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Abstract

Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and
Electroencephalography (EEG) data is a valuable tool for understanding how the brain
represents and discriminates between different stimuli. Identifying the spatial and
temporal signatures of stimuli is typically a crucial output of these analyses. Such
analyses are mainly performed using linear, pairwise, sliding window decoding models.
These allow for relative ease of interpretation, e.g. by estimating a time-course of
decoding accuracy, but are computationally intensive and can have limited decoding
performance. On the other hand, full epoch decoding models, commonly used for
brain-computer interface (BCI) applications, can provide better decoding performance.
However, they lack methods for interpreting the contributions of spatial and temporal
features. In this paper, we propose an approach that combines a multiclass, full epoch
decoding model with supervised dimensionality reduction, while still being able to
reveal the contributions of spatiotemporal and spectral features using permutation
feature importance. We demonstrate the approach on 3 different task MEG datasets
using image presentations. Our results demonstrate that this approach consistently
achieves higher accuracy than the peak accuracy of a sliding window decoder while
estimating the relevant spatiotemporal features in the MEG signal. Finally, we show
that our multiclass model can also be used for pairwise decoding, eliminating the

computational burden of training separate models for each pairwise combination of
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1 Introduction

Decoding external stimuli from neuroimaging data, such as Magnetoencephalography (MEG)
and Electroencephalography (EEG), has gained increasing attention in recent years (Kay
et al., 2008; Cichy et al., 2014). Decoding studies tend to prioritise increasing the discrimina-
tory power (accuracy) between stimuli, e.g. in brain-computer interface (BCI) applications
(Koizumi et al., 2018; Cooney et al., 2019a; Défossez et al., 2022), or gaining interpretable
insights as to where and when stimuli are represented in the brain (Cichy et al., 2014, 2016).
These latter approaches are often referred to as multivariate pattern analysis (MVPA), and
typically make use of linear, sliding-window decoders. This allows for the extraction of the
interpretable spatiotemporal features that drive the decoding; for example, allowing for the
estimation of a decoding accuracy time course (Cichy et al., 2014, 2016; Cichy and Pantazis,
2017; Lappe et al., 2013; Higgins et al., 2022b,a). However, it has been demonstrated that,
as one would expect, discriminatory power is also important for the effectiveness of MVPA
(Guggenmos et al., 2018). Hence, there is a need in MVPA for decoding methods that
improve decoding performance, while maintaining the ability to reveal the spatiotemporal

features that underlie the decoding.

One possibility for increasing decoding performance is to abandon the use of sliding window
approaches and instead use full epoch decoding. Decoding full-epoch trials has been explored
most typically within the context of potential brain-computer interface (BCI) applications,
for example in language tasks (Koizumi et al., 2018; Cooney et al., 2019a,b; Hultén et al.,
2021; Dash et al., 2020a; Défossez et al., 2022) and motor tasks (Schirrmeister et al., 2017,
Dash et al., 2020b; Elango et al., 2017). In contrast with the decoding employed in MVPA,
BCI applications often use nonlinear multiclass models (Lawhern et al., 2018). These will
generally have good discriminatory power (accuracy), but this comes at the expense of poor

interpretability, and are thus not directly useful for MVPA.

Some promising approaches have been investigated recently to make full-epoch models
more interpretable, such as the linear forward transform (Haufe et al., 2014). However, this
approach can only be applied to linear models. Another option is to apply full-epoch and
sliding window decoding on the same data in order to get both perspectives, e.g. in (Ling
et al., 2019). Nonetheless, it would be hugely beneficial if a single decoding approach could
be used without a loss in performance on both BCI and MVPA.
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An additional consideration is computational efficiency. MVPA of MEG data is commonly
performed using pairwise decoding methods, i.e. they decode between just two classes at a
time (Cichy et al., 2014, 2016; Cichy and Pantazis, 2017; Higgins et al., 2022b,a). When the
number of classes gets large, this becomes computationally burdensome. Here, we propose

to overcome this through the use of multi-class decoding.

Taking together the aforementioned issues, we propose an approach that can improve
decoding accuracy through the use of full-epoch multi-class decoding, while still being able
to reveal the underlying spatiotemporal features that drive the decoding. This allows us to
consider and investigate the use of neural network decoding models, and we also show the
benefit of using supervised feature reduction. We limit our investigations to linear models,
leaving nonlinear models for future work. Importantly, to allow access to interpretable
features, we make use of permutation feature importance (PFI). PFI is a general technique
which can be used to assess which parts of the input contribute the most to the predictions of
any black-box model (Altmann et al., 2010). Chehab et al. (2021) have demonstrated the
effectiveness of PFI in analysing how certain language features like word frequency affect the
forecasting performance of MEG data at various temporal and spatial locations, leveraging
a trained encoding model. Deep learning-specific interpretation methods have also been

proposed in the context of M/EEG decoding (Schirrmeister et al., 2017; Lawhern et al., 2018)

We assess the proposed approach by systematically comparing it with sliding window
decoding on three MEG datasets with visual tasks, finding that our full-epoch decoding
outperforms sliding window decoding in terms of accuracy. We then compare PFI with
standard alternatives and find that PFI is able to extract the same kind of dynamic temporal,
spatial, and spectral information. In addition, we show that pairwise accuracies can easily
be gained from a single multiclass model and that these accuracies are on-par with a direct

pairwise classification approach.

In short, the aforementioned contributions achieve the best of both worlds: a single decoding
model trained on full epochs, empirically good performance, and clear interpretability from
an MVPA viewpoint. This approach promises to be useful for both the BCI researcher and
the neuroscientist trying to gain insight into the underlying brain activity in a particular task

and external stimuli set.
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2 Material and methods

2.1 Data

In this study, we used three visual MEG datasets: two similar datasets from Cichy et al.
(2016) and one additional dataset from Liu et al. (2019). The datasets have been collected
with appropriate consent from participants and ethical review by Cichy et al. (2016) and
Liu et al. (2019), and do not contain any personal information. 15 subjects view 118 and 92
different images, respectively in the first two datasets, with 30 repetitions for each image.
The third dataset is part of a larger replay study, and we only use the portion of the data
where images are presented in random order for 900ms. Here, 22 subjects view 8 different
images, with 20-30 repetitions for each image (depending on the subject). The image sets
used in the three datasets are different. We obtained the raw MEG data directly from the
authors to run our preprocessing pipeline with MNE-Python (Gramfort et al., 2013). The
118-image and 92-image data are also available publicly in epoched form'. We bandpass
filtered raw data between 0.1 and 25Hz (50Hz for the 8-image dataset) and downsampled
to 100Hz. As recommended by prior work the sampling rate is 4 times higher than the
lowpass filer (Higgins et al., 2022b). This is done so that representational alias artefacts
are eliminated from the sliding window decoding time courses. We also applied whitening,
which involved transforming the data with PCA to remove covariance between channels
while retaining all components. The PCA was fit on the training set only but applied to both

training and test sets.

In the first two datasets, image presentation lasted for 500ms with an average inter-trial
interval of 0.95 seconds. In order to analyse the data using machine learning models, we
created two versions of each dataset. The first version consisted of full epochs, with input
examples having a shape of [50, 306] (or [90, 273] for the 8-image dataset), where 306 and
273 correspond to the number of MEG channels and 50 and 90 correspond to the number of
time points during image presentation. The second version consisted of sliding windows,
with input examples having a shape of [10, 306] (or [10, 273] for the 8-image dataset). In this
case, we partitioned each trial into overlapping 100ms time windows between 0 and 1000ms
post-stimulus and trained separate models on each time window partition as is normally done
in the MVPA literature. As a result, 90 independent sliding window models were trained for

each dataset.

As opposed to some previous work using a wavelet transform of the trial as features for
sliding window decoding (Higgins et al., 2022b), here we use the raw set of timepoints

within the respective 100ms window. This means that we rely more on the decoder to extract

"http://userpage.fu-berlin.de/rmcichy/fusion_project_page/main.html
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relevant frequency information rather than directly providing such information in the input.
We did compare our approach with the wavelet features and found the latter to be somewhat

inferior (see Inline Supplementary Figure 14).

2.2 Neural Network with Supervised Dimensionality Reduction (NN)

The Neural Network (NN) method is a four-layer, fully-connected linear neural network
which is only run on the full-epoch dataset (Figure 1). The first layer performed a learnable
dimensionality reduction, where the full epoch data of dimensions [time points X channels]
was multiplied by a weight matrix of shape [channels x components], with components (80)
being less than channels. This process is similar to principal component analysis, but in
this case, the dimensionality-reducing weight matrix and the decoding model are trained
simultaneously; therefore, the dimensionality reduction is optimized for the classification
objective. After the first layer, the data was flattened and three affine transformations were
applied in sequence (see Figure 1 for dimensionalities). The final layer had an output dimen-
sion equal to the number of classes, and the logits from this layer were passed through a

softmax function for classification.

The model was trained using cross-entropy loss (Good, 1952) for multiclass classifica-
tion and included dropout between layers during training (Srivastava et al., 2014). It is worth
noting that, as no nonlinearities were used, the model could be replaced with a single affine
transformation during evaluation. However, deep linear neural networks are known to have
nonlinear gradient descent dynamics that change with each additional layer (Saxe et al.,
2013); both the learnable dimensionality-reduction layer and the use of dropout impose

additional constraints on the weight matrix during learning.

2.3 LDA with Unsupervised Dimensionality Reduction (LDA-PCA)

The LDA-PCA approach has two variants: one that is full-epoch, and one that uses a sliding
window. In the full-epoch version, PCA is used to do unsupervised dimensionality reduction
on the channel dimension of the full-epoch data as an initial, separate step (Figure 1). The
resulting PCA-reduced data matrix, which has a shape of [timepoints X components] is

flattened and then used to train a multiclass classifier using LDA.

In the sliding window version, the [timepoints x components] PCA-reduced data matrix is
separated into [100ms x 80] windows. The data within each window is then flattened in the
same manner as in the full-epoch version and fed into separate LDAs that are distinct to each

window.
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Figure 1: Our Neural Network, PCA, and LDA-NN/PCA methods from top to bottom.
Dashed boxes represent separate processing steps, i.e. in the case of LDA-NN and LDA-
PCA the respective dimensionality reduction is first used to compute the input features,

which are then used to train the LDA model.

2.4 LDA with Pre-learnt Supervised Dimensionality Reduction (LDA-NN)

In the LDA-NN method, the PCA dimensionality-reducing weight matrix from PCA is
replaced with the use of the dimensionality-reducing weight matrix extracted from the
pre-trained NN approach (Figure 1). As in LDA-PCA, this weight matrix is then applied
to project the data to a [time points x components] shape, after which an LDA model is
applied. In the same manner, as LDA-PCA, LDA-NN also has full-epoch and sliding window

versions.
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2.5 Permutation feature importance

To investigate the temporal dynamics of visual information processing, we utilized permu-
tation feature importance (PFI) on our trained models. Specifically, we applied PFI to a
trained full-epoch LDA-NN by using sliding windows of 100ms with 1 time point shift for
each trial. The information in each window was disrupted by permuting the data across the
channel dimension separately for each time window. For instance, if the window was centred
around 50ms post-stimulus, the information within that window would be disrupted from 0
to 100ms post-stimulus compared to the original trial, while the rest of the timepoints in the
trial remained unchanged. We then evaluated the trained LDA-NN on each of these disrupted
trials and compared the accuracy to the original accuracy obtained with the original trials.
The greater the accuracy decrease for a trial with disrupted information in a specific time
window, the more crucial that time window is to the model’s performance and, therefore,
the more information it contains relevant to the model’s objective of discriminating between
images. By repeating this analysis for all time windows, we obtain a temporal profile of the
information content, similar to the method of training separate models on individual time

windows.

Spatial information content can also be obtained in a similar way, but this time by dis-
rupting the information within each channel, by permuting the data across time points for
each channel separately. This results in a sensor space map of accuracy decrease, which
serves as a measure of visual information content. We compared these sensor space maps to
maps obtained by plotting the per-channel accuracy of separate LDA models trained on the
full-epoch of each channel. This per-channel LDA method is conceptually similar to using a

sliding window in space instead of the traditional time dimension.

We also demonstrated that spatiotemporal information can be obtained jointly using PFI by
selecting a window in both space and time (4-channel neighbourhood of 100ms window)
simultaneously and disrupting the information within the space-time window, by permuting
the values within it over space and time. By sliding this window across all channels and time

points, we obtained a spatiotemporal discriminative information content profile.

Finally, we introduce spectral PFI to assess the effect of different frequency bands on
the visual discrimination objective. First, the data in each channel of each trial is Fourier
transformed, and the Fourier coefficients are permuted across channels for each frequency
(or frequency band). Then, the inverse Fourier transform is computed, obtaining a trial
with disrupted information in specific frequency bands. By applying this method to all
frequency bands, we obtained a spectral information content profile, similar to the method

of training separate LDA models on features from individual frequency bands (Higgins
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et al., 2022b). Similar to spatiotemporal PFI we can combine spatial and spectral PFI, by
running spectral PFI on a neighbourhood of 4 channels at a time (spatial window) to assess

the spectral information content of individual MEG channels. We call this spatio-spectral PFI.

Previous work in our lab applied sliding window decoding in combination with spectral
decoding (i.e., training separate models on individual frequency bands), thus assessing the
temporo-spectral information content (Higgins et al., 2022b). In order to make comparisons
with this work, we developed temporo-spectral PFI. Specifically, after training the full epoch
decoding model, we compute the short-time Fourier transform of the entire epoch, using the
same parameters as in Higgins et al. (2022b), i.e., a 100ms Hamming window with maximal
overlap. We then permuted the channel dimension of one frequency band and one window at
a time, leaving the other frequency bands and windows unchanged. Finally, we perform the
inverse short-term Fourier transform on the full epoch to get the time domain data back (i.e.,
channels-by-timesteps), on which the trained decoding model is then applied. By repeating
this over all frequency bands and time windows we can obtain the temporo-spectral PFI

profile.

2.6 Experimental Details

The primary evaluation metric for the three datasets is classification accuracy across the
respective number of classes (118, 92, or 8). The main focus of our analysis was on the
118 and 92-image datasets, with the 8-image dataset, included to demonstrate the effects
of a much smaller sample size. All of the main results using our decoding methods (NN,
LDA-NN, LDA-PCA) are multiclass, with the exception of Figure 9 and the corresponding
subsection describing it. In this case for pairwise decoding, we report pairwise accuracy with
a chance level of 50%. For all analyses, separate models were fit to separate subjects. Train-
ing and validation splits were created in a 4:1 ratio for each subject and class, with classes
balanced across the splits. The NN approach was trained for 2000 epochs (full passes of the
training data as opposed to epochs in the sense of MEG trials) using the Adam optimiser
(Kingma and Ba, 2015). The dimensionality reduction layer and PCA were both set to 80
components, as it is slightly higher than the inherent dimensionality reduction of MaxFilter
which is applied to the MEG data, and thus contains more than 99% of variance. We briefly
tried our pipeline with 60 components as well on 1 subject and found similar results. The
output layer’s dimensionality was equal to the number of classes in the corresponding dataset.

Dropout was set to 0.7.

Validation data was not used for early stopping, and the trained NN dimensionality re-
duction weight matrix (used in LDA-NN) was extracted after the full 2000 epochs of training

on the training data. For the LDA models, the shrinkage parameter was set to "auto"
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using the sklearn package. Comparisons of interest over methods were evaluated using
Wilcoxon signed rank tests, with within-subject pairing and subject-level mean accura-
cies over validation examples as the samples. The PyTorch package was used for training
(Paszke et al., 2019), and several other packages were utilized for analysis and visuali-
sation (Pedregosa et al., 2011; Virtanen et al., 2020; Harris et al., 2020; Wes McKinney,
2010; Waskom, 2021; Hunter, 2007). Code written for our analysis can be accessed at
https://github.com/ricsinaruto/MEG-transfer—-decoding.

3 Results

3.1 Full-epoch models achieve better accuracy than sliding-window decoding

We set out to test whether full-epoch decoding is better than timepoint-by-timepoint and
sliding-window decoding, which are common practices in the M/EEG literature (Carlson
etal., 2011, 2013; Su et al., 2012; Ramkumar et al., 2013; Cichy et al., 2017; Grootswagers
et al., 2017; Kurth-Nelson et al., 2016; Liu et al., 2019; Higgins et al., 2022b). We first
selected the best-performing linear classifiers trained for multiclass decoding from a set of

commonly used candidate models, including support vector machines (SVM), linear dis-
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Figure 2: Comparing different sliding window models trained on PCA features on the
118-image dataset for multiclass decoding. The sliding window size is 100ms. Results are

averaged across subjects.
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criminant analysis (LDA), logistic regression, and Lasso. The results, depicted in Figure 2,
indicate that LDA performed the best among the examined models in both average and peak
classification accuracy, with logistic regression exhibiting comparable performance. For this
reason, and as described in the methods, we used LDA in all further analyses for comparing

different classification strategies.

The performance of multiclass full-epoch models was compared to that of sliding-window
decoding for both LDA-PCA and LDA-NN on the three datasets in Figure 3. The peak
performance of sliding-window decoding was observed at 150-160 ms post-stimulus for
the 92 and 118-image datasets, and at 200 ms post-stimulus for the 8-image dataset. These
findings are broadly consistent with previous research on the temporal dynamics of visual
information processing in MEG (Cichy et al., 2014, 2016; Cichy and Pantazis, 2017; Higgins
et al., 2022b; Liu et al., 2019; Guggenmos et al., 2018). For the 92 and 118-image datasets a
second smaller peak was observed around 650-660 ms post-stimulus. As the image presen-
tation is switched off at exactly 500ms, we reason that the second peak is due to the brain
reacting to this event. The first peak is observed 150-160 ms post-stimulus onset, while the

second peak occurs 150-160 ms post-stimulus offset.

Across subjects, the full-epoch LDA-PCA approach demonstrated significantly higher ac-
curacy than the best sliding-window LDA-PCA approach on the 118-class dataset (3.1%
increase, p < le-4). On the 92-class dataset, no significant difference was observed be-
tween these models, though full-epoch LDA-PCA still outperformed the sliding-window
version at most time windows. A similar comparison between full-epoch LDA-NN and
peak sliding-window performance showed that full-epoch models had higher accuracy on
both the 92- and 118-class datasets (7.1% and 10.5% increase, respectively, p < le-4). The
tests were corrected for multiple comparisons across time points. These results indicate
that training a model on the full epoch generally leads to better performance than using the
best sliding-window model, except for the LDA-PCA approach on the 92-image dataset.
However, as noted in the following section, it is advisable to use an LDA-NN model in any

case.

Our results could be affected by the choice of window size for the sliding window LDA (100
ms). Thus, we repeated the sliding window LDA for different window sizes, including a
window of 1 sample (i.e., timepoint-by-timepoint decoding), and the results are presented
in Inline Supplementary Figure 10. We found that as the window size increased accuracy
improved reaching full-epoch performance with a 200ms window but the accuracy profile
became more distorted and the peak shifted compared to the results obtained with a single

time point. Finally, on the 8-image dataset, the full-epoch model had higher accuracy than

10
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Figure 3: Models trained on the sliding-window versions of the 92-class dataset (top),
118-class dataset (middle) and 8-class dataset (bottom) for multiclass decoding. Wilcoxon
signed-rank tests are reported between sliding window LDA-NN and LDA-PCA. FE stands
for full-epoch models, and SW stands for sliding window models. The blue and orange
dotted lines are placed at the average performance of full-epoch LDA-NN and LDA-PCA,
respectively. All statistical tests are corrected for multiple comparisons across all time points
(i.e. p-values are multiplied by 90). Shading indicates the 95% confidence interval across
subjects. For the full-epoch results, please see Figure 4 for distributions across subjects.
LDA-NN is better across almost all time points than LDA-PCA, and full-epoch accuracy is
higher than peak sliding window accuracy for both LDA-NN and LDA-PCA (except in the

92-class and 8-class datasets).
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the peak sliding-window model, though this difference was not significant. It should be
noted that the reduced effectiveness of the full-epoch model on this dataset may be due to
both the longer epoch of 900 ms and the smaller amount of data. This can lead to overfitting

due to a larger number of features and fewer examples.

3.2 Supervised dimensionality reduction is better than PCA

We next investigated the effect of incorporating a learned, supervised dimensionality reduc-
tion layer in our models, i.e. a dimensionality reduction optimised to aid a downstream
classification task. We, therefore, modified the LDA-PCA approach by replacing the unsu-
pervised dimensionality reduction performed by PCA with the supervised dimensionality
reduction (of equal dimensionality) from the Neural Network (NN) approach, as described
in Section 2. We refer to this modified approach as LDA-NN. As shown in Figure 4, this
simple change resulted in a significant improvement in performance (20.2% for the 92-class
dataset and 24.2% for the 118-class dataset, p < le-4). We also assessed the performance of
the pure NN model and found that it has a similar performance to LDA-NN. In other words,
the supervised dimensionality reduction effectively eliminated the performance gap between
the LDA and the Neural Network (NN) approach.

The sliding window versions of LDA-PCA and LDA-NN are also compared in Figure 3.
Across most time points (and all time points around the 2 peaks), LDA-NN is significantly

better than LDA-PCA, when corrected for multiple comparisons across time points. Similar
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Figure 4: Models trained on the full-epoch versions of the 92-class (left), 118-class (middle),
and 8-class (right) datasets for multiclass decoding. The violin plot distributions are shown
over the mean individual subject performances. The dashed black line represents the chance
level. Wilcoxon signed-rank tests are shown where 4 stars mean p < le-4, and 3 stars mean

p < le-3. “ns” means that the p-value is higher than 0.05.
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conclusions can be drawn on the 8-image dataset, although LDA-NN is better than the NN
approach, possibly due to the reduced performance of neural networks on small datasets
in general. In summary, our results suggest that using a full-epoch LDA-NN or a simple
linear Neural Network results in the best performance across all datasets and that the feature
reduction should be learned in a supervised manner for both the LDA and Neural Network

models.

3.3 Full-epoch models contain the same kind of temporal and spatial informa-
tion as sliding window decoding

One of the benefits of sliding window or time-point-by-time-point decoding is that it is
straightforward to obtain a time course of decoding accuracy (e.g., Figure 3), allowing for
interpretation of the temporal dynamics of neural representations. Here we show that full
epoch decoding in combination with permutation feature importance (PFI) can give the same
qualitative information. The results presented in Figure 5 indicate that temporal PFI applied
to a full-epoch LDA-NN model produces temporal profiles similar to those obtained using
sliding window LDA-NN models with a window size of 100ms across all three datasets. The

peak sliding window performance also aligns well with the peak accuracy loss for PFI.

In addition, we investigated the ability of PFI to accurately capture spatial information
by applying it to a full-epoch LDA-NN model on the 118-image dataset. To do this, we
permuted time points from the gradiometers and magnetometers located at the same position
in the MEG data simultaneously to obtain a single sensor space map. We compared these
to the maps obtained by training separate LDA models on the full epoch of the same three

sensors (2 gradiometers and 1 magnetometer). This approach can be viewed as a sliding
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Figure 5: Comparison of multiclass sliding window LDA-NN (orange) and the temporal
PFI of multiclass full-epoch LDA-NN (blue) across the three datasets. Results are averaged
across all subjects in the respective datasets, and shading indicates 95% confidence interval

across permutations for PFL.
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Figure 6: Comparison of multiclass channel-wise LDA model (b) with the spatial PFI of
multiclass full-epoch LDA-NN (a). Spatial maps are averaged across all 15 subjects on the
118-image dataset. Both PFI and the channel-wise LDA model are run on 3-channels in the

same location at a time (1 magnetometer and 2 gradiometers).

window across space. All PFI results are averaged over the accuracy losses of individual
subjects, which can somewhat smear both spatial and temporal profiles. The results, shown
in Figure 6, demonstrate good alignment between the accuracy loss of spatial PFI and per-
sensor accuracy of LDA-NN, indicating that PFI can effectively recover spatial information

content.

We also employed PFI to extract spatiotemporal information jointly from a trained full-epoch
LDA-NN model on the 118-image dataset. Specifically, we used a 100 ms time window and
a 4-channel spatial window (i.e., the 2 gradiometers and 1 magnetometer on three sides of
the sensors in question) for each time point and channel, shuffling the values within these
blocks. This allowed us to unravel the temporal and spatial information simultaneously,
showing that only channels located in the visual area exhibited the characteristic temporal
profile and that there was a gradient with channels further from the visual area displaying
progressively lower peak accuracy loss (Figure 7). Additionally, we observed that the tem-
poral evolution of the sensor space maps showed the visual area sensors to be consistently
the most important for the decoding objective across all time points. A full animation of the
temporal evolution of the sensor space maps is provided in Inline Supplementary Video 1.
In theory, the sliding window LDA and the per-channel LDA approach could be combined
to get a similar spatiotemporal profile, where each LDA model is trained on the sliding
window of 4 channels at a time. However, in practice accuracy might suffer substantially
with so few input features, and it would be computationally taxing considering the amount of
LDA models required to train. Overall, PFI proved to be a useful technique for investigating

full-epoch data and obtaining spatiotemporal information similar to what can be obtained
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Figure 7: Spatiotemporal PFI of multiclass full-epoch LDA-NN on the 118-image dataset.
Blocks of 4-channel neighbourhoods and 100ms time windows are shuffled to obtain a
spatial and temporal profile jointly. Each line in the temporal profile corresponds to a sensor,
and each sensor space map is obtained with a time window centred around the respective
time point. The shading in the upper plot is across the 10 permutations used for PFI and
indicates the 95% confidence interval. Both temporal and spatial profiles are averaged over

subjects.

from individual sliding window models.

Finally, Figure 8a presents our spectral PFI results averaged over subjects. Because of the
sampling rate of the data and the size of the epochs, the frequency resolution is 2Hz. There
is a clear peak of spectral information content at 4Hz, after which it rapidly declines, as is
expected in MEG data (i.e., the 1/f characteristic). Similar to spatiotemporal PFI we can
combine spatial and spectral PFI to assess the spectral information content of individual

MEG channels (see Inline Supplementary Figure 13).

We present temporospectral PFI in Figure 8b, an alternative method to showing tempo-
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Figure 8: Spectral PFI (left) and temporospectral PFI (right) of multiclass full-epoch LDA-
NN on the 118-image dataset. Shading indicates 95% confidence interval across permutations.

Results are averaged across subjects.

ral information content within individual frequency bands using separate LDA models
trained on wavelet features (Higgins et al., 2022b). When permuting a specific time window,
we also permuted the frequency content of the time window right before and after, to obtain
a smoother temporal profile. As expected from the standard temporal PFI, the temporal
peak is between 100 and 150ms. Spectrally, the 10Hz band is the most important to the
decoding objective, with higher bands being less and less useful, confirming the observations
in Higgins et al. (2022b). Note that in later timepoints (>200ms) the OHz band seems to be
slightly more important than the 10Hz band. We hypothesise that because of the reduced
frequency resolution of the short-time Fourier transform, the 4Hz peak observed in spectral
PFI gets represented in the 10Hz band in temporo-spectral PFI, and that the actual peak

would be 4Hz if using a higher resolution.

3.4 Multiclass decoding models evaluated for pairwise decoding are on par
with direct pairwise models

So far, we have demonstrated that multiclass full-epoch models are better than sliding win-
dow models while maintaining the same level of spatiotemporal information. Here we wish
to highlight an additional advantage of using multiclass full-epoch models. Researchers
frequently use pairwise models to analyse the representational differences between individual
conditions or groups of conditions, such as in representational similarity analysis (RSA).
However, this approach can be computationally intensive, especially when dealing with a

large number of classes.
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Figure 9: Comparison of pairwise full-epoch LDA-NN models (blue) with multiclass models
evaluated for pairwise classification (orange) across the three datasets. In all datasets except
the 8-image dataset, multiclass models evaluated in a pairwise fashion are significantly better
(**** p<le-4). The violin plot distributions are shown over the mean individual subject

performance. The dashed line represents chance level.

Here, we show how we can utilise a single trained multiclass full-epoch LDA-NN model to
predict pairwise accuracy scores. This is done by iteratively taking all pairs of conditions,
computing the predicted probabilities across all classes for each trial, and selecting the
condition with the higher probability (of the two conditions) as the predicted class. By
comparing this to the ground-truth labels, we can obtain pairwise accuracy scores for each
pair of conditions. In Figure 9, we compared the results of this method with those obtained
by training individual pairwise (full epoch LDA-NN) models as is typical in the literature.
For the 92 and 118-image datasets, the multiclass model achieved slightly, but significantly
higher pairwise accuracy than the individual pairwise models. The difference was not signif-
icant for the 8-image datasets. Therefore, using a multiclass model can yield pairwise results
that are similar to or even better than those obtained from individual pairwise models. This
provides a much more efficient way of obtaining pairwise accuracies for the purposes of
RSA.

4 Discussion

We made the following contributions in this work. We showed empirically that full-epoch
models achieve higher accuracy than sliding window decoding models. We showed how
temporal, spatial, and spectral brain activity patterns related to stimulus discrimination can
be extracted for any black-box full-epoch model. We showed how pairwise accuracies can

be gained from a single multiclass model, and that these are on par with direct pairwise
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decoding. We proposed to learn the dimensionality reduction of input features in a supervised
way, improving decoding performance substantially. Next, we discuss each result in more

detail.

We have found that training a single full-epoch model for multiclass decoding is effec-
tive in improving decoding performance, and have shown how this can be used while still
providing neuroscientific insights by using PFI to learn which features are contributing to
the decoding accuracy. Our results show that a full-epoch model generally performs better
than individual sliding window models for visual decoding tasks, and the magnitude of this
effect increases with the size of the dataset. Even with smaller datasets, such as the 8-image
dataset used in our experiments, the time-efficiency benefits of using a full-epoch model are
still evident, as training sliding window models takes roughly 10 times longer than a single
full-epoch model for a 100ms time window with a 100Hz sampling rate. Additionally, our
analysis of different window sizes (see Supplementary Material) showed that while larger
window sizes may improve performance, they are not effective in accurately capturing the
temporal profile of information content. It has also been suggested that using equal-length
time windows for all trials does not account for trial-by-trial variability, and Vidaurre et al.
(2018) proposed time-resolved decoding using a Hidden Markov Model to segment trials
along the time dimension. This approach still involves training multiple models on multiple
time windows. We, therefore, recommend using full-epoch models, as they only need to be
trained once and can be used to select any desired window size for temporal or spatial inves-
tigations through PFI, providing good decoding performance and dynamic spatiotemporal

resolution without the need for retraining.

We also found that incorporating a supervised dimensionality reduction layer is essen-
tial for good decoding performance when using linear neural networks and LDA models.
This can be used as a drop-in replacement over standard unsupervised dimensionality reduc-
tion typically done with PCA. In our approach, we used pre-trained weights from a neural
network for the feature reduction part of the LDA-NN model and kept this part fixed during
the training of the LDA. While we hypothesise that constructing an LDA-NN model, in
which both the feature reduction weights and the LDA model are trained together, would

produce similar results, this has not been tested.

We compared PFI results from a full-epoch model with those from individual models
trained on either separate time or spatial windows. This demonstrated that PFI can effec-
tively extract both temporal and spatial information, and can also be used to investigate the
interaction between these two dimensions. We also introduced a new technique whereby

PFI can be used to extract spectral discriminatory information content and confirmed that
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this matches previous work training individual models on separate frequency bands. PFI is
a particularly flexible technique, as it can be applied to nonlinear models and temporal or
spatial resolution can be chosen post-hoc without the need for retraining. The performance
of full-epoch nonlinear decoding and corresponding PFI analysis will be explored in future
work. PFI can also be applied to individual conditions or single trials by rerunning with
different permutations, enabling the investigation of various neuroscientific questions. Other
methods for obtaining temporal and spatial information from trained models, such as the
Haufe transform, are limited to linear models and do not provide trial-level patterns (Haufe
et al., 2014). As opposed to the statistical nature of PFI, the Haufe transform directly maps
the weights of a linear decoding model to input patterns, thus showing which parts of the
input are the most important for the decoding objective. One downside of PFI compared to
the Haufe transform is that the absence of influence on the output does not necessarily mean
that those parts of the input (channels or time windows) do not contain information about

the target.

In addition to the benefits of using a full-epoch multiclass model for MVPA, we have
demonstrated a simple method for obtaining pairwise accuracies that are comparable or
even superior to those obtained through individual pairwise models. This approach is useful
for RSA and reduces computation time by approximately half the number of conditions
in the data, as pairwise models reuse this data for training while a multiclass model uses
it only once. Although the data must still be reused for evaluation, we can assume that
evaluation is much faster than training. The slight increase in performance when using
multiclass models could be because decoding many classes together helps to better con-

strain the relationship between features and class labels compared to doing 2 classes at a time.

To conclude, we recommend using a full-epoch multiclass model equipped with a supervised
dimensionality reduction in order to achieve the best possible decoding performance while
also allowing for flexibility in conducting neuroscientific investigations post-hoc such as
MVPA or RSA. Our methods and recommendations scale well with data size and can be
readily applied to deep learning models as well, thus bringing the applications of decoding

to brain-computer interfaces and representational brain dynamics under a joint approach.
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A Supplementary Material

A.1 Window size comparison

In Figure 10, we examined the impact of the sliding window size on the results of our
LDA-NN models. We trained models using sliding window sizes of 10ms, 100ms, 200m:s,
300ms, and 400ms. As expected, using a single time point (10ms) resulted in lower accuracy
compared to a 100ms window. As the window size increased, we observed two trends. First,
accuracy improved and the peak accuracy of a 200ms window already reached the full-epoch
level. Second, the accuracy profile became more distorted and the peak shifted compared to
the results obtained with a single time point. In some cases, full-epoch performance was even
exceeded by a few percentage points with a 300ms window. This may not be surprising, as a
larger window that focuses on the most significant part of the input results in fewer features
compared to using the full epoch. However, it is advisable to avoid using a window larger
than 100ms in sliding window analysis due to its distortion and lower temporal resolution.
One potential solution could be to combine the sliding window models with PFI analysis,
but this would be inefficient. We can therefore conclude that using a full-epoch model is the
optimal solution, even if it results in slightly lower accuracy. Additionally, we expect that
with larger datasets, full-epoch models would outperform sliding window models regardless

of window size, as the ratio of features to examples would be reduced.

A.2 Inverse temporal and spatial PFI

We investigated an alternative method of performing PFI, referred to as inverse PFI. This
method is not common in the literature, but could be interesting from an MVPA viewpoint.
Inverse PFI differs from standard PFI in that it shuffles values outside a specified time
window, rather than within it. Standard PFI assesses the impact of disrupting information
within a specific window on performance and therefore reveals the importance of that window
for discriminating between images. In contrast, inverse PFI investigates performance when
all information outside a specified window is disrupted, thereby providing insight into the
performance that can be achieved using only the information contained within the time
window. The temporal PFI results for both standard and inverse PFI are presented in
Figure 11. While both approaches are similar to the standard sliding window LDA profile,
there are some differences as well. We also conducted this analysis in the spatial domain, the

results of which are shown in Figure 12. In this domain, the inverse PFI approach exhibits

24


https://doi.org/10.1101/2023.03.13.532375
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.13.532375; this version posted March 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

0.7 socee «  LDA-NN FE <> LDA-NN 200ms (p<0.05)
e LDA-NN FE <> LDA-NN 300ms (p<0.05)

0.6 e LDA-NN FE <> LDA-NN 400ms (p<0.05)

> —— 10ms

© 0.5 100ms

g — 200ms

© 0.4 —— 300ms

5 —— 400ms

§ 0.3 --- full-epoch accuracy

= —-=-- chance level

>

©
IN)

©
a

o
o

0 100 200 300 400 500
Time (ms)

Figure 10: Comparing sliding window LDA-NN with different window sizes on the 118-
image dataset. Results are averaged across subjects. Wilcoxon signed-rank tests are reported
between the sliding window models and the full-epoch model, corrected for all comparisons

in the figure.
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Figure 11: Comparison of multiclass sliding window LDA-NN (orange) with standard
temporal PFI (a) and inversed temporal PFI (b) using a trained LDA-NN model on the
118-image dataset. Results are averaged across subjects, and shading indicates the 95%

confidence interval across permutations for PFIL.

less contrast between visual channels and other channels but appears to distinguish between
visual channels more similarly to channel-wise LDA than standard PFI. It is not the aim of

this study to determine which approach is superior, as both seem to have their merits.
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Figure 12: Comparison of channel-wise LDA model (c) with the standard spatial PFI (a) and
inverse spatial PFI (b) of full-epoch multiclass LDA-NN. Results are averaged across all 15
subjects on the 118-image dataset. Both PFI and the channel-wise LDA model are run on

3-channels in the same location at a time (1 magnetometer and 2 gradiometers).
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Figure 13: Spatiospectral PFI of multiclass full-epoch LDA-NN on the 118-image dataset,
averaged over subjects. Blocks of 4-channel neighbourhoods are shuffled in each frequency
to obtain the per-channel frequency profile. Each line corresponds to a sensor. The shading

is across the permutations used for PFI and indicates the 95% confidence interval.
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Figure 14: Comparison of our sliding window LDA-NN approach with LDA-NN using
wavelet features on the 118-image dataset. The wavelet features are computed after the
dimensionality reduction, with the same settings as in Higgins et al. (2022b). wavelet-LDA
corresponds to using a concatenation of all frequency bands for training the LDA model,
and wavelet-LDA (1 freq) uses a single frequency band (10Hz). Results are averaged across

subjects, and shading indicates the 95% confidence interval across subjects.

27


https://doi.org/10.1101/2023.03.13.532375
http://creativecommons.org/licenses/by-nc/4.0/

	㈷㐠〠潢樊㰼 呩瑬攨﻿㈷㔠〠潢樊㰼 呩瑬攨﻿㈷㘠〠潢樊㰼 呩瑬攨﻿㈷㜠〠潢樊㰼 呩瑬攨﻿㈷㠠〠潢樊㰼 呩瑬攨﻿㈷㤠〠潢樊㰼 呩瑬攨﻿㈸〠〠潢樊㰼 呩瑬攨﻿㈸ㄠ〠潢樊㰼 呩瑬攨﻿㈸㈠〠潢樊㰼 呩瑬攨﻿㈸㌠〠潢樊㰼 呩瑬攨﻿㈸㐠〠潢樊㰼 呩瑬攨﻿㈸㔠〠潢樊㰼 呩瑬攨﻿㈸㘠〠潢樊㰼 呩瑬攨﻿㈸㜠〠潢樊㰼 呩瑬攨﻿㈸㠠〠潢樊㰼 呩瑬攨﻿㈸㤠〠潢樊㰼 呩瑬攨﻿㈹〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਲ㤱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㈹〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਲ㤳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㈹㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸㐮㠴㠠㔹ㄮ〳㐠㔰㐮㤹㘠㘰㈮㜸㑝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㔶㌮㔸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㔷㐮〹㜠ㄲ㤮㘵㠠㔸㔮㠴㡝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㔶㌮㔸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㈮㠹‵㜴⸰㤷‱㔶⸲㘴‵㠵⸸㐸崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‵㘳⸵㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔹⸷㤵‵㜴⸰㤷′㄰⸴㠷‵㠵⸸㐸崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㠹⸰㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄳ⸷ㄹ‵㜴⸰㤷′㌷⸰㤴‵㠵⸸㐸崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㠹⸰㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㄰⸲㜳‵㐰⸲㈴‱㜳⸹㔸‵㔱⸹㜵崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‴㘰⸹㜱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜷⸴㈵‵㐰⸲㈴′〱⸲ㄴ‵㔱⸹㜵崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‴㘰⸹㜱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〴⸹㠶‵㐰⸲㈴′㘴⸶㔱‵㔱⸹㜵崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㐶⸲㌹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘸⸱ㄸ‵㐰⸲㈴′㤶⸷㐵‵㔱⸹㜵崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㐶⸲㌹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〰⸵ㄸ‵㐰⸲㈴″㘶⸳㠳‵㔱⸹㜵崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‵㘴⸵㔷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘹⸸㔠㔴〮㈲㐠㌹㌮㘳㤠㔵ㄮ㤷㕝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㔶㐮㔵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㔮㐵㤠㔲㌮㈸㠠㐴㘮㜷㌠㔳㔮〳㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐵〮ㄹ㠠㔲㌮㈸㠠㐷㌮㜰㐠㔳㔮〳㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐷㜮ㄲ㤠㔲㌮㈸㠠㔰〮㘳㐠㔳㔮〳㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈹ㄮ㘹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱ㄮ㘵㜠㐵㔮㔴㈠㌶㈮㘶㔠㐶㜮㈹㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶㘮〵㔠㐵㔮㔴㈠㌸㤮㐲㤠㐶㜮㈹㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㈮㠱㤠㐵㔮㔴㈠㐱㘮ㄹ㐠㐶㜮㈹㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈹ㄮ㘹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐱㤮㠸㌠㐵㔮㔴㈠㔰㌮㘸㜠㐶㜮㈹㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈳ㄮ㤱㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㐳㠮㘰㔠ㄳ〮㤸㤠㐵〮㌵㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈳ㄮ㤱㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㐮㜷㐠㐳㠮㘰㔠ㄸ㠮㌱㐠㐵〮㌵㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㌴ㄮ㐲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹㄮ㜹ㄠ㐳㠮㘰㔠㈱㔮㜷㘠㐵〮㌵㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㌴ㄮ㐲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㤮㔶ㄠ㐳㠮㘰㔠㈸〮㐴㘠㐵〮㌵㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㌮㤲㌠㐳㠮㘰㔠㌱㌮㐰㜠㐵〮㌵㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄷ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㐮ㄶ㌠㐳㠮㘰㔠㌲ㄮ〳㠠㐵〮㌵㙝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠ㄲ㈮㠰㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ〮㌴㤠㐰㐮㜳㈠ㄹ㈮㈵㔠㐱㘮㐸㍝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌱㠮㄰㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㘮㘸㠠㐰㐮㜳㈠㈲〮㤳㔠㐱㘮㐸㍝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌱㠮㄰㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㔮㔷㜠㈸㘮ㄷ㜠㌱〮㈷ㄠ㈹㜮㤲㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㐶〮㤷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㌮㜸㈠㈸㘮ㄷ㜠㌳㜮㤶㐠㈹㜮㤲㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㐶〮㤷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴ㄮ㜸㔠㈸㘮ㄷ㜠㐰㈮㌸㈠㈹㜮㤲㝝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄴ㘮㈳㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㔮㠹㈠㈸㘮ㄷ㜠㐳㔠㈹㜮㤲㝝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄴ㘮㈳㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐳㔮㜸ㄠ㈸㘮ㄷ㜠㐴㌮㌲ㄠ㈹㜮㤲㝝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐴㜮ㄴ㈠㈸㘮ㄷ㜠㔰㌮㔸㘠㈹㜮㤲㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㘶㘮㈰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㈶㤮㘴㤠ㄳ〮㜴㤠㈸〮㤹ㅝਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㘶㘮㈰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㐮㔱㠠㈶㤮㘴㤠ㄸ㈮㜶ㄠ㈸〮㤹ㅝਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㘶㘮㔲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㘮㈲㔠㈶㤮㘴㤠㈱㐮㠠㈸〮㤹ㅝਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㘶㘮㔲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㠮㔶㠠㈶㤮㘴㤠㈸㐮㌲㈠㈸〮㤹ㅝਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㔶㐮㔵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㜮㜸㜠㈶㤮㘴㤠㌱ㄮ㔳㈠㈸〮㤹ㅝਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㔶㐮㔵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹ㄮㄷ㔠㈶㤮㘴㤠㐷㔮㘶㤠㈸〮㤹ㅝਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㔰㐮㤴㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐷㤮ㄳ㌠㈶㤮㘴㤠㔰㈮㠷㠠㈸〮㤹ㅝਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㔰㐮㤴㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㈵㈮㌰㐠ㄵ㔮㐱㌠㈶㐮〵㑝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㘲㐮〰㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄵ㠮㠷㈠㈵㈮㌰㐠ㄸ㠮ㄹ㈠㈶㐮〵㑝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㘲㐮〰㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹㄮ㤵㜠㈵㈮㌰㐠㈴㠮㠷ㄠ㈶㐮〵㑝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㔲㈮〴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㈮㌳′㔲⸳〴′㜶⸱㠵′㘴⸰㔴崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‵㈲⸰㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔶⸵㔴′㌵⸳㘷‴㈱⸵㠵′㐷⸱ㄸ崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰′㤸⸵㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㈵⸰㘳′㌵⸳㘷‴㐹⸰㜠㈴㜮ㄱ㡝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㈹㠮㔸〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㔮㠹㔠ㄵ〮㘸㔠㐰㠮㈸㠠ㄶ㈮㐳㕝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠ㄸ㈮㈶㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐱ㄮ㜳㠠ㄵ〮㘸㔠㐳㔮㐶ㄠㄶ㈮㐳㕝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠ㄸ㈮㈶㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸ㄮ㤸㐠ㄱ㘮㠱㈠㔰㐮㤹㘠ㄲ㠮㔶㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㈳㠮㠰㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㤹⸸㜵‱㈹⸹ㄵ‱ㄱ⸶㈶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰′㌸⸸〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㌳⸳㐠㤹⸸㜵‱㔶⸸〲‱ㄱ⸶㈶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰′㌸⸸〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਲ਼㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌴㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਲ਼㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㌴㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㈮㌰㠠㘵㐮㠷㐠ㄸ㌮㌷‶㘶⸶㈴崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㠹⸰㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㠶⸷㠷‶㔴⸸㜴′㄰⸱㘱‶㘶⸶㈴崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‱㠹⸰㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄳ⸵㜸‶㔴⸸㜴′㌶⸹㔲‶㘶⸶㈴崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㤱⸶㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐰⸶㘸‶㔴⸸㜴″㈴⸵㈶‶㘶⸶㈴崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㌱⸹ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈷⸹㐳‶㔴⸸㜴″㔱⸳ㄷ‶㘶⸶㈴崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㌱⸹ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔵⸰㌴‶㔴⸸㜴‴ㄴ⸴㘷‶㘶⸶㈴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄷ⸸㠴‶㔴⸸㜴‴㐶⸶〴‶㘶⸶㈴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐷⸲㠴‶㔴⸸㜴‴㔴⸰㈳‶㘶⸶㈴崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‱㈲⸸〹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〷⸵〳‴㔱⸶㌶′㜳⸰〶‴㘳⸳㠶崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‵㌹⸷㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜶⸶㔴‴㔱⸶㌶″〰⸹〱‴㘳⸳㠶崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‵㌹⸷㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〹⸱㜠㐵ㄮ㘳㘠㌶㤮㜲㈠㐶㌮㌸㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㐱ㄮ㈴㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㐮㈹㌠㐵ㄮ㘳㘠㌹㠮㔴‴㘳⸳㠶崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‴ㄱ⸲㐵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〰⸲㔷″㠳⸸㤠㌸㈮㘶㈠㌹㔮㘴崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‵〴⸹㐹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㠵⸶㤲″㠳⸸㤠㐰㤮〶㜠㌹㔮㘴崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‵〴⸹㐹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄲ⸳㤶″㠳⸸㤠㐷㔮〳ㄠ㌹㔮㘴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰′㤸⸵㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜸⸰㘲″㠳⸸㤠㔰ㄮ㐳㘠㌹㔮㘴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰′㤸⸵㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਲ਼㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌶㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਲ਼㘷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㌶㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐵㈮㠷‶㔲⸶㔷‵〶⸹〵‶㘴⸴〸崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㤱⸶㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㄰⸳㈴‶㌶⸱㌠ㄳ㐮㐱㠠㘴㜮㐷㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈹ㄮ㘹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸〮㜸㐠㘳㘮ㄳ″㈲⸳〹‶㐷⸴㜲崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‱㜹⸰㈹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈶⸷㈸‶㌶⸱㌠㌵〮㠲㈠㘴㜮㐷㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠ㄷ㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㤮㌷㌠㘱㠮㜸㔠㐵㌮〰㌠㘳〮㔳㕝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈹ㄮ㘹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐵㜮㠴㘠㘱㠮㜸㔠㐸㈮〹㌠㘳〮㔳㕝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㈹ㄮ㘹㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㘰ㄮ㠴㠠ㄴ㜮㜷㈠㘱㌮㔹㥝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠ㄷ㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄵ㈮㄰㌠㘰ㄮ㠴㠠ㄷ㔮㜱㠠㘱㌮㔹㥝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠ㄷ㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌸ㄮ㜸ㄠ㔰〮㈲㤠㐴㤮㘷㐠㔱ㄮ㤸崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‴㌷⸰〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔳⸲㠸‵〰⸲㈹‴㜷⸵㌵‵ㄱ⸹㡝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㐳㜮〰㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐳㌮㠲ㄠ㐸㌮㈹㌠㐴〮㈹㜠㐹㜮〰㥝ਯ䑥獴⁛㈠〠删⽘奚‱㈴⸱㐰〠㤰⸶㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜰⸶〷‴㌲⸴㠳′㌳⸰㠲‴㐴⸲㌴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌷⸰㘸‴㌲⸴㠳′㘶⸸㜹‴㐴⸲㌴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈷⸷㠸‱㄰⸶㤠㈹〮㠰㠠ㄲ㈮㐴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㤵⸰㘷‱㄰⸶㤠㌲㐮㠷㜠ㄲ㈮㐴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸱㐳‷ㄮ㠱㤠㐸〮㜰㈠㠵⸷㠳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴瀺⼯畳敲灡来⹦甭扥牬楮⹤支牭捩捨礯晵獩潮彰牯橥捴彰慧支浡楮⹨瑭氩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㌸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㠴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㌸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠″㠶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㤰⸹〷‶㜱⸸ㄠ㌰㌮㠰㤠㘸㌮㔶ㅝਯ䑥獴⁛㈹‰⁒ 塙娠㄰㠠㔸〮㠴㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌲㤮㈰ㄠ㔹㜮ㄸ㐠㌳㘮㘱‶〸⸹㌵崊⽄敳琠嬴‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴㐮㤴㈠㐷㠮㘲㤠㈵㈮㈹ㄠ㐹〮㌷㥝ਯ䑥獴⁛㐠〠删⽘奚‱〸‷㈸⸴㘸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌳⸰〸‴㄰⸸㠳″㔹⸷㈵‴㈲⸶㌴崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‴㜹⸵㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘴⸴㐹‴㄰⸸㠳″㠸⸶㤶‴㈲⸶㌴崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‴㜹⸵㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔶⸰㤸″㤳⸹㐷‴㈴⸹㘶‴〵⸶㤷崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‴㈸⸵㈱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㈸⸲㜹″㤳⸹㐷‴㔱⸶㔳‴〵⸶㤷崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‴㈸⸵㈱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔴⸴㐸″㐳⸱㌷‵〳⸵㜸″㔴⸸㠸崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‵㐷⸵〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〷⸰〴″㈶⸲〱‱㌱⸲㔱″㌷⸹㔱崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‵㐷⸵〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㜰⸵㌹′ㄷ⸷〲‴㜸⸰㐱′㈹⸴㔲崊⽄敳琠嬴‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㌹㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㤸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴〰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰㈠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪਴〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㜮ㄵ㘠ㄶ㜮㠹㘠㈶㐮㜱㈠ㄷ㤮㘴㙝ਯ䑥獴⁛㐠〠删⽘奚‱〸‷㈸⸴㘸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐰㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪਴〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐰㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴〶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਴〷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㐰㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㜮㜶㐠㜱⸶㘹‵〴⸹㤶‸㌮㐲崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐰㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪਴㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐰㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄱ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਴ㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㐱ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㜰㔮㘸㌠ㄳ〮㘶㜠㜱㜮㐳㑝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㐮㈷㠠㜰㔮㘸㌠ㄶ㐮〸㤠㜱㜮㐳㑝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷㐮㐱㤠㘰㐮〶㐠㌳㐮㈵ㄠ㘱㔮㠱㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㜮㘷㘠㘰㐮〶㐠㌶㘮㘱㐠㘱㔮㠱㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄷ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈰㐮㈲㌠㔵㌮㈵㔠㈶㌮㜶㐠㔶㔮〰㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㠮〷㜠㔵㌮㈵㔠㈹㘮㠵ㄠ㔶㔮〰㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌹㠮ㄶ″㈶⸲〱‴〵⸵㤠㌳㜮㤵ㅝਯ䑥獴⁛ㄱ‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ〮㌳㠠㈲㐮㔸㈠ㄸㄮ㠸㠠㈳㘮㌳㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㔲〮㜴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㔮㐰㈠㈲㐮㔸㈠㈰㤮㔸㌠㈳㘮㌳㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㔲〮㜴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㐲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㈲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐲㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴㈴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㄰⸳㐹‶㔴⸸㜴‱㘹⸳㜸‶㘶⸶㈴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‱㌶⸱㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜳⸹㐷‶㔴⸸㜴‱㤸⸱㤴‶㘶⸶㈴崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‱㌶⸱㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㐰⸴㜠㘳㜮㤳㜠㈱㌮㈳㤠㘴㤮㘸㡝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㘸㌮㐲㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㜮㈰㜠㘳㜮㤳㜠㈴ㄮ㐵㐠㘴㤮㘸㡝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㘸㌮㐲㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㔮㜳㌠㘳㜮㤳㜠㌱ㄮ㈱㈠㘴㤮㘸㡝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㈵〮〴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㔮ㄸ‶㌷⸹㌷″㌹⸴㈷‶㐹⸶㠸崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰′㔰⸰㐷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐳⸷〶‶㌷⸹㌷″㤸⸷ㄲ‶㐹⸶㠸崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰′㜵⸵㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〲⸶㠠㘳㜮㤳㜠㐲㘮㤲㜠㘴㤮㘸㡝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㈷㔮㔸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐳ㄮ㈰㜠㘳㜮㤳㜠㔰㌮㔷㠠㘴㤮㘸㡝ਯ䑥獴⁛ㄲ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㘲ㄮ〰ㄠㄳㄮ㈵ㄠ㘳㈮㜵ㅝਯ䑥獴⁛ㄲ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㘮〰ㄠ㘲ㄮ〰ㄠㄷ㘮㔶㤠㘳㈮㜵ㅝਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㄰㔮㠷㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸㄮ〰㠠㘲ㄮ〰ㄠ㈰㔮㈵㔠㘳㈮㜵ㅝਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㄰㔮㠷㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱〮〰㘠㘲ㄮ〰ㄠ㈴㈮㠹㤠㘳㈮㜵ㅝਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㘰㘮㐲㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㜮㌳㠠㘲ㄮ〰ㄠ㈷ㄮ㔸㔠㘳㈮㜵ㅝਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㘰㘮㐲㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㘰㐮㜴㘠㐵〮㌵㘠㘱㔮㌹㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽲楣獩湡牵瑯⽍䕇⵴牡湳晥爭摥捯摩湧⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㐴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘸⸳㠷‴㤴⸵〴‵〴⸹㤶‵〶⸲㔵崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‴㔴⸰㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〷⸰〴‴㜷⸵㘸‱㌰⸰㔲‴㠹⸳ㄸ崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‴㔴⸰㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㌳⸴㠹‴㜷⸵㘸‱㔷⸱㈵‴㠹⸳ㄸ崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‴㔴⸰㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘰⸵㘲‴㜷⸵㘸‱㠴⸱㤸‴㠹⸳ㄸ崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰‴㤶⸹㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㠷⸹㌷‴㜷⸵㘸′㈵⸱㌷‴㠹⸳ㄸ崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰″㘹⸰㈹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈸⸵㜴‴㜷⸵㘸′㔲⸲ㄠ㐸㤮㌱㡝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㌶㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㔮㤵‴㜷⸵㘸″㈹⸸ㄳ‴㠹⸳ㄸ崊⽄敳琠嬱㠠〠删⽘奚‸〮㜲㜰‶〶⸹㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌳⸲㔠㐷㜮㔶㠠㌵㘮㠸㘠㐸㤮㌱㡝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㘰㘮㤹㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶〮㘲㘠㐷㜮㔶㠠㐱㈮ㄹ㜠㐸㤮㌱㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㌵ㄮ㐶㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐱㔮㘳㌠㐷㜮㔶㠠㐳㤮㈶㤠㐸㤮㌱㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠㌵ㄮ㐶㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐴㌮〰㤠㐷㜮㔶㠠㔰㐮㤹㘠㐸㤮㌱㡝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌷㜮㔵㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㐶〮㘳ㄠㄳㄮㄹ㜠㐷㈮㌸㉝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌷㜮㔵㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㔮㌳㜠㐶〮㘳ㄠㄵ㤮㔸㐠㐷㈮㌸㉝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌷㜮㔵㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ㐮〳㘠㐶〮㘳ㄠ㈵㈮㘰㔠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㌸㐮㈵㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㘮㜴㔠㐶〮㘳ㄠ㈸〮㤹㌠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㌸㐮㈵㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㔮㐴㐠㐶〮㘳ㄠ㌲㠮㐴㐠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠ㄷ㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㈮㔸㔠㐶〮㘳ㄠ㌵㘮㠳㈠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠ㄷ㤮〲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶ㄮ㈸㐠㐶〮㘳ㄠ㐲㐮〶㠠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐲㠮㈰㠠㐶〮㘳ㄠ㐵㠮〱㤠㐷㈮㌸㉝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㘰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㐶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㘰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐶㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐶㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴㘲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㤶⸱㔳‷〵⸶㠳‵〳⸶㈲‷ㄷ⸴㌴崊⽄敳琠嬷‰⁒ 塙娠㄰㠠㐱㘮㈹㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐴㜮㘹㈠㔸㜮ㄲ㠠㐵㔮㈴㠠㔹㠮㠷㡝ਯ䑥獴⁛㤷‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㠮㜵㌠㔱㤮㌸㈠㈹㤮㈹㘠㔳ㄮㄳ㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㘷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰㈮㐵㐠㔱㤮㌸㈠㌲㔮㠲㠠㔳ㄮㄳ㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㠰⸷㈷〠ㄸ㤮〷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㠮㤸㘠㔱㤮㌸㈠㌵㈮㌶‵㌱⸱㌲崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㤱⸶㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔵⸸ㄷ‵ㄹ⸳㠲‴㌹⸱㔷‵㌱⸱㌲崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㌱⸹ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐲⸳ㄵ‵ㄹ⸳㠲‴㘵⸶㠹‵㌱⸱㌲崊⽄敳琠嬱㘠〠删⽘奚‸〮㜲㜰′㌱⸹ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘹⸱㐶‵ㄹ⸳㠲‵〴⸹㤶‵㌱⸱㌲崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〷⸰〴‵〲⸴㐵‱㈹⸸㐶‵ㄴ⸱㤶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㌳⸲㐹‵〲⸴㐵‱㘱⸹㤶‵ㄴ⸱㤶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘵⸷‵〲⸴㐵′〶⸱㈷‵ㄴ⸱㤶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‱㜹⸰㈹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〹⸵㌱‵〲⸴㐵′㌲⸹㈷‵ㄴ⸱㤶崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‱㜹⸰㈹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐷㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌶⸶㌠㔰㈮㐴㔠㌱㌮㤱㔠㔱㐮ㄹ㙝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌱㠮㄰㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㜷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㜮㌱㠠㔰㈮㐴㔠㌴〮㜱㔠㔱㐮ㄹ㙝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㠰⸷㈷〠㌱㠮㄰㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴㤮㈱㐠ㄲ㤮㠴㌠㈶㈮㌳㌠ㄴㄮ㔹㍝ਯ䑥獴⁛㤸‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㜹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㐸〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㜹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐸ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴㠱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㔱⸳㘲‱㐶⸰㘴″㔸⸹ㄹ‱㔷⸸ㄵ崊⽄敳琠嬸‰⁒ 塙娠㄰㠠㌴㤮㘱㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㠴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㐸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㠴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐸㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴㠶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐸㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㔴⸸㐱‵ㄲ⸵〲‱㘲⸳㤷‵㈴⸲㔲崊⽄敳琠嬲‰⁒ 塙娠㄰㠠㜲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐸㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㜵⸶㌷‵ㄲ⸵〲‴㠳⸱㤳‵㈴⸲㔲崊⽄敳琠嬸‰⁒ 塙娠㄰㠠㌴㤮㘱㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐹㘮㔶㜠㌹㌮㤴㜠㔰㐮ㄲ㐠㐰㔮㘹㝝ਯ䑥獴⁛㤷‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㤱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㐹㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㤱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐹㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㐹㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‴㤳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐹㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㌴⸵ㄹ‵㈸⸹㐠㐴㈮〳㈠㔴〮㘹ㅝਯ䑥獴⁛㤷‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌴㠮〹㜠㐷㠮ㄳㄠ㌵㔮㐷㤠㐸㤮㠸ㅝਯ䑥獴⁛㤠〠删⽘奚‱〸′㤸⸳〵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐹㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪਴㤸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐹㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㤹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㐹㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ〱‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪ਵ〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄴ㤮㠵‴〸⸰㐷‱㔷⸳㔷‴ㄹ⸷㤸崊⽄敳琠嬱㌹‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㔮㤳㔠㈲ㄮ㜴㘠㌲㌮㐲′㌳⸴㤶崊⽄敳琠嬱㔱‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ〴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔰㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵〴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔰㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵〶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㜴⸷㔱‱㠹⸸㘶‱㠷⸱㠵′〱⸶ㄷ崊⽄敳琠嬱〠〠删⽘奚‱〸‷㈸⸴㘸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈳⸳㈹‱〵⸱㠴″㌶⸲㌠ㄱ㘮㤳㑝ਯ䑥獴⁛ㄷㄠ〠删⽘奚‱〸‴㌳⸸㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳〰⸶㔸‷ㄮ㌱ㄠ㌱㌮㜷㜠㠳⸰㘱崊⽄敳琠嬱〠〠删⽘奚‱〸‷㈸⸴㘸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔱ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵㄳ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔱㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈲㠮㜸‴ㄴ⸷㐵′㠸⸳㔱‴㈶⸴㤵崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㤱⸷㘵‴ㄴ⸷㐵″㈰⸵㘷‴㈶⸴㤵崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄸ⸲㌸″㌰⸰㘲‱㜸⸸㈴″㐱⸸ㄳ崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㠳⸲〱″㌰⸰㘲′ㄲ⸵㈱″㐱⸸ㄳ崊⽄敳琠嬱㔠〠删⽘奚‸〮㜲㜰‷㈵⸹㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔱㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔱㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㈱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔲ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㈳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈳㈮㠹㌠㌳㌮㐴ㄠ㈴〮㌲㤠㌴㔮ㄹㅝਯ䑥獴⁛ㄱ‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㈴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㈴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔲㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㈶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐲⸳㤸‴㌴⸶㤹‵〶⸹〵‴㐶⸴㕝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㌰㤮㔳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ〮㌴㤠㐱㜮㜶㌠ㄳ㐮㔹㘠㐲㤮㔱㍝ਯ䑥獴⁛ㄸ‰⁒ 塙娠㠰⸷㈷〠㌰㤮㔳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㌰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㌰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔳㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㌲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜶⸴〶‵㠷⸱㈸‵〴⸹㤶‵㤸⸸㜸崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‱㠲⸲㘲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〷⸰〴‵㜰⸱㤱‱㌰⸲‵㠱⸹㐲崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‱㠲⸲㘲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔳㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㌳⸶㔸‵㜰⸱㤱‱㔷⸴㘹‵㠱⸹㐲崊⽄敳琠嬱㜠〠删⽘奚‸〮㜲㜰‱㠲⸲㘲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔳㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㌸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔳㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㌹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔳㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㐱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㐱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔴㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㐳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔴㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔴㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㐷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔴㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㐹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔵〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㐹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔵ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㔱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔵㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔵㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㔵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔵㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄵ㈮㠰㌠㔶㜮㈳㈠ㄶ㔮㤲㌠㔷㠮㤸㉝ਯ䑥獴⁛㤸‰⁒ 塙娠㄰㠠㜲㠮㐶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄳ㠮㔱㤠㄰㌮〶㜠ㄵㄮ㔴ㄠㄱ㐮㠱㝝ਯ䑥獴⁛㤸‰⁒ 塙娠㄰㠠㐴㤮㜴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈷〮ㄹ㘠㘹⸱㤴′㠳⸲〷‸〮㤴㑝ਯ䑥獴⁛ㄷㄠ〠删⽘奚‱〸‶㤷⸷㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㔶〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔶〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㘲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㘳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔶㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㘴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔶㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㘴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔶㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㘶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔶㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸰㌮ㄳ⸵㌲㌷㔩㸾敮摯扪ਵ㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㔶㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㜰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪ਵ㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†㔷〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴㈮㤶㌠㈷㈮ㄵ㈠㐰㌮㈶㔠㈸㌮㤰㍝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㜮㘱㔠㈷㈮ㄵ㈠㐳㘮㜹㠠㈸㌮㤰㍝ਯ䑥獴⁛ㄵ‰⁒ 塙娠㠰⸷㈷〠㜲㔮㤷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਵ㜴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮〳⸱㌮㔳㈳㜵⤾㹥湤潢樊㔷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‵㜴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔷㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊㔷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‵㜶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㔸ㄠ〠潢樊㰼⽔祰支䵥瑡摡瑡ਯ卵扴祰支塍䰯䱥湧瑨‱㐳㈾㹳瑲敡洊㰿硰慣步琠扥杩渽⟯뮿✠楤㴧圵䴰䵰䍥桩䡺牥卺乔捺正㥤✿㸊㰿慤潢攭硡瀭晩汴敲猠敳挽≃剌䘢㼾਼砺硭灭整愠硭汮猺砽❡摯扥㩮猺浥瑡⼧⁸㩸浰瑫㴧塍倠瑯潬歩琠㈮㤮ㄭㄳⰠ晲慭敷潲欠ㄮ㘧㸊㱲摦㩒䑆⁸浬湳㩲摦㴧桴瑰㨯⽷睷⹷㌮潲术ㄹ㤹⼰㈯㈲⵲摦⵳祮瑡砭湳⌧⁸浬湳㩩堽❨瑴瀺⼯湳⹡摯扥⹣潭⽩堯ㄮ〯✾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩰摦㴧桴瑰㨯⽮献慤潢攮捯洯灤是ㄮ㌯✾㱰摦㩐牯摵捥爾䝐䰠䝨潳瑳捲楰琠㄰⸰〮〼⽰摦㩐牯摵捥爾਼灤昺䭥祷潲摳㸼⽰摦㩋敹睯牤猾਼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硭瀽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⼧㸼硭瀺䵯摩晹䑡瑥㸲〲㌭㄰ⴲ㡔ㄶ㨲㔺㌶娼⽸浰㩍潤楦祄慴放਼硭瀺䍲敡瑥䑡瑥㸲〲㌭㄰ⴲ㡔ㄶ㨲㔺㌶娼⽸浰㩃牥慴敄慴放਼硭瀺䍲敡瑯牔潯氾䱡呥堠睩瑨⁨祰敲牥昼⽸浰㩃牥慴潲呯潬㸼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硡灍䴽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⽭洯✠硡灍䴺䑯捵浥湴䥄㴧畵楤㨲挹㝡挰昭慤换ⴱㅦ㤭〰〰ⴸㄲ㈳㥦攳搹㠧⼾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩤挽❨瑴瀺⼯灵牬⹯牧⽤振敬敭敮瑳⼱⸱⼧⁤挺景牭慴㴧慰灬楣慴楯港灤昧㸼摣㩴楴汥㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㹉湴敲灲整慢汥⁦畬氭数潣栠浵汴楣污獳⁤散潤楮朠景爠䴯䕅䜼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩴楴汥㸼摣㩣牥慴潲㸼牤昺卥焾㱲摦㩬椾㰯牤昺汩㸼⽲摦㩓敱㸼⽤挺捲敡瑯爾㱤挺摥獣物灴楯渾㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺摥獣物灴楯渾㰯牤昺䑥獣物灴楯渾਼⽲摦㩒䑆㸊㰯砺硭灭整愾ਠ††††††††††††††††††††††††††††††††††† ††††††††††††††††††††††††††††††††††††਼㽸灡捫整⁥湤㴧眧㼾੥湤獴牥慭੥湤潢樊硲敦ਰ‵㠲ਰ〰〰〰〰〠㘵㔳㔠映ਰ〰〰㈵㔰〠〰〰〠渠ਰ〰〰㌳㜰㌠〰〰〠渠ਰ〰〰㌸〴㜠〰〰〠渠ਰ〰〰㐱㜲㠠〰〰〠渠ਰ〰〱㔳㌰㜠〰〰〠渠ਰ〰〱㔹㌴㌠〰〰〠渠ਰ〰〱㘳㔱㠠〰〰〠渠ਰ〰〲〱〵㌠〰〰〠渠ਰ〰〲㈰〴㤠〰〰〠渠ਰ〰〴㐹〶㜠〰〰〠渠ਰ〰〴㔹ㄷ㘠〰〰〠渠ਰ〰〴㤷㌱〠〰〰〠渠ਰ〰〰㈶〶㤠〰〰〠渠ਰ〰〰㈹㜴㘠〰〰〠渠ਰ〰〴㠹㄰㔠〰〰〠渠ਰ〰〴㠱㌵㈠〰〰〠渠ਰ〰〴㠴㤳㜠〰〰〠渠ਰ〰〴㤳㄰〠〰〰〠渠ਰ〰〰㈹㜶㜠〰〰〠渠ਰ〰〰㈹㠲㐠〰〰〠渠ਰ〰〰㌰ㄲ㈠〰〰〠渠ਰ〰〰㌳㘳㜠〰〰〠渠ਰ〰〰㌳㘵㠠〰〰〠渠ਰ〰〰㌴〰〠〰〰〠渠ਰ〰〰㌷㤵㜠〰〰〠渠ਰ〰〰㌷㤷㠠〰〰〠渠ਰ〰〰㌸㈹㘠〰〰〠渠ਰ〰〰㐱㘵〠〰〰〠渠ਰ〰〶㈷㠱㤠〰〰〠渠ਰ〰〰㐱㘷ㄠ〰〰〠渠ਰ〰〰㐱㤶㘠〰〰〠渠ਰ〰〰㔵㐸ㄠ〰〰〠渠ਰ〰〰㔵㔰㌠〰〰〠渠ਰ〰〰㔵㔳㠠〰〰〠渠ਰ〰〰㔵㔸㠠〰〰〠渠ਰ〰〱㌷㤷㤠〰〰〠渠ਰ〰〱㌸〳㤠〰〰〠渠ਰ〰〱㌸㐲㌠〰〰〠渠ਰ〰〱㌸㘴〠〰〰〠渠ਰ〰〱㌸㤸㐠〰〰〠渠ਰ〰〱㌹㈰㐠〰〰〠渠ਰ〰〱㌹㈳㜠〰〰〠渠ਰ〰〱㌹㈸㈠〰〰〠渠ਰ〰〱㌹㌱㔠〰〰〠渠ਰ〰〱㔳㐸㐠〰〰〠渠ਰ〰〱㔷㈳㌠〰〰〠渠ਰ〰〱㔷㈵㐠〰〰〠渠ਰ〰〱㔷㔳㠠〰〰〠渠ਰ〰〱㔷㠰㈠〰〰〠渠ਰ〰〱㔹㔸㐠〰〰〠渠ਰ〰〱㘳㐴〠〰〰〠渠ਰ〰〱㘳㐶ㄠ〰〰〠渠ਰ〰〱㘳㤷㜠〰〰〠渠ਰ〰〱㘹㐰㐠〰〰〠渠ਰ〰〶㌶〶㘠〰〰〠渠ਰ〰〶㌶ㄲ㐠〰〰〠渠ਰ〰〶㌶ㄸ㈠〰〰〠渠ਰ〰〶㌶㔳㠠〰〰〠渠ਰ〰〱㘹㐲㔠〰〰〠渠ਰ〰〶㌶㠵㌠〰〰〠渠ਰ〰〶㌷〳㐠〰〰〠渠ਰ〰〶㌷㐶㤠〰〰〠渠ਰ〰〶㌷㤷㜠〰〰〠渠ਰ〰〶㌸ㄲ㘠〰〰〠渠ਰ〰〶㌸㈸〠〰〰〠渠ਰ〰〶㌸㘳㠠〰〰〠渠ਰ〰〶㌸㤹㐠〰〰〠渠ਰ〰〶㌹〸㤠〰〰〠渠ਰ〰〶㌹㌳㌠〰〰〠渠ਰ〰〶㌹㜸ㄠ〰〰〠渠ਰ〰〶㐰〲ㄠ〰〰〠渠ਰ〰〶㐰ㄵ㌠〰〰〠渠ਰ〰〶㐰㌱㘠〰〰〠渠ਰ〰〶㐰㐶㤠〰〰〠渠ਰ〰〶㐰㠸㌠〰〰〠渠ਰ〰〶㐱〱㔠〰〰〠渠ਰ〰〶㐱㌵㈠〰〰〠渠ਰ〰〶㐱㔷㌠〰〰〠渠ਰ〰〶㐱㠹ㄠ〰〰〠渠ਰ〰〶㐲ㄴ㜠〰〰〠渠ਰ〰〶㐲㐸㈠〰〰〠渠ਰ〰〶㐲㜵㐠〰〰〠渠ਰ〰〶㐳〰㘠〰〰〠渠ਰ〰〶㐳㈳㌠〰〰〠渠ਰ〰〶㐳㈹㔠〰〰〠渠ਰ〰〶㐳㐶㤠〰〰〠渠ਰ〰〶㐳㘱ㄠ〰〰〠渠ਰ〰〱㜰㈲〠〰〰〠渠ਰ〰〶㐴〵㤠〰〰〠渠ਰ〰〶㐴㔱㈠〰〰〠渠ਰ〰〶㐴㜶㠠〰〰〠渠ਰ〰〱㜰㔵㐠〰〰〠渠ਰ〰〱㜰㘱ㄠ〰〰〠渠ਰ〰〱㜰㤴ㄠ〰〰〠渠ਰ〰〱㜱㈳ㄠ〰〰〠渠ਰ〰〱㜴㤴㔠〰〰〠渠ਰ〰〱㜵〱ㄠ〰〰〠渠ਰ〰〵〱㐹〠〰〰〠渠ਰ〰〱㜴㤶㘠〰〰〠渠ਰ〰〱㜵㈱〠〰〰〠渠ਰ〰〱㤹㔹㔠〰〰〠渠ਰ〰〶㐴㤴㌠〰〰〠渠ਰ〰〱㤹㘱㠠〰〰〠渠ਰ〰〶㐵〰㘠〰〰〠渠ਰ〰〶㐵㐶㐠〰〰〠渠ਰ〰〶㐵㠲〠〰〰〠渠ਰ〰〶㐶㈵㤠〰〰〠渠ਰ〰〶㐶㌹㘠〰〰〠渠ਰ〰〶㐶㜴ㄠ〰〰〠渠ਰ〰〶㐶㠰㐠〰〰〠渠ਰ〰〶㐶㤶㐠〰〰〠渠ਰ〰〶㐷ㄴㄠ〰〰〠渠ਰ〰〶㐷㌰ㄠ〰〰〠渠ਰ〰〶㐷㔶㌠〰〰〠渠ਰ〰〶㐷㤰㔠〰〰〠渠ਰ〰〶㐸㈵㈠〰〰〠渠ਰ〰〶㐸㐱ㄠ〰〰〠渠ਰ〰〶㐸㔶㤠〰〰〠渠ਰ〰〶㐸㜳㌠〰〰〠渠ਰ〰〶㐸㤹ㄠ〰〰〠渠ਰ〰〲〰㘲㈠〰〰〠渠ਰ〰〲〰㘹㐠〰〰〠渠ਰ〰〲〱㈶㜠〰〰〠渠ਰ〰〲ㄸ㘲㐠〰〰〠渠ਰ〰〲ㄸ㘴㜠〰〰〠渠ਰ〰〶㐹ㄴ㔠〰〰〠渠ਰ〰〲ㄹ㔰㜠〰〰〠渠ਰ〰〶㐹㌲㐠〰〰〠渠ਰ〰〲ㄹ㘷㘠〰〰〠渠ਰ〰〲ㄹ㜱〠〰〰〠渠ਰ〰〲㈰㈵㔠〰〰〠渠ਰ〰〲㈹㔰㤠〰〰〠渠ਰ〰〲㈹㔳ㄠ〰〰〠渠ਰ〰〶㐹㔲㈠〰〰〠渠ਰ〰〲㌰㌹〠〰〰〠渠ਰ〰〲㌱㈴㤠〰〰〠渠ਰ〰〲㌲ㄳ㠠〰〰〠渠ਰ〰〲㌲㈰㤠〰〰〠渠ਰ〰〲㌳〹㘠〰〰〠渠ਰ〰〲㌳㌵㜠〰〰〠渠ਰ〰〲㜵㌱〠〰〰〠渠ਰ〰〶㐹㘵㘠〰〰〠渠ਰ〰〲㜵㌳㌠〰〰〠渠ਰ〰〲㠱ㄳ㐠〰〰〠渠ਰ〰〶㔰〷〠〰〰〠渠ਰ〰〶㔱〷㈠〰〰〠渠ਰ〰〶㔱㔹ㄠ〰〰〠渠ਰ〰〲㠱㜹㠠〰〰〠渠ਰ〰〲㠷㌲㜠〰〰〠渠ਰ〰〶㔴ㄲㄠ〰〰〠渠ਰ〰〲㠸㔹㔠〰〰〠渠ਰ〰〲㠷㤳㠠〰〰〠渠ਰ〰〲㠷㤹㤠〰〰〠渠ਰ〰〲㠸〳㌠〰〰〠渠ਰ〰〲㠸〹㐠〰〰〠渠ਰ〰〲㠸㠶㐠〰〰〠渠ਰ〰〴㈸〹㤠〰〰〠渠ਰ〰〴㈸ㄲ㌠〰〰〠渠ਰ〰〴㈸㠳㈠〰〰〠渠ਰ〰〴㈹㈴㠠〰〰〠渠ਰ〰〴㈹㘶㜠〰〰〠渠ਰ〰〴㌱〰㌠〰〰〠渠ਰ〰〴㌱㘹㔠〰〰〠渠ਰ〰〴㌸㌶㐠〰〰〠渠ਰ〰〴㌹㘹㌠〰〰〠渠ਰ〰〴㐳㈸㐠〰〰〠渠ਰ〰〴㐳㜹㘠〰〰〠渠ਰ〰〴㐵㘵㈠〰〰〠渠ਰ〰〴㐵㤸㐠〰〰〠渠ਰ〰〴㐷㈸㈠〰〰〠渠ਰ〰〵ㄷ㔲ㄠ〰〰〠渠ਰ〰〴㐸㈸㤠〰〰〠渠ਰ〰〴㐸㌷㘠〰〰〠渠ਰ〰〴㐸㐳㔠〰〰〠渠ਰ〰〴㐸㔳㔠〰〰〠渠ਰ〰〴㐹㈹〠〰〰〠渠ਰ〰〴㔷〴㘠〰〰〠渠ਰ〰〴㔷〶㠠〰〰〠渠ਰ〰〶㔵ㄶ㜠〰〰〠渠ਰ〰〶㔵㔱㈠〰〰〠渠ਰ〰〶㔵㘷㐠〰〰〠渠ਰ〰〴㔷㠰㜠〰〰〠渠ਰ〰〶㔵㠳㐠〰〰〠渠ਰ〰〶㔶㈲㤠〰〰〠渠ਰ〰〴㔸㔵㈠〰〰〠渠ਰ〰〴㔸㘲㌠〰〰〠渠ਰ〰〴㔹㌷㔠〰〰〠渠ਰ〰〴㜱㤵㤠〰〰〠渠ਰ〰〴㜱㤸㈠〰〰〠渠ਰ〰〶㔶㔶ㄠ〰〰〠渠ਰ〰〴㜲㠴㘠〰〰〠渠ਰ〰〴㜲㠹㈠〰〰〠渠ਰ〰〴㜳㈲㜠〰〰〠渠ਰ〰〴㜳㐱㘠〰〰〠渠ਰ〰〴㜷㈹〠〰〰〠渠ਰ〰〴㜷㌱㈠〰〰〠渠ਰ〰〴㜷㌵㠠〰〰〠渠ਰ〰〴㜷㔵㔠〰〰〠渠ਰ〰〴㠱㈷ㄠ〰〰〠渠ਰ〰〴㠱㈹㌠〰〰〠渠ਰ〰〴㠱㔲㐠〰〰〠渠ਰ〰〴㠴㠴㌠〰〰〠渠ਰ〰〶㔶㜱㜠〰〰〠渠ਰ〰〶㔷㈴㐠〰〰〠渠ਰ〰〴㠴㠶㔠〰〰〠渠ਰ〰〴㠵㄰㤠〰〰〠渠ਰ〰〴㠹〲㐠〰〰〠渠ਰ〰〴㠹〴㘠〰〰〠渠ਰ〰〴㠹㈷㜠〰〰〠渠ਰ〰〴㤳〱㤠〰〰〠渠ਰ〰〴㤳〴ㄠ〰〰〠渠ਰ〰〴㤳㈷㈠〰〰〠渠ਰ〰〴㤷㈲㤠〰〰〠渠ਰ〰〴㤷㈵ㄠ〰〰〠渠ਰ〰〴㤷㔰㘠〰〰〠渠ਰ〰〵〱㌹㘠〰〰〠渠ਰ〰〵〱㐱㠠〰〰〠渠ਰ〰〵〱㘸ㄠ〰〰〠渠ਰ〰〵ㄳ㠴㈠〰〰〠渠ਰ〰〵ㄳ㠶㔠〰〰〠渠ਰ〰〶㔷㘸㤠〰〰〠渠ਰ〰〵ㄴ㜹ㄠ〰〰〠渠ਰ〰〵ㄵ㘵〠〰〰〠渠ਰ〰〵ㄶ㔳㤠〰〰〠渠ਰ〰〵ㄶ㘲㌠〰〰〠渠ਰ〰〵ㄷ㜶㘠〰〰〠渠ਰ〰〶〶〴㤠〰〰〠渠ਰ〰〶〶〷㈠〰〰〠渠ਰ〰〶ㄱ㠷㌠〰〰〠渠ਰ〰〶ㄲ㔳㜠〰〰〠渠ਰ〰〶ㄳ㠱㤠〰〰〠渠ਰ〰〶ㄸㄷㄠ〰〰〠渠ਰ〰〶ㄸ㠴㠠〰〰〠渠ਰ〰〶ㄹ㜸ㄠ〰〰〠渠ਰ〰〶㈵㌱〠〰〰〠渠ਰ〰〶㈵㤲ㄠ〰〰〠渠ਰ〰〶㈶㘳〠〰〰〠渠ਰ〰〶㈶㜱㜠〰〰〠渠ਰ〰〶㈶㜷㘠〰〰〠渠ਰ〰〶㈶㠵〠〰〰〠渠ਰ〰〶㈸〲㘠〰〰〠渠ਰ〰〶㌴㠱㌠〰〰〠渠ਰ〰〶㌴㠳㔠〰〰〠渠ਰ〰〶㌵㘸㌠〰〰〠渠ਰ〰〶㌵㜵㐠〰〰〠渠ਰ〰〱㔷㠷ㄠ〰〰〠渠ਰ〰〶㔷㤱㐠〰〰〠渠ਰ〰〶㘱㜱㠠〰〰〠渠ਰ〰〱㌹㌹㘠〰〰〠渠ਰ〰〱㐷㤶㔠〰〰〠渠ਰ〰〵ㄶ㜰㠠〰〰〠渠ਰ〰〴㜲㤶㐠〰〰〠渠ਰ〰〴㐸㘰㜠〰〰〠渠ਰ〰〶㈶㤴㠠〰〰〠渠ਰ〰〲㠸ㄶ㘠〰〰〠渠ਰ〰〵ㄶ㤹〠〰〰〠渠ਰ〰〲㌲㌰㘠〰〰〠渠ਰ〰〲㌲㔶㔠〰〰〠渠ਰ〰〲ㄹ㜸ㄠ〰〰〠渠ਰ〰〱㜰㘹㈠〰〰〠渠ਰ〰〶㈷ㄵ㐠〰〰〠渠ਰ〰〴㔸㜰㠠〰〰〠渠ਰ〰〵ㄷ㈶㈠〰〰〠渠ਰ〰〶㘸㤹ㄠ〰〰〠渠ਰ〰〲㠸㌷㈠〰〰〠渠ਰ〰〶㌵㠱㌠〰〰〠渠ਰ〰〶㈷㌷㌠〰〰〠渠ਰ〰〴㔸㤴㐠〰〰〠渠ਰ〰〲㌲㠲㐠〰〰〠渠ਰ〰〲〰㜵㌠〰〰〠渠ਰ〰〶㈷㔹㘠〰〰〠渠ਰ〰〴㐸㠴〠〰〰〠渠ਰ〰〶㘹㘴㠠〰〰〠渠ਰ〰〶㘹㘷〠〰〰〠渠ਰ〰〶㘹㘹㈠〰〰〠渠ਰ〰〶㘹㜱㐠〰〰〠渠ਰ〰〶㘹㜳㘠〰〰〠渠ਰ〰〶㘹㜵㠠〰〰〠渠ਰ〰〶㘹㜸〠〰〰〠渠ਰ〰〶㘹㠰㈠〰〰〠渠ਰ〰〶㘹㠲㐠〰〰〠渠ਰ〰〶㘹㠴㘠〰〰〠渠ਰ〰〶㘹㠶㠠〰〰〠渠ਰ〰〶㘹㠹〠〰〰〠渠ਰ〰〶㘹㤱㈠〰〰〠渠ਰ〰〶㘹㤳㐠〰〰〠渠ਰ〰〶㘹㤵㘠〰〰〠渠ਰ〰〶㘹㤷㠠〰〰〠渠ਰ〰〶㜰〰〠〰〰〠渠ਰ〰〶㜰〲㈠〰〰〠渠ਰ〰〶㜰〹㜠〰〰〠渠ਰ〰〶㜰㈰㌠〰〰〠渠ਰ〰〶㜰㈸㌠〰〰〠渠ਰ〰〶㜰㌸㤠〰〰〠渠ਰ〰〶㜰㔴㤠〰〰〠渠ਰ〰〶㜰㜰㤠〰〰〠渠ਰ〰〶㜰㠶㠠〰〰〠渠ਰ〰〶㜱〲㠠〰〰〠渠ਰ〰〶㜱ㄸ㠠〰〰〠渠ਰ〰〶㜱㌴㠠〰〰〠渠ਰ〰〶㜱㔰㠠〰〰〠渠ਰ〰〶㜱㘶㠠〰〰〠渠ਰ〰〶㜱㠲㠠〰〰〠渠ਰ〰〶㜱㤸㠠〰〰〠渠ਰ〰〶㜲ㄴ㜠〰〰〠渠ਰ〰〶㜲㌰㜠〰〰〠渠ਰ〰〶㜲㐶㜠〰〰〠渠ਰ〰〶㜲㘲㜠〰〰〠渠ਰ〰〶㜲㜸㜠〰〰〠渠ਰ〰〶㜲㤴㜠〰〰〠渠ਰ〰〶㜳㄰㜠〰〰〠渠ਰ〰〶㜳㈶㜠〰〰〠渠ਰ〰〶㜳㐲㜠〰〰〠渠ਰ〰〶㜳㔸㜠〰〰〠渠ਰ〰〶㜳㜴㜠〰〰〠渠ਰ〰〶㜳㤰㜠〰〰〠渠ਰ〰〶㜴〶㜠〰〰〠渠ਰ〰〶㜴㈲㜠〰〰〠渠ਰ〰〶㜴㌸㜠〰〰〠渠ਰ〰〶㜴㔴㜠〰〰〠渠ਰ〰〶㜴㜰㜠〰〰〠渠ਰ〰〶㜴㠶㜠〰〰〠渠ਰ〰〶㜵〲㜠〰〰〠渠ਰ〰〶㜵ㄸ㌠〰〰〠渠ਰ〰〶㜵㌴㌠〰〰〠渠ਰ〰〶㜵㔰㌠〰〰〠渠ਰ〰〶㜵㘶㌠〰〰〠渠ਰ〰〶㜵㠲㌠〰〰〠渠ਰ〰〶㜵㤸ㄠ〰〰〠渠ਰ〰〶㜶ㄴㄠ〰〰〠渠ਰ〰〶㜶㌰ㄠ〰〰〠渠ਰ〰〶㜶㐶ㄠ〰〰〠渠ਰ〰〶㜶㘲ㄠ〰〰〠渠ਰ〰〶㜶㜸ㄠ〰〰〠渠ਰ〰〶㜶㤴ㄠ〰〰〠渠ਰ〰〶㜷㄰ㄠ〰〰〠渠ਰ〰〶㜷㈶〠〰〰〠渠ਰ〰〶㜷㐲〠〰〰〠渠ਰ〰〶㜷㔷㤠〰〰〠渠ਰ〰〶㜷㜳㤠〰〰〠渠ਰ〰〶㜷㠹㤠〰〰〠渠ਰ〰〶㜸〵㤠〰〰〠渠ਰ〰〶㜸㈱㠠〰〰〠渠ਰ〰〶㜸㌷㘠〰〰〠渠ਰ〰〶㜸㐵ㄠ〰〰〠渠ਰ〰〶㜸㔵㜠〰〰〠渠ਰ〰〶㜸㘳㜠〰〰〠渠ਰ〰〶㜸㜴㌠〰〰〠渠ਰ〰〶㜸㤰㈠〰〰〠渠ਰ〰〶㜹〶㈠〰〰〠渠ਰ〰〶㜹㈲㈠〰〰〠渠ਰ〰〶㜹㌸㈠〰〰〠渠ਰ〰〶㜹㔴㈠〰〰〠渠ਰ〰〶㜹㜰㈠〰〰〠渠ਰ〰〶㜹㠶㈠〰〰〠渠ਰ〰〶㠰〲㈠〰〰〠渠ਰ〰〶㠰ㄸ㈠〰〰〠渠ਰ〰〶㠰㌴㈠〰〰〠渠ਰ〰〶㠰㔰ㄠ〰〰〠渠ਰ〰〶㠰㘶〠〰〰〠渠ਰ〰〶㠰㠱㠠〰〰〠渠ਰ〰〶㠰㤷㘠〰〰〠渠ਰ〰〶㠱ㄳ㐠〰〰〠渠ਰ〰〶㠱㈹㈠〰〰〠渠ਰ〰〶㠱㌶㜠〰〰〠渠ਰ〰〶㠱㐷㌠〰〰〠渠ਰ〰〶㠱㔵㌠〰〰〠渠ਰ〰〶㠱㘵㤠〰〰〠渠ਰ〰〶㠱㠱㠠〰〰〠渠ਰ〰〶㠱㤷㜠〰〰〠渠ਰ〰〶㠲ㄳ㘠〰〰〠渠ਰ〰〶㠲㈹㔠〰〰〠渠ਰ〰〶㠲㐵㔠〰〰〠渠ਰ〰〶㠲㘱㔠〰〰〠渠ਰ〰〶㠲㜷㔠〰〰〠渠ਰ〰〶㠲㤳㔠〰〰〠渠ਰ〰〶㠳〹㐠〰〰〠渠ਰ〰〶㠳㈵㌠〰〰〠渠ਰ〰〶㠳㐱㈠〰〰〠渠ਰ〰〶㠳㔷㈠〰〰〠渠ਰ〰〶㠳㜳㈠〰〰〠渠ਰ〰〶㠳㠹〠〰〰〠渠ਰ〰〶㠴〴㠠〰〰〠渠ਰ〰〶㠴㈶㌠〰〰〠渠ਰ〰〶㠴㌳㠠〰〰〠渠ਰ〰〶㠴㐴㐠〰〰〠渠ਰ〰〶㠴㔲㐠〰〰〠渠ਰ〰〶㠴㘳〠〰〰〠渠ਰ〰〶㠴㜸㔠〰〰〠渠ਰ〰〶㠴㤳㤠〰〰〠渠ਰ〰〶㠵〹㐠〰〰〠渠ਰ〰〶㠵㈵㐠〰〰〠渠ਰ〰〶㠵㐱㐠〰〰〠渠ਰ〰〶㠵㔷㐠〰〰〠渠ਰ〰〶㠵㜳㐠〰〰〠渠ਰ〰〶㠵㠹㐠〰〰〠渠ਰ〰〶㠶〵㐠〰〰〠渠ਰ〰〶㠶㈰㤠〰〰〠渠ਰ〰〶㠶㈸㐠〰〰〠渠ਰ〰〶㠶㌹〠〰〰〠渠ਰ〰〶㠶㐷〠〰〰〠渠ਰ〰〶㠶㔷㘠〰〰〠渠ਰ〰〶㠹㜷㔠〰〰〠渠ਰ〰〶㠹㤳〠〰〰〠渠ਰ〰〶㤰〰㔠〰〰〠渠ਰ〰〶㤰ㄱㄠ〰〰〠渠ਰ〰〶㤰ㄹㄠ〰〰〠渠ਰ〰〶㤰㈹㜠〰〰〠渠ਰ〰〶㤰㐵㐠〰〰〠渠ਰ〰〶㤰㔲㤠〰〰〠渠ਰ〰〶㤰㘳㔠〰〰〠渠ਰ〰〶㤰㜱㔠〰〰〠渠ਰ〰〶㤰㠲ㄠ〰〰〠渠ਰ〰〶㤰㤸ㄠ〰〰〠渠ਰ〰〶㤱ㄴㄠ〰〰〠渠ਰ〰〶㤱㌰ㄠ〰〰〠渠ਰ〰〶㤱㐶ㄠ〰〰〠渠ਰ〰〶㤱㘲ㄠ〰〰〠渠ਰ〰〶㤱㜸ㄠ〰〰〠渠ਰ〰〶㤱㤳㔠〰〰〠渠ਰ〰〶㤲〹㔠〰〰〠渠ਰ〰〶㤲㈵㔠〰〰〠渠ਰ〰〶㤲㌳〠〰〰〠渠ਰ〰〶㤲㐳㘠〰〰〠渠ਰ〰〶㤲㔱㘠〰〰〠渠ਰ〰〶㤲㘲㈠〰〰〠渠ਰ〰〶㤲㜸㈠〰〰〠渠ਰ〰〶㤲㤴㈠〰〰〠渠ਰ〰〶㤳㄰ㄠ〰〰〠渠ਰ〰〶㤳㈶ㄠ〰〰〠渠ਰ〰〶㤳㐲ㄠ〰〰〠渠ਰ〰〶㤳㔸〠〰〰〠渠ਰ〰〶㤳㜴〠〰〰〠渠ਰ〰〶㤳㠹㤠〰〰〠渠ਰ〰〶㤴〵㤠〰〰〠渠ਰ〰〶㤴㈱㤠〰〰〠渠ਰ〰〶㤴㌷㤠〰〰〠渠ਰ〰〶㤴㔳㤠〰〰〠渠ਰ〰〶㤴㘹㤠〰〰〠渠ਰ〰〶㤴㠵㤠〰〰〠渠ਰ〰〶㤵〶㈠〰〰〠渠ਰ〰〶㤵㈲㈠〰〰〠渠ਰ〰〶㤵㌸㈠〰〰〠渠ਰ〰〶㤵㔴㈠〰〰〠渠ਰ〰〶㤵㜰㈠〰〰〠渠ਰ〰〶㤵㠶㈠〰〰〠渠ਰ〰〶㤶〲ㄠ〰〰〠渠ਰ〰〶㤶ㄸ〠〰〰〠渠ਰ〰〶㤶㌳㤠〰〰〠渠ਰ〰〶㤶㐹㤠〰〰〠渠ਰ〰〶㤶㘵㤠〰〰〠渠ਰ〰〶㤶㠱㤠〰〰〠渠ਰ〰〶㤶㤷㤠〰〰〠渠ਰ〰〶㤷ㄳ㤠〰〰〠渠ਰ〰〶㤷㈹㤠〰〰〠渠ਰ〰〶㤷㐵㤠〰〰〠渠ਰ〰〶㤷㘱㤠〰〰〠渠ਰ〰〶㤷㜷㤠〰〰〠渠ਰ〰〶㤷㤳㤠〰〰〠渠ਰ〰〶㤸〹㤠〰〰〠渠ਰ〰〶㤸ㄷ㐠〰〰〠渠ਰ〰〶㤸㈸〠〰〰〠渠ਰ〰〶㤸㌶〠〰〰〠渠ਰ〰〶㤸㐶㘠〰〰〠渠ਰ〰〶㤸㘲ㄠ〰〰〠渠ਰ〰〶㤸㜷㜠〰〰〠渠ਰ〰〶㤸㤳㜠〰〰〠渠ਰ〰〶㤹〹㜠〰〰〠渠ਰ〰〶㤹㈵㘠〰〰〠渠ਰ〰〶㤹㐱㘠〰〰〠渠ਰ〰〶㤹㔷㘠〰〰〠渠ਰ〰〶㤹㜳㘠〰〰〠渠ਰ〰〶㤹㠹㘠〰〰〠渠ਰ〰〷〰〵㘠〰〰〠渠ਰ〰〷〰㈱㐠〰〰〠渠ਰ〰〷〰㌷㐠〰〰〠渠ਰ〰〷〰㔳㌠〰〰〠渠ਰ〰〷〰㘹㌠〰〰〠渠ਰ〰〷〰㠴㤠〰〰〠渠ਰ〰〷〰㤲㐠〰〰〠渠ਰ〰〷〱〳〠〰〰〠渠ਰ〰〷〱ㄱ〠〰〰〠渠ਰ〰〷〱㈱㘠〰〰〠渠ਰ〰〷〱㌷ㄠ〰〰〠渠ਰ〰〷〱㐴㘠〰〰〠渠ਰ〰〷〱㔵㈠〰〰〠渠ਰ〰〷〱㘳㈠〰〰〠渠ਰ〰〷〱㜳㠠〰〰〠渠ਰ〰〷〱㠸㠠〰〰〠渠ਰ〰〷〲〴㌠〰〰〠渠ਰ〰〷〲ㄹ㤠〰〰〠渠ਰ〰〷〲㈷㐠〰〰〠渠ਰ〰〷〲㌸〠〰〰〠渠ਰ〰〷〲㐶〠〰〰〠渠ਰ〰〷〲㔶㘠〰〰〠渠ਰ〰〷〲㜲ㄠ〰〰〠渠ਰ〰〷〲㠷㘠〰〰〠渠ਰ〰〷〲㤵ㄠ〰〰〠渠ਰ〰〷〳〵㜠〰〰〠渠ਰ〰〷〳ㄳ㜠〰〰〠渠ਰ〰〷〳㈴㌠〰〰〠渠ਰ〰〷〳㈹㤠〰〰〠渠ਰ〰〷〳㐵㔠〰〰〠渠ਰ〰〷〳㘱ㄠ〰〰〠渠ਰ〰〷〳㘸㘠〰〰〠渠ਰ〰〷〳㜹㈠〰〰〠渠ਰ〰〷〳㠷㈠〰〰〠渠ਰ〰〷〳㤷㠠〰〰〠渠ਰ〰〷〴ㄳ㐠〰〰〠渠ਰ〰〷〴㈹〠〰〰〠渠ਰ〰〷〴㐴㐠〰〰〠渠ਰ〰〷〴㔱㤠〰〰〠渠ਰ〰〷〴㘲㔠〰〰〠渠ਰ〰〷〴㜰㔠〰〰〠渠ਰ〰〷〴㠱ㄠ〰〰〠渠ਰ〰〷〴㤷〠〰〰〠渠ਰ〰〷〵ㄳ〠〰〰〠渠ਰ〰〷〵㈹〠〰〰〠渠ਰ〰〷〵㐵〠〰〰〠渠ਰ〰〷〵㔲㔠〰〰〠渠ਰ〰〷〵㘳ㄠ〰〰〠渠ਰ〰〷〵㜱ㄠ〰〰〠渠ਰ〰〷〵㠱㜠〰〰〠渠ਰ〰〷〵㤷㌠〰〰〠渠ਰ〰〷〶〴㠠〰〰〠渠ਰ〰〷〶ㄵ㐠〰〰〠渠ਰ〰〷〶㈳㐠〰〰〠渠ਰ〰〷〶㌴〠〰〰〠渠ਰ〰〷〶㐹㤠〰〰〠渠ਰ〰〷〶㘵㤠〰〰〠渠ਰ〰〷〶㜳㐠〰〰〠渠ਰ〰〷〶㠴〠〰〰〠渠ਰ〰〷〶㤲〠〰〰〠渠ਰ〰〷〷〲㘠〰〰〠渠ਰ〰〷〷ㄸ㘠〰〰〠渠ਰ〰〷〷㌴㐠〰〰〠渠ਰ〰〷〷㔰㐠〰〰〠渠ਰ〰〷〷㔷㤠〰〰〠渠ਰ〰〷〷㘸㔠〰〰〠渠ਰ〰〷〷㜶㔠〰〰〠渠ਰ〰〷〷㠷ㄠ〰〰〠渠ਰ〰〷〷㤴㘠〰〰〠渠ਰ〰〷〸〵㈠〰〰〠渠ਰ〰〷〸ㄳ㈠〰〰〠渠ਰ〰〷〸㈳㠠〰〰〠渠ਰ〰〷〸㌱㌠〰〰〠渠ਰ〰〷〸㐱㤠〰〰〠渠ਰ〰〷〸㐹㤠〰〰〠渠ਰ〰〷〸㘰㔠〰〰〠渠ਰ〰〷〸㘸〠〰〰〠渠ਰ〰〷〸㜸㘠〰〰〠渠ਰ〰〷〸㠶㘠〰〰〠渠ਰ〰〷〸㤷㈠〰〰〠渠ਰ〰〷〹〴㜠〰〰〠渠ਰ〰〷〹ㄵ㌠〰〰〠渠ਰ〰〷〹㈳㌠〰〰〠渠ਰ〰〷〹㌳㤠〰〰〠渠ਰ〰〷〹㐹㔠〰〰〠渠ਰ〰〷〹㘵ㄠ〰〰〠渠ਰ〰〷〹㠰㘠〰〰〠渠ਰ〰〷〹㠸ㄠ〰〰〠渠ਰ〰〷〹㤸㜠〰〰〠渠ਰ〰〷㄰〶㜠〰〰〠渠ਰ〰〷㄰ㄷ㌠〰〰〠渠ਰ〰〷㄰㈴㠠〰〰〠渠ਰ〰〷㄰㌵㐠〰〰〠渠ਰ〰〷㄰㐳㐠〰〰〠渠ਰ〰〷㄰㔴〠〰〰〠渠ਰ〰〷㄰㘱㔠〰〰〠渠ਰ〰〷㄰㜲ㄠ〰〰〠渠ਰ〰〷㄰㠰ㄠ〰〰〠渠ਰ〰〷㄰㤰㜠〰〰〠渠ਰ〰〷ㄱ〶㜠〰〰〠渠ਰ〰〷ㄱ㈲㜠〰〰〠渠ਰ〰〷ㄱ㌰㈠〰〰〠渠ਰ〰〷ㄱ㐰㠠〰〰〠渠ਰ〰〷ㄱ㐸㠠〰〰〠渠ਰ〰〶㘹〷㔠〰〰〠渠ਰ〰〶㘹㌲㤠〰〰〠渠ਰ〰〶㘹㔷ㄠ〰〰〠渠ਰ〰〷ㄱ㔹㐠〰〰〠渠ੴ牡楬敲਼㰯卩穥‵㠲㸾ੳ瑡牴硲敦ਲ㈱ਥ╅但�

