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Abstract 31 

Sample-wise deconvolution methods have been developed to estimate cell-32 

type proportions and gene expressions in bulk-tissue samples. However, the 33 

performance of these methods and their biological applications has not been 34 

evaluated, particularly on human brain transcriptomic data. Here, nine 35 

deconvolution methods were evaluated with sample-matched data from bulk-36 

tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. 37 

A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 38 

organoid samples were used. The results showed the best performance of 39 

dtangle for estimating cell proportions and bMIND for estimating sample-wise 40 

cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs 41 

were identified with deconvoluted expressions (decon-eQTLs). The results 42 

showed that decon-eQTLs explained more schizophrenia GWAS heritability 43 

than bulk-tissue or single-cell eQTLs alone. Differential gene expression 44 

associated with multiple phenotypes were also examined using the 45 
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deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq 46 

and sc/snRNAseq data, provided new insights into the biological applications 47 

of deconvoluted data. 48 

 49 

Introduction  50 

Brain transcriptome is essential for studying brain biology and related disorders, 51 

but important cell type information can be obscured when bulk tissue is used 52 

for the data production. Several brain projects have generated valuable 53 

transcriptomic resources from human brains, such as GTEx(1), 54 

PsychENCODE(2), CommonMind(3), Brainspan(4), and ROSMAP(5). 55 

However, most of the existing transcriptomes are from bulk tissue, which are 56 

mixtures of many different cell types, and gene regulatory mechanisms are 57 

known to vary across brain cell types, obscuring the cellular mechanisms 58 

underlying bulk tissue expression changes. 59 

  60 

Sorted-cell RNAseq and single-cell/nuclei (sc/sn) RNAseq(6, 7) offer solutions 61 

for profiling brain transcriptome at the cell-type resolution but with several 62 

limitations. Cell sorting relies on marker genes, which are not always available. 63 

The specificity of such marker genes is frequently a concern. A combination of 64 

several marker genes only can sort limited cell types. The data from 65 

sc/snRNAseq is sparse due to the limited RNA input from each cell(8). 66 

Sc/snRNAseq data suffer from the large number of zero values, which are 67 
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called “dropout events”. Moreover, it is challenging to discriminate between two 68 

possible causes of dropouts: biologically true zero expression and technical 69 

random missing data(9). The presence of dropouts may result in potential 70 

problems in gene expression quantification. Another limitation is the high cost 71 

of sc/snRNAseq. Even though multiplexing methods have been developed to 72 

simultaneously profile cells from numerous samples(10), using sc/snRNAseq 73 

in large-scale studies typically requiring hundreds of subjects, such as disease 74 

association and expression quantitative trait loci (eQTL) mapping(11), can be 75 

cost-prohibitive.  76 

 77 

Computational algorithms for cell deconvolution have been developed to 78 

estimate cell proportions. These algorithms can be classified into two types: 79 

supervised deconvolution uses prior information from a cell-type reference data 80 

to facilitate the estimation of the cell proportions of each cell types in bulk-tissue 81 

samples, while unsupervised does not need a reference. This study focused on 82 

evaluating supervised deconvolution methods.  83 

 84 

The performance of methods for estimating cell proportions has been 85 

previously evaluated (12-16). Studies have evaluated the accuracy of 86 

estimated cell proportions with data from the brain and other tissues. Methods 87 

like DSA(17), OLS, CIBERSORT(18), dtangle(19), and MuSiC(20) showed 88 

good performance in these evaluations. Additionally, the effect of cell type 89 
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marker gene selection, covariates, data transformation and normalization, and 90 

cell subtypes on cell deconvolution has been evaluated, which provided 91 

guidelines for data processing before cell deconvolution. 92 

 93 

Estimated cell proportions have been used for cell-type studies but with 94 

limitations. Cell proportions were used to represent cell types for case-control 95 

comparison(21, 22). However, proportional changes in cell types are just one 96 

aspect of possible changes. Disease-related changes also involve cell-type-97 

specific gene expressions(23-26). Cell proportions have also been used to map 98 

eQTLs associated with cell types, which are called cell-type interaction 99 

eQTLs(27) (ieQTLs). The genetic regulators that were associated with gene 100 

expression when the cell proportion varied were mapped. ieQTL has two major 101 

limitations. Firstly, ieQTLs are not necessarily specific to cell types. They may 102 

refer to other cell types with positive or negative correlation with the cell 103 

proportion of the target cell type. Secondly, the power of ieQTL mapping is low. 104 

Less than 50 ieQTLs were reported for neurons with 15,201 samples (27), 105 

which is much less than what standard eQTL can map on bulk tissues. 106 

Therefore, there is still the need to discover expression changes associated 107 

with diseases and eQTLs from cell-type expression data.  108 

 109 

Cell-type gene expressions can be deconvoluted from bulk-tissue expression 110 

data. Methods have been developed to estimate cell-type expressions for each 111 
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sample, such as bMIND(28), swCAM(29), and TCA(30). We call this sample-112 

wise deconvolution of gene expression. These methods use expression 113 

references from sc/snRNAseq or sorted-cell expressions. For example, bMIND 114 

used the Bayesian model and Markov Chain Monte Carlo to estimate 115 

expression for each gene in the cell types of each sample. The cell-type 116 

expressions of the individual samples will enable eQTL mapping and differential 117 

expression analysis in cell types. The deconvoluted data can cover the majority 118 

of genes in bulk tissue and is less sparse than sc/snRNAseq data. It makes the 119 

large sample study of cell-type expression affordable since bulk tissue data is 120 

either ready to use or can be generated at a relatively low cost. 121 

 122 

The methods for estimating sample-wise cell-type expressions have been 123 

partially evaluated with major blind spots. The performance of bMIND, TCA, 124 

and swCAM has been evaluated in their original methodology papers. However, 125 

these studies used artificially-constructed pseudo-bulk data other than bulk-126 

tissue data to benchmark their performance. Pseudo-bulks were constructed 127 

by simulating cell proportions and multiplying these proportions with 128 

expressions from sc/snRNAseq or sorted-cell expression data. Therefore, 129 

pseudo-bulk data is less complex than data from real bulk tissue(31). The 130 

differences among cell types in the pseudo-bulk are easier to be captured than 131 

those in bulk-tissue data. The benchmark conclusion based on the pseudo-bulk 132 

data may not apply to data from brain tissues. Head-to-head comparisons of all 133 
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these methods on brain data have not been conducted to date. The 134 

downstream applications based on deconvoluted data, such as eQTL mapping 135 

and differential expression, have also not been evaluated to showcase the 136 

validity of deconvolution. 137 

 138 

The current study aimed at evaluating the performance of algorithms for 139 

sample-wise deconvoluting cell proportions and cell-type expressions, as well 140 

as research applications based on the deconvoluted data. Specifically, we 141 

evaluated six commonly-used deconvolution methods for estimating cell 142 

proportions and three deconvolution methods for estimating the cell-type 143 

expressions of individual samples. Data from bulk-tissue RNAseq, 144 

sc/snRNAseq, and immunohistochemistry (IHC) of matched adult postmortem 145 

brains and brain organoids were used for evaluation. Downstream analyses of 146 

the deconvoluted results were also conducted, including their use in eQTL 147 

mapping, schizophrenia (SCZ) GWAS heritability enrichment, differential 148 

expression for Alzheimer’s disease (AD), SCZ, and brain development in cell 149 

types. Based on the evaluation, we recommended the best practice for brain 150 

transcriptome deconvolution. 151 

 152 

Results 153 

Benchmarking of sample-wise deconvolution methods with brain transcriptome 154 

data 155 
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To evaluate commonly-used deconvolution methods, we selected six methods 156 

(DSA, OLS, CIBERSORT, dtangle, MuSiC, and Bisque(32)) for estimating cell 157 

proportions and three methods (bMIND, swCAM, and TCA) for estimating cell-158 

type expressions (Fig. 1). Bulk-tissue RNAseq, snRNAseq, and IHC data from 159 

ROSMAP were used as primary data for evaluation(33). Data from adult brains 160 

in CommonMind (CMC)(34) and brain organoids(35) were used for 161 

confirmation (Table 1). Cell proportions from IHC and sc/snRNAseq data were 162 

used as ground truth for evaluating the accuracy of estimated cell proportions. 163 

Gene expressions in sc/snRNAseq data were used as ground truth for 164 

evaluating the accuracy of estimated cell-type expressions. The root-mean-165 

square error (RMSE) and Spearman correlation coefficient were used as 166 

evaluation metrics. After method evaluation, eQTL mapping, GWAS heritability 167 

enrichment, and differential expression analysis were performed on the cell-168 

type expressions estimated by the best performing method. To further evaluate 169 

the quality of outputs of these deconvolution methods by actual applications, 170 

the eQTLs, explained GWAS heritability, and phenotype-associated genes 171 

derived from deconvoluted expressions were compared to corresponding 172 

results based on sc/snRNAseq and bulk-tissue data.  173 

 174 

Evaluation of cell proportions estimated by deconvolution methods 175 

The overall performance of six deconvolution methods (DSA, OLS, 176 

CIBERSORT, dtangle, MuSiC, and Bisque) for estimating cell proportions was 177 
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evaluated with ground truth from matched samples. To ensure the 178 

deconvolution performance, the intersection of marker genes identified at the 179 

individual-cell level and the pseudo-bulk level was used to guide deconvolution 180 

(see details in methods). Using ROSMAP IHC data as ground truth (n of 181 

samples=49), dtangle, and OLS showed lower RMSE than other methods (Fig. 182 

2A). dtangle also showed relatively low RMSE in CMC (n=94) and brain 183 

organoid (n=55) data. MuSiC and Bisque did not perform well, even though 184 

they are designed to use sc/snRNAseq data as a reference. Using cell 185 

proportions computed from sc/snRNAseq data as the ground truth, Bisque had 186 

the lowest RMSE in all three datasets. The accuracy of deconvoluted cell 187 

proportions in major cell types was better than that in minor cell types (Fig. 2B, 188 

Fig. S1). The RMSE increased sharply when the cell proportion was below 5%, 189 

such as in oligodendrocyte precursor cells (Opc), microglia, endothelial cells, 190 

and pericytes in adult brains. Similar results were observed using Spearman 191 

correlation as an evaluation metric (Fig. S2). 192 

 193 

Evaluation of sample-wise cell-type expressions estimated by deconvolution 194 

methods 195 

The accuracy of sample-wise cell-type expressions deconvoluted by bMIND, swCAM, 196 

and TCA was evaluated using ground truth generated from sc/snRNAseq expressions 197 

of matched samples (n=35 for ROSMAP, n=94 for CMC, and n=55 for brain organoid). 198 

Cell proportions estimated by Bisque and dtangle were selected as input for the three 199 
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methods, since they showed the best performance in the above evaluation for 200 

estimating cell proportions. bMIND showed the best performance for estimating cell-201 

type expressions in all datasets, followed by swCAM (Fig. 3A). For bMIND, the 202 

averaged correlation coefficient between estimated expression and sc/snRNAseq data 203 

was 0.62 in ROSMAP data, 0.75 in CMC adult brain data, and 0.85 in brain organoid 204 

data. We did not observe a substantial difference in performances for estimating 205 

expressions of major and rare cell types (Fig. 3B). However, bMIND performed more 206 

steadily and overall better in major cell types than in minor cell types. The deconvoluted 207 

expressions by bMIND correlated with corresponding cell types in sample-matched 208 

sc/snRNAseq data, and they were less correlated with unrelated cell types (Fig. S3). 209 

A number of well-known marker genes were highly expressed in corresponding cell 210 

types, thus indicating that the deconvoluted data have good cell-type specificity (Fig. 211 

3C).  212 

 213 

Cell-type eQTL mapping with deconvoluted sample-wise expression data 214 

To identify SNPs that cis-regulate gene expression in specific cell types, cell-type eQTL 215 

mapping was performed for the association between genotypes and deconvoluted 216 

gene expression data of individual samples. The cell-type eQTLs identified with 217 

deconvoluted gene expression data were named deconvolution eQTLs (decon-eQTL). 218 

RNAseq data of 1,112 bulk-tissue samples of ROSMAP collection were deconvoluted. 219 

Cell proportions and cell-type expressions were estimated with dtangle and bMIND, 220 

respectively. Out of the 1,112 samples, 861 had genotype data and were used for 221 
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decon-eQTL mapping. The effect of SNPs within a 1-megabase window around the 222 

transcription start site (TSS) of genes was tested. The numbers of input genes for 223 

decon-eQTL mapping ranged from 8,521 to 12,418 across all cell types. The number 224 

of input SNPs was 4,954,561 for all cell types. Effects of known and hidden covariates 225 

on deconvoluted expressions were corrected. A total of 1,088,634 to 2,245,945 decon-226 

eQTLs were detected across eight cell types at a genome-wide significant level 227 

(FDR<0.05). To identify the independent effect in SNPs, a permutation test was 228 

performed for each gene. A total of 25,273 (4,541~ 8,149) independent decon-eQTLs 229 

were identified at FDR<0.05 for eight cell types (Fig 4B). As expected, eQTL SNPs 230 

(eSNPs) were enriched around the TSS region of eQTL genes (eGenes) (Fig. S4). The 231 

numbers of detected decon-eQTLs were positively correlated with the proportions of 232 

cell types in the tissue (Fig. 4B). To test the robustness of identified decon-eQTLs,  233 

sample IDs were randomly shuffled before the eQTL mapping. The absence of 234 

significant eQTL in the shuffled data supported that the identified decon-eQTLs were 235 

not due to random noise (Fig. S5).  236 

 237 

Identified decon-eQTLs from ROSMAP data were replicated with another 238 

deconvoluted data from BrainGVEX(36). The same deconvolution and eQTL mapping 239 

procedures were performed on RNAseq data of 400 postmortem brain samples from 240 

BrainGVEX to obtain the decon-eQTLs. Across all eight cell types, 3,479 to 5,718 241 

independent eQTLs were identified in the deconvoluted data from BrainGVEX at 242 

FDR<0.05. To measure the replication rate of ROSMAP decon-eQTLs in BrainGVEX 243 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532468doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532468
http://creativecommons.org/licenses/by-nc-nd/4.0/


data, Pi1 statistic(37), which is the proportion of true eQTL associations in the 244 

replication data, were calculated. The Pi1 of ROSMAP decon-eQTLs in BrainGVEX 245 

data was 0.59 ~ 0.74 for the matched cell types (Fig. 4C). Decon-eQTLs of 246 

oligodendrocyte had relatively better replication than other cell types.   247 

 248 

Cell-type eQTLs from snRNAseq data in Bryois et al.(38) were also used to replicate 249 

our decon-eQTLs. This replication study had performed genotyping and snRNAseq on 250 

192 cortical samples. A total of 7,607 independent eQTLs across eight cell types were 251 

identified. Even though the replication data had less statistical power than our 252 

deconvoluted data, 17%~57% of decon-eQTLs were replicated (Fig. 4D). eQTLs of 253 

excitatory neurons (Pi1=0.57) had higher Pi1 values than other cell types (averaged 254 

Pi1=0.38).  255 

 256 

To illustrate the value of decon-eQTLs, we compared decon-eQTLs to bulk-tissue 257 

eQTLs from ROSMAP (Fig. 4E). Overall, decon-eQTLs had good replication in bulk-258 

tissue data, with Pi1>0.95. The eQTLs that were significant at the cell-type level but 259 

insignificant at the bulk-tissue level were defined as cell-type-specific eQTLs. A total of 260 

1,206 ~ 3,006 (24.3% ~ 36.89%) cell-type-specific eQTLs were identified in the 261 

deconvoluted data. Cell-type-specific eQTLs had Pi1 values of 0.17~0.52 in single-cell 262 

eQTLs, which were similar to Pi1 values of decon-eQTLs that were shared with bulk-263 

tissue eQTLs (Fig. S6). This demonstrated that a good proportion of eQTLs regulate 264 

gene expressions in a cell-type-specific way, and they can be detected by decon-265 
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eQTLs.  266 

 267 

Cell-type eQTLs enriched for the risk heritability in SCZ GWAS data 268 

To test whether cell-type eQTLs are enriched for genetic risk heritability of SCZ, 269 

stratified linkage disequilibrium score regression (sLDSC)(39) was used to calculate 270 

the heritability of SCZ GWAS mediated by decon-eQTLs. Single-cell eQTLs and bulk-271 

tissue eQTLs were also included for comparison. Decon-eQTLs explained more SCZ 272 

GWAS heritability (averaged h2 = 37%) than single-cell eQTLs (averaged h2 = 6%) for 273 

all cell types (Fig. 5A). Bulk-tissue eQTLs explained 49% of SCZ GWAS heritability. 274 

Integrating decon-eQTLs and bulk-tissue eQTLs increased the explained heritability to 275 

63%, whereas the integration of single-cell eQTLs only resulted in an increase of 276 

heritability to 53%. The total proportion of explained heritability was correlated with the 277 

proportions of each cell type. To control the effect of SNP numbers, heritability was 278 

normalized by the number of decon-eQTLs, which was called enrichment. Decon-279 

eQTLs of all cell types were enriched for SCZ GWAS heritability (Fig. 5B, P value<0.05). 280 

Decon-eQTLs of oligodendrocytes showed the strongest per-SNP enrichment across 281 

all cell types. The SCZ GWAS heritability was only significantly enriched in single-cell 282 

eQTLs from oligodendrocytes and excitatory neurons. Decon-eQTLs of most of the 283 

cell types showed higher enrichment of SCZ GWAS heritability than bulk-tissue eQTLs 284 

(Fig. 5B), indicating that some of the SCZ risk SNPs may affect gene expression in cell 285 

type-specific ways. Deconvolution analyses uncovered more such cell-type-specific 286 

regulations associated with the genetic risk of SCZ.  287 
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 288 

Identification of gene expression changes associated with disease and brain 289 

development within cell types 290 

To identify genes associated with various phenotypes in specific cell types, differential 291 

gene expression analysis was conducted using the deconvoluted sample-wise 292 

expression data. Associations with AD, SCZ, and brain development modeled by 293 

organoids were tested in three deconvoluted datasets independently. More samples 294 

were included in AD (NAD=743, Ncontrol=367) and SCZ (NSCZ=246, Ncontrol=279) data. For 295 

AD and SCZ, the Wilcoxon signed-rank test was performed on the deconvoluted data. 296 

For brain development, the linear regression model was used to test the correlation 297 

between deconvoluted data and culture days of organoids (Nday0=15, Nday30=22, 298 

Nday60=18). With a threshold of FDR<0.05, 4,419, 10,964, and 9,562 phenotypes-299 

associated genes (PAGs) were identified for AD, SCZ, and brain development, 300 

respectively. 301 

 302 

To test the reliability of PAGs identified from deconvoluted data, these PAGs were 303 

compared to those identified from bulk-tissue and sc/snRNAseq data (Fig. 6). In total, 304 

81%, 49%, and 89% of PAGs for AD, SCZ and brain development, respectively, were 305 

replicated in bulk-tissue data. Among these PAGs, most of them (>95%) had the same 306 

direction of expression changes in bulk-tissue data. For AD and SCZ, less than 15% 307 

of PAGs overlapped with PAGs from snRNAseq data. However, 35% of development-308 

related PAGs could be replicated in scRNAseq data. The possible explanation for the 309 
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difference in replication rate in the three datasets was that the expression changes 310 

associated with brain development were larger than the changes associated with AD 311 

or SCZ (Fig. S7). The low replication rate with sc/snRNAseq data suggested that 312 

sc/snRNAseq data was underpowered to detect PAGs of small effect size.  313 

 314 

Discussion  315 

Using matched samples of bulk-tissue RNAseq, IHC, and sc/snRNAseq data, the 316 

performance of six methods for estimating cell proportions and three methods for 317 

estimating sample-wise cell-type gene expression was systematically evaluated. The 318 

transcriptome data used for evaluation were from adult brains and cultured brain 319 

organoids, providing data representative from different states of cell maturity and 320 

developmental processes. In addition, the results of eQTL mapping, SCZ GWAS 321 

heritability enrichment, and differential expression analysis based on deconvoluted 322 

data demonstrate the utility of deconvolution.  323 

 324 

dtangle had better accuracy for estimating cell type proportions than other methods. 325 

Previous studies have benchmarked the performance of deconvolution methods for 326 

estimating cell type proportions with ground truth data created from simulated 327 

proportions. In those studies, dtangle showed good performance in Sutton et al(15) 328 

but poor performance in Avila Cobos et al.(12) One possible reason is the difference 329 

of pseudo-bulk simulation between studies. Sutton et al. constructed pseudo-bulks 330 

from 500 cells while Avila Cobos et al. used only 100 cells for each pseudo-bulk. Given 331 
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that sc/snRNAseq data are remarkably sparse, 100 cells may not be representative of 332 

cell composition in bulk tissue. This inconsistency suggests the necessity of using real 333 

ground truth data in benchmarking studies. By using bulk-tissue RNAseq and IHC data 334 

from matched samples, dtangle was found to be the best deconvolution method for 335 

estimating cell proportions in this study. The excellent performance of dtangle was 336 

preserved in two replication data. 337 

 338 

Deconvolution methods using sc/snRNAseq data as reference, such as Bisque and 339 

MuSiC, did not outperform old methods using pooled-cell reference. Given that Bisque 340 

learns prior information from the reference of sc/snRNAseq data, it is not surprising to 341 

see that Bisque showed perfect performance when using cell proportions from 342 

sc/snRNAseq data as ground truth. However, the cell proportions measured by single-343 

cell technologies can be easily biased by the sorting strategy(40, 41). The proportions 344 

from single-cell data as prior reference and ground truth should be used with caution.  345 

 346 

Cell-type expressions deconvoluted to individual samples from brain tissues were 347 

further evaluated for the first time here for eQTL mapping and differential expression 348 

analysis, which require sample-wise expression data. The development of sample-349 

wise deconvolution satisfies these needs. Sample-wise deconvolution can estimate 350 

cell-type expression for each sample, without cell sorting and sc/snRNAseq. bMIND 351 

was the best method for estimating cell-type expressions in our evaluation, since the 352 

correlation coefficients between estimated expressions by bMIND and ground truth 353 
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were higher than other methods. Moreover, our evaluation showed that the 354 

deconvoluted data by bMIND have good cell-type specificity. The deconvoluted 355 

expressions by bMIND had a high correlation with matched cell types but a low 356 

correlation with other cell types in the ground truth data (Fig. S3). The deconvoluted 357 

cell types by bMIND expressed well-known marker genes. For example, NRGN and 358 

GAD1 were highly expressed in excitatory and inhibitory neurons respectively, but 359 

poorly expressed in glial cell types. These results indicated that bMIND is the best 360 

method for generating cell-type-specific gene expression data for each sample directly 361 

from bulk tissue data.  362 

 363 

The deconvolution performance on rare cell types is in general poor and capturing rare 364 

cell types is thus a challenge for cell deconvolution. The accuracy of deconvoluting cell 365 

proportions decreased sharply when cell proportion was less than 5%. Similarly, the 366 

accuracy of estimated gene expressions was low for rare cell types in brains, such as 367 

endothelial cells (correlation coefficient between deconvoluted expressions and 368 

ground truth = 0.33) and pericytes (correlation coefficient = 0.43). The low abundance 369 

of rare cell types may be masked by dominant cell types in the bulk tissue. Rare cell 370 

types may need to be studied using RNAseq of sorted cells, or high coverage 371 

sc/snRNAseq, or techniques that enrich for rare cell types. 372 

 373 

The most important benefit of cell deconvolution was that, more cell-type eQTLs were 374 

identified using deconvoluted data than using single-cell data and bulk-tissue data. 375 
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Cell-type eQTLs have been generated with sc/snRNAseq data(42, 43). However, the 376 

number of individuals profiled was typically limited(11). To date, a total of 7,607 eQTLs 377 

have been identified in the largest single-cell eQTL study(38) comprising 192 human 378 

brain samples. Besides the small sample size, the quality of single-cell data can be 379 

potentially affected by poor expression quantification, with serious dropout issues and 380 

high technical variability(9). Consequently, the eQTLs identified from sc/snRNAseq 381 

data may be affected. In contrast, this study deconvoluted data from 861 human brain 382 

and mapped 25,273 decon-eQTLs, far more than eQTLs identified from single-cell 383 

studies. The union for decon-eQTLs of all cell types was more than bulk-tissue eQTLs 384 

(n=9,148). A total of 24.3% ~ 36.89% of top decon-eQTLs were not detected by bulk 385 

eQTL mapping. This indicates that many cell-type-specific eQTLs are buried in bulk-386 

tissue data since the expression of diverse cell types is mixed. Overall, decon-eQTLs 387 

could be replicated in bulk-tissue eQTLs (averaged Pi1=0.99) and single-cell eQTLs 388 

(averaged Pi1=0.38), indicating the reliability of eQTLs identified in deconvoluted data. 389 

Sample-wise deconvolution provides a valuable opportunity to study genetic 390 

regulations in specific cell types with comparable power to bulk-tissue eQTL studies.  391 

 392 

Decon-eQTLs explained SCZ GWAS heritability that was missed by single-cell and 393 

bulk-tissue eQTLs. Nearly six times more SCZ GWAS heritability was explained by 394 

decon-eQTLs than by single-cell eQTLs. Integrating decon-eQTLs and bulk-tissue 395 

eQTLs explained 63% of SCZ GWAS heritability, which was 14% more than heritability 396 

explained only by bulk-tissue eQTLs. These results suggested that SCZ GWAS risk 397 
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may be mediated by genetic regulations in specific cell types, and such an effect can 398 

be captured by deconvoluted data.   399 

 400 

Risk genes associated with SCZ GWAS can be revealed by decon-eQTL mapping. 401 

Identification of genetically risk genes and pathways in specific cell types is an 402 

essential application of decon-eQTLs. For example, we identified that the association 403 

between rs12466331 and CALM2 was significant in excitatory neurons but not in bulk-404 

tissue data (Fig. S8A). CALM2, a gene encoding calmodulin, is highly expressed in 405 

excitatory neurons (Fig. S8B) and has been found downregulated in the postmortem 406 

brains of SCZ patients(44). Moreover, rs12466331 was colocalized with SCZ GWAS 407 

risk locus rs144040771 (Fig. S8C). These data suggest that rs12466331 may regulate 408 

the expression of CALM2 in excitatory neurons and that dysregulation of such pathway 409 

may be associated with SCZ. Thus, mapping decon-eQTLs enabled the discovery of 410 

the genetic risk of disease and helped identify their molecular mechanisms in specific 411 

cell types.  412 

 413 

Cell-type eQTLs mapping with deconvoluted data is an advanced alternative for ieQTL 414 

mapping. ieQTLs are the results of interaction between genetic regulation and cell-415 

type enrichment, while decon-eQTLs are based on deconvoluted data, which are the 416 

direct relationship between genotypes and cell type expression for each SNP-gene 417 

pair.  Both ieQTLs and decon-eQTLs were mapped with ROSMAP data in the current 418 

study. Nearly twenty times more decon-eQTLs (n=27,339) were identified than ieQTLs 419 
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(n=1,822) for the same sample size. Moreover, decon-eQTL is more robust than ieQTL. 420 

Compared to single-cell eQTLs, the replication rate of decon-eQTLs (averaged 421 

Pi1=0.38) is clearly superior than ieQTLs (averaged Pi1=0.16, Fig.S9).  422 

 423 

This study offers a practical guideline for conducting brain cell deconvolution. Using 424 

dtangle to estimate cell proportions and bMIND to estimate cell-type expressions is 425 

recommended. Rare cell types (proportion<5%) are not recommended to be included 426 

in cell deconvolution analysis.  427 

 428 

This study has several limitations. The results were based on the analysis of human 429 

brain data with specific parameters tested. More tests may be needed to generalize 430 

the conclusion to other tissues and situations. Unsupervised deconvolution methods 431 

have not been evaluated by this study. This evaluation only focused on the major cell 432 

types in brains, and the deconvolution performance of cell subtypes could be further 433 

explored to validate our findings.  434 

 435 

Conclusion  436 

This study comprehensively evaluated the commonlu-used methods for sample-wise 437 

deconvolution of cell proportions and cell type gene expressions. The downstream 438 

analysis of eQTL mapping, GWAS heritability enrichment, and differential expression 439 

was also evaluated. Our analysis is a crucial methodological foundation for other 440 

studies where deconvolution can be used. A practical guideline is offered for a broad 441 
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community interested in cell-type-specific studies of brain functions and disorders 442 

when only bulk-tissue transcriptome is available.  443 

 444 

Materials and Methods  445 

Data processing 446 

Bulk-tissue RNAseq data. Three RNAseq data from brain tissues and brain organoids 447 

were used (Table 1). TMM normalization(45) was applied to the raw counts data and 448 

log-transformed counts per million reads mapped (CPM) were used. Gene with 449 

log2CPM>0.1 in at least 25% of samples were retained. Connectivity between samples 450 

was calculated by weighted correlation network analysis (WGCNA)(46) and z-score 451 

was normalized. Samples with z-score connectivity < (-3) were labeled as outliers and 452 

were removed from downstream analysis. Data were then quantile normalized with the 453 

preprocessCore(47) package. The batch effect was corrected with combat in the sva 454 

package(48).  455 

Sc/snRNAseq data. The processed count matrix and metadata were used. The 456 

ROSMAP snRNAseq data were downloaded from 457 

https://www.synapse.org/#!Synapse:syn18681734. For CMC snRNAseq data, the 458 

processing pipeline can be found in the Capstone paper (syn48958066). scRNAseq 459 

data of brain organoids can be found in Jourdon et al(35).  460 

IHC data. IHC data were downloaded from 461 

https://github.com/ellispatrick/CortexCellDeconv. Cell proportions were normalized 462 

according to the sum-to-1 constraint.  463 
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Construction of references and pseudo-bulks 464 

Two types of references were used. For DSA, dtangle, OLS, and CIBERSORT, pooled-465 

cell reference is required. To build a pooled-cell reference, the count matrix was 466 

averaged by cell types. The averaged counts matrix was normalized into CPM and 467 

was log2-transformed. For MuSiC and Bisque, a single-cell reference was used, which 468 

was the gene-by-cell count matrix. To build pseudo-bulks, the count matrix was 469 

summed by cell types and by individuals.  470 

Marker gene identification 471 

Marker genes were identified at the cell level and pseudo-bulk level. One versus 472 

second high strategy was used. For each gene, the expression difference between the 473 

cell type with the highest expression and the cell type with the second highest 474 

expression was calculated. At the cell level, marker genes were identified with 475 

Seurat(49). Genes having a proportion of zero expression>15% in the target cell type 476 

were removed. The Wilcoxon signed-rank test was used to test the expression 477 

difference. Genes with log2FC>1 and FDR corrected p value<0.05 were defined as 478 

marker genes at the cell level. At the pseudo-bulk level, marker genes were tested in 479 

DESeq2(50). The likelihood ratio test was used to test the expression difference 480 

between the two cell groups. Marker genes with log2FC>2 and FDR-corrected p-value 481 

<0.05 were defined as marker genes at the pseudo-bulk level.  482 

Estimation of cell proportions  483 

Three inputs were required for all deconvolution methods: bulk tissue data, reference, 484 

and marker genes. Batch-corrected data was used as input for bulk tissue data. The 485 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532468doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532468
http://creativecommons.org/licenses/by-nc-nd/4.0/


intersected genes between marker genes at the cell level and pseudo-bulk level were 486 

used as input of marker genes. For DSA, dtangle, OLS, and CIBERSORT, pooled-cell 487 

reference was used. For MuSiC and Bisque, single-cell reference was used. The 488 

genes that have no expression variation were removed from the reference.  489 

Evaluation of cell proportions  490 

Two ground truths were used to evaluate estimated cell proportions: cell proportions 491 

from IHC data and cell proportions from sc/snRNAseq data. For one sample, cell 492 

proportions from sc/snRNAseq were calculated by dividing the number of cells of one 493 

specific cell type by the total number of cells. RMSE was used as an evaluation metric. 494 

The formula of RMSE is: 495 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1

𝑛
 496 

𝑦𝑖 is the estimated cell proportion and 𝑦̂ is the ground truth. n is the number of cell 497 

types in the sample-level evaluation, and n is the number of samples in the cell-type-498 

level evaluation. 499 

Estimation of cell-type expression 500 

Batch-corrected data was used as input for bulk tissue data. The proportion from DSA, 501 

dtangle, OLS, CIBERSORT, MuSiC, and Bisque was used independently. Pooled-cell 502 

reference was used as prior for bMIND and swCAM. For TCA, only bulk-tissue data 503 

and cell proportions were used to estimate cell type expressions for each sample. Data 504 

were transformed into a log scale for bMIND and TCA and a linear scale for swCAM.  505 

Evaluation of cell type expression 506 

To construct ground truth for evaluating estimated expressions, averaged counts by 507 
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cell types in each sample were calculated. Then the averaged cell type expressions 508 

were normalized into CPM and were log2-transformed. Sample-to-sample spearman 509 

correlation was tested between estimated expression and ground truth for each cell 510 

type.  511 

Genotyping quality control  512 

The ROSMAP whole genome sequencing (WGS) dataset was downloaded from 513 

https://www.synapse.org/#!Synapse:syn11724057. The data is already imputed.  Only 514 

individuals with both genotype and deconvolution results were retained for the eQTL 515 

analysis. SNPs with minor allele frequency (MAF) <5% or deviating from Hardy–516 

Weinberg equilibrium (P < 1 × 10-6) were excluded. After quality control, we obtained 517 

high-quality genotypes for ~4.9 million SNPs (MAF > 5%) in 861 individuals. 518 

eQTL mapping  519 

decon-eQTLs. To identify decon-eQTLs, we tested the associations between 520 

genotypes and deconvoluted expressions. We mapped cis-eQTLs within a 1-Mb 521 

window of the TSS of each gene using QTLtools(51). For each gene, QTLtools 522 

performs permutations of the expression data and records the best p-value for each 523 

SNP in the cis window after each permutation. We used estimated cell-type expression 524 

by bMIND as phenotype data. Phenotype data of eight cell types were tested 525 

independently. Quantile normalization was used for normalizing expression matrixes 526 

before eQTL mapping. PEER was used to identify hidden covariates in the data(52). 527 

8-35 PEER factors were included as covariates in eQTL mapping.  528 

Bulk-tissue eQTLs. To map bulk-tissue eQTLs, the same eQTL mapping procedure 529 
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was performed on the bulk-tissue expression data. 33 PEER factors were included as 530 

covariates in eQTL mapping. 531 

Replication of decon-eQTLs in BrainGVEX data 532 

To replicate decon-eQTLs, we deconvoluted RNAseq data from BrainGVEX(36) and 533 

mapped eQTLs with the deconvoluted data. 430 brain samples with both genotypes 534 

and RNAseq data were used. dtangle was used to estimate cell proportions, with the 535 

marker genes and the reference from ROSMAP sn/RNAseq data. Then, bulk-tissue 536 

data were deconvoluted into cell-type expressions for eight major cell types with 537 

bMIND. The same eQTL mapping process was performed on the deconvoluted data 538 

to identify decon-eQTLs in BrainGVEX data.  539 

The proportion of true associations (π1) in the qvalue package(37) was used to 540 

measure the replicate rate of significant decon-eQTLs in ROSMAP data in decon-541 

eQTLs in BrainGVEX data. With the distribution of corresponding p values for the 542 

overlapped eSNP-eGene pairs in two datasets, we calculated π0, i.e., the proportion 543 

of true null associations based on distribution. Then, π1 = 1 - π0 estimated the lowest 544 

bound for true-positive associations.  545 

Replication of decon-eQTLs in single-cell eQTLs  546 

To measure the replication rate of decon-eQTLs in the sc/snRNAseq dataset, we 547 

downloaded cell-type eQTLs identified from the snRNAseq data of 192 individuals(38). 548 

With the single-cell eQTLs as a reference, π1 statistics were calculated for eight cell 549 

types independently.  550 

SCZ heritability enrichment  551 
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Stratified linkage disequilibrium score regression(39) (S-LDSC) was used to calculate 552 

SCZ GWAS heritability enrichment in decon-eQTLs. GWAS summary statistics from 553 

three published SCZ studies were downloaded(53-55). Conditional analysis was 554 

performed on decon-eQTLs to select the top SNP for each gene (r2 > 0.2 in 1000 555 

Genomes European individuals(56)). Then script ldsc.py with the “--l2” parameter was 556 

used to generate the gene-set-specific annotation and LD score files. Then ldsc.py 557 

with the “--h2-cts” parameter was used to generate stratified heritability by decon-558 

eQTLs of eight cell types. 559 

Co-localization 560 

For each gene in decon-eQTLs, the co-localization between eSNP and SCZ GWAS 561 

signals(57) was tested. The ‘coloc.abf’ function in the Coloc(58) package (version 5.1.0) 562 

was used for testing. The threshold for significance is SNP.PP.H4>0.95. 563 

Differential expression analysis 564 

Differential expression analysis was performed on deconvoluted data and bulk-tissue 565 

data to identify genes associated with AD, SCZ, and brain development. For AD and 566 

SCZ, differential expression analysis was conducted in each cell type with the 567 

Wilcoxon rank-sum test. For brain development, the linear regression model was used 568 

to identify genes showing significant expression changes. The p values were corrected 569 

by FDR. Genes with FDR q value <0.05 were identified as phenotype-associated 570 

genes (PAGs). 571 

To compare deconvoluted PAGs and PAGs from sc/snRNAseq data, PAGs for AD(23) 572 

and SCZ(59) in cell types were downloaded. For brain development, PAGs were 573 
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identified in pseudo-bulk data. The linear regression model was used to identify PAGs 574 

for each cell type independently. The p values were corrected by FDR. 575 

Data availability  576 

The source data described in this manuscript are available via the PsychENCODE 577 

Knowledge Portal (https://psychencode.synapse.org/). The PsychENCODE 578 

Knowledge Portal is a platform for accessing data, analyses, and tools generated 579 

through grants funded by the National Institute of Mental Health (NIMH) 580 

PsychENCODE Consortium. Data is available for general research use according to 581 

the following requirements for data access and data attribution: 582 

(https://psychencode.synapse.org/DataAccess). For access to content described in this 583 

manuscript see: https://www.synapse.org/#!Synapse:syn51072187/datasets/. The eQTL 584 

and PAG results can be accessed at 585 

https://www.synapse.org/#!Synapse:syn50908925.  586 
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Figures and Tables 771 

 772 

Fig. 1. Study overview.  773 

 774 

 775 
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 776 

Fig. 2. Assessment of cell proportions estimated by examined deconvolution methods. 777 

(A). Sample-level RMSE values between estimated cell proportions and ground truth. IHC: 778 

immunohistochemistry; scprop: cell proportions calculated from sc/snRNAseq data, scprop = 779 

the number of cells of specific cell type/number of total cells. (B). Cell-type-level RMSE values 780 

between estimated cell proportions and ground truth data. RMSE values were normalized by 781 

the value of cell proportions to make them comparable across cell types. Cell types were 782 

ordered by cell proportions in a decreasing way. Ex: excitatory neurons, In: inhibitory neurons, 783 

Ast: astrocytes, Opc: oligodendrocyte precursor cells, Mic: microglia, Per: pericytes, End: 784 

endothelial cells; RG: radial glia, EN.PP: early born excitatory neurons of the pre-plate/subplate, 785 

CP.mixed: cortical plate mixed neurons, MCP: medial cortical plate, EN-DCP: dorsal cortical 786 

plate excitatory neurons, IPC-nN: intermediate progenitor cell or newborn neuron, RG.tRG: 787 

truncated radial glia, RG.oRG: outer radial glia, RG.hem: radial glia in cortical hem, IN: inhibitory 788 

neurons, RG-LGE: progenitors corresponding to a putative ventrolateral ganglionic eminence 789 

fate. 790 

 791 
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 792 

Fig. 3. Assessment of sample-wise cell-type expressions deconvoluted from bulk-tissue 793 

data. (A). Overall assessment of methods for estimating cell-type expressions. Spearman 794 

correlations between deconvoluted data and sc/snRNAseq data from matched samples. The 795 

averaged expression by cell types was used as ground truth. (B). Cell-type-level assessment 796 

of methods for estimating cell-type expressions. Correlations between deconvoluted data by 797 

bMIND and sc/snRNAseq data were calculated for each cell type. Cell proportions estimated 798 

by dtangle were used for input. Cell types on the y-axis were ordered by cell proportions 799 

computed from sc/snRNAseq. (C). Assessment of cell type specificity in estimated expressions. 800 

The figure shows the expression of marker genes in deconvoluted data by bMIND.   801 
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 802 

Fig. 4. Cell-type eQTL mapping based on deconvoluted sample-wise expression data. (A) 803 

Illustration of decon-eQTL mapping. (B) The number of decon-eQTLs identified in different cell 804 

types at FDR<0.05 in the permutation test. (C) Pi1 statistics of decon-eQTLs in BrainGVEX 805 

decon-eQTLs and (D) eQTLs from snRNAseq study (Bryois et al.). (E) Comparison of decon-806 

eQTLs and bulk-tissue eQTLs. The top barplot shows the Pi1 values of decon-eQTLs in bulk-807 

tissue eQTLs. The bottom plot shows the intersections between decon-eQTLs and bulk-tissue 808 

eQTLs, as well as intersections of decon-eQTLs across various cell types.  809 
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 810 
Fig. 5. SCZ GWAS heritability explained by cell-type eQTLs and bulk-tissue eQTLs. (A) 811 

Total SCZ GWAS heritability (h2) explained by eQTLs. (B) SCZ GWAS heritability enrichment 812 

in eQTLs. Enrichment = h2/number of SNPs in each eQTL category.  813 
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 814 
Fig. 6. The proportion of phenotypes-associated genes (PAGs) replicated in bulk-815 

tissue data (left panel) and sc/snRNAseq data (right panel). The light blue bar shows the 816 

proportions of replicated PAGs with FDR<0.05. The dark blue bar shows the proportions of 817 

replicated PAGs with FDR<0.05 and having the same direction of changes in replication data. 818 

expr denotes expression. The maturity of organoids was measured by the days of cell culture.  819 
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Table 1 Datasets used for evaluation 843 

Study  Brain 

region 

Data type Sample 

size 

Number of 

cells 

Number of cell 

types 

Number of 

genes  

ROSMAP 
 

PFC Bulk-tissue 

RNAseq 

1,112  -  - 17,128 

PFC snRNAseq 48 69,611 8 17,926 

PFC IHC 49  - 5  - 

CMC 
 

PFC Bulk-tissue 

RNAseq 

572  -  - 25,774 

PFC snRNAseq 101 569,289 7 33,822 

Brain 

organoid 
 

 - Bulk-tissue 

RNAseq 

130  -  - 20,125 

 - scRNAseq 72 490,844 
 

33,538 

*PFC: prefrontal cortex 844 
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Supplemental Figures 860 

 861 

 862 

Fig. S1 Cell-type-level RMSE values between estimated cell proportions and ground truth. 863 

This is the full version of Fig. 2B in terms of RMSE values.  864 
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 865 

Fig. S2 Assessment of cell proportions estimated by deconvolution methods based on 866 

Spearman correlation. (A). The sample-level correlation coefficient between estimated cell 867 

proportions and ground truth. IHC: immunohistochemistry; scprop: cell proportions calculated 868 

from sc/snRNAseq data, scprop = the number of cells of specific cell type/number of total cells. 869 

(B). The cell-type-level correlation coefficient between estimated cell proportions and ground 870 

truth. Cell types were ordered by cell proportions in a decreasing way. Ex: excitatory neurons, 871 

In: inhibitory neurons, Ast: astrocytes, Opc: oligodendrocyte precursor cells, Mic: microglia, Per: 872 

pericytes, End: endothelial cells; RG: radial glia, EN.PP: early born excitatory neurons of the 873 

pre-plate/subplate, CP.mixed: cortical plate mixed neurons, MCP: medial cortical plate, EN-874 

DCP: dorsal cortical plate excitatory neurons, IPC-nN: intermediate progenitor cell or newborn 875 

neuron, RG.tRG: truncated radial glia, RG.oRG: outer radial glia, RG.hem: radial glia in cortical 876 

hem, IN: inhibitory neurons, RG-LGE: progenitors corresponding to a putative ventrolateral 877 

ganglionic eminence fate. 878 

 879 
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 880 

Fig. S3. Correlations between deconvoluted expression (ROSMAP) and snRNAseq data 881 

from ROSMAP and CMC. For each cell type, averaged expressions across all samples were 882 

used.  883 

 884 
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 885 

 886 
Fig. S4. Distance between transcription start sites (TSS) and eQTL SNPs (eSNPs).  887 
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 888 
Fig. S5. Distribution of decon-eQTL p values. Ex_mismatch represents eQTL 889 

mapping results based on sample-shuffled data of deconvoluted excitatory neurons.   890 
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 897 
Fig. S6. Replication of decon-eQTLs in single-cell eQTLs. Wilcoxon signed-rank test was 898 

used to test the difference in Pi1 of two eQTL classes. P=0.15.  899 
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 909 

Fig. S7. PCA plot of samples in bulk-tissue datasets. Batch-corrected were used. 910 

 911 
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 915 

 916 

Fig. S8. An example of cell-type specific eQTLs in excitatory neurons. (A) Expression of 917 

CALM2 in individuals with different genotypes. (B) Expression of CALM2 in ROSMAP 918 

snRNAseq data. (C) Colocalization of eSNPs on CALM2 and SCZ GWAS risk locus.  919 
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 920 
Fig. S9. Replication of ieQTLs in single-cell eQTLs.  921 
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