in a CFX96 Real-Time
334 PCR system (Bio-Rad). Primer sequences are reported in Table S1.

335 *Human HaCaT cells*

336 HaCaT cells were crosslinked with 1% formaldehyde fixing buffer (1% Formaldehyde; 5 mM
337 Hepes pH8.0; 0.05 mM EGTA pH 8.0; 10 mM NaCl) at 37 °C for 10 minutes and then
338 quenched with glycine, rinsed twice with cold phosphate-buffered saline, and then lysed and
339 harvested in ChIP lysis buffer (50 mM Tris-HCl pH 8.1; 0.5% SDS; 10 mM EDTA; 100 mM
340 NaCl, 1mM PMSF, Proteinase inhibitor Roche) by centrifugation for 6 min at 2,000 × g.
341 Cells were then resuspended in sonication buffer (50 mM Tris-HCl pH 8.1; 10 mM EDTA;
342 1% Triton-X; 0,1% deoxycholate_sodium; 100 mM NaCl, 1mM PMSF, Proteinase inhibitor
343 Roche) and sonicated 6 times with 2 min cycles (Branson Sonifier 250, output=50%).
344 Sonicated samples were centrifuged for 10 min at 12,000 × g and the supernatant were
345 diluted 5-fold in sonication buffer. Two hundred and fifty micrograms of chromatin DNA
346 were subjected to a 1 h preclearing with 50 µl of a 50% protein G-Sepharose (GE healthcare)
347 bead slurry containing 1% BSA. Before the Immunoprecipitation, 5% of the total extract was
348 collected as INPUT. The precleared samples were then immunoprecipitated overnight with
349 5 µg of anti-H3K9me3 (Abcam ab8898) at 4 °C. The immune complexes were then incubated
350 for 4 h at 4 °C with 50 µl of fresh protein G-Sepharose beads. Following incubation, the

[Type here]

351 beads were collected by centrifugation for 1 min at 2,000 \times g and washed consecutively for
352 3–5 min with 1 ml of each solution: low-salt wash buffer (0.1% SDS; 1% Triton X-100;
353 2 mM EDTA; 20 mM Tris pH 8.1; and 150 mM NaCl), high-salt wash buffer (0.1% SDS; 1%
354 Triton X-100; 2 mM EDTA, 20 mM Tris pH 8.1; and 500 mM NaCl), LiCl wash buffer
355 (250 mM LiCl; 1% NP-40, 1% deoxycholate sodium salt, 1 mM EDTA, and 10 mM Tris pH
356 8.1), and twice in Tris and EDTA buffers (10 mM Tris pH 8.1 and 1 mM EDTA). Immune
357 complexes were then eluted with 120 μ l of buffer containing 1% SDS and 100 mM NaHCO₃.
358 Crosslinking was reversed by incubating the samples overnight at 65 °C. Proteins were
359 digested with Proteinase K (10 mg/ml) at 55 °C for 1 h. Immunoprecipitated DNA was
360 purified using Phenol:Chlorophorm:Isoamyl alcohol extraction. Immunoprecipitated DNA
361 (1.5 μ l) and 5% input DNA were analyzed by SYBR-Green real-time qPCR (as described in
362 Antonucci et al 2014). The run was performed by using the Applied Biosystems (Waltham,
363 MA) Quant-Studio 3 Real-Time PCR System 36 instrument. Primer Sequences described
364 previously are reported in Table S1.

365 **RNA extraction and quantitative PCR**

366 Total mRNA was isolated from *Drosophila* adult heads by using Trizol reagent (15596026,
367 Thermo Fisher Scientific) according to the manufacturer's instructions. RNA was reverse-
368 transcribed (1 mg each experimental point) by using SensiFAST cDNA Synthesis Kit (BIO-
369 65053, Bioline) and qPCR was performed as described (18) using SensiFast Sybr Lo-Rox
370 Mix (BIO- 94020, Bioline). The run was performed by using the Applied Biosystems
371 (Waltham, MA) Quant Studio 3 Real- Time PCR System 36 instrument. Primer Sequences
372 are reported in Table S1.

373 **Human HaCAT cells**

374 The immortalized human epidermal keratinocyte (HaCaT) cell line was obtained from (19).
375 The HaCaT cells were cultured in complete media, which comprised of Dulbecco's modified

[Type here]

376 Eagle's medium (DMEM) supplemented with 10% (v/v) heat-inactivated fetal bovine serum
377 and 1% (v/v) penicillin-streptomycin at 37 °C in a humidified atmosphere of 5% CO₂/95%
378 air.

379 **H₂O₂ Treatment**

380 HaCaT cells (10⁵cells) were cultured on 35 mm cell culture dish for 24 h and treated with
381 H₂O₂ at 200 μM/l for 2 h at 37 °C.

382 H₂O₂ was washed with PBS for terminating the treatment. Cells were kept on the incubation
383 in normal medium for another 24 h. Cells were then harvested and assessed in western blot.

384 **Western Blot**

385 *Fly extract*

386 Protein extracts were derived from adult fly heads, lysed in sample buffer or Urea Buffer
387 (150 mM NaCl, 10 mM Tris-HCl pH8, 0,5 mM EDTA, 10% glycerol, 5 mM EGTA, 50 mM
388 NaF, 4 M urea, 5 mM DTT, Protease Inhibitor Cocktail (PIC) (Roche), fractionated by SDS-
389 PAGE and transferred to nitrocellulose membrane. Primary antibodies were: anti-TBPH
390 rabbit (1:1000; homemade (13); anti-Actin goat (1:1000; Santa Cruz, sc-1616); anti-Vibrator
391 rabbit (1:5000; also named Giotto (55); anti-H3K9me2 mouse (1:400; Abcam ab1220), anti-
392 H3K9me3 rabbit (1:1000; Abcam ab8898); anti-Tubulin mouse (1:5000; Sigma, T-5168);
393 anti-HA HRP (1:1000; Santa Cruz sc7392); anti-Su(var)3-9 rat (1:50; (32). As a secondary
394 antibody, we used the appropriate HRP-conjugated antibody (GE Healthcare) diluted 1:5000
395 in PBS-Tween 0.1%. Membranes were incubated 5 min with ECL substrate (#1705062 and
396 #1705060, Bio-Rad) and the HRP-ECL reaction was revealed using the ChemiDoc™ XRS
397 gel imaging system (Bio-Rad). Band intensity quantification was performed using the gel
398 analyzer tool in Fiji/ImageJ software.

399 *HaCAT extract*

400 Cells were harvested and centrifuged at 5,000 rpm for 5 min at 4°C. The supernatant was

[Type here]

401 removed, Buffer WCE 2X (100 mM TrisHCl pH 6.8, 4% SDS, 200 mM DTT) was added to
402 resuspend the cell pellet, boiled for 10 min and then added an equal volume of SDS-PAGE
403 Sample Loading Buffer [2X] (100 mM TrisHCl pH 6.8, 4% SDS, 200 mM DTT, 20%
404 glycerol, 0.004% bromphenol blue) to the mixture. Cell extracts were pelleted at 15,000 g in
405 an Eppendorf centrifuge for 15 min at 4°C and the supernatants were analyzed by Western
406 blotting according to (56), using the following antibodies, all diluted in TBS-T: anti-p-p53
407 (Ser 15; 1:1000, Santa Cell Signaling), anti-p53 (1:1000, Santa Cruz), anti-p-H2AX (Ser 139;
408 1:1000, Millipore), anti-SUV39H1 (44.1; 1:1000, Santa Cruz Biotechnology), anti-TDP-43
409 (1:5000, Proteintech), anti-H3k9me3 (1:1000, Abcam ab8898), anti-H3K9me2 (1:500,
410 Abcam ab1220), anti-actin-HRP-conjugated (1:5000, Santa Cruz Biotechnology). These
411 primary antibodies were detected using HRP conjugated anti-mouse and anti-rabbit IgGs and
412 the ECL detection kit (all from GE Healthcare). Band intensities were quantified by
413 densitometric analysis with Image Lab software (Bio-Rad).
414 All full length uncropped original western blots are available in the Supplementary Materials
415 section.

416 **Statistical analyses**

417 Statistical analysis was performed using Prism six software (MacKiev). The Shapiro-Wilk
418 test was used to assess the normal distribution of every group of different genotypes.
419 Statistical differences for multiple comparisons were analyzed with the Kruskal-Wallis for
420 non-parametric values or with one-way ANOVA for parametric values. The Dunn's or the
421 Tukey's test was performed, respectively, as post hoc test to determine the significance
422 between every single group. The Mann-Whitney U-test or the t-test were used for two
423 groups' comparison of non-parametric or parametric values, respectively. A p< 0.05 was
424 considered significant.

425

[Type here]

426

427

428

429

430

431 **References**

432 1. Fontana L, Partridge L, Longo VD. Dietary Restriction, Growth Factors and Aging: from
433 yeast to humans. *Science*. 2010 Apr 16;328(5976):321–6.

434 2. DiLoreto R, Murphy CT. The cell biology of aging. *Mol Biol Cell*. 2015 Dec
435 15;26(25):4524–31.

436 3. da Silva PFL, Schumacher B. Principles of the Molecular and Cellular Mechanisms of
437 Aging. *J Invest Dermatol*. 2021 Apr 1;141(4, Supplement):951–60.

438 4. Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative
439 Mechanisms and Novel Therapeutic Approaches. *Brain Sci*. 2018 Sep;8(9):177.

440 5. Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, Gallotta I, et al.
441 WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates
442 phenotypic defects in SMA models. *Neurobiol Dis*. 2017 Sep 1;105:42–50.

443 6. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk
444 factor for neurodegenerative disease. *Nat Rev Neurol*. 2019 Oct;15(10):565–81.

445 7. Stein D, Mizrahi A, Golova A, Saretzky A, Venzor AG, Slobodnik Z, et al. Aging and
446 pathological aging signatures of the brain: through the focusing lens of SIRT6. *Aging*.
447 2021 Mar 9;13(5):6420–41.

[Type here]

448 8. Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming
449 potential. *Crit Rev Biochem Mol Biol*. 2019 Feb;54(1):61–83.

450 9. Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, et al. Epigenetic regulation of aging:
451 implications for interventions of aging and diseases. *Signal Transduct Target Ther*. 2022
452 Nov 7;7(1):1–22.

453 10. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a
454 component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar
455 degeneration and amyotrophic lateral sclerosis. *Biochem Biophys Res Commun*. 2006
456 Dec 22;351(3):602–11.

457 11. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al.
458 Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral
459 sclerosis. *Science*. 2006 Oct 6;314(5796):130–3.

460 12. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations
461 in familial and sporadic amyotrophic lateral sclerosis. *Science*. 2008 Mar
462 21;319(5870):1668–72.

463 13. Feiguin F, Godena VK, Romano G, D'Ambrogio A, Klima R, Baralle FE. Depletion of
464 TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior.
465 *FEBS Lett*. 2009 May 19;583(10):1586–92.

466 14. Romano G, Klima R, Buratti E, Verstreken P, Baralle FE, Feiguin F. Chronological
467 requirements of TDP-43 function in synaptic organization and locomotive control.
468 *Neurobiol Dis*. 2014 Aug 1;

[Type here]

469 15. Cagnaz L, Klima R, De Conti L, Romano G, Feiguin F, Buratti E, et al. An age-related
470 reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a
471 Drosophila ALS model. *Neuroscience*. 2015 Dec 17;311:415–21.

472 16. Pacetti M, De Conti L, Marasco LE, Romano M, Rashid MM, Nubiè M, et al.
473 Physiological tissue-specific and age-related reduction of mouse TDP-43 levels is
474 regulated by epigenetic modifications. *Dis Model Mech*. 2022 01;15(4).

475 17. Strah N, Romano G, Introna C, Klima R, Marzullo M, Ciapponi L, et al. TDP-43
476 promotes the formation of neuromuscular synapses through the regulation of Disc-large
477 expression in Drosophila skeletal muscles. *BMC Biol*. 2020 Mar 26;18(1):34.

478 18. Romano G, Holodkov N, Klima R, Grilli F, Guarnaccia C, Nizzardo M, et al.
479 Downregulation of glutamic acid decarboxylase in Drosophila TDP-43-null brains
480 provokes paralysis by affecting the organization of the neuromuscular synapses. *Sci Rep*.
481 2018 Jan 29;8(1):1809.

482 19. Romano G, Klima R, Feiguin F. TDP-43 prevents retrotransposon activation in the
483 Drosophila motor system through regulation of Dicer-2 activity. *BMC Biol*. 2020 Jul
484 3;18(1):82.

485 20. Romano G, Appacher C, Scorzeto M, Klima R, Baralle FE, Megighian A, et al. Glial
486 TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous
487 and non-autonomous mechanisms. *Hum Mol Genet*. 2015 Nov 1;24(21):6134–45.

488 21. Langellotti S, Romano V, Romano G, Klima R, Feiguin F, Cagnaz L, et al. A novel fly
489 model of TDP-43 proteinopathies: N-terminus sequences combined with the Q/N domain
490 induce protein functional loss and locomotion defects. *Dis Model Mech*. 2016 Apr 21;

[Type here]

491 22. Rhodenizer D, Martin I, Bhandari P, Pletcher SD, Grotewiel M. Genetic and
492 environmental factors impact age-related impairment of negative geotaxis in *Drosophila*
493 by altering age-dependent climbing speed. *Exp Gerontol.* 2008 Aug;43(8):739–48.

494 23. Jones MA, Grotewiel M. *Drosophila* as a model for age-related impairment in locomotor
495 and other behaviors. *Exp Gerontol.* 2011 May;46(5):320–5.

496 24. Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific
497 transgene expression system using inducible GAL4. *Proc Natl Acad Sci U S A.* 2001 Oct
498 23;98(22):12596–601.

499 25. Roman G, Endo K, Zong L, Davis RL. P[Switch], a system for spatial and temporal
500 control of gene expression in *Drosophila melanogaster*. *Proc Natl Acad Sci U S A.* 2001
501 Oct 23;98(22):12602–7.

502 26. Godena VK, Romano G, Romano M, Appucher C, Klima R, Buratti E, et al. TDP-43
503 Regulates *Drosophila* Neuromuscular Junctions Growth by Modulating Futsch/MAP1B
504 Levels and Synaptic Microtubules Organization. *PLOS ONE.* 2011 Mar 11;6(3):e17808.

505 27. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Res.*
506 2011 Mar;21(3):381–95.

507 28. Waddington CH. The Epigenotype. *Int J Epidemiol.* 2012 Feb 1;41(1):10–3.

508 29. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G. The protein encoded
509 by the *Drosophila* position-effect variegation suppressor gene Su(var)3-9 combines
510 domains of antagonistic regulators of homeotic gene complexes. *EMBO J.* 1994 Aug
511 15;13(16):3822–31.

[Type here]

512 30. Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin
513 and its functions in tissue differentiation and maintenance. *Nat Rev Mol Cell Biol.* 2022
514 Sep;23(9):623–40.

515 31. McCauley BS, Dang W. Histone methylation and aging: Lessons learned from model
516 systems. *Biochim Biophys Acta - Gene Regul Mech.* 2014 Dec 1;1839(12):1454–
517 62.

518 32. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, et al. Central role of
519 Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene
520 silencing. *EMBO J.* 2002 Mar 1;21(5):1121–31.

521 33. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al.
522 Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral
523 sclerosis. *Science.* 2009 Feb 27;323(5918):1205–8.

524 34. Sobiak B, Leśniak W. Effect of SUV39H1 Histone Methyltransferase Knockout on
525 Expression of Differentiation-Associated Genes in HaCaT Keratinocytes. *Cells.* 2020
526 Dec;9(12):2628.

527 35. Tripathi M, Yen PM, Singh BK. Protocol to Generate Senescent Cells from the Mouse
528 Hepatic Cell Line AML12 to Study Hepatic Aging. *STAR Protoc.* 2020 Sep
529 18;1(2):100064.

530 36. Ngian ZK, Lin WQ, Ong CT. NELF-A controls Drosophila healthspan by regulating
531 heat-shock protein-mediated cellular protection and heterochromatin maintenance. *Aging*
532 *Cell.* 2021 May;20(5):e13348.

[Type here]

533 37. Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. *Exp Cell Res.*
534 2021 Aug 15;405(2):112679.

535 38. Liu Y, Atkinson RAK, Fernandez-Martos CM, Kirkcaldie MTK, Cui H, Vickers JC, et al.
536 Changes in TDP-43 expression in development, aging, and in the neurofilament light
537 protein knockout mouse. *Neurobiol Aging.* 2015 Feb 1;36(2):1151–9.

538 39. Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease
539 Mechanisms and Therapeutic Targets. *Neurotherapeutics.* 2015 Apr 1;12(2):352–63.

540 40. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of
541 TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. *Front Mol Neurosci*
542 [Internet]. 2019 [cited 2021 May 27];12. Available from:
543 <https://www.frontiersin.org/articles/10.3389/fnmol.2019.00025/full>

544 41. Boer EMJ de, Orie VK, Williams T, Baker MR, Oliveira HMD, Polvikoski T, et al. TDP-
545 43 proteinopathies: a new wave of neurodegenerative diseases. *J Neurol Neurosurg
546 Psychiatry.* 2021 Jan 1;92(1):86–95.

547 42. Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, et al.
548 TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a
549 genetic and histopathological analysis. *Lancet Neurol.* 2008 May;7(5):409–16.

550 43. Neumann M, Tolnay M, Mackenzie IRA. The molecular basis of frontotemporal
551 dementia. *Expert Rev Mol Med.* 2009;11:e23.

552 44. Iguchi Y, Katsuno M, Niwa J ichi, Takagi S, Ishigaki S, Ikenaka K, et al. Loss of TDP-43
553 causes age-dependent progressive motor neuron degeneration. *Brain.* 2013 May
554 1;136(5):1371–82.

[Type here]

555 45. Yang C, Wang H, Qiao T, Yang B, Aliaga L, Qiu L, et al. Partial loss of TDP-43 function
556 causes phenotypes of amyotrophic lateral sclerosis. *Proc Natl Acad Sci.* 2014 Mar
557 25;111(12):E1121–9.

558 46. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific
559 inhibitor of the histone methyltransferase SU(VAR)3-9. *Nat Chem Biol.* 2005
560 Aug;1(3):143–5.

561 47. Wood JG, Jones BC, Jiang N, Chang C, Hosier S, Wickremesinghe P, et al. Chromatin-
562 modifying genetic interventions suppress age-associated transposable element activation
563 and extend life span in *Drosophila*. *Proc Natl Acad Sci.* 2016 Oct 4;113(40):11277–82.

564 48. Luquin N, Yu B, Saunderson RB, Trent RJ, Pamphlett R. Genetic variants in the
565 promoter of TARDBP in sporadic amyotrophic lateral sclerosis. *Neuromuscul Disord.*
566 2009 Oct 1;19(10):696–700.

567 49. Peng JC, Karpen GH. H3K9 methylation and RNA interference regulate nucleolar
568 organization and repeated DNA stability. *Nat Cell Biol.* 2007 Jan;9(1):25–35.

569 50. Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov
570 MY, et al. Plasticity in patterns of histone modifications and chromosomal proteins in
571 *Drosophila* heterochromatin. *Genome Res* [Internet]. 2010 Dec 22 [cited 2023 Mar 5];
572 Available from: <https://genome.cshlp.org/content/early/2011/01/10/gr.110098.110>

573 51. Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative analysis of
574 metazoan chromatin organization. *Nature.* 2014 Aug;512(7515):449–52.

[Type here]

575 52. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. A silencing
576 pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.
577 Genes Dev. 2004 Jun 1;18(11):1251–62.

578 53. Seum C, Reo E, Peng H, Iii FJR, Spierer P, Bontron S. Drosophila SETDB1 Is Required
579 for Chromosome 4 Silencing. PLOS Genet. 2007 May 11;3(5):e76.

580 54. Madabattula ST, Strautman JC, Bysice AM, O’Sullivan JA, Androschuk A, Rosenfelt C,
581 et al. Quantitative Analysis of Climbing Defects in a Drosophila Model of
582 Neurodegenerative Disorders. JoVE J Vis Exp. 2015 Jun 13;(100):e52741.

583 55. Porrazzo A, Cipressa F, De Gregorio A, De Pittà C, Sales G, Ciapponi L, et al. Low dose
584 rate γ -irradiation protects fruit fly chromosomes from double strand breaks and telomere
585 fusions by reducing the esi-RNA biogenesis factor Loquacious. Commun Biol. 2022 Sep
586 3;5(1):905.

587 56. Coni S, Falconio FA, Marzullo M, Munafò M, Zuliani B, Mosti F, et al. Translational
588 control of polyamine metabolism by CNBP is required for Drosophila locomotor
589 function. Ramaswami M, VijayRaghavan K, Ramaswami M, editors. eLife. 2021 Sep
590 14;10:e69269.

591

592

[Type here]

593 **Figure Legends**

594

595 **Figure 1. TBPH prevents locomotory senescence in Drosophila**

596 (A) Schematic representation of the *elav*-Gene Switch induction protocol with RU486 (in
597 green). The drug was added to fly food at day 18 until day 21, then the flies were transferred
598 to standard food. (B) Western blot showing the TBPH levels in protein extracts from fly
599 heads of the reported genotypes 1, 2 and 3 at day 18, day 21 in drug (RU486) or vehicle-only
600 treated. Membranes were probed with anti-TBPH and anti-tubulin antibodies. Lane 1= UAS-
601 GFPmCD8/+;elavGS/+; lane 2= +/+;elavGS/UAS-TBPH^{F/L}; lane 3= UAS-
602 TBPH/+;elavGS/+;. Numbers below represent band quantification normalized on internal
603 loading (tubulin). Average of two experiments. (C) Climbing assay in adult flies of the
604 reported genotypes (+/+;elavGS/UAS-TBPH^{F/L}; and UAS-TBPH/+;elavGS/+), without (pink
605 and blue, respectively) or with RU486 (orange and green, respectively) induction at different
606 days post eclosion (7, 14, 18 and 21 dpe). Each point represents the percentage of flies able to
607 reach the top of a 50 ml tube in 10 seconds after being tapped to the bottom. $n \geq 100$ animals
608 for each genotype, in at least three technical replicates. ns, not significant; ** $p < 0.01$
609 calculated by one-way ANOVA. Error bars represent SEM.

610 **Figure 2. Levels of H3K9me3 at TBPH/TARDBP promoter increase with age**

611 (A) qRT-PCR analysis on the *TBPH* promoter or on a control heterochromatic region
612 (*rolled*), immunoprecipitated either with an anti-H3K9me3 antibody or with a control IgG
613 antiserum in chromatin extracts from 3- or 20-days post eclosion (dpe) fly heads. The DNA
614 enrichment is shown as a percentage of input DNA and normalized on the *GADPH* gene used
615 as control. Note the significant increase (~2 fold) of *TBPH* promoter in 21 dpe flies compared
616 with 3 dpe. No significant changes were observed in the control gene (*rolled*). Error bars
617 represent SEM of three independent experiments ($n = 3$; pull of 300 heads), 3 biological

[Type here]

618 replicates and 3 technical replicates); ** $p = 0.0019$, ns, not significant; Mann-Whitney t-test.
619 **(B)** qRT-PCR analysis on the *TARDBP* promoter or on the *GADPH-5'UTR* gene used as
620 control, immunoprecipitated either with an anti-H3K9me3 antibody or with a control IgG
621 antiserum in the brain of C57 mice at post-natal day 10 (PND 10) or PND 365. The DNA
622 enrichment is shown as a percentage of input DNA and normalized on the total H3. Note the
623 significant increase (~20 fold) of *m-TARDBP* promoter in PND 365 mice compared with
624 PND 10. No significant changes were observed in the control gene (*m-GADPH*). Error bars
625 represent SEM of three independent experiments (n = 6 mice per group, 3 biological
626 replicates); *** $p < 0.001$, ns, not significant; Mann-Whitney t-test.

627 **Figure 3. Loss of Su(var)3-9 rescues TBPH ageing-dependent decrease and associated**
628 **reduced climbing abilities**

629 **(A)** Climbing assay performed in *Su(var)3-9* mutant flies (*Su(var)3-9⁶/Su(var)3-9¹*; red
630 curve) or in control flies (*w¹¹¹⁸*; blue curve), at different days post eclosion (3, 10, 20, 30 or
631 40 dpe). Each square represents the percentage of flies able to reach the top of a 50 ml tube in
632 10 seconds after being tapped to the bottom. n ≥ 30 animals for each genotype, in at least five
633 technical replicates. ns, not significative; *** $p < 0.001$; **** $p < 0.0001$ with one-way
634 ANOVA. Error bars represent SEM. **(B)** qRT-PCR showing *TBPH* mRNA levels in
635 *Su(var)3-9* mutants [*Su(var)3-9⁶/Su(var)3-9¹*; red] compared to controls (*w¹¹¹⁸*; blue) in
636 RNAs from young (3dpe; full circles) or old (20 dpe; empty-dotted circles) flies heads
637 extracts. Error bars represent SEM of three independent experiments (n = 3; pull of 50
638 heads), 3 biological replicates and 3 technical replicates). ** $p < 0.01$; **** $p < 0.0001$ with
639 one-way ANOVA. **(C)** Western Blot showing the TBPH protein levels in *Su(var)3-9* mutants
640 [*Su(var)3-9⁶/Su(var)3-9¹*] compared to controls (*w¹¹¹⁸*) in fly head extracts at different days
641 post eclosion (3, 20, 30 or 40 dpe). Numbers below represent band quantification (the
642 average of four experiments) normalized on internal loading (Vibrator, Vib). **(D)** qRT-PCR

[Type here]

643 analysis on both the *TBPH* promoter and its coding sequence compared to a control
644 heterochromatic region (*rolled*), immunoprecipitated either with an anti-H3K9me3 antibody
645 or with a control IgG antisera in chromatin extracts from young (3 dpe) or old (20 dpe)
646 *Su(var)3-9* mutants [*Su(var)3-9⁶*/*Su(var)3-9¹*] or controls (*w¹¹¹⁸*). The DNA enrichment is
647 shown as a percentage of input DNA and normalized on the *GAPDH* gene used as control.
648 Error bars represent SEM of three independent experiments ($n = 3$; pull of 300 heads, 3
649 biological replicates and 3 technical replicates). ** $p < 0.01$; **** $p < 0.0001$ with one-way
650 ANOVA. (E) Climbing assay performed in adult flies overexpressing UAS-*Su(var)3-9* (gray
651 curve), or UAS-*hSuv39h1-HA* (orange curve) under the control of the *elav-GAL4* driver or in
652 control flies expressing a UAS-*GFP* construct (blue curve), at different days post eclosion (3,
653 7, or 12 dpe), at 29°C. Each dot represents the percentage of flies that reach the top of a 50 ml
654 tube in 10 seconds after being tapped to the bottom. $n \geq 30$ animals for each genotype, at least
655 5 technical replicates. ** $p < 0.01$ *** $p < 0.001$; **** $p < 0.0001$ calculated by one-way
656 ANOVA. (F) Western Blot showing the TBPH protein levels in heads extracts of flies
657 overexpressing the UAS-*Su(var)3-9* or the UAS-*hSuv39h1-HA* or UAS-*GFP* under the control
658 of the *elav-GAL4* driver at 3 days post eclosion. Numbers below represent band
659 quantification normalized on internal loading (Vibrator, Vib).

660 **Figure 4. SUV39H1 depletion in human cells correlates with reduced levels of H3K9me3
661 at TARDBP promoter and with a corresponding increase in TDP-43 protein**

662 (A) Western Blot showing the SUV39H1 and TDP-43 protein levels in extracts from WT or
663 SUV39H1 KO cells. Numbers below represent band quantification normalized on internal
664 loading control (actin; average of 6 experiments). (B) qRT-PCR analysis on the *hTARDBP*
665 promoter immunoprecipitated with an anti-H3K9me3 in chromatin extracts from WT or
666 SUV39H1 KO cells. Enrichment is shown as a percentage of input DNA and normalized on
667 the *GADPH* gene used as control. Error bars represent SEM of three independent experiments

[Type here]

668 ($n = 3$, 3 biological replicates). **(C)** Western blots showing the expression levels of TDP-43 in
669 wild type (WT) or *SUV39H1* *KO* HaCaT Keratinocytes after (+) or not (-) treatment with
670 H₂O₂ (200mM) for 2 ours (2h). H₂O₂ treatment reduces TDP-43 levels in WT but not in
671 *SUV39H1*-KO cells. Numbers below represent band quantification normalized on internal
672 loading control (actin; average of 3 biological repetitions).

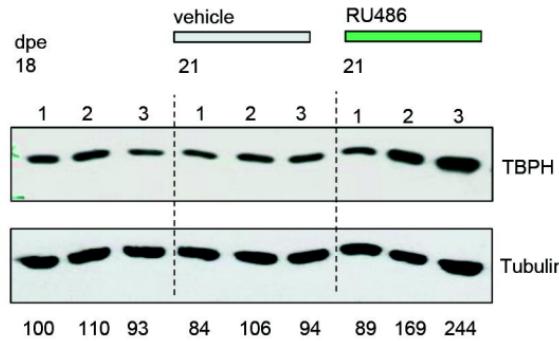
673 **Figure 5. Schematic representation of the mechanism of action of Suv39 at**
674 ***TARDBP/TBPH* promoter region during aging.** SUV39 activity at the *TARDBP/TBPH*
675 promoter region is increased in elderly individuals. This effect results in increased
676 methylation of H3K9 leading to reduced levels of TDP-43 expression and diminished
677 locomotor capabilities.

678

Figure 1

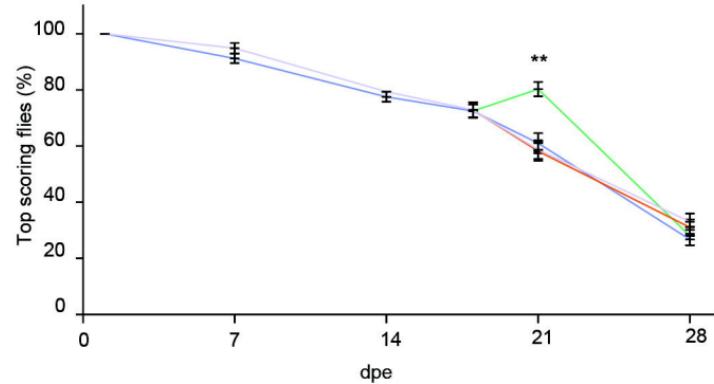
A

TBPH induction


□ vehicle ■ RU486

B

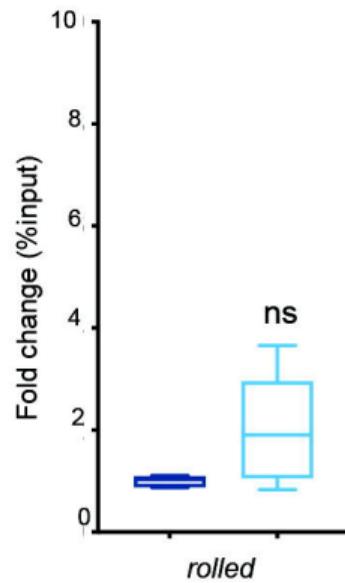
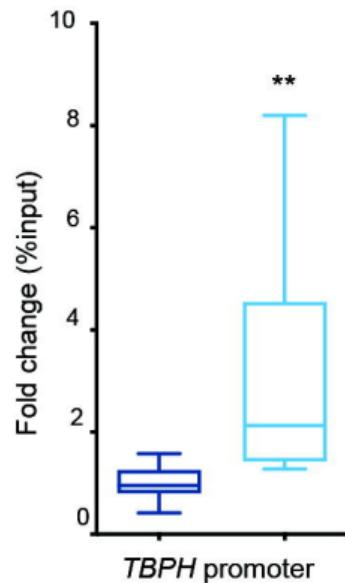
TBPH induction


1. elav-GS>GFP 2. elav-GS> TBPH^{F/L} 3. elav-GS>TBPH

C

Climbing Assay during Aging

○ elav-GS> TBPH^{F/L} ● elav-GS>TBPH^{F/L} +RU486
○ elav-GS>TBPH ● elav-GS>TBPH +RU486

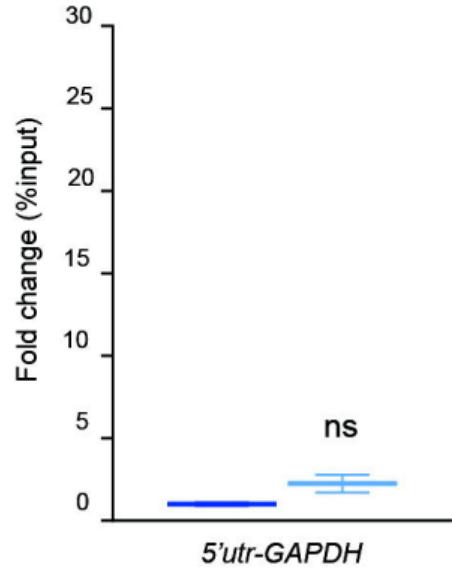
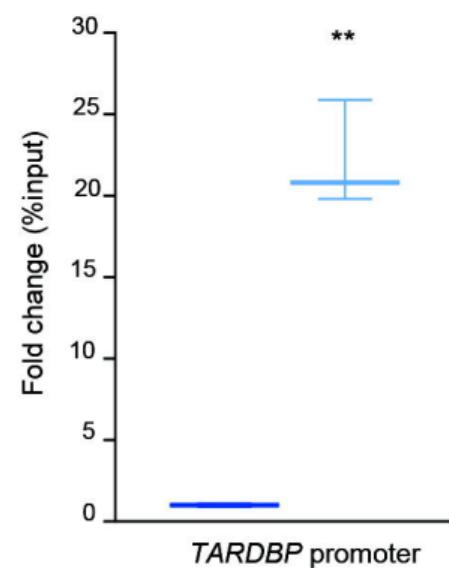


Figure 2

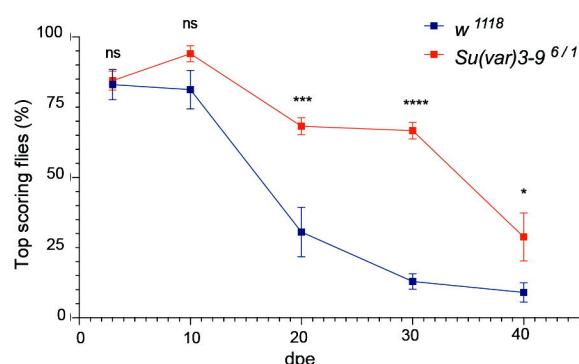
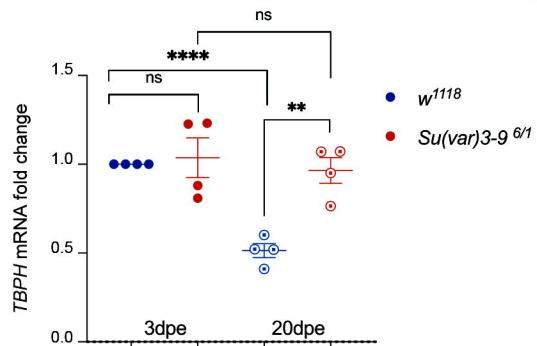
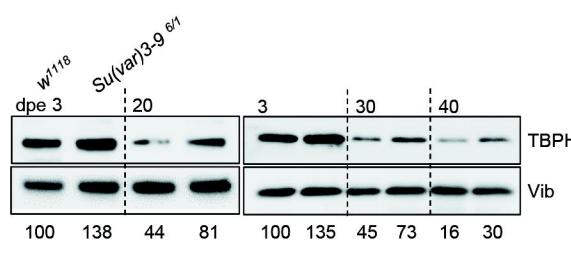
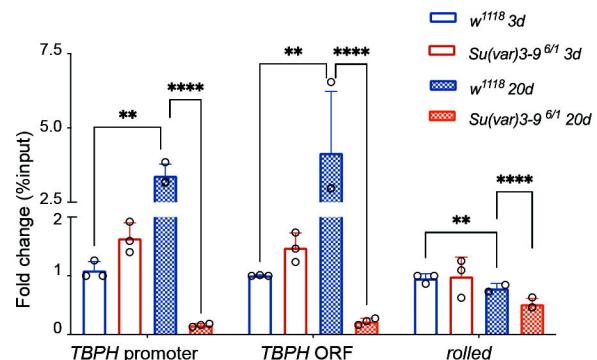
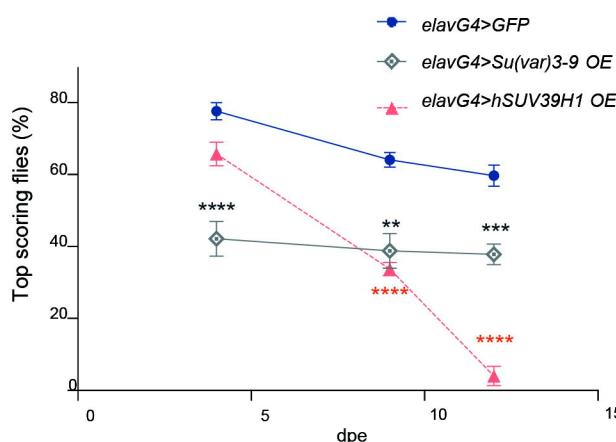
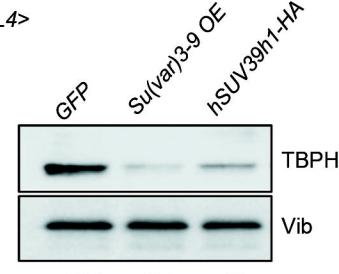
A

ChIP – H3K9me3

Drosophila heads

□ young (3dpe) □ old (21dpe)







B

ChIP – H3K9me3

Mus musculus brain

□ young (PND10) □ old (PND365)

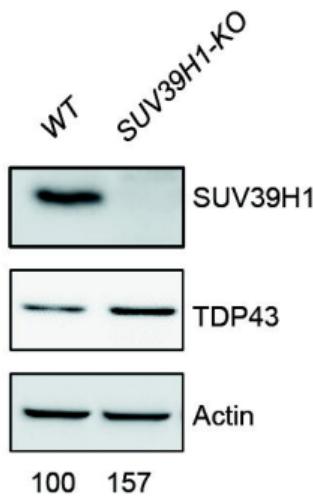
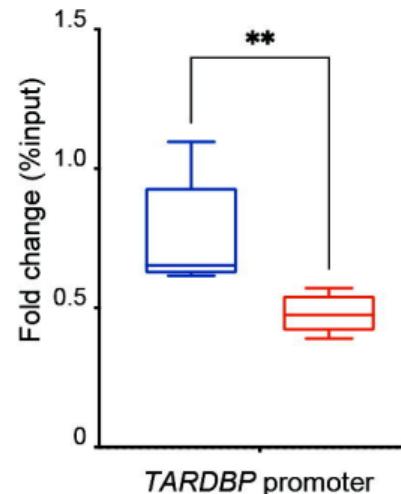

Figure 3**A****Climbing****B****TBPH mRNA levels****C****TBPH protein levels****D****ChIP – H3K9me3***Drosophila heads***E****Climbing****F****3dpe****elav-GAL4>**

Figure 4

A

WB – Protein levels

HaCaT

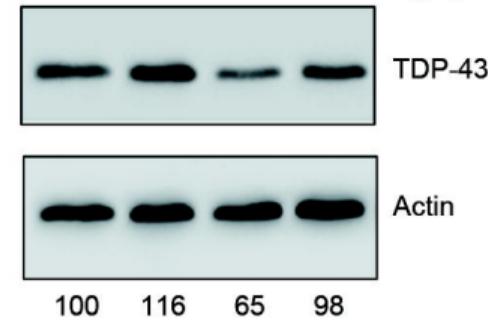

B

ChIP – H3K9me3

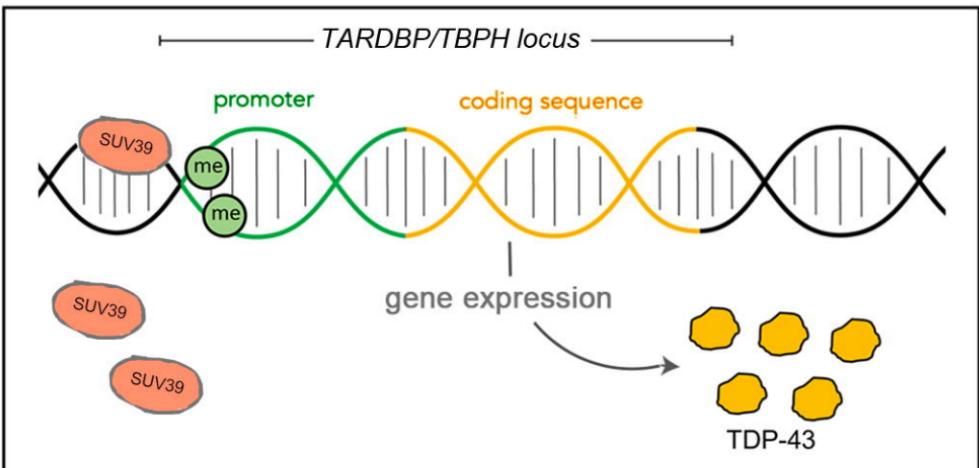
HaCaT

WT

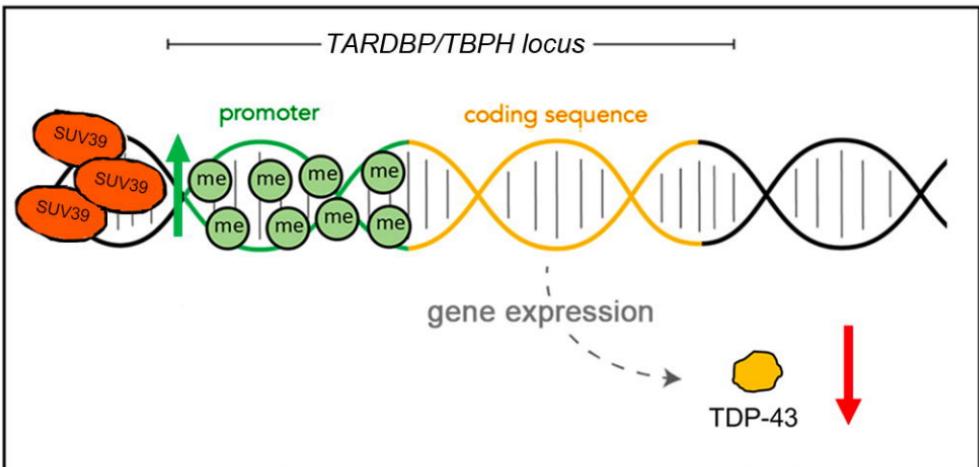
SUV39H1 KO


C

WB – Protein levels


HaCaT

WT SUV39H1-KO WT SUV39H1-KO


2h
 H_2O_2

Young

Age

Old