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ABSTRACT 

RNA structural switches are key regulators of gene expression in bacteria, yet their 

characterization in Metazoa remains limited. Here we present SwitchSeeker, a comprehensive 

computational and experimental approach for systematic identification of functional RNA structural 

switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA 

switches. To validate our approach, we characterized a previously unknown RNA switch in the 39UTR 

of the RORC transcript. In vivo DMS-MaPseq, coupled with cryogenic electron microscopy, confirmed 
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its existence as two alternative structural conformations. Furthermore, we used genome-scale 

CRISPR screens to identify trans factors that regulate gene expression through this RNA structural 

switch. We found that nonsense-mediated mRNA decay acts on this element in a conformation-

specific manner. SwitchSeeker provides an unbiased, experimentally-driven method for discovering 

RNA structural switches that shape the eukaryotic gene expression landscape. 

INTRODUCTION 

Gene expression is regulated at the RNA level in all kingdoms of life. The two oldest groups of 

RNA-based regulatory mechanisms are ribozymes (catalytically active RNA molecules) and RNA 

structural switches (or riboswitches). RNA switches are regulatory elements that control gene 

expression by direct binding of a small-molecule ligand or other trans-acting factor. In bacteria, RNA 

switches are one of the most widely observed mechanisms for gene expression control. Classic 

bacterial riboswitches bind small molecule ligands directly, inducing a conformational change, leading 

to modulation of expression of the host transcript (Serganov and Nudler 2013). The search for such 

ligand-binding riboswitches in eukaryotes has had limited success to date. Just two human examples 

are known: the RNA switch in VEGFA and the m6A modification-based switches (Liu et al. 2015; Ray 

et al. 2009), and it remains unclear how widely this regulatory mechanism impacts gene expression in 

higher eukaryotes despite its ubiquity in other domains of life. Here, we introduce SwitchSeeker, a 

systematic, computational and experimental framework for unbiased discovery of RNA structural 

switches across any transcriptome. 

While several RNA switch detection software packages have been developed, most identify new 

switch sequences based on their homology to one of the 40 known RNA switch families (Kalvari et al. 

2021). Several tools for de novo discovery of RNA switches have been developed; however, their 

predictions often lack experimental verification of both structure and function (Barsacchi et al. 2016; 

Manzourolajdad and Arnold 2015). Therefore, there is a need for scalable methods of detecting 

eukaryotic RNA switches and assessing the extent to which they carry out regulatory functions in 

gene expression control. Our approach relies on integrating multiple computational and experimental 

methods, where RNA switches are first predicted in silico, then structurally and functionally 

characterized in vivo, which in turn informs the next iteration of in silico predictions. First, we 

developed a computational model for de novo RNA switch detection, named SwitchFinder 3 a 

component of our SwitchSeeker framework. We showed that SwitchFinder identifies RNA switches 

from novel families with higher accuracy than the existing models. We applied SwitchFinder to the 

human transcriptome to select putative RNA switches. We then used massively parallel assays in vivo 

to interrogate both the structure and function of these candidate elements. By iteratively improving the 
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SwitchFinder predictions with experimental data, we reported ~250 high-confidence and functional 

RNA structural switches.  

Finally, we selected the top scoring switch, located in the 39UTR of the RORC transcript, for 

further analysis and dissection. We used DMS-MaPseq structural probing and single-particle 

cryogenic electron microscopy (cryo-EM) to confirm that the predicted switch populates alternate 

molecular conformations. We then performed genome-scale CRISPR-interference (CRISPRi) 

screens, which revealed that one of the two conformations reduces gene expression through 

activation of the non-canonical nonsense-mediated decay (NMD) pathway. Taken together, our 

framework provides new insights into the role of RNA structural switches in shaping the transcriptome 

in human cells, and outlines a broader approach for future characterization of RNA switches 

regulating eukaryotic gene expression control across cell types.  

RESULTS 

Systematic annotation of human RNA structural switches 

We first set out to identify RNA sequences that exist in multiple structural conformations. For 

this, we developed SwitchFinder, a tool that predicts whether an RNA sequence contains putative 

RNA structural switches. We designed SwitchFinder to satisfy several criteria: first, it should predict if 

a given RNA sequence contains a potential RNA switch and suggest the two mutually exclusive 

folding conformations (examples are shown in Fig. 1A, Suppl. Fig. 1A). Secondly, it should be able to 

effectively capture a more generalizable definition of RNA switches in order to find instances beyond 

the 40 known RNA switch families (Kalvari et al. 2021) (for example, the human RNA switch in 

VEGFA gene, Fig. 1A (Ray et al. 2009)). Thirdly, it should allow for seamless integration of 

experimental data to improve predictions. This is especially important as mRNA secondary structure 

in the cell is shown to be highly dynamic (Mortimer, Kidwell, and Doudna 2014; Rouskin et al. 2014) 

and compartment-dependent (Sun et al. 2019); therefore, the predictions can be greatly improved with 

in vivo secondary structure probing data.  

To discover new families of RNA switches, we aimed to design an approach that does not rely 

on known sequence motifs, which has been the case for most published software (Wheeler and Eddy 

2013; Nawrocki and Eddy 2013; Bengert and Dandekar 2004; Abreu-Goodger and Merino 2005; 

Chang et al. 2009; Mukherjee and Sengupta 2016). Instead, SwitchFinder uses the sequence to 

generate an ensemble of secondary structures and their corresponding energy landscape using a 

Boltzmann equilibrium probability distribution (Ding and Lawrence 2003). It then prioritizes those 

sequences that show RNA switch-like features, such as having two local minima in close proximity 
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with a relatively small barrier in between (Suppl. Fig. 1B). This approach ensures that RNA switches 

are described in a generalizable and family-agnostic way. We demonstrated this point by holding 

individual Rfam families out of the training set and testing whether SwitchFinder would predict the 

switches correctly (Suppl. Fig. 1C). We observed high performance metrics across all held-out 

families as measured by the Area Under the Receiver Operating Characteristic curve (AUROC) 

values (Fig. 1B). We further compared the performance of SwitchFinder to SwiSpot, the state-of-the-

art method for family-agnostic riboswitch prediction (Barsacchi et al. 2016), and observed significant 

improvement of performance across all but one common RNA switch families (Fig. 1C). By relying on 

biophysical features of the folding energy landscape as opposed to sequence features, SwitchFinder 

captures a wider variety of RNA switches compared to the existing methods. 

In addition to primary sequence, we use RNA secondary structure probing data, when available, 

to improve SwitchFinder predictions by updating the energy terms of the model. Eukaryotic genomes 

are large, therefore the models for RNA structural element prediction need to show very high 

specificity to limit the number of false-positives. Such specificity is difficult to reach by relying on in 

silico RNA folding alone, since RNAs can fold differently in vivo and even as a function of cellular 

state (Beaudoin et al. 2018). However, it is possible to achieve higher specificity if the RNA secondary 

structure is first probed in vivo and the model is then guided by this data. Therefore, we designed 

SwitchFinder to have an option to update the energy landscape based on RNA secondary structure 

data (see Methods) and used this functionality to improve our RNA switch predictions iteratively. We 

named this iterative framework SwitchSeeker. First, we applied the SwitchFinder model using the 

naive in silico folding to the entirety of the 39 untranslated regions (39UTR) of the human 

transcriptome, and chose the 3,750 top candidate switches (of length <= 186 nucleotides) as putative 

elements. We then probed the secondary structure and function of these candidate RNA switches 

using two high-throughput in vivo screens and fed the resulting structural data into a second iteration 

of SwitchFinder, which yielded 1,454 high-confidence predictions. Further functional and biochemical 

validation was carried out in vivo (Fig. 2A).   

Discovery of RNA switches with regulatory function in the human transcriptome 

To identify the RNA switches that are both functional and structurally bistable in the cell, we 

independently performed two high-throughput in vivo screens, which we call the <structure screen= 

and the <functional screen=, respectively. The structure screen differentiates RNAs that exist as an 

ensemble of two mutually exclusive conformations from those that reside only in a single 

conformation. The functional screen measures the effect of candidate RNA switches on the 

expression of a reporter gene. Integrating data from the two screens allowed us to identify the putative 

RNA switches that are regulatorily active and act as switches in vivo. Together with the computational 
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module SwitchFinder, these high-throughput screening strategies comprise the integrated platform 

SwitchSeeker. 

Large-scale RNA secondary structure probing for improved RNA structural switch predictions 

We performed an in vivo RNA structure screen using DMS-MaPseq to identify bi-stable RNA 

structures in the initial pool of 3,750 candidate switches (Zubradt et al. 2017; Mortimer et al. 2012). 

DMS preferentially modifies unpaired nucleotides resulting in substitutions of adenines and cytosines 

during the reverse transcription process (Suppl. Fig. 2A). Once the cDNA library is sequenced, the 

substitution frequency at a given position provides an estimate of nucleotide accessibility, which is 

typically lower for paired nucleotides versus unpaired. Applying this method to cells expressing the 

library of candidate RNA switches in a reporter gene context allowed us to collect targeted 

accessibility measurements with single-nucleotide resolution across all 3,750 candidate RNA switches 

(Suppl. Fig. 2B,C). 

The accessibility of a single nucleotide is a population average of multiple RNA molecules that 

represent different minima in the RNA folding conformation ensemble. If one conformation dominates 

within the ensemble, it dominates the DMS-MaPseq reactivity profile; however, if multiple 

conformations co-exist, they all contribute to the reactivity profile (Morandi et al. 2021; Tomezsko et 

al. 2020). SwitchSeeker exploits this distinction in nucleotide accessibility to find RNA switches that 

coexist in a balanced state between two conformations in vivo. 

Massively parallel reporter assays identify RNA switches with in vivo regulatory functions 

We simultaneously sought to explore the potential role of the identified RNA switches in 

regulating gene expression. We implemented a massively parallel reporter assay (MPRA) 

(Oikonomou, Goodarzi, and Tavazoie 2014) to functionally interrogate RNA switches in vivo 

(<functional screen=). For this, we tested whether a given RNA switch placed in a 39 UTR can affect 

expression of its host mRNA (in this case the eGFP ORF), compared to a control scrambled 

sequence. We cloned a library of 3,750 candidate RNA switch sequences into a dual eGFP-mCherry 

fluorescent reporter vector, directly downstream of the eGFP ORF (Suppl. Fig. 2D). We used eGFP 

fluorescence to measure the effect of candidate RNA switches on gene expression, and we used 

mCherry fluorescence as an endogenous control. We transduced HEK293 cells with this synthetic 

library, used flow-cytometry to sort cells by eGFP/mCherry expression ratio, and sequenced the 

genomic DNA and RNA from the resulting eight pools of cells (Suppl. Fig. 2E, see Methods). Of the 

candidate RNA switches tested, 536 (14%) showed significant downregulation relative to their 

scrambled control, and 538 (14%) showed a significant upregulation. We have included 

representative candidates with repressive, neutral, or activating function in Fig. 2B. While our study 
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focused on characterizing the RNA switches that act in the context of 39UTRs, the SwitchSeeker 

framework can be applied to studying other types of RNA switches given appropriate and customized 

reporter constructs. 

To annotate a high-confidence set of RNA switches with regulatory potential in the human 

transcriptome, we performed a second iteration of SwitchSeeker predictions, guided by the in vivo 

RNA structure probing data. To test the performance of this procedure, we compared the fraction of 

regulatory active candidate RNA switches among the first and the second iterations of SwitchSeeker 

prediction, using the functional screen data. We observed a higher fraction of regulatory active RNA 

switches among the second iteration of SwitchSeeker predictions compared to the first iteration (P = 

1e-06, see Suppl. Fig. 2F). This further supports the hypothesis that incorporating the in vivo RNA 

structure probing data improves its performance. We then integrated the high-confidence RNA 

switches with the massively parallel reporter data. Together these analyses resulted in 1,454 

elements that were significant in both screens.  

Massively parallel mutagenesis analysis identifies conformation-specific RNA switch activities 

Having identified the candidate RNA switches that affect gene expression, we aimed to assess 

the degree to which the two stable conformations show divergent regulatory function. For this, we 

extended our MPRA to include targeted mutations designed to shift the equilibrium between the two 

conformations of each riboswitch. This additional screen allowed us to identify bona fide RNA 

switches with strong conformation-dependent activity. Starting with the 1,454 high-confidence RNA 

switches described above, we engineered mutated variants that would lock RNA switches in one of 

their two predicted conformations. This was achieved by either disrupting or strengthening 

conformation-specific stem loops. We then performed a massively parallel reporter assay (Suppl. Fig. 

2G,H) in which each candidate RNA switch was represented by four additional conformation-specific 

variants (i.e., two vs. two) (Fig. 2C). We observed a total of 245 RNA switches that differentially 

regulated reporter gene expression when locked in a specific structural conformation. An example 

candidate switch (located in the 39UTR of TCF7) is shown in Fig. 2D; the TCF7 RNA switch landscape 

has two local minima, corresponding to two alternative conformations supported by in vivo DMS-

MaPseq data (Fig. 2D, right). Two mutations in different parts of the switch sequence that favor 

conformation 1 resulted in lower expression of the eGFP reporter. Conversely, two mutations that 

favor conformation 2 increased eGFP expression. This observation indicates that the two 

conformations of the TCF7 RNA switch elicit divergent regulatory functions. 
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Describing a bi-stable RNA switch in the 39UTR of RORC 

To demonstrate the validity of SwitchSeeker predictions, we sought to characterize the top 

performing element biochemically. This bistable RNA switch is in the 39UTR of the RORC mRNA (Fig. 

3A); in this RNA switch, the 5' region can pair either with the 39 or with the middle region, leading to 

two mutually exclusive conformations (Fig. 3A). Our measurements indicate that this RNA switch 

exists in an equilibrium state between the two conformations in vivo, and that these two conformations 

have different effects on the expression of RORC. 

To further confirm that the RORC RNA switch exists as an ensemble of two conformations, we 

performed targeted mutagenesis experiments with in vitro RNA SHAPE (Wilkinson et al. 2006) as the 

read-out. We designed mutation-rescue pairs of sequences that first shift the equilibrium towards one 

conformation (mutation), and then shift it towards the other conformation (rescue) (Fig. 3B, Suppl. 

Table 1). We then measured the accessibility of individual nucleotides using the in vitro SHAPE assay 

(Fig. 3C). We observed that mutating the 39 region (117-AC), which is expected to stabilize 

conformation 2, reduced the accessibility of the middle region. Conversely, the rescue mutation (65-

GT,117-AC) of the 5' region restored its wild-type accessibility (Fig. 3C). Complementary experiments 

using the mutation (77-GA) to stabilize conformation 1, and the rescue mutation (63-TC,77-GA) to 

stabilize conformation 2, had a similar outcome. Even though we did not observe a significant 

decrease in accessibility of the 39 region upon the 77-GA mutation, the rescue significantly increased 

its accessibility (Suppl. Fig. 3A,B). These findings support the role of the three highlighted regions in 

forming an ensemble of states in which the middle and the 39 region compete for base pairing to the 5' 

region. 

To extend our in vitro observations to living cells, we performed high-coverage DMS-MaPseq of 

the RORC switch in vivo (Suppl. Fig. 3C). We used a DMS concentration sufficient to cause multiple 

modifications to the same RNA molecule. This enabled us to cluster reads originating from alternative 

secondary structures using a state-of-the-art unsupervised computational approach, named DRACO 

(Morandi et al. 2021). In both biological replicates, DRACO identified two clusters, each representing 

one of the two conformations, at the approximate ratio of 27% to 73% (Fig. 3D). The profiles of the 

two clusters did not correlate to each other (p-values of 0.18 and 0.72 in the two replicates 1 and 2), 

yet the profile of each cluster correlated highly between the two replicates (Suppl. Fig. 3D). 

Single-particle cryo-EM reveals distinct RNA switch tertiary structures  

We used single-particle cryo-EM to investigate the tertiary structures of the DRACO clusters. 

Micrographs of the wild-type RORC RNA switch contain a mixture of compact and extended particles, 

with features suggestive of RNA secondary structure (Fig 4A). In comparison, particles of the 
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conformation 1 mutant (77-GA) appear mostly compact, while those of the conformation 2 mutant 

(117-AC) are more highly extended (Fig 4A). Quantitative image processing reveals that wild-type 

RORC RNA separates into three structural classes labeled A, B, and C, with the Class B structure 

absent in the (77-GA), and Class A absent in (117-AC) (Fig 4B). These 3D structures demonstrate 

RNA-like tertiary features, including apparent double-stranded helical segments with a discernible 

major groove, and typical RNA hairpin elements (Suppl. Fig. 4A). The resolution of these 

reconstructions is limited to ~10 Å (Suppl. Fig. 4B), due to the extreme flexibility evinced by the raw 

micrographs and 2D class averages (Fig 4A, Suppl. Fig. 4C-E), but is sufficient for recognition of RNA 

fold and handedness. Based on their appearance in the mutant datasets, Class B likely represents 

conformation 2, while Class A represents conformation 1. Interestingly, Class C is present in all three 

datasets and may represent a folding intermediate lacking the tertiary interactions made by 

nucleotides 77 and 117. 

The alternative conformations of the RORC RNA switch play divergent roles in gene regulation 

Having discovered and described the RORC RNA switch as an ensemble of two conformations, 

we set out to further characterize the divergent regulatory activity of its two states. For this, we 

generated HEK293 cell lines stably expressing a reporter with the conformation mutant sequences 

cloned into the 39UTR of the eGFP coding sequence. We then measured the changes in eGFP 

expression of each mutant by flow cytometry. We employed two parallel strategies to lock the RNA 

switch in conformation 1: first, we mutated the middle region so that it cannot pair with the 5' region, 

and second, we introduced complementary mutations in both 5' and 39 regions, thus preventing base 

pairing between the 59 and middle regions. These two orthogonal strategies achieve the same 

stabilization of secondary structures while modifying different parts of the sequence. Strikingly, both 

sets of modifications led to similar changes in eGFP expression: locking the RNA switch in 

conformation 1 increased reporter gene expression compared to wild-type (Fig. 5A). Furthermore, we 

applied the same two strategies to instead lock the RNA switch in conformation 2 and observed the 

expected opposite effect: both modifications led to decrease of the reporter gene (Fig. 5A). Therefore, 

we concluded that the two conformations play divergent functional roles. 

We next tested whether the secondary structure, rather than sequence composition, is the major 

determinant of the observed modulation in gene expression. To do so, we generated cell lines (as 

described above) stably expressing the mutant sequences from the rescue-mutation experiments 

(Fig. 3B) and measured the effect of each mutant on eGFP reporter gene expression. In total, we 

tested 3 mutation-rescue pairs. In all three cases, we observed lower eGFP expression of the 

conformation 2 mutant (117-AC), as compared to (77-GA) which favors conformation 1 (Fig. 5B). 
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Taken together, the reciprocal mutation-rescue experiments provide evidence that RNA secondary 

structure is critical for the conformation-specific function of the RORC RNA switch. 

Next, we investigated whether shifting the equilibrium between the two conformations by trans-

acting agents, rather than sequence mutations, would have an effect on gene expression. We 

hypothesized that adding an antisense oligonucleotide (ASO) complementary to a part of the RNA 

switch sequence could shift the equilibrium between the two conformations to change reporter gene 

expression. We designed a set of ASOs targeting the middle region of the switch. These ASOs were 

designed to shift the equilibrium towards conformation 1 and thereby increase eGFP expression. We 

transfected the stable cell line expressing the RNA switch-containing reporter with ASOs and 

measured the changes in eGFP expression by flow cytometry. To ensure this effect is not specific to a 

single ASO design, we varied the oligonucleotide chemistry by using either morpholino, or 2'-O-(2-

Methoxyethyl) (2-MOE) oligoribonucleotides, or locked nucleic acids (LNA) as the key modifications. 

Additionally, we varied the sequence length and the frequency of modifications. In all cases, 

transfecting cells with an ASO targeting the middle region of the RNA switch resulted in higher eGFP 

expression compared to a non-targeting ASO of the same chemistry and nucleotide composition (Fig. 

5C). Thus, the repressive activity of the RORC RNA switch can be alleviated with the use of trans 

agents such as ASOs. 

The RORC gene encodes nuclear receptor ROR-gamma, and has two protein isoforms that 

differ by a short N-terminal sequence. The shorter isoform, ROR³, is expressed in many tissues, and 

is involved in circadian rhythms. The longer isoform, ROR³t, is expressed in several subsets of T cells 

and some lymphoid cells, and is a key driver of Th17 cell type differentiation (Eberl 2017). The ROR³t 

isoform is a drug target for several autoimmune diseases (Zhong and Zhu 2017). Therefore, we also 

measured the activity of the RORC RNA switch in its endogenous cellular context. We assessed 

whether the conformation-dependent regulatory function of the RORC RNA switch is observed in 

Th17 cells. To do this, we infected primary CD4+ cells with lentivirus carrying the reporter and a 

sequence of interest in the eGFP 39UTR. The cells were then differentiated into the Th17 cell type 

(Suppl. Fig. 5, Montoya and Ansel 2017). The presence of the wild type RORC RNA switch strongly 

decreased eGFP reporter expression compared to a scrambled version of the same sequence (Fig. 

5D). On the other hand, the 77-GA mutant decreases the strength of the repression, confirming the 

activity of the RORC RNA in Th17 cells. 

Genome-scale genetic screens reveal molecular mechanisms underlying the RORC RNA 

switch 

To explore the molecular machinery through which the RORC RNA switch impacts gene 

expression, we performed genome-wide CRISPRi screens with two distinct eGFP reporters (Suppl. 
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Fig. 6A). The first reporter was designed to identify trans factors epistatic to the repressive function of 

the RORC switch. For this, we created an eGFP construct carrying the wild type RORC RNA switch in 

its 39UTR. The second reporter was engineered to assess conformation-dependent activity by 

inserting the 77-GA RORC switch mutant (favoring conformation 1) in the eGFP 39UTR. Considering 

the importance of RORC in T cell biology, we chose the Jurkat T cell leukemia line as the model 

system for this screen. Jurkat cells were transduced to stably express the dCas9-KRAB CRISPRi 

protein (Horlbeck et al. 2018). We infected both reporter cell lines with a genome-wide CRISPRi 

sgRNA library (Gilbert et al. 2014), sorted cells on a flow cytometer by relative eGFP/mCherry 

expression, and collected the 25% of cells with highest and lowest eGFP expression (Suppl. Fig. 6A) 

(de Boer et al. 2020). We hypothesized that knockdown of genes important for the repressive function 

of the RORC RNA switch would result in higher expression of the reporter gene. Similarly, genes 

involved in modulating the switch functionality of the two conformations would result in higher reporter 

expression for the wildtype switch compared to the 77-GA mutant.  

To identify factors responsible for the repressive function of RORC RNA switch, we compared 

the abundance of sgRNAs in the cells with high reporter expression relative to those with lower 

expression (Fig. 6A). We also performed gene-set enrichment analysis (Korotkevich et al. 2021) to 

identify the key pathways involved. The most highly enriched pathway was nonsense-mediated decay 

(NMD)), and several core NMD factors, such as SMG8, UPF1, UPF2, UPF3B were among the highest 

scoring hits of the screen (Fig. 6A). As expected, among other enriched pathways, many were 

associated with general gene expression such as translation, ribosome biogenesis, and endoplasmic 

reticulum stress (Suppl. Fig. 6B). Next, we asked which factors are responsible for the divergent 

activity of the two conformations. For this, we performed the ratio of ratios test (see methods), by 

comparing the ratios of sgRNA abundance in low and high expression cells between the two reporter 

screens: wildtype versus 77-GA mutant (Suppl. Fig. 6C). Interestingly, this comparison also 

highlighted the NMD pathway as the key contributor (Fig. 6B). Among the highest scoring hits were 

several core NMD factors; all of them are part of the SURF complex, which is thought to recognize 

stalled ribosomes when a premature termination codon (PTC) occurs upstream of the exon-junction 

complex (EJC) (Yamashita 2013). However, the components of EJC did not show any phenotype 

change in either of the two comparisons (Fig. 6A,B). Therefore, the RORC RNA switch affects gene 

expression by acting through the EJC-independent NMD pathway, and one conformation of the switch 

preferentially interacts with this machinery (Yi et al. 2022; Kurosaki, Popp, and Maquat 2019). 

To further confirm this observation, we used CRISPRi to individually knock down the identified 

core NMD factors in the wild type and 77-GA mutant reporter lines, along with cells expressing a 

scrambled RORC RNA switch control (<scrambled= cell line). We first asked whether silencing the 

NMD factors would affect the repressive function of the RNA switch. We compared the expression of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.532161doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532161
http://creativecommons.org/licenses/by/4.0/


eGFP in the wild type and scrambled reporter lines. We observed that silencing the core members of 

the SURF complex (Fig. 6C), but not of the EJC complex (Fig. 6D), affected the repressive function of 

the RORC RNA switch sequence on gene expression. Next, we asked whether knockdown of the 

NMD proteins would reduce the functional difference between the two switch conformations; we 

compared eGFP expression in the wild type and the 77-GA mutant reporter lines. Consistently, we 

observed that knocking down the core members of the SURF complex, and not of the EJC complex 

(Suppl. Fig. 6D), reduced this difference. This data demonstrates that NMD acts preferentially on the 

Conformation 2 of the RORC RNA switch.  

Given that UPF1 can bind highly structured RNA regions (Fischer et al. 2020), we hypothesized 

that UPF1 might bind the two RORC RNA switch conformations with different affinities. To test this 

hypothesis, we mixed together the wild type and the 77-GA mutant reporter lines at a 1:1 ratio, and 

measured the difference in UPF1 affinity by targeted crosslinking immunoprecipitation (CLIP) followed 

by targeted sequencing. We observed that the wildtype RORC UTR sequence was significantly more 

abundant among the UPF1 CLIP tags than its 77-GA mutant (Fig. 6E). To further confirm the 

conformation-specific interaction of the RORC switch with UPF1, we mixed together cell lines 

expressing two mutants that lock the RNA switch in the opposite conformations: 77-GA (locks the 

conformation 1) and 116-CCCTAAG (locks the conformation 2), and measured the UPF1 binding 

differences as described above. As expected, we observed higher fraction of reads aligning to the 

116-CCCTAAG mutant sequence than to the 77-GA mutant (Suppl. Fig. 6E). The observed difference 

in variant sequence fractions was larger for the mix of two opposite mutants than for the mix of 77-GA 

mutant with the wildtype sequence (LogFC values of 1.12 vs 0.41). Taken together, our results 

indicate differential UPF1 binding to the two conformations of the RNA switch. 

Since the canonical NMD pathway causes the proteins translated from aberrant mRNA to be 

degraded by the proteasome (Kuroha, Tatematsu, and Inada 2009), we expect the RORC RNA switch 

to target its gene product for degradation by the proteasome. To confirm this, we treated two dual 

reporter cell lines with the proteasome inhibitor carfilzomib, one line expressing the RORC RNA 

switch (the <wild type= line), and the other expressing the scrambled control. As expected, proteasome 

inhibition resulted in a significantly larger change in eGFP expression in the <wild-type= line relative to 

the <scrambled= cell line (Fig. 6F). To verify that the observed effect is due to proteasome inhibition 

rather than a side effect of carfilzomib, we treated cells with bortezomib, another proteasome inhibitor 

which acts through a different mechanism, and observed the same effect (Fig. 6G). Therefore, our 

data suggests that proteasomal degradation is involved in the repressive activity of the RORC RNA 

switch on gene expression. 
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Discussion 

In the past, RNA switches were discovered through either comparative genomics analysis or 

biochemical experimentation. Comparative genomic analysis searches for conserved positions within 

non-coding RNA regions and has proven effective for identifying cis-regulatory elements in bacteria, 

including riboswitches and transcription factor binding sites (Rodionov 2007). The biochemical 

approach involves measuring the affinity of a putative RNA switch to its ligands and analyzing the 

conformational change caused by the binding event. Both approaches were used to discover the first 

known RNA switches in bacteria (Epshtein, Mironov, and Nudler 2003; Winkler, Nahvi, and Breaker 

2002). However, no specific algorithms have been created to identify RNA switches in eukaryotic 

transcriptomes. In Eukaryotes, mRNA secondary structure is highly dynamic; multiple studies have 

shown that RNA structure vastly differs when measured in vitro vs in vivo (Rouskin et al. 2014), and 

that multiple cellular processes can rearrange mRNA secondary structures (Sun et al. 2019). Although 

the functional importance of individual RNA structure rearrangements has been studied, such as RNA 

thermosensors (Shamovsky et al. 2006), the extent to which structural switches control gene 

expression in eukaryotes remains largely unexplored. There are several reasons why models trained 

on bacteria cannot be easily applied to metazoans, including the larger sequence search space in 

eukaryotic transcriptomes, which hinders the application of pre-trained models due to high false-

positive counts (Ureta-Vidal, Ettwiller, and Birney 2003), and poor sequence conservation of many 

eukaryotic RNA regulatory elements, which limits the applicability of comparative genomics analyses 

(Backofen et al. 2018; Leypold and Speicher 2021). However, the SwitchSeeker methodology 

provides a comprehensive, integrative platform for studying RNA switches in eukaryotic 

transcriptomes. It covers all the steps of discovery, from de novo predictions to uncovering the 

mechanism of individual RNA switches, and overcomes the limitations of exisiting methodologies by 

integrating the toolkits of biochemistry, systems biology, and functional genomics. With its scalability 

to complete transcriptomes, SwitchSeeker offers a way towards comprehensive characterization of 

RNA switches across the tree of life. 

Recent advances in genomic technologies were a key contributor in our ability to carry out this 

systematic search for RNA switches. RNA secondary structure probing techniques, such as DMS-seq 

and SHAPE-seq, have enabled researchers to study multiple alternative conformations of RNA 

molecules (Tomezsko et al. 2020; Morandi et al. 2021). Additionally, recent advancements in single-

particle cryo-EM and computational modeling have enabled the determination of the 3D folds of some 

RNA molecules (Kappel et al. 2020), despite their small size and intrinsic flexibility. This has opened 

up opportunities to study the functional differences between alternative RNA conformations and their 

role in gene expression control. Our DMS-MapSeq and cryo-EM data suggest that the RORC 39 

mRNA element inhabits a shallow energy landscape with two rugged minima linked to two major 
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molecular conformations (Fig. 7A). Mutations that stabilize one conformation or another alter the 

energy landscape and the distribution of states. Experimental structure determination thus validates 

the SwitchSeeker approach to identification of RNA molecules with these types of bistable energy 

landscapes. The RORC RNA switch was functionally characterized using CRISPRi, which revealed 

that its control of gene expression is mediated by the SURF complex of the EJC-independent NMD. 

We propose that UPF1 preferentially recognizes switch conformation 2 over conformation 1, and that 

the recruitment of the SURF complex by UPF1 in turn leads to decreased gene expression through 

proteasome-mediated degradation of any translation products, and mRNA decay preventing repeated 

rounds of translation (Fig. 7B). Point mutants that modulate the conformational equilibrium likewise 

cause small but significant changes in the degree of gene repression by the switch. Switch sequence 

variation can likely provide nearly continuous modulation of SURF recruitment and NMD activation. 

However, questions remain regarding the pathways that trigger the switching between the two 

conformations. 

We have observed that a large number of regulatory elements in the human transcriptome act as 

RNA switches. This implies that conformation-dependent modes of gene expression control are likely 

widespread in the human transcriptome. The regulatory information contained in dynamic RNA 

structural elements is an under-explored area of gene expression control that plays a fundamental 

role in health and disease. Understanding the regulatory grammar of RNA switches throughout the 

transcriptome is a crucial step towards a more comprehensive comprehension of post-transcriptional 

gene expression control. In our study, we chose stringent criteria for selecting RNA switches, 

requiring them to be bistable in vivo, meaning they populate two mutually exclusive structural 

conformations. However, this criterion may not be applicable to all functional RNA switches, which 

may be bistable only under specific conditions or in specific cell types. For instance, it has been 

demonstrated recently that HIV-1 TAR RNA forms a rare and short-lived yet biologically active 

conformation (Kelly et al. 2022). Additionally, RNA switches may be multistable and provide even 

more complex regulation. Developing further methodologies is necessary to capture these attenuated 

regulatory elements. 

RNA switches function through different mechanisms. The known examples of human RNA 

switch mechanisms include mutually exclusive binding of RBPs by two different conformations (Ray et 

al. 2009) and m6A modification-based switching (Liu et al. 2015). In this study, we presented a novel 

RNA switch that operates via the NMD pathway, and we believe that other RNA switches may also 

exploit various RNA metabolic pathways. For example, we have recently shown that specific RNA 

structures cause aberrant splicing in metastatic cancers through binding SNRPA1 (Fish et al. 2021). 

Thus, future studies will likely find a wider variety of RNA switches than those discovered in the 

present study, under steady-state conditions. Importantly, SwitchSeeker is general with respect to the 
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mechanism: it can identify general RNA structural switches and reveal their mechanisms. We 

anticipate that many RNA switches will be employed as therapeutic handles for treating genetic 

diseases: in this study, we demonstrated that it is possible to control gene expression by shifting the 

balance between the two RNA conformations with therapeutics such as ASOs. Understanding the 

regulatory programs that govern RNA secondary structure switching will provide a mechanistic 

understanding of gene expression control, which will be invaluable for studying RNA switches in 

various contexts such as development and disease. SwitchSeeker is available for use and adaptation, 

and we hope it will pave the way for further discoveries in RNA-based regulation in eukaryotes. 

Methods 

SwitchFinder: detailed description of the algorithm 

Conflicting basepairs identification: Conflicting basepairs were detected using a modification of 

MIBP algorithm developed by L. Lin and W. McKerrow (Lin et al. 2018). First, a large number of folds 

(default N=1000) is sampled from the Boltzmann distribution. If structure probing data (such as 

DMSseq or SHAPEseq) is provided, the Boltzmann distribution modeling software (part of 

RNAstructure package (Reuter and Mathews 2010)) incorporates the data as a pseudofree energy 

change term. Then, the basepairs are filtered: the basepairs that are present in almost all the folds or 

are absent from almost all the fold are removed from the further analysis. Then, mutual information for 

each pair of basepairs is estimated. To do so, each basepair is represented as a binary vector of 

length N, where N is the number of folds considered; in this binary vector, a given fold is represented 

as 1 if this basepair is present there, or as 0 if it9s not. Mutual information between each two basepairs 

is calculated as in (Cover and Thomas 2006). This results in a M by M table of mutual information 

values, where M is the number of basepairs considered. Then, the sum of each row of the square 

table is calculated. In the resulting vector K of length M, each basepair is represented by a sum of 

mutual information values of across all the other basepair. Then, only the basepairs whose sum of 

mutual information values passes the threshold of U * MAX(K) is considered, where U is a parameter 

(default value 0.5). We call the basepairs that pass this threshold the <conflicting basepairs=. 

Conflicting stems identifications: Once the conflicting basepairs were identified, they get 

assembled into conflicting stems, or series of conflicting basepairs that directly follow each other and 

therefore could potentially form a stem-like RNA structure. More specifically, the basepairs (a, b) and 

(c, d) form a stem if either (a == c - 1) & (b == d +1), or (a == c + 1) & (b == d - 1). The stem is defined 

as a pair of intervals ((u, v), (x, y)), where v - u == y - x. Then, the conflicting stems get filtered by 

length: only the stems that are longer than a certain threshold value (default value: 3) are considered. 

Among these stems, the stems that directly conflict with each other are identified. Two stems ((u1, v1), 
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(x1, y1)) and ((u2, v2), (x2, y2)) conflict with each other if there is an overlap longer than a threshold 

value between either (u1, v1) and (u2, v2), or (u1, v1) and (x2, y2), or (x1, y1) and (u2, v2), or (x1, y1) and 

(x2, y2). Default threshold value is 3. The pairs of conflicting stems are sorted by the average value of 

their K values (sums of mutual information). The highest scoring pair of conflicting stems is 

considered the winning prediction, representing the major switch between two of the local minima 

present in the energy folding landscape of the given sequence. If not pairs of conflicting stems pass 

the threshold, SwitchFinder reports that no potential switch is identified for the given sequence. 

Identifying the two conflicting structures: Given the prediction of the two conflicting stems, the 

folds that represent the two local minima of the energy folding landscape are predicted. Importantly, 

SwitchFinder focuses on optimizing the prediction accuracy, as opposed to the commonly used 

approach of energy minimization (Lu, Gloor, and Mathews 2009). MaxExpect program from the 

RNAstructure package (Reuter and Mathews 2010) is used; the basepairings of each of the conflicting 

stems are provided as folding constraints (in Connectivity Table format). The two predicted structures 

are further referred to as conformations 1 and 2. 

 

Activation barrier estimation. The RNApathfinder software (Dotu et al. 2010) is used to estimate 

the activation energy needed for a transition between the conformations 1 and 2. 

Classifier for prediction of RNA switches: The curated representative alignments for each of the 

50 known riboswitch families were downloaded from RFAM database (Kalvari et al. 2021). Each 

sequence gets complemented by its shuffled counterpart (while preserving dinucleotide frequencies, 

see (altschulEriksonDinuclShuffle.py at Master · wassermanlab/BiasAway n.d.)). For all the 

sequences, the two conflicting conformations, their folding energies and their activation energies were 

predicted as above. To estimate the performance of SwitchFinder for a given riboswitch family, all the 

sequences from this family are placed into the test set, while all the sequences from the other families 

are placed into the training set. Then, linear regression model is trained on the training set, where the 

response variable is binary and indicates whether the sequence is a real riboswitch or is a shuffled 

counterpart, and the predictor variables are the average folding energy of the two conformations and 

the activation energy of the transition between them. The trained linear regression model is then run 

on the test set, and its performance is estimated with the receiver operating characteristic curve.  

Prediction of RNA switches in human transcriptome: The coordinates of 39UTRs of the human 

transcriptome were downloaded from UCSC Table Browser (Karolchik, Hinrichs, and Kent 2012), 

table tb_wgEncodeGencodeBasicV28lift37. The sequences of 39UTRs were cut into overlapping 

fragments of 186 nt in length (with the overlaps of 93nt). For all the sequences, the two conflicting 

conformations, their folding energies and their activation energies were predicted as above. A linear 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.532161doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532161
http://creativecommons.org/licenses/by/4.0/


regression model was trained as described above on all the 50 known riboswitch families. The model 

was applied to the 39UTR fragments from the human genome, and the fragments were sorted 

according to the model prediction scores. The top 3750 predictions were selected for further 

investigation. 

Mutation generation: In order to shift the RNA conformation ensemble towards one or another 

state, mutations of two types were introduced.  

(1) <Strengthen a stem= mutations: given two conflicting stems ((u1, v1), (x1, y1)) and ((u2, v2), (x2, 

y2)), one of the stems (for example, the first one) was changed in a way that would preserve its 

basepairing but deny the possibility of forming the second stem. To do so, the nucleotides in the 

interval (u1, v1) were replaced with all possible sequences of equal length, and the nucleotides (x1, y1) 

were replaced with the reverse complement sequence. Then, the newly generated sequences were 

filtered by two predetermined criteria: (i) the second stem can not form more than a fraction of its 

original base pairs (default value 0.6), (ii) the modified first stem can't form long paired stems with any 

region of the existing sequence (default threshold length 4). The sequences that passed both criteria 

were ranked by the introduced change in the sequence nucleotide composition; the mutations that 

changed the nucleotide composition the least were chosen for further analysis. Each mutated 

sequence was additionally analysed by SwitchFinder to ensure that the Boltzmann distribution is 

heavily shifted towards the desired conformation. 

(2) <Weaken a stem= mutations: given two conflicting stems ((u1, v1), (x1, y1)) and ((u2, v2), (x2, 

y2)), one of the stems (for example, the second one) was changed in a way this stem wouldn9t be able 

to form anymore, while the basepairing of the other stem (in this example, the first stem) would be 

preserved. To do so, the nucleotides in either of the intervals (u2, v2) or (x2, y2) were replaced with all 

possible sequences of equal length. The newly generated sequences were filtered by three 

predetermined criteria: (i) the first stem stays unchanged, (ii) the second stem can not form more than 

a fraction of its original base pairs (default value 0.6), (ii) the modified part of the sequence can't form 

long paired stems with any region of the existing sequence (default threshold length 4). The 

sequences that passed all the criteria were ranked by the introduced change in the sequence 

nucleotide composition; the mutations that changed the nucleotide composition the least were chosen 

for further analysis. Each mutated sequence was additionally analysed by SwitchFinder to ensure that 

the Boltzmann distribution is heavily shifted towards the desired conformation. 

Code availability: The source code of SwitchFinder is available at 

https://github.com/goodarzilab/SwitchFinder. 
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Cell culture 

All cells were cultured in a 37°C 5% CO2 humidified incubator. The HEK293 cells (ATCC CRL-

3216) were cultured in DMEM high-glucose medium supplemented with 10% FBS, L-glutamine (4 mM), 

sodium pyruvate (1 mM), penicillin (100 units/mL), streptomycin (100 ¿g/mL) and amphotericin B (1 

¿g/mL) (Gibco). The Jurkat cell line was cultured in RPMI-1640 medium supplemented with 10% FBS, 

glucose (2 g/L), L-glutamine (2 mM), 25 mM HEPES, penicillin (100 units/mL), streptomycin (100 ¿g/mL) 

and amphotericin B (1 ¿g/mL) (Gibco). All cell lines were routinely screened for mycoplasma with a 

PCR-based assay. 

Cryo-EM Sample Preparation and Data Collection 

3.5 µl of target mRNA at an approximate concentration of 1.5 mg/mL was applied to gold, 300 

mesh TEM grids with a holey carbon substrate of 1.2/1.3 µm spacing (Quantifoil). The grids were blotted 

with #4 filter papers (Whatman) and plunge frozen in liquid ethane using a Mark IV Vitrobot (Thermo 

Fisher), with blot times of 4-6 s, blot force of -2, at a temperature of 8ÚC and 100% humidity. All grids 

were glow discharged in an easiGlo (Pelco) with rarefied air for 30 s at 15 mA, no more than 1 hour 

prior to preparation. Duplicate WT and mutant RNA specimens were imaged under different conditions 

on several microscopes as per Table S8; all were equipped with K3 direct electron detector (DED) 

cameras (Gatan), and all data collection was performed using SerialEM (Mastronarde 2003). Detailed 

data collection parameters are listed in Table S8. 

Cryo-EM Image processing 

Dose-weighted and motion-corrected sums were generated from raw DED movies on-the-fly 

during data collection using UCSF MotionCor2 (Zheng et al. 2017). Images from super-resolution 

datasets were downsampled to the physical pixel size before further processing. CTF estimation was 

performed in CTFFIND4 (<Ctffind4= n.d.), followed by neural-net based particle picking in EMAN2 

(Tang et al. 2007). 2D classification, ab initio 3D classification, and gold-standard refinement were 

done in cryoSPARC (Punjani et al. 2017). CTFs were then re-estimated in cryoSPARC and particles 

repicked using low-resolution (20 Å) templates generated from chosen 3D classes. Extended datasets 

were pooled where appropriate, and particle processing was repeated through gold-standard 

refinement as before. All structure figures were created using UCSF ChimeraX (Goddard et al. 2018). 

Further details are given in Table S7 and Extended Data Figure 4. 
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Reporter vector design and library cloning 

First, mCherry-P2A-Puro fusion was cloned into the BTV backbone (Addgene #84771). Then, 

the vector was digested with MluI-HF and PacI restriction enzymes (NEB), with the addition of rSAP 

(NEB). The digested vector was purified with Zymo DNA Clean and Concentrator-5 kit. 

!"#$%&'(%)*+&,%-'.,$&'/010',2$3%),$4%0$4*)+-'%)1&$2+0,,)$1).$%),$4%0$5122'6,&7$8101&&,&$

5*-1(,),2'2$1)1&72'29$+%)2'2-')($%4$:;<<$2,=*,)+,2$-%-1&$>,0,$27)-?,2'@,.$/7$#('&,)-A$B?,$2,+%).$

2-01).$>12$27)-?,2'@,.$*2')($C&,)%>$D01(5,)-$3EFG$;F$,H%I9$3"JK9A$B?,$.2!"#$&'/0107$>12$.'(,2-,.$
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Massively Parallel Reporter Assay 

The DNA library was co-transfected with pCMV-dR8.91 and pMD2.G plasmids using TransIT-

Lenti (Mirus) into HEK293 cells, following the manufacturer's protocol. Virus was harvested 48 hours 

post-transfection and passed through a 0.45 µm filter. HEK293 cells were then transduced overnight 

with the filtered virus in the presence of 8 µg/mL polybrene (Millipore); the amount of virus used was 

optimized to ensure the infection rate of ~20%, as determined by flow cytometry The infected cells 

were selected with 2 µg/mL puromycin (Gibco). Cells were harvested at 90%395% confluency for 

sorting and analysis on a BD FACSaria II sorter. The distribution of mCherry to GFP ratios was 

calculated. For sorting a library into subpopulations, we gated the population into 8 bins each 

containing 12.5% of the total number of cells. A total of 1.2 million cells were collected for each bin to 

ensure sufficient representation of sequence in the population in two replicates each. For each 

subpopulation, we extracted gDNA and total RNA with the Quick-DNA/RNA Miniprep kit. gDNA was 
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amplified by PCR with Phusion polymerase (NEB) using primers 

CAAGCAGAAGACGGCATACGAGAT - i7 - 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCACTGCTAGCTAGATGACTAAACGCG and 

AATGATACGGCGACCACCGAGATCTACAC - i5 - 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGGTCTGGATCCACCGGTCC. Different i7 

indices were used for 8 different bins, and different i5 indices were used for the two replicates. RNA 

was reverse transcribed with Maxima H Minus Reverse Transcriptase (Thermo Fisher) using primer 

CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNTGGTCTGGATCCACCGGTCCGG. 

The cDNA was amplified with Q5 polymerase (NEB) using primers 

CAAGCAGAAGACGGCATACGAGAT - i7 - 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCTGCTAGCTAGATGACTAAACGC and 

CAAGCAGAAGACGGCATACGAGAT - i5 - 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTACCCGTCATTGGCTGTCCA. Different i7 

indices were used for 8 different bins, and different i5 indices were used for the two replicates. The 

amplified DNA libraries were size purified with the Select-a-Size DNA Clean & Concentrator MagBead 

Kit (Zymo). Deep sequencing was performed using the HiSeq4000 platform (Illumina) at the UCSF 

Center for Advanced Technologies. 

The adapter sequences were removed using cutadapt (Martin 2011). For RNA libraries, the UMI 

was then removed from the reads and appended to read names using UMI tools (Smith, Heger, and 

Sudbery 2017). The reads were matched to the fragments using bwa mem command. The reads were 

counted using featureCounts (Liao, Smyth, and Shi 2014). The read counts were normalized using 

median of ratios normalization (Anders and Huber 2010). One-way chi-square test statistic was used 

to estimate how different its distribution across the sorting bins is from the null hypothesis (i.e. uniform 

distribution). mRNA stability was estimated by comparing the RNA and DNA read counts with 

MPRAnalyze (Ashuach et al. 2019). 

DMS-MaPseq 

DMS-MaPseq was performed as described in (Fish et al. 2021). Briefly, HEK293 cells were 

incubated in culture with 1.5% DMS (Sigma) at room temperature for 7 minutes, the media was 

removed, and DMS was quenched with 30% BME. Total RNA from DMS-treated cells and untreated 

cells was then isolated using Trizol (Invitrogen). RNA was reverse transcribed using TGIRT-III reverse 

transcriptase (InGex) and target-specific primers. PCR was then performed to amplify the desired 

sequences and to add Illumina compatible adapters. The libraries were then sequenced on a MiSeq 

instrument using MiSeq micro kit v2, 300 cycles (Illumina).  
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Pear (v0.9.6) was used to merge the paired reads into a single combined read. The UMI was 

then removed from the reads and appended to read names using UMI tools (v1.0). The reads were 

then reverse complemented (fastx toolkit) and mapped to the amplicon sequences using bwa mem 

(v0.7). The resulting bam files were then sorted and deduplicated (umi_tools, with method flag set to 

unique). The alignments were then parsed for mutations (CTK). The mutation frequency at every 

position was then reported. The signal normalization was performed using boxplot normalization as in 

(Low and Weeks 2010). The top 10% of positions with the highest mutation rates were considered 

outliers as suggested in (Hajdin et al. 2013). The clustering of DMS-MaPseq signal was performed 

with DRACO (Morandi et al. 2021). 

SHAPE chemical probing of RNAs 

Chemical probing and mutate-and-map experiments were carried out as described previously 

(Palka et al. 2020). Briefly, 1.2 pmol of RNA was denaturated at 95°C in 50 mM Na-HEPES, pH 8.0, 

for 3 min, and folded by cooling to room temperature over 20 min, and adding MgCl2 to 10 mM 

concentration. RNA was aliquoted in 15 µL volumes into a 96-well plate and mixed with nuclease-free 

H2O (control), or chemically modified in the presence of 5 mM 1-methyl-7-nitroisatoic anhydride (1M7) 

(Turner, Shefer, and Ares 2013), for 10 min at room temperature. Chemical modification was stopped 

by adding 9.75 µL quench and purification mix (1.53 M NaCl, 1.5 µL washed oligo-dT beads, Ambion), 

6.4 nM FAM-labeled, reverse-transcriptase primer (/56-

FAM/AAAAAAAAAAAAAAAAAAAAGTTGTTCTTGTTGTTTCTTT), and 2.55 M Na-MES. RNA in each 

well was purified by bead immobilization on a magnetic rack and two washes with 100 µL 70% 

ethanol. RNA was then resuspended in 2.5 µL nuclease-free water prior to reverse transcription. 

RNA was reverse-transcribed from annealed fluorescent primer in a reaction containing 1× First 

Strand Buffer (Thermo Fisher), 5 mM DTT, 0.8 mM dNTP mix, and 20 U of SuperScript III Reverse 

Transcriptase (Thermo Fisher) at 48°C for 30 min. RNA was hydrolyzed in the presence of 200 mM 

NaOH at 95°C for 3 min, then placed on ice for 3 min and quenched with 1 volume 5 M NaCl, 1 

volume 2 M HCl, and 1 volume 3 M sodium acetate. cDNA was purified on magnetic beads, then 

eluted by incubation for 20 min in 11 µL Formamide-ROX350 mix (1000 µL Hi-Di Formamide (Thermo 

Fisher) and 8 µL ROX350 ladder (Thermo Fisher). Samples were then transferred to a 96-well plate in 

<concentrated= (4 µL sample + 11 µL ROX mix) and <dilute= (1 µL sample + 14 µL ROX mix) for 

saturation correction in downstream analysis. Sample plates were sent to Elim Biopharmaceuticals for 

analysis by capillary electrophoresis. 
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ASO infection 

Antisense oligonucleotides were purchased from Integrated DNA Technologies; the Morpholino 

ASOs were purchased from Gene Tools LLC (see sequences in Data file S9). 95.000 HEK293 cells 

were seeded into a well of a 24-well cell culture treated plate in a total volume of 500 ul. 24 hours 

later, either 1 nmol of Morpholino ASO together with 3 ul of EndoPorter reagent (Gene Tools LLC), or 

6 pmol of other ASO were added to each well. 48 hours later, the mCherry and eGFP fluorescence 

was measured on BD FACSCelesta Cell Analyzer. 

CRISPRi screen 

Reporter screens were conducted using established flow cytometry screen protocols (Gilbert et 

al. 2014)( Horlbeck et al., 2016; Sidrauski et al., 2015). Jurkat cells with previously verified CRISPRi 

activity were used (Horlbeck et al., 2018). The CRISPRi-v2 (5 sgRNA/TSS, Addgene: Cat#83969) 

sgRNA library was transduced into Jurkat cells at an MOI < 0.3 (BFP+ cell percentages were ~30%). 

For the flow based CRISPRi screen with the Jurkat cells, the sgRNA library virus was transfected at 

an average of 500x coverage after transduction (Day 0). Puromycin (1 µg/mL) selection for positively-

transduced cells was performed 48 hours (Day 2) and 72 hours (Day 3) post transduction (Day 3).  On 

Day 11, cells were collected in PBS and sorted with the BD FACSAria# Fusion cell sorter. Cells were 

gated into the 25% of cells with the highest ratio between GFP and mCherry fluorescence intensity 

and 25% of cells with the lowest ratio. The screens were performed with two conditions: cells with a 

wildtype RORC Riboswitch-GFP reporter and a mutated Riboswitch reporter. Screens were 

additionally performed in duplicate. After sorting, genomic DNA was harvested (Macherey-Nagel Midi 

Prep kit) and amplified using NEB Next Ultra II Q5 master mix and primers containing TruSeq Indexes 

for NGS analysis. Sample libraries were prepared and sequenced on a HiSeq 4000. Guides were 

then quantified with the published ScreenProcessing 

(https://github.com/mhorlbeck/ScreenProcessing) method and phenotypes generated with an in-

house processing pipeline, iAnalyzer (https://github.com/goodarzilab/iAnalyzer). Briefly, iAnalyzer 

relies on fitting a generalized linear model to each gene. Coefficients from this GLM were z-score 

normalized to the negative control guides and finally the largest coefficients were analyzed as 

potential hits. For the comparison of gene phenotypes between the two cell lines, the DESeq2 ratio of 

ratios test was used (<DESeq2 Testing Ratio of Ratios (RIP-Seq, CLIP-Seq, Ribosomal Profiling)= 

n.d.). 

CRISPRi-mediated gene knockdown 

Jurkat cells expressing dCas9-KRAB fusion protein were constructed by lentiviral delivery of 

pMH0006 (Addgene #135448) and FACS isolation of BFP-positive cells. 
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Guide RNA sequences for CRISPRi-mediated gene knockdown were cloned into pCRISPRia-v2 

(Addgene #84832) via BstXI-BlpI sites. After transduction with sgRNA lentivirus, Jurkat cells were 

selected with 2 µg/mL puromycin (Gibco). The fluorescence of eGFP and of mCherry was measured 

on BD FACSCelesta Cell Analyzer. 

Reporter cell lines generation 

Mutated or wild type sequences of RORC 39UTR were cloned into the dual GFP-mCherry reporter 

using MluI-HF and PacI restriction enzymes (NEB) as described above. The reporters were lentivirally 

dlivered to HEK293 and Jurkat cells and analyzed by flow cytometry as described above.  

Proteasome inhibitor treatment 

Jurkat cells were seeded at the density of 0.25*107 cells per mL. Either the proteasome inhibitors 

(Carfilzonib or Bortezomib, Cayman Chemical) or negative control (DMSO) were added at the given 

concentration. After 24 hours long incubation, the fluorescence of eGFP and of mCherry was measured 

on BD FACSCelesta Cell Analyzer. 

T cell isolation, transduction, and Th17 cells differentiation 

Th17 cells were derived as described previously (Montoya and Ansel 2017). Plates were coated 

with 2 µg/mL anti-human CD3 (UCSF monoclonal antibody core, clone: OKT-3) and 4 µg/mL anti-

human CD28 (UCSF monoclonal antibody core, clone: 9.3) in PBS with calcium and magnesium for at 

least 2 h at 37 °C or overnight at 4 °C with plate wrapped in parafilm. Human CD4+ T cells were isolated 

from human peripheral blood using EasySep human CD4+ T cell isolation kit (17952; STEMCELL) and 

stimulated in ImmunoCult-XF T cell expansion medium (10981; STEMCELL) supplemented with 10 mM 

HEPES, 2 mM L-glutamine, 100 µM 2-ME, 1 mM sodium pyruvate, and 10 ng/ml TGF-³. 24 h after T 

cell isolation and initial stimulation on a 96-well plate, 7 ul of lentivirus was added to each sample. After 

24 h, the media was removed from each sample without disturbing the cells and replaced with 200 µl 

fresh media. After 48 h, cells were stimulated with 1.2 µM ionomycin, 25 nM PMA, and 6 µg/ml brefeldin-

A, resuspended by pipetting, incubated for 4 h at 37 °C, and harvested for analysis. Half of each sample 

was stained for CD4, FoxP3, IL-13, IL-17A, IFN-gamma and analyzed on BD LSRFortessa cell analyzer 

(see below). The other half of the sample was not stained and was analyzed for the expression of eGFP 

and mCherry on BD LSRFortessa cell analyzer. 

Cultured human T cells were collected, washed, and stained with antibodies against cell surface 

proteins and transcription factors. Cells were fixed and permeabilized with the eBioscience# Foxp3 / 

Transcription Factor Staining Buffer Set or the Transcription Factor Buffer Set (BD Biosciences). 

Extracellular nonspecific binding was blocked with the anti-CD16/CD32 antibody (clone 2.4G2; UCSF 
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Monoclonal Antibody Core). Intracellular nonspecific binding was blocked with anti-CD16/CD32 Abs 

and 2% normal rat serum. Dead cells were stained with Fixable Viability Dye eFluor 780 (eBioscience) 

or Zombie Violet Fixable Viability Kit (BioLegend). Cells were stained with the following fluorochrome-

conjugated anti-human Abs: anti-CD4 (Invitrogen 17-0049-42), anti-FOXP3 (eBioscience 25-4777-61), 

anti-IL-13 (eBioscience 11-7136-41), anti-IL-17A (eBioscience 12-7179-42), and anti-IFN³ (BioLegend 

502520). Samples were analyzed on BD LSRFortessa cell analyzer. 

Analysis of capillary electrophoresis data with HiTRACE 

Capillary electrophoresis runs from chemical probing and mutate-and-map experiments were 

analyzed with the HiTRACE MATLAB package (Yoon et al. 2011). Lanes were aligned together, 

bands fit to Gaussian peaks, background subtracted using the no-modification lane, corrected for 

signal attenuation, and normalized to the internal hairpin control. The end result of these steps is a 

numerical array of <reactivity= values for each RNA nucleotide that can be used as weights in structure 

prediction. 

UPF1 targeted CLIP-seq 

Jurkat cells expressing RORC reporters (WT, 77-GA mutant variant or 116-CCCTAAG mutant 

variant) were harvested and crosslinked by ultraviolet radiation (400 mJ/cm2). Cells were then lysed 

with low salt wash buffer (1xPBS, 0.1%SDS, 0.5% Sodium Deoxycholate, 0.5% IGEPAL ). To probe 

preferential UPF1 binding towards different reporters, lysates from 77-GA mutant cells were mixed 

with lysates from either WT or 116-CCCTAAG mutant cells at a 1:1 ratio prior to immunoprecipitation. 

Samples were then treated with high (1:3000 RNase A and 1:100 RNase I) and low dose (1:15000 

RNase A and 1:500 RNase I) of RNase A and RNase I separately and combined after treatment. To 

immunoprecipitate UPF1-RNA complex, a UPF1 antibody (Thermo A301-902A) was incubated with 

Protein A/G beads (Pierce) first and then incubated with the mixed cell lysates for 2 hours at 4 °C. 

Immunoprecipitated RNA fragments were then dephosphorylated (T4 PNK, NEB), polyadenylated, 

and end labeled with 3'-Azido-3'-dUTP and IRDye® 800CW DBCO Infrared Dye (LI-COR) on beads. 

SDS-PAGE was then performed to separate protein-RNA complexes, and RNA fragments were 

collected from nitrocellulose membrane by proteinase K digestion. cDNA was then synthesized using 

Takara smarter small RNA sequencing kit reagents with a custom UMI-oligoDT primer 

(CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

TCTTTTTTTTTTTTTTT). RORC reporter locus was then amplified with a custom primer 

(ACACTCTTTCCCTACACGACGCTCTTCCGATCT TGGGGTGATCCAAATACCACC) and 

sequencing libraries were then prepared with SeqAmp DNA Polymerase (Takara). Libraries were then 

sequenced on an illumina Hiseq 4000 sequencer. 
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Figures 

 

Fig 1: SwitchFinder identifies candidate RNA switches in the human genome 

(A) Example of SwitchFinder locating the RNA switch within the VEGFA mRNA sequence. Top: arc 

representation of the RNA base pairs that change between the two conformations of VEGFA RNA 

switch, as in (Ray et al. 2009). The two conformations are shown in red and blue, respectively. Bottom: 

the two conformations of the VEGFA RNA switch as predicted by SwitchFinder. Middle: SwitchFinder 

score reflecting the likelihood of a given nucleotide to be involved in two mutually exclusive base 

pairings.  

(B) ROC curves of SwitchFinder predictions of RNA switches from the common RFAM families 

(C) AUC values of RNA switch predictions across the RFAM families for two models: SwitchFinder and 

SwiSpot (Barsacchi et al. 2016). Each dot represents one RFAM family. The lines show the change in 

accuracy between the two models. The families that have higher AUC values for SwitchFinder are 

shown with blue lines; the ones that have higher AUC values for SwiSpot are shown in red. P-value 

calculated with paired T test. 
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Fig 2: Massively parallel reporter assay captures the functional difference between the 

conformations of candidate RNA switches 
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(A) Overview of SwitchSeeker, the platform for RNA switch identification 

(B) Examples of regulatory elements identified by the functional screen. Each row represents a 

single candidate RNA switch, each column represents a single bin defined by the reporter 

gene expression (eGFP fluorescence, normalized by mCherry fluorescence). The value in 

each cell is the relative abundance of the given RNA switch in the given bin, normalized 

across the 8 bins. The three plots show examples of candidate switches with repressive, 

neutral, and activating effects on gene expression. The plots below show cumulative sequence 

abundances across all the candidate switches within each group. 

(C) The setup of the massively parallel mutagenesis analysis. For each candidate RNA switch, we 

design 4 mutated sequence variants. Two of them lock the switch into the conformation 1, and 

the other two lock it in the conformation 2. A sequence library is then generated (see Suppl. 

Fig. 2A), where each candidate RNA switch is represented by the 4 mutated sequence 

variants, along with the wild type sequence. 

(D) Example of a high-confidence candidate RNA switch identified by the massively parallel 

mutagenesis analysis. Bottom: two alternative conformations as predicted by SwitchSeeker. 

The RNA secondary structure probing data collected with the Structure Screen is shown in 

color. Top: the effect of the candidate RNA switch locked in one or another conformation on 

reporter gene expression. Each row corresponds to a single sequence variation that locks the 

RNA switch in one of the two conformations. Each column represents a single bin defined by 

the reporter gene expression. The value in each cell is the relative abundance of the given 

RNA switch in the given bin, normalized across the 8 bins.  
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Fig. 3: A fragment of RORC 39UTR forms an ensemble of two alternative structures 

(A) Arc representation of the two alternative conformations of the RORC RNA switch as predicted by 

SwitchSeeker. The two conformations are shown in blue and red, respectively. The predicted switching 

regions are color coded: the 5' region is shown in orange, the middle region - in gray, and the 39 region - 
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in purple. Middle: SwitchSeeker score reflecting the likelihood of a given nucleotide to be involved in two 

mutually exclusive base pairings. Left: the schematic representations of the two conformations, as used 

throughout the article. 

(B) The setup of mutation-rescue experiments. The switching regions are color coded as in (A). A-U and C-

G base pairing is shown with compatible shapes (triangle and half-circle). The two conformations of the 

switch reside in the equilibrium state. Mutation of the 39 switching region disrupts the base pairing 

between the 5' and the 39 regions. This causes a shift of the equilibrium towards the conformation 2. 

Rescue mutation of the 5' switching region restores the base pairing between the 5' and the 39 regions, 

but at the same time it disrupts the base pairing between the 5' and the middle regions. Therefore, the 

equilibrium shifts towards conformation 1. 

(C) In vitro SHAPE reactivity of the RORC RNA switch sequence in vitro. Left: SHAPE reactivity profiles for 

the wild type sequence (in gray) and for the mutation-rescue pair of sequences (blue - <65-GT,117-AC=, 

red - <117-AC=.). Shown is the average for 3 replicates with the respective error bars. The three 

switching regions are labeled. The SHAPE reactivity changes in the non-mutated regions are 

highlighted in bold arrows. Right: barplots of cumulative SHAPE reactivity within the switching regions. 

The color scheme for the conformations is the same as in the left panel. N replicates = 3.  

(D) DMS reactivity of the RORC RNA switch in vivo. Top: DMS reactivities of the two clusters identified by 

the DRACO unsupervised deconvolution algorithm (Morandi et al. 2021). The algorithm was run on two 

replicates independently, and identified the same clusters in both of them. The ratios of the clusters 

reported by DRACO are 22% to 78% in replicate 1 and 32% to 68% in replicate 2. The ratio shown is an 

average between the two replicates. The switching regions are shown in color. Bottom: secondary 

structures of the two conformations of RORC RNA switch predicted by RNAstructure algorithm (Reuter 

and Mathews 2010) guided by the DMS reactivity data. DMS reactivity is shown in color. The 

basepairing of 59 region with either 39 region (conformation 1) or middle region (conformation 2) are 

highlighted by a red frame. 
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Fig. 4. Cryo-EM of RORC 39 mRNA is consistent with  dynamic exchange in a shallow energy landscape. 

(A) Segments of cryo-EM micrographs of WT RORC mRNA (left), 77-GA mutant (middle), 117-AC mutant 

(right) show qualitatively different distributions of compact and extended RNA-like particles. Examples 

with different morphologies are indicated by numeric labels in each panel. Micrographs were phase-

flipped, Gaussian filtered, and contrast inverted for display. 

(B) Cryo-EM of the refolded RORC 39 mRNA element reveals three classes with RNA-like features (top). 

Class A is presented in red, Class B in blue, and Class C in yellow. Further cryo-EM imaging and 3D 

classification of the 77-GA mutant (middle) and 117-AC mutant (bottom) indicate that Class A is present 

in WT and 77-GA samples but absent from the 117-AC sample, and Class B is conversely present in 

WT and 117-AC but absent from the 77-GA mutant. Class C is common to all three samples. We thus 

putatively assign Class A as the conformation 1 state, and Class B as the conformation 2 state. We 

propose Class 3 to represent a partly folded intermediate which is not disrupted in the mutated 

constructs. 
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Fig. 5: The two alternative conformations of the RORC RNA switch have opposing effects on target gene 

expression. 

(A-D) Bar plots of relative expression of the reporter construct. The relative expression values are 

calculated as the ratios of eGFP and mCherry fluorescence values for individual cells, as measured on 

a flow cytometer. Confidence intervals for the expression value are shown as calculated from the 

distribution of N>10.000 individual cells. The dominating conformations of RORC RNA switch are shown 

in color: conformation 1 - in blue, conformation 2 - in red, wild type - in gray, scrambled sequence with 

the same dinucleotide content - in yellow. Additionally, diagrams depicting the balance of two 

conformations in the RNA populations are shown below; the conformations present in the ensemble are 

highlighted with the <+= sign. P-values were calculated using the Student9s T test. 

(A) The effect of locking the RORC RNA switch in one or another conformation on reporter gene 

expression. Bottom: the scheme of the RNA secondary structure ensemble within each sample. The two 
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alternative conformations are depicted as simplified stem-loops; their presence in each sample is shown 

by a <+= sign. Top: the relative expression of the reporter upon the RORC switch sequence 

modifications. Each sample is a measurement of a HEK293 cell line with the reporter construct stably 

integrated in the genome. The mutations left to right: <61-TATATAA,116-TTATATA=, <73-CCCTATGA=, 

wildtype, <62-GCACAGT,73-ACTGTGC=, <116-CCCTAAG=. 

(B) The effect of shift in the equilibrium between two conformations of the RORC switch on reporter 

gene expression. The mutation-rescue experiments were performed as shown in Fig. 3B. Bottom: the 

direction of mutation-rescue experiments is shown schematically. Top: the relative expression of the 

reporter upon the RORC switch sequence modifications. The dominating conformation of the switch 

within a sample is shown in color and labeled under the plot. The mutations left to right: wildtype, <65-

GT,117-AC=, <117-AC=, <66-AC=, <66-AC,74-GT=, <77-GA=, <63-TC,77-GA= 

(C) The effect of antisense oligonucleotides (ASOs) on the reporter expression. A HEK293 cell line with 

stably integrated reporter construct encoding the RORC RNA switch in the 39UTR was transfected by 

ASOs of 4 different chemistries. The targeting ASOs are complementary to the switching region of the 

RNA switch in the way that would result in a shift towards conformation 1 within the ensemble; the 

control ASOs have the same nucleotide composition but do not target the RORC RNA switch sequence. 

Bottom: the RNA switch conformations present in each sample are shown by a <+= sign. Top: the 

relative expression of the target gene upon the transfection of either targeting or control ASOs. 

(D) The effect of shift in the equilibrium between two conformations of the RORC switch on reporter 

gene expression in primary Th17 T cells. Human CD4+ T cells were infected with lentiviral constructs 

carrying one of the three sequences in the reporter gene9s 39UTR. The dominating conformations within 

each sample are shown in color as described above. Bottom: the RNA switch conformations present in 

each sample are shown by a <+= sign. Top: the relative expression of the target gene upon the 

transfection of either targeting or control ASOs. The mutations left to right: scrambled RORC RNA 

switch, <77-GA=, wildtype. 
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Fig. 6: Genome wide CRISPRi screen identifies SURF complex as acting downstream of the RORC RNA 

switch 

(A) The comparison between the high expression and low expression quartiles. Top: volcano plot for gene-

wise comparison. The comparison of sgRNA representation between the bottom and the top quantiles 

by expression (across both cell lines) is represented as a volcano plot. Genes, annotated as part of the 

nonsense mediated decay (NMD) pathway by GO, are colored in red. The core components of the 

canonical NMD pathway are colored in purple and labeled. All the other genes are colored in green. 

Bottom: Gene Set Enrichment Analysis (GSEA) plot for NMD pathway for the above comparison. 

(B) Comparison of ratios between top and bottom expression quantiles for the two cell lines. Higher values 

on the X axis indicate that sgRNAs targeting this gene have a stronger effect on reporter gene 

expression in the WT cell line compared to the RC cell line. Top: <ratio of ratios= comparison (<DESeq2 

Testing Ratio of Ratios (RIP-Seq, CLIP-Seq, Ribosomal Profiling)= n.d.) represented as a volcano plot. 

Genes, annotated as part of the nonsense mediated decay (NMD) pathway by GO, are colored in red. 

The core components of the canonical NMD pathway are colored in purple and labeled. All the other 

genes are colored in gray. Bottom: GSEA plot for NMD pathway for the above comparison. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.532161doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532161
http://creativecommons.org/licenses/by/4.0/


(C) (C and D) The effect of knockdown of SURF and EJC complex member proteins on the expression 

change upon the conformation equilibrium shift. The individual genes were knocked down using the 

CRISPRi system in both <wild type= and <scrambled= cell lines, then the change of reporter gene 

expression was measured by flow cytometry (N replicates = 2). The bar plots demonstrate the 

expression ratios of WT to the scrambled sequence of RORC RNA switch. P-values were calculated 

using the Student9s T test. 

(D) The effect of EJC complex knockdown on the expression change upon the conformation equilibrium 

shift. 

(E) The fractions of reads carrying the WT RORC switch sequence or 77-GA mutant variant in UPF1 cross-

linking and immunoprecipitation (CLIP) library. Left: input RNA libraries, extracted from the WT and 77-

GA mutant expressing Jurkat cells, mixed at 1:1 ratio. Right: libraries after anti-UPF1 

immunoprecipitation. The fractions are normalized by the variant fractions in the input libraries. 

(F) (F and G) The effect of proteasome inhibitors bortezomib and carfilzomib on the RNA switch-mediated 

expression change. K562 cell lines expressing GFP/mCherry double reporter either with or without 

RORC RNA switch in the 39UTR of GFP were treated with the drugs for 24 hours, then the reporter gene 

expression (GFP signal normalized by mCherry signal) was measured by flow cytometry (N replicates = 

4). The dose curves for the cell lines expressing or not expressing the WT RORC switch are shown in 

orange and in green, respectively. 

(G) The effect of proteasome inhibitor bortezomib on the RNA switch-mediated expression change. 
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Fig. 7: The proposed mechanism of RORC RNA switch functioning 

(A) Schematic for a shallow energy landscape of the RORC 39 mRNA element. Shallow global minima 

characterizing the conformation 1 (cryo-EM Class A) and conformation 2 (cryo-EM Class B) structures 

themselves comprise multiple local minima in which various secondary structure elements fold or unfold 

while preserving overall tertiary structure and biological activity. These local minima are illustrated by 

secondary structure models for various DRACO cluster members. The two global minima are separated 

by a kinetic barrier that represents a partially folded intermediate (cryo-EM Class 3). The two dashed 

lines indicate alterations to the global landscape exhibited by the mutant sequences, red for the 77-GA 

mutant and blue for the 117-AC mutant. These altered landscapes eliminate one of the global minima 

without disrupting the intermediate. 

(B) Proposed mechanism of RORC RNA switch. The RNA switch exists in an ensemble of two states. One 

of them is recognized by the SURF complex; such recognition triggers mRNA degradation (likely 

mediated by SMG5) and protein degradation (mediated by proteasome), thus affecting gene 

expression. 
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