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ABSTRACT

RNA structural switches are key regulators of gene expression in bacteria, yet their
characterization in Metazoa remains limited. Here we present SwitchSeeker, a comprehensive
computational and experimental approach for systematic identification of functional RNA structural
switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA
switches. To validate our approach, we characterized a previously unknown RNA switch in the 3'UTR

of the RORC transcript. /n vivo DMS-MaPseq, coupled with cryogenic electron microscopy, confirmed
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its existence as two alternative structural conformations. Furthermore, we used genome-scale
CRISPR screens to identify trans factors that regulate gene expression through this RNA structural
switch. We found that nonsense-mediated mRNA decay acts on this element in a conformation-
specific manner. SwitchSeeker provides an unbiased, experimentally-driven method for discovering

RNA structural switches that shape the eukaryotic gene expression landscape.

INTRODUCTION

Gene expression is regulated at the RNA level in all kingdoms of life. The two oldest groups of
RNA-based regulatory mechanisms are ribozymes (catalytically active RNA molecules) and RNA
structural switches (or riboswitches). RNA switches are regulatory elements that control gene
expression by direct binding of a small-molecule ligand or other frans-acting factor. In bacteria, RNA
switches are one of the most widely observed mechanisms for gene expression control. Classic
bacterial riboswitches bind small molecule ligands directly, inducing a conformational change, leading
to modulation of expression of the host transcript (Serganov and Nudler 2013). The search for such
ligand-binding riboswitches in eukaryotes has had limited success to date. Just two human examples
are known: the RNA switch in VEGFA and the m6A modification-based switches (Liu et al. 2015; Ray
et al. 2009), and it remains unclear how widely this regulatory mechanism impacts gene expression in
higher eukaryotes despite its ubiquity in other domains of life. Here, we introduce SwitchSeeker, a
systematic, computational and experimental framework for unbiased discovery of RNA structural

switches across any transcriptome.

While several RNA switch detection software packages have been developed, most identify new
switch sequences based on their homology to one of the 40 known RNA switch families (Kalvari et al.
2021). Several tools for de novo discovery of RNA switches have been developed; however, their
predictions often lack experimental verification of both structure and function (Barsacchi et al. 2016;
Manzourolajdad and Arnold 2015). Therefore, there is a need for scalable methods of detecting
eukaryotic RNA switches and assessing the extent to which they carry out regulatory functions in
gene expression control. Our approach relies on integrating multiple computational and experimental
methods, where RNA switches are first predicted in silico, then structurally and functionally
characterized in vivo, which in turn informs the next iteration of in silico predictions. First, we
developed a computational model for de novo RNA switch detection, named SwitchFinder — a
component of our SwitchSeeker framework. We showed that SwitchFinder identifies RNA switches
from novel families with higher accuracy than the existing models. We applied SwitchFinder to the
human transcriptome to select putative RNA switches. We then used massively parallel assays in vivo

to interrogate both the structure and function of these candidate elements. By iteratively improving the
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SwitchFinder predictions with experimental data, we reported ~250 high-confidence and functional

RNA structural switches.

Finally, we selected the top scoring switch, located in the 3’UTR of the RORC transcript, for
further analysis and dissection. We used DMS-MaPseq structural probing and single-particle
cryogenic electron microscopy (cryo-EM) to confirm that the predicted switch populates alternate
molecular conformations. We then performed genome-scale CRISPR-interference (CRISPRI)
screens, which revealed that one of the two conformations reduces gene expression through
activation of the non-canonical nonsense-mediated decay (NMD) pathway. Taken together, our
framework provides new insights into the role of RNA structural switches in shaping the transcriptome
in human cells, and outlines a broader approach for future characterization of RNA switches

regulating eukaryotic gene expression control across cell types.

RESULTS

Systematic annotation of human RNA structural switches

We first set out to identify RNA sequences that exist in multiple structural conformations. For
this, we developed SwitchFinder, a tool that predicts whether an RNA sequence contains putative
RNA structural switches. We designed SwitchFinder to satisfy several criteria: first, it should predict if
a given RNA sequence contains a potential RNA switch and suggest the two mutually exclusive
folding conformations (examples are shown in Fig. 1A, Suppl. Fig. 1A). Secondly, it should be able to
effectively capture a more generalizable definition of RNA switches in order to find instances beyond
the 40 known RNA switch families (Kalvari et al. 2021) (for example, the human RNA switch in
VEGFA gene, Fig. 1A (Ray et al. 2009)). Thirdly, it should allow for seamless integration of

experimental data to improve predictions. This is especially important as mRNA secondary structure
in the cell is shown to be highly dynamic (Mortimer, Kidwell, and Doudna 2014; Rouskin et al. 2014)
and compartment-dependent (Sun et al. 2019); therefore, the predictions can be greatly improved with

in vivo secondary structure probing data.

To discover new families of RNA switches, we aimed to design an approach that does not rely
on known sequence motifs, which has been the case for most published software (Wheeler and Eddy
2013; Nawrocki and Eddy 2013; Bengert and Dandekar 2004; Abreu-Goodger and Merino 2005;
Chang et al. 2009; Mukherjee and Sengupta 2016). Instead, SwitchFinder uses the sequence to
generate an ensemble of secondary structures and their corresponding energy landscape using a
Boltzmann equilibrium probability distribution (Ding and Lawrence 2003). It then prioritizes those

sequences that show RNA switch-like features, such as having two local minima in close proximity
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with a relatively small barrier in between (Suppl. Fig. 1B). This approach ensures that RNA switches
are described in a generalizable and family-agnostic way. We demonstrated this point by holding
individual Rfam families out of the training set and testing whether SwitchFinder would predict the
switches correctly (Suppl. Fig. 1C). We observed high performance metrics across all held-out
families as measured by the Area Under the Receiver Operating Characteristic curve (AUROC)
values (Fig. 1B). We further compared the performance of SwitchFinder to SwiSpot, the state-of-the-
art method for family-agnostic riboswitch prediction (Barsacchi et al. 2016), and observed significant
improvement of performance across all but one common RNA switch families (Fig. 1C). By relying on
biophysical features of the folding energy landscape as opposed to sequence features, SwitchFinder

captures a wider variety of RNA switches compared to the existing methods.

In addition to primary sequence, we use RNA secondary structure probing data, when available,
to improve SwitchFinder predictions by updating the energy terms of the model. Eukaryotic genomes
are large, therefore the models for RNA structural element prediction need to show very high
specificity to limit the number of false-positives. Such specificity is difficult to reach by relying on in
silico RNA folding alone, since RNAs can fold differently in vivo and even as a function of cellular
state (Beaudoin et al. 2018). However, it is possible to achieve higher specificity if the RNA secondary
structure is first probed in vivo and the model is then guided by this data. Therefore, we designed
SwitchFinder to have an option to update the energy landscape based on RNA secondary structure
data (see Methods) and used this functionality to improve our RNA switch predictions iteratively. We
named this iterative framework SwitchSeeker. First, we applied the SwitchFinder model using the
naive in silico folding to the entirety of the 3’ untranslated regions (3'UTR) of the human
transcriptome, and chose the 3,750 top candidate switches (of length <= 186 nucleotides) as putative
elements. We then probed the secondary structure and function of these candidate RNA switches
using two high-throughput in vivo screens and fed the resulting structural data into a second iteration
of SwitchFinder, which yielded 1,454 high-confidence predictions. Further functional and biochemical

validation was carried out in vivo (Fig. 2A).

Discovery of RNA switches with regulatory function in the human transcriptome

To identify the RNA switches that are both functional and structurally bistable in the cell, we
independently performed two high-throughput in vivo screens, which we call the “structure screen”
and the “functional screen”, respectively. The structure screen differentiates RNAs that exist as an
ensemble of two mutually exclusive conformations from those that reside only in a single
conformation. The functional screen measures the effect of candidate RNA switches on the
expression of a reporter gene. Integrating data from the two screens allowed us to identify the putative

RNA switches that are regulatorily active and act as switches in vivo. Together with the computational
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module SwitchFinder, these high-throughput screening strategies comprise the integrated platform
SwitchSeeker.

Large-scale RNA secondary structure probing for improved RNA structural switch predictions

We performed an in vivo RNA structure screen using DMS-MaPseq to identify bi-stable RNA
structures in the initial pool of 3,750 candidate switches (Zubradt et al. 2017; Mortimer et al. 2012).
DMS preferentially modifies unpaired nucleotides resulting in substitutions of adenines and cytosines
during the reverse transcription process (Suppl. Fig. 2A). Once the cDNA library is sequenced, the
substitution frequency at a given position provides an estimate of nucleotide accessibility, which is
typically lower for paired nucleotides versus unpaired. Applying this method to cells expressing the
library of candidate RNA switches in a reporter gene context allowed us to collect targeted
accessibility measurements with single-nucleotide resolution across all 3,750 candidate RNA switches
(Suppl. Fig. 2B,C).

The accessibility of a single nucleotide is a population average of multiple RNA molecules that
represent different minima in the RNA folding conformation ensemble. If one conformation dominates
within the ensemble, it dominates the DMS-MaPseq reactivity profile; however, if multiple
conformations co-exist, they all contribute to the reactivity profile (Morandi et al. 2021; Tomezsko et
al. 2020). SwitchSeeker exploits this distinction in nucleotide accessibility to find RNA switches that

coexist in a balanced state between two conformations in vivo.

Massively parallel reporter assays identify RNA switches with in vivo regulatory functions

We simultaneously sought to explore the potential role of the identified RNA switches in
regulating gene expression. We implemented a massively parallel reporter assay (MPRA)
(Oikonomou, Goodarzi, and Tavazoie 2014) to functionally interrogate RNA switches in vivo
(“functional screen”). For this, we tested whether a given RNA switch placed in a 3’ UTR can affect
expression of its host mMRNA (in this case the eGFP ORF), compared to a control scrambled
sequence. We cloned a library of 3,750 candidate RNA switch sequences into a dual eGFP-mCherry
fluorescent reporter vector, directly downstream of the eGFP ORF (Suppl. Fig. 2D). We used eGFP
fluorescence to measure the effect of candidate RNA switches on gene expression, and we used
mCherry fluorescence as an endogenous control. We transduced HEK293 cells with this synthetic
library, used flow-cytometry to sort cells by eGFP/mCherry expression ratio, and sequenced the
genomic DNA and RNA from the resulting eight pools of cells (Suppl. Fig. 2E, see Methods). Of the
candidate RNA switches tested, 536 (14%) showed significant downregulation relative to their
scrambled control, and 538 (14%) showed a significant upregulation. We have included

representative candidates with repressive, neutral, or activating function in Fig. 2B. While our study
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focused on characterizing the RNA switches that act in the context of 3'UTRs, the SwitchSeeker
framework can be applied to studying other types of RNA switches given appropriate and customized

reporter constructs.

To annotate a high-confidence set of RNA switches with regulatory potential in the human
transcriptome, we performed a second iteration of SwitchSeeker predictions, guided by the in vivo
RNA structure probing data. To test the performance of this procedure, we compared the fraction of
regulatory active candidate RNA switches among the first and the second iterations of SwitchSeeker
prediction, using the functional screen data. We observed a higher fraction of regulatory active RNA
switches among the second iteration of SwitchSeeker predictions compared to the first iteration (P =
1e-06, see Suppl. Fig. 2F). This further supports the hypothesis that incorporating the in vivo RNA
structure probing data improves its performance. We then integrated the high-confidence RNA
switches with the massively parallel reporter data. Together these analyses resulted in 1,454

elements that were significant in both screens.

Massively parallel mutagenesis analysis identifies conformation-specific RNA switch activities

Having identified the candidate RNA switches that affect gene expression, we aimed to assess
the degree to which the two stable conformations show divergent regulatory function. For this, we
extended our MPRA to include targeted mutations designed to shift the equilibrium between the two
conformations of each riboswitch. This additional screen allowed us to identify bona fide RNA
switches with strong conformation-dependent activity. Starting with the 1,454 high-confidence RNA
switches described above, we engineered mutated variants that would lock RNA switches in one of
their two predicted conformations. This was achieved by either disrupting or strengthening
conformation-specific stem loops. We then performed a massively parallel reporter assay (Suppl. Fig.
2G,H) in which each candidate RNA switch was represented by four additional conformation-specific
variants (i.e., two vs. two) (Fig. 2C). We observed a total of 245 RNA switches that differentially
regulated reporter gene expression when locked in a specific structural conformation. An example
candidate switch (located in the 3’'UTR of TCF7) is shown in Fig. 2D; the TCF7 RNA switch landscape
has two local minima, corresponding to two alternative conformations supported by in vivo DMS-
MaPseq data (Fig. 2D, right). Two mutations in different parts of the switch sequence that favor
conformation 1 resulted in lower expression of the eGFP reporter. Conversely, two mutations that
favor conformation 2 increased eGFP expression. This observation indicates that the two

conformations of the TCF7 RNA switch elicit divergent regulatory functions.
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Describing a bi-stable RNA switch in the 3’'UTR of RORC

To demonstrate the validity of SwitchSeeker predictions, we sought to characterize the top
performing element biochemically. This bistable RNA switch is in the 3'UTR of the RORC mRNA (Fig.
3A); in this RNA switch, the 5' region can pair either with the 3’ or with the middle region, leading to
two mutually exclusive conformations (Fig. 3A). Our measurements indicate that this RNA switch
exists in an equilibrium state between the two conformations in vivo, and that these two conformations

have different effects on the expression of RORC.

To further confirm that the RORC RNA switch exists as an ensemble of two conformations, we

performed targeted mutagenesis experiments with in vitro RNA SHAPE (Wilkinson et al. 2006) as the

read-out. We designed mutation-rescue pairs of sequences that first shift the equilibrium towards one
conformation (mutation), and then shift it towards the other conformation (rescue) (Fig. 3B, Suppl.
Table 1). We then measured the accessibility of individual nucleotides using the in vitro SHAPE assay
(Fig. 3C). We observed that mutating the 3’ region (117-AC), which is expected to stabilize
conformation 2, reduced the accessibility of the middle region. Conversely, the rescue mutation (65-
GT,117-AC) of the 5' region restored its wild-type accessibility (Fig. 3C). Complementary experiments
using the mutation (77-GA) to stabilize conformation 1, and the rescue mutation (63-TC,77-GA) to
stabilize conformation 2, had a similar outcome. Even though we did not observe a significant
decrease in accessibility of the 3’ region upon the 77-GA mutation, the rescue significantly increased
its accessibility (Suppl. Fig. 3A,B). These findings support the role of the three highlighted regions in
forming an ensemble of states in which the middle and the 3’ region compete for base pairing to the 5'

region.

To extend our in vitro observations to living cells, we performed high-coverage DMS-MaPseq of
the RORC switch in vivo (Suppl. Fig. 3C). We used a DMS concentration sufficient to cause multiple
modifications to the same RNA molecule. This enabled us to cluster reads originating from alternative
secondary structures using a state-of-the-art unsupervised computational approach, named DRACO
(Morandi et al. 2021). In both biological replicates, DRACO identified two clusters, each representing
one of the two conformations, at the approximate ratio of 27% to 73% (Fig. 3D). The profiles of the
two clusters did not correlate to each other (p-values of 0.18 and 0.72 in the two replicates 1 and 2),

yet the profile of each cluster correlated highly between the two replicates (Suppl. Fig. 3D).

Single-particle cryo-EM reveals distinct RNA switch tertiary structures

We used single-particle cryo-EM to investigate the tertiary structures of the DRACO clusters.
Micrographs of the wild-type RORC RNA switch contain a mixture of compact and extended particles,

with features suggestive of RNA secondary structure (Fig 4A). In comparison, particles of the
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conformation 1 mutant (77-GA) appear mostly compact, while those of the conformation 2 mutant
(117-AC) are more highly extended (Fig 4A). Quantitative image processing reveals that wild-type
RORC RNA separates into three structural classes labeled A, B, and C, with the Class B structure
absent in the (77-GA), and Class A absent in (117-AC) (Fig 4B). These 3D structures demonstrate
RNA-like tertiary features, including apparent double-stranded helical segments with a discernible
major groove, and typical RNA hairpin elements (Suppl. Fig. 4A). The resolution of these
reconstructions is limited to ~10 A (Suppl. Fig. 4B), due to the extreme flexibility evinced by the raw
micrographs and 2D class averages (Fig 4A, Suppl. Fig. 4C-E), but is sufficient for recognition of RNA
fold and handedness. Based on their appearance in the mutant datasets, Class B likely represents
conformation 2, while Class A represents conformation 1. Interestingly, Class C is present in all three
datasets and may represent a folding intermediate lacking the tertiary interactions made by
nucleotides 77 and 117.

The alternative conformations of the RORC RNA switch play divergent roles in gene regulation

Having discovered and described the RORC RNA switch as an ensemble of two conformations,
we set out to further characterize the divergent regulatory activity of its two states. For this, we
generated HEK293 cell lines stably expressing a reporter with the conformation mutant sequences
cloned into the 3’'UTR of the eGFP coding sequence. We then measured the changes in eGFP
expression of each mutant by flow cytometry. We employed two parallel strategies to lock the RNA
switch in conformation 1: first, we mutated the middle region so that it cannot pair with the 5' region,
and second, we introduced complementary mutations in both 5' and 3’ regions, thus preventing base
pairing between the 5" and middle regions. These two orthogonal strategies achieve the same
stabilization of secondary structures while modifying different parts of the sequence. Strikingly, both
sets of modifications led to similar changes in eGFP expression: locking the RNA switch in
conformation 1 increased reporter gene expression compared to wild-type (Fig. 5A). Furthermore, we
applied the same two strategies to instead lock the RNA switch in conformation 2 and observed the
expected opposite effect: both modifications led to decrease of the reporter gene (Fig. 5A). Therefore,

we concluded that the two conformations play divergent functional roles.

We next tested whether the secondary structure, rather than sequence composition, is the major
determinant of the observed modulation in gene expression. To do so, we generated cell lines (as
described above) stably expressing the mutant sequences from the rescue-mutation experiments
(Fig. 3B) and measured the effect of each mutant on eGFP reporter gene expression. In total, we
tested 3 mutation-rescue pairs. In all three cases, we observed lower eGFP expression of the

conformation 2 mutant (117-AC), as compared to (77-GA) which favors conformation 1 (Fig. 5B).
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Taken together, the reciprocal mutation-rescue experiments provide evidence that RNA secondary

structure is critical for the conformation-specific function of the RORC RNA switch.

Next, we investigated whether shifting the equilibrium between the two conformations by trans-
acting agents, rather than sequence mutations, would have an effect on gene expression. We
hypothesized that adding an antisense oligonucleotide (ASO) complementary to a part of the RNA
switch sequence could shift the equilibrium between the two conformations to change reporter gene
expression. We designed a set of ASOs targeting the middle region of the switch. These ASOs were
designed to shift the equilibrium towards conformation 1 and thereby increase eGFP expression. We
transfected the stable cell line expressing the RNA switch-containing reporter with ASOs and
measured the changes in eGFP expression by flow cytometry. To ensure this effect is not specific to a
single ASO design, we varied the oligonucleotide chemistry by using either morpholino, or 2'-O-(2-
Methoxyethyl) (2-MOE) oligoribonucleotides, or locked nucleic acids (LNA) as the key modifications.
Additionally, we varied the sequence length and the frequency of modifications. In all cases,
transfecting cells with an ASO targeting the middle region of the RNA switch resulted in higher eGFP
expression compared to a non-targeting ASO of the same chemistry and nucleotide composition (Fig.
5C). Thus, the repressive activity of the RORC RNA switch can be alleviated with the use of trans

agents such as ASOs.

The RORC gene encodes nuclear receptor ROR-gamma, and has two protein isoforms that
differ by a short N-terminal sequence. The shorter isoform, RORYy, is expressed in many tissues, and
is involved in circadian rhythms. The longer isoform, RORVt, is expressed in several subsets of T cells
and some lymphoid cells, and is a key driver of Th17 cell type differentiation (Eberl 2017). The RORyt
isoform is a drug target for several autoimmune diseases (Zhong and Zhu 2017). Therefore, we also
measured the activity of the RORC RNA switch in its endogenous cellular context. We assessed
whether the conformation-dependent regulatory function of the RORC RNA switch is observed in
Th17 cells. To do this, we infected primary CD4+ cells with lentivirus carrying the reporter and a
sequence of interest in the eGFP 3'UTR. The cells were then differentiated into the Th17 cell type
(Suppl. Fig. 5, Montoya and Ansel 2017). The presence of the wild type RORC RNA switch strongly
decreased eGFP reporter expression compared to a scrambled version of the same sequence (Fig.
5D). On the other hand, the 77-GA mutant decreases the strength of the repression, confirming the
activity of the RORC RNA in Th17 cells.

Genome-scale genetic screens reveal molecular mechanisms underlying the RORC RNA

switch

To explore the molecular machinery through which the RORC RNA switch impacts gene

expression, we performed genome-wide CRISPRI screens with two distinct eGFP reporters (Suppl.
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Fig. 6A). The first reporter was designed to identify frans factors epistatic to the repressive function of
the RORC switch. For this, we created an eGFP construct carrying the wild type RORC RNA switch in
its 3'UTR. The second reporter was engineered to assess conformation-dependent activity by
inserting the 77-GA RORC switch mutant (favoring conformation 1) in the eGFP 3’'UTR. Considering
the importance of RORC in T cell biology, we chose the Jurkat T cell leukemia line as the model
system for this screen. Jurkat cells were transduced to stably express the dCas9-KRAB CRISPRI

protein (Horlbeck et al. 2018). We infected both reporter cell lines with a genome-wide CRISPRI

sgRNA library (Gilbert et al. 2014), sorted cells on a flow cytometer by relative eGFP/mCherry
expression, and collected the 25% of cells with highest and lowest eGFP expression (Suppl. Fig. 6A)
(de Boer et al. 2020). We hypothesized that knockdown of genes important for the repressive function
of the RORC RNA switch would result in higher expression of the reporter gene. Similarly, genes
involved in modulating the switch functionality of the two conformations would result in higher reporter

expression for the wildtype switch compared to the 77-GA mutant.

To identify factors responsible for the repressive function of RORC RNA switch, we compared
the abundance of sgRNAs in the cells with high reporter expression relative to those with lower
expression (Fig. 6A). We also performed gene-set enrichment analysis (Korotkevich et al. 2021) to
identify the key pathways involved. The most highly enriched pathway was nonsense-mediated decay
(NMD)), and several core NMD factors, such as SMG8, UPF1, UPF2, UPF3B were among the highest
scoring hits of the screen (Fig. 6A). As expected, among other enriched pathways, many were
associated with general gene expression such as translation, ribosome biogenesis, and endoplasmic
reticulum stress (Suppl. Fig. 6B). Next, we asked which factors are responsible for the divergent
activity of the two conformations. For this, we performed the ratio of ratios test (see methods), by
comparing the ratios of sgRNA abundance in low and high expression cells between the two reporter
screens: wildtype versus 77-GA mutant (Suppl. Fig. 6C). Interestingly, this comparison also
highlighted the NMD pathway as the key contributor (Fig. 6B). Among the highest scoring hits were
several core NMD factors; all of them are part of the SURF complex, which is thought to recognize
stalled ribosomes when a premature termination codon (PTC) occurs upstream of the exon-junction
complex (EJC) (Yamashita 2013). However, the components of EJC did not show any phenotype
change in either of the two comparisons (Fig. 6A,B). Therefore, the RORC RNA switch affects gene
expression by acting through the EJC-independent NMD pathway, and one conformation of the switch

preferentially interacts with this machinery (Yi et al. 2022; Kurosaki, Popp, and Maquat 2019).

To further confirm this observation, we used CRISPRI to individually knock down the identified
core NMD factors in the wild type and 77-GA mutant reporter lines, along with cells expressing a
scrambled RORC RNA switch control (“scrambled” cell line). We first asked whether silencing the

NMD factors would affect the repressive function of the RNA switch. We compared the expression of
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eGFP in the wild type and scrambled reporter lines. We observed that silencing the core members of
the SURF complex (Fig. 6C), but not of the EJC complex (Fig. 6D), affected the repressive function of
the RORC RNA switch sequence on gene expression. Next, we asked whether knockdown of the
NMD proteins would reduce the functional difference between the two switch conformations; we
compared eGFP expression in the wild type and the 77-GA mutant reporter lines. Consistently, we
observed that knocking down the core members of the SURF complex, and not of the EJC complex
(Suppl. Fig. 6D), reduced this difference. This data demonstrates that NMD acts preferentially on the
Conformation 2 of the RORC RNA switch.

Given that UPF1 can bind highly structured RNA regions (Fischer et al. 2020), we hypothesized
that UPF1 might bind the two RORC RNA switch conformations with different affinities. To test this
hypothesis, we mixed together the wild type and the 77-GA mutant reporter lines at a 1:1 ratio, and
measured the difference in UPF1 affinity by targeted crosslinking immunoprecipitation (CLIP) followed
by targeted sequencing. We observed that the wildtype RORC UTR sequence was significantly more
abundant among the UPF1 CLIP tags than its 77-GA mutant (Fig. 6E). To further confirm the
conformation-specific interaction of the RORC switch with UPF1, we mixed together cell lines
expressing two mutants that lock the RNA switch in the opposite conformations: 77-GA (locks the
conformation 1) and 116-CCCTAAG (locks the conformation 2), and measured the UPF1 binding
differences as described above. As expected, we observed higher fraction of reads aligning to the
116-CCCTAAG mutant sequence than to the 77-GA mutant (Suppl. Fig. 6E). The observed difference
in variant sequence fractions was larger for the mix of two opposite mutants than for the mix of 77-GA
mutant with the wildtype sequence (LogFC values of 1.12 vs 0.41). Taken together, our results

indicate differential UPF1 binding to the two conformations of the RNA switch.

Since the canonical NMD pathway causes the proteins translated from aberrant mRNA to be
degraded by the proteasome (Kuroha, Tatematsu, and Inada 2009), we expect the RORC RNA switch
to target its gene product for degradation by the proteasome. To confirm this, we treated two dual
reporter cell lines with the proteasome inhibitor carfilzomib, one line expressing the RORC RNA
switch (the “wild type” line), and the other expressing the scrambled control. As expected, proteasome
inhibition resulted in a significantly larger change in eGFP expression in the “wild-type” line relative to
the “scrambled” cell line (Fig. 6F). To verify that the observed effect is due to proteasome inhibition
rather than a side effect of carfilzomib, we treated cells with bortezomib, another proteasome inhibitor
which acts through a different mechanism, and observed the same effect (Fig. 6G). Therefore, our
data suggests that proteasomal degradation is involved in the repressive activity of the RORC RNA

switch on gene expression.
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Discussion

In the past, RNA switches were discovered through either comparative genomics analysis or
biochemical experimentation. Comparative genomic analysis searches for conserved positions within
non-coding RNA regions and has proven effective for identifying cis-regulatory elements in bacteria,
including riboswitches and transcription factor binding sites (Rodionov 2007). The biochemical
approach involves measuring the affinity of a putative RNA switch to its ligands and analyzing the
conformational change caused by the binding event. Both approaches were used to discover the first
known RNA switches in bacteria (Epshtein, Mironov, and Nudler 2003; Winkler, Nahvi, and Breaker
2002). However, no specific algorithms have been created to identify RNA switches in eukaryotic
transcriptomes. In Eukaryotes, mRNA secondary structure is highly dynamic; multiple studies have
shown that RNA structure vastly differs when measured in vitro vs in vivo (Rouskin et al. 2014), and
that multiple cellular processes can rearrange mRNA secondary structures (Sun et al. 2019). Although
the functional importance of individual RNA structure rearrangements has been studied, such as RNA
thermosensors (Shamovsky et al. 2006), the extent to which structural switches control gene
expression in eukaryotes remains largely unexplored. There are several reasons why models trained
on bacteria cannot be easily applied to metazoans, including the larger sequence search space in
eukaryotic transcriptomes, which hinders the application of pre-trained models due to high false-
positive counts (Ureta-Vidal, Ettwiller, and Birney 2003), and poor sequence conservation of many
eukaryotic RNA regulatory elements, which limits the applicability of comparative genomics analyses
(Backofen et al. 2018; Leypold and Speicher 2021). However, the SwitchSeeker methodology
provides a comprehensive, integrative platform for studying RNA switches in eukaryotic
transcriptomes. It covers all the steps of discovery, from de novo predictions to uncovering the
mechanism of individual RNA switches, and overcomes the limitations of exisiting methodologies by
integrating the toolkits of biochemistry, systems biology, and functional genomics. With its scalability
to complete transcriptomes, SwitchSeeker offers a way towards comprehensive characterization of

RNA switches across the tree of life.

Recent advances in genomic technologies were a key contributor in our ability to carry out this
systematic search for RNA switches. RNA secondary structure probing techniques, such as DMS-seq
and SHAPE-seq, have enabled researchers to study multiple alternative conformations of RNA
molecules (Tomezsko et al. 2020; Morandi et al. 2021). Additionally, recent advancements in single-
particle cryo-EM and computational modeling have enabled the determination of the 3D folds of some
RNA molecules (Kappel et al. 2020), despite their small size and intrinsic flexibility. This has opened
up opportunities to study the functional differences between alternative RNA conformations and their
role in gene expression control. Our DMS-MapSeq and cryo-EM data suggest that the RORC 3’

MRNA element inhabits a shallow energy landscape with two rugged minima linked to two major
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molecular conformations (Fig. 7A). Mutations that stabilize one conformation or another alter the
energy landscape and the distribution of states. Experimental structure determination thus validates
the SwitchSeeker approach to identification of RNA molecules with these types of bistable energy
landscapes. The RORC RNA switch was functionally characterized using CRISPRI, which revealed
that its control of gene expression is mediated by the SURF complex of the EJC-independent NMD.
We propose that UPF1 preferentially recognizes switch conformation 2 over conformation 1, and that
the recruitment of the SURF complex by UPF1 in turn leads to decreased gene expression through
proteasome-mediated degradation of any translation products, and mRNA decay preventing repeated
rounds of translation (Fig. 7B). Point mutants that modulate the conformational equilibrium likewise
cause small but significant changes in the degree of gene repression by the switch. Switch sequence
variation can likely provide nearly continuous modulation of SURF recruitment and NMD activation.
However, questions remain regarding the pathways that trigger the switching between the two

conformations.

We have observed that a large number of regulatory elements in the human transcriptome act as
RNA switches. This implies that conformation-dependent modes of gene expression control are likely
widespread in the human transcriptome. The regulatory information contained in dynamic RNA
structural elements is an under-explored area of gene expression control that plays a fundamental
role in health and disease. Understanding the regulatory grammar of RNA switches throughout the
transcriptome is a crucial step towards a more comprehensive comprehension of post-transcriptional
gene expression control. In our study, we chose stringent criteria for selecting RNA switches,
requiring them to be bistable in vivo, meaning they populate two mutually exclusive structural
conformations. However, this criterion may not be applicable to all functional RNA switches, which
may be bistable only under specific conditions or in specific cell types. For instance, it has been
demonstrated recently that HIV-1 TAR RNA forms a rare and short-lived yet biologically active
conformation (Kelly et al. 2022). Additionally, RNA switches may be multistable and provide even
more complex regulation. Developing further methodologies is necessary to capture these attenuated

regulatory elements.

RNA switches function through different mechanisms. The known examples of human RNA
switch mechanisms include mutually exclusive binding of RBPs by two different conformations (Ray et
al. 2009) and m6A modification-based switching (Liu et al. 2015). In this study, we presented a novel
RNA switch that operates via the NMD pathway, and we believe that other RNA switches may also
exploit various RNA metabolic pathways. For example, we have recently shown that specific RNA
structures cause aberrant splicing in metastatic cancers through binding SNRPA1 (Fish et al. 2021).
Thus, future studies will likely find a wider variety of RNA switches than those discovered in the

present study, under steady-state conditions. Importantly, SwitchSeeker is general with respect to the
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mechanism: it can identify general RNA structural switches and reveal their mechanisms. We
anticipate that many RNA switches will be employed as therapeutic handles for treating genetic
diseases: in this study, we demonstrated that it is possible to control gene expression by shifting the
balance between the two RNA conformations with therapeutics such as ASOs. Understanding the
regulatory programs that govern RNA secondary structure switching will provide a mechanistic
understanding of gene expression control, which will be invaluable for studying RNA switches in
various contexts such as development and disease. SwitchSeeker is available for use and adaptation,

and we hope it will pave the way for further discoveries in RNA-based regulation in eukaryotes.

Methods

SwitchFinder: detailed description of the algorithm

Conflicting basepairs identification: Conflicting basepairs were detected using a modification of

MIBP algorithm developed by L. Lin and W. McKerrow (Lin et al. 2018). First, a large number of folds
(default N=1000) is sampled from the Boltzmann distribution. If structure probing data (such as
DMSseq or SHAPEseq) is provided, the Boltzmann distribution modeling software (part of
RNAstructure package (Reuter and Mathews 2010)) incorporates the data as a pseudofree energy
change term. Then, the basepairs are filtered: the basepairs that are present in almost all the folds or
are absent from almost all the fold are removed from the further analysis. Then, mutual information for
each pair of basepairs is estimated. To do so, each basepair is represented as a binary vector of
length N, where N is the number of folds considered; in this binary vector, a given fold is represented
as 1 if this basepair is present there, or as 0 if it's not. Mutual information between each two basepairs
is calculated as in (Cover and Thomas 2006). This results in a M by M table of mutual information
values, where M is the number of basepairs considered. Then, the sum of each row of the square
table is calculated. In the resulting vector K of length M, each basepair is represented by a sum of
mutual information values of across all the other basepair. Then, only the basepairs whose sum of
mutual information values passes the threshold of U * MAX(K) is considered, where U is a parameter

(default value 0.5). We call the basepairs that pass this threshold the “conflicting basepairs”.

Conflicting stems identifications: Once the conflicting basepairs were identified, they get

assembled into conflicting stems, or series of conflicting basepairs that directly follow each other and
therefore could potentially form a stem-like RNA structure. More specifically, the basepairs (a, b) and
(c, d) form a stem if either (@a==c-1) & (b==d +1),or(@a==c+ 1) & (b ==d - 1). The stem is defined
as a pair of intervals ((u, v), (X, ¥)), where v - u ==y - x. Then, the conflicting stems get filtered by
length: only the stems that are longer than a certain threshold value (default value: 3) are considered.

Among these stems, the stems that directly conflict with each other are identified. Two stems ((us, v1),
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(x1, y1)) and ((uz, v2), (X2, y2)) conflict with each other if there is an overlap longer than a threshold
value between either (u1, v1) and (uz, v2), or (us, vi) and (Xo, y2), or (x1, y1) and (uz, v2), or (x1, y1) and
(x2, y2). Default threshold value is 3. The pairs of conflicting stems are sorted by the average value of
their K values (sums of mutual information). The highest scoring pair of conflicting stems is
considered the winning prediction, representing the major switch between two of the local minima
present in the energy folding landscape of the given sequence. If not pairs of conflicting stems pass

the threshold, SwitchFinder reports that no potential switch is identified for the given sequence.

Identifying the two conflicting structures: Given the prediction of the two conflicting stems, the

folds that represent the two local minima of the energy folding landscape are predicted. Importantly,
SwitchFinder focuses on optimizing the prediction accuracy, as opposed to the commonly used
approach of energy minimization (Lu, Gloor, and Mathews 2009). MaxExpect program from the
RNAstructure package (Reuter and Mathews 2010) is used; the basepairings of each of the conflicting
stems are provided as folding constraints (in Connectivity Table format). The two predicted structures

are further referred to as conformations 1 and 2.

Activation barrier estimation. The RNApathfinder software (Dotu et al. 2010) is used to estimate

the activation energy needed for a transition between the conformations 1 and 2.

Classifier for prediction of RNA switches: The curated representative alignments for each of the

50 known riboswitch families were downloaded from RFAM database (Kalvari et al. 2021). Each
sequence gets complemented by its shuffled counterpart (while preserving dinucleotide frequencies,
see (altschulEriksonDinuclShuffle.py at Master - wassermanlab/BiasAway n.d.)). For all the
sequences, the two conflicting conformations, their folding energies and their activation energies were
predicted as above. To estimate the performance of SwitchFinder for a given riboswitch family, all the
sequences from this family are placed into the test set, while all the sequences from the other families
are placed into the training set. Then, linear regression model is trained on the training set, where the
response variable is binary and indicates whether the sequence is a real riboswitch or is a shuffled
counterpart, and the predictor variables are the average folding energy of the two conformations and
the activation energy of the transition between them. The trained linear regression model is then run

on the test set, and its performance is estimated with the receiver operating characteristic curve.

Prediction of RNA switches in human transcriptome: The coordinates of 3’'UTRs of the human

transcriptome were downloaded from UCSC Table Browser (Karolchik, Hinrichs, and Kent 2012),
table tb_wgEncodeGencodeBasicV28Iift37. The sequences of 3’UTRs were cut into overlapping
fragments of 186 nt in length (with the overlaps of 93nt). For all the sequences, the two conflicting

conformations, their folding energies and their activation energies were predicted as above. A linear
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regression model was trained as described above on all the 50 known riboswitch families. The model
was applied to the 3’'UTR fragments from the human genome, and the fragments were sorted
according to the model prediction scores. The top 3750 predictions were selected for further

investigation.

Mutation generation: In order to shift the RNA conformation ensemble towards one or another

state, mutations of two types were introduced.

(1) “Strengthen a stem” mutations: given two conflicting stems ((u1, v1), (X1, y1)) and ((uz, v2), (X2,
y2)), one of the stems (for example, the first one) was changed in a way that would preserve its
basepairing but deny the possibility of forming the second stem. To do so, the nucleotides in the
interval (u1, v1) were replaced with all possible sequences of equal length, and the nucleotides (x1, y1)
were replaced with the reverse complement sequence. Then, the newly generated sequences were
filtered by two predetermined criteria: (i) the second stem can not form more than a fraction of its
original base pairs (default value 0.6), (ii) the modified first stem can't form long paired stems with any
region of the existing sequence (default threshold length 4). The sequences that passed both criteria
were ranked by the introduced change in the sequence nucleotide composition; the mutations that
changed the nucleotide composition the least were chosen for further analysis. Each mutated
sequence was additionally analysed by SwitchFinder to ensure that the Boltzmann distribution is

heavily shifted towards the desired conformation.

(2) “Weaken a stem” mutations: given two conflicting stems ((u1, v1), (X1, y1)) and ((uz, v2), (X2,
y2)), one of the stems (for example, the second one) was changed in a way this stem wouldn’t be able
to form anymore, while the basepairing of the other stem (in this example, the first stem) would be
preserved. To do so, the nucleotides in either of the intervals (uz, v2) or (x2, y2) were replaced with all
possible sequences of equal length. The newly generated sequences were filtered by three
predetermined criteria: (i) the first stem stays unchanged, (ii) the second stem can not form more than
a fraction of its original base pairs (default value 0.6), (ii) the modified part of the sequence can't form
long paired stems with any region of the existing sequence (default threshold length 4). The
sequences that passed all the criteria were ranked by the introduced change in the sequence
nucleotide composition; the mutations that changed the nucleotide composition the least were chosen
for further analysis. Each mutated sequence was additionally analysed by SwitchFinder to ensure that

the Boltzmann distribution is heavily shifted towards the desired conformation.

Code availability: The source code of SwitchFinder is available at

https://qgithub.com/goodarzilab/SwitchFinder.
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Cell culture

All cells were cultured in a 37°C 5% CO2 humidified incubator. The HEK293 cells (ATCC CRL-
3216) were cultured in DMEM high-glucose medium supplemented with 10% FBS, L-glutamine (4 mM),
sodium pyruvate (1 mM), penicillin (100 units/mL), streptomycin (100 yg/mL) and amphotericin B (1
pg/mL) (Gibco). The Jurkat cell line was cultured in RPMI-1640 medium supplemented with 10% FBS,
glucose (2 g/L), L-glutamine (2 mM), 25 mM HEPES, penicillin (100 units/mL), streptomycin (100 pg/mL)
and amphotericin B (1 pg/mL) (Gibco). All cell lines were routinely screened for mycoplasma with a

PCR-based assay.

Cryo-EM Sample Preparation and Data Collection

3.5 pl of target MRNA at an approximate concentration of 1.5 mg/mL was applied to gold, 300
mesh TEM grids with a holey carbon substrate of 1.2/1.3 uym spacing (Quantifoil). The grids were blotted
with #4 filter papers (Whatman) and plunge frozen in liquid ethane using a Mark IV Vitrobot (Thermo
Fisher), with blot times of 4-6 s, blot force of -2, at a temperature of 8°C and 100% humidity. All grids
were glow discharged in an easiGlo (Pelco) with rarefied air for 30 s at 15 mA, no more than 1 hour
prior to preparation. Duplicate WT and mutant RNA specimens were imaged under different conditions
on several microscopes as per Table S8; all were equipped with K3 direct electron detector (DED)
cameras (Gatan), and all data collection was performed using SerialEM (Mastronarde 2003). Detailed

data collection parameters are listed in Table S8.

Cryo-EM Image processing

Dose-weighted and motion-corrected sums were generated from raw DED movies on-the-fly
during data collection using UCSF MotionCor2 (Zheng et al. 2017). Images from super-resolution
datasets were downsampled to the physical pixel size before further processing. CTF estimation was
performed in CTFFIND4 (“Ctffind4” n.d.), followed by neural-net based particle picking in EMAN2
(Tang et al. 2007). 2D classification, ab initio 3D classification, and gold-standard refinement were
done in cryoSPARC (Punjani et al. 2017). CTFs were then re-estimated in cryoSPARC and particles
repicked using low-resolution (20 A) templates generated from chosen 3D classes. Extended datasets
were pooled where appropriate, and particle processing was repeated through gold-standard
refinement as before. All structure figures were created using UCSF ChimeraX (Goddard et al. 2018).

Further details are given in Table S7 and Extended Data Figure 4.
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Reporter vector design and library cloning

First, mCherry-P2A-Puro fusion was cloned into the BTV backbone (Addgene #84771). Then,
the vector was digested with Mlul-HF and Pacl restriction enzymes (NEB), with the addition of rSAP
(NEB). The digested vector was purified with Zymo DNA Clean and Concentrator-5 kit.

DNA oligonucleotide libraries (one for functional screen and one for massively parallel
mutagenesis analysis) consisting of 7500 sequences total were synthesized by Agilent. The second
strand was synthesized using Klenow Fragment (3'- 5" exo-) (NEB). The dsDNA library was digested
with Mlul-HF and Pacl restriction enzymes (NEB) and run on a 6% TBE polyacrylamide gel. The band
of the corresponding size was cut out and the gel was dissolved in the DNA extraction buffer (10 mM
Tris pH 8, 300 mM NaCl, 1 mM EDTA). The DNA was precipitated with isopropanol. The digested
DNA library and the digested vector were ligated with T4 DNA ligase (NEB). The ligation reaction was
precipitated with isopropanol and transformed into MegaX DH10B T1R Electrocompetent Cells
(Thermo Fisher). The library was purified with ZymoPURE Il Plasmid Maxiprep Kit (Zymo). The
representation of individual sequences in the library was verified by sequencing the resulting library

on MiSeq instrument (lllumina).

Massively Parallel Reporter Assay

The DNA library was co-transfected with pCMV-dR8.91 and pMD2.G plasmids using TransIT-
Lenti (Mirus) into HEK293 cells, following the manufacturer's protocol. Virus was harvested 48 hours
post-transfection and passed through a 0.45 um filter. HEK293 cells were then transduced overnight
with the filtered virus in the presence of 8 pg/mL polybrene (Millipore); the amount of virus used was
optimized to ensure the infection rate of ~20%, as determined by flow cytometry The infected cells
were selected with 2 ug/mL puromycin (Gibco). Cells were harvested at 90%—-95% confluency for
sorting and analysis on a BD FACSaria Il sorter. The distribution of mCherry to GFP ratios was
calculated. For sorting a library into subpopulations, we gated the population into 8 bins each
containing 12.5% of the total number of cells. A total of 1.2 million cells were collected for each bin to
ensure sufficient representation of sequence in the population in two replicates each. For each
subpopulation, we extracted gDNA and total RNA with the Quick-DNA/RNA Miniprep kit. gDNA was
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amplified by PCR with Phusion polymerase (NEB) using primers
CAAGCAGAAGACGGCATACGAGAT -i7 -
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCACTGCTAGCTAGATGACTAAACGCG and
AATGATACGGCGACCACCGAGATCTACAC - i5 -
ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGGTCTGGATCCACCGGTCC. Different i7
indices were used for 8 different bins, and different i5 indices were used for the two replicates. RNA
was reverse transcribed with Maxima H Minus Reverse Transcriptase (Thermo Fisher) using primer
CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNTGGTCTGGATCCACCGGTCCGG.
The cDNA was amplified with Q5 polymerase (NEB) using primers
CAAGCAGAAGACGGCATACGAGAT -i7 -
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCTGCTAGCTAGATGACTAAACGC and
CAAGCAGAAGACGGCATACGAGAT - i5 -
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTACCCGTCATTGGCTGTCCA. Different i7
indices were used for 8 different bins, and different i5 indices were used for the two replicates. The
amplified DNA libraries were size purified with the Select-a-Size DNA Clean & Concentrator MagBead
Kit (Zymo). Deep sequencing was performed using the HiSeq4000 platform (lllumina) at the UCSF

Center for Advanced Technologies.

The adapter sequences were removed using cutadapt (Martin 2011). For RNA libraries, the UMI
was then removed from the reads and appended to read names using UMI tools (Smith, Heger, and
Sudbery 2017). The reads were matched to the fragments using bwa mem command. The reads were
counted using featureCounts (Liao, Smyth, and Shi 2014). The read counts were normalized using
median of ratios normalization (Anders and Huber 2010). One-way chi-square test statistic was used
to estimate how different its distribution across the sorting bins is from the null hypothesis (i.e. uniform
distribution). mMRNA stability was estimated by comparing the RNA and DNA read counts with
MPRAnalyze (Ashuach et al. 2019).

DMS-MaPseq

DMS-MaPseq was performed as described in (Fish et al. 2021). Briefly, HEK293 cells were
incubated in culture with 1.5% DMS (Sigma) at room temperature for 7 minutes, the media was
removed, and DMS was quenched with 30% BME. Total RNA from DMS-treated cells and untreated
cells was then isolated using Trizol (Invitrogen). RNA was reverse transcribed using TGIRT-IIl reverse
transcriptase (InGex) and target-specific primers. PCR was then performed to amplify the desired
sequences and to add lllumina compatible adapters. The libraries were then sequenced on a MiSeq

instrument using MiSeq micro kit v2, 300 cycles (lllumina).
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Pear (v0.9.6) was used to merge the paired reads into a single combined read. The UMI was
then removed from the reads and appended to read names using UMI tools (v1.0). The reads were
then reverse complemented (fastx toolkit) and mapped to the amplicon sequences using bwa mem
(v0.7). The resulting bam files were then sorted and deduplicated (umi_tools, with method flag set to
unique). The alignments were then parsed for mutations (CTK). The mutation frequency at every
position was then reported. The signal normalization was performed using boxplot normalization as in
(Low and Weeks 2010). The top 10% of positions with the highest mutation rates were considered
outliers as suggested in (Hajdin et al. 2013). The clustering of DMS-MaPseq signal was performed
with DRACO (Morandi et al. 2021).

SHAPE chemical probing of RNAs

Chemical probing and mutate-and-map experiments were carried out as described previously
(Palka et al. 2020). Briefly, 1.2 pmol of RNA was denaturated at 95°C in 50 mM Na-HEPES, pH 8.0,
for 3 min, and folded by cooling to room temperature over 20 min, and adding MgCI2 to 10 mM
concentration. RNA was aliquoted in 15 pL volumes into a 96-well plate and mixed with nuclease-free
H20 (control), or chemically modified in the presence of 5 mM 1-methyl-7-nitroisatoic anhydride (1M7)
(Turner, Shefer, and Ares 2013), for 10 min at room temperature. Chemical modification was stopped
by adding 9.75 uL quench and purification mix (1.53 M NaCl, 1.5 pyL washed oligo-dT beads, Ambion),
6.4 nM FAM-labeled, reverse-transcriptase primer (/56-
FAM/AAAAAAAAAAAAAAAAAAAAGTTGTTCTTGTTGTTTCTTT), and 2.55 M Na-MES. RNA in each
well was purified by bead immobilization on a magnetic rack and two washes with 100 uL 70%

ethanol. RNA was then resuspended in 2.5 uL nuclease-free water prior to reverse transcription.

RNA was reverse-transcribed from annealed fluorescent primer in a reaction containing 1x First
Strand Buffer (Thermo Fisher), 5 mM DTT, 0.8 mM dNTP mix, and 20 U of SuperScript Ill Reverse
Transcriptase (Thermo Fisher) at 48°C for 30 min. RNA was hydrolyzed in the presence of 200 mM
NaOH at 95°C for 3 min, then placed on ice for 3 min and quenched with 1 volume 5 M NaCl, 1
volume 2 M HCI, and 1 volume 3 M sodium acetate. cDNA was purified on magnetic beads, then
eluted by incubation for 20 min in 11 yL Formamide-ROX350 mix (1000 pL Hi-Di Formamide (Thermo
Fisher) and 8 yL ROX350 ladder (Thermo Fisher). Samples were then transferred to a 96-well plate in
“concentrated” (4 uL sample + 11 yL ROX mix) and “dilute” (1 yL sample + 14 yL ROX mix) for
saturation correction in downstream analysis. Sample plates were sent to Elim Biopharmaceuticals for

analysis by capillary electrophoresis.
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ASO infection

Antisense oligonucleotides were purchased from Integrated DNA Technologies; the Morpholino
ASOs were purchased from Gene Tools LLC (see sequences in Data file S9). 95.000 HEK293 cells
were seeded into a well of a 24-well cell culture treated plate in a total volume of 500 ul. 24 hours
later, either 1 nmol of Morpholino ASO together with 3 ul of EndoPorter reagent (Gene Tools LLC), or
6 pmol of other ASO were added to each well. 48 hours later, the mCherry and eGFP fluorescence

was measured on BD FACSCelesta Cell Analyzer.

CRISPRI screen

Reporter screens were conducted using established flow cytometry screen protocols (Gilbert et
al. 2014)( Horlbeck et al., 2016; Sidrauski et al., 2015). Jurkat cells with previously verified CRISPRi
activity were used (Horlbeck et al., 2018). The CRISPRI-v2 (5 sgRNA/TSS, Addgene: Cat#83969)
sgRNA library was transduced into Jurkat cells at an MOI < 0.3 (BFP+ cell percentages were ~30%).
For the flow based CRISPRI screen with the Jurkat cells, the sgRNA library virus was transfected at
an average of 500x coverage after transduction (Day 0). Puromycin (1 pg/mL) selection for positively-
transduced cells was performed 48 hours (Day 2) and 72 hours (Day 3) post transduction (Day 3). On
Day 11, cells were collected in PBS and sorted with the BD FACSAria™ Fusion cell sorter. Cells were
gated into the 25% of cells with the highest ratio between GFP and mCherry fluorescence intensity
and 25% of cells with the lowest ratio. The screens were performed with two conditions: cells with a
wildtype RORC Riboswitch-GFP reporter and a mutated Riboswitch reporter. Screens were
additionally performed in duplicate. After sorting, genomic DNA was harvested (Macherey-Nagel Midi
Prep kit) and amplified using NEB Next Ultra Il Q5 master mix and primers containing TruSeq Indexes
for NGS analysis. Sample libraries were prepared and sequenced on a HiSeq 4000. Guides were
then quantified with the published ScreenProcessing

(https://github.com/mhorlbeck/ScreenProcessing) method and phenotypes generated with an in-

house processing pipeline, iAnalyzer (https://github.com/goodarzilab/iAnalyzer). Briefly, iAnalyzer

relies on fitting a generalized linear model to each gene. Coefficients from this GLM were z-score
normalized to the negative control guides and finally the largest coefficients were analyzed as
potential hits. For the comparison of gene phenotypes between the two cell lines, the DESeq2 ratio of
ratios test was used (“DESeq2 Testing Ratio of Ratios (RIP-Seq, CLIP-Seq, Ribosomal Profiling)”
n.d.).

CRISPRi-mediated gene knockdown

Jurkat cells expressing dCas9-KRAB fusion protein were constructed by lentiviral delivery of
pMHO0006 (Addgene #135448) and FACS isolation of BFP-positive cells.
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Guide RNA sequences for CRISPRi-mediated gene knockdown were cloned into pCRISPRia-v2
(Addgene #84832) via BstXI-Blpl sites. After transduction with sgRNA lentivirus, Jurkat cells were
selected with 2 pg/mL puromycin (Gibco). The fluorescence of eGFP and of mCherry was measured
on BD FACSCelesta Cell Analyzer.

Reporter cell lines generation

Mutated or wild type sequences of RORC 3’'UTR were cloned into the dual GFP-mCherry reporter
using Mlul-HF and Pacl restriction enzymes (NEB) as described above. The reporters were lentivirally

dlivered to HEK293 and Jurkat cells and analyzed by flow cytometry as described above.

Proteasome inhibitor treatment

Jurkat cells were seeded at the density of 0.25*107 cells per mL. Either the proteasome inhibitors
(Carfilzonib or Bortezomib, Cayman Chemical) or negative control (DMSQO) were added at the given
concentration. After 24 hours long incubation, the fluorescence of eGFP and of mCherry was measured
on BD FACSCelesta Cell Analyzer.

T cell isolation, transduction, and Th17 cells differentiation

Th17 cells were derived as described previously (Montoya and Ansel 2017). Plates were coated
with 2 pg/mL anti-human CD3 (UCSF monoclonal antibody core, clone: OKT-3) and 4 pg/mL anti-
human CD28 (UCSF monoclonal antibody core, clone: 9.3) in PBS with calcium and magnesium for at
least 2 h at 37 °C or overnight at 4 °C with plate wrapped in parafilm. Human CD4+ T cells were isolated
from human peripheral blood using EasySep human CD4+ T cell isolation kit (17952; STEMCELL) and
stimulated in ImmunoCult-XF T cell expansion medium (10981; STEMCELL) supplemented with 10 mM
HEPES, 2 mM L-glutamine, 100 uM 2-ME, 1 mM sodium pyruvate, and 10 ng/ml TGF-B. 24 h after T
cell isolation and initial stimulation on a 96-well plate, 7 ul of lentivirus was added to each sample. After
24 h, the media was removed from each sample without disturbing the cells and replaced with 200 pl
fresh media. After 48 h, cells were stimulated with 1.2 yM ionomycin, 25 nM PMA, and 6 pg/ml brefeldin-
A, resuspended by pipetting, incubated for 4 h at 37 °C, and harvested for analysis. Half of each sample
was stained for CD4, FoxP3, IL-13, IL-17A, IFN-gamma and analyzed on BD LSRFortessa cell analyzer
(see below). The other half of the sample was not stained and was analyzed for the expression of eGFP

and mCherry on BD LSRFortessa cell analyzer.

Cultured human T cells were collected, washed, and stained with antibodies against cell surface
proteins and transcription factors. Cells were fixed and permeabilized with the eBioscience™ Foxp3 /
Transcription Factor Staining Buffer Set or the Transcription Factor Buffer Set (BD Biosciences).
Extracellular nonspecific binding was blocked with the anti-CD16/CD32 antibody (clone 2.4G2; UCSF
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Monoclonal Antibody Core). Intracellular nonspecific binding was blocked with anti-CD16/CD32 Abs
and 2% normal rat serum. Dead cells were stained with Fixable Viability Dye eFluor 780 (eBioscience)
or Zombie Violet Fixable Viability Kit (BioLegend). Cells were stained with the following fluorochrome-
conjugated anti-human Abs: anti-CD4 (Invitrogen 17-0049-42), anti-FOXP3 (eBioscience 25-4777-61),
anti-IL-13 (eBioscience 11-7136-41), anti-IL-17A (eBioscience 12-7179-42), and anti-IFNy (BioLegend
502520). Samples were analyzed on BD LSRFortessa cell analyzer.

Analysis of capillary electrophoresis data with HITRACE

Capillary electrophoresis runs from chemical probing and mutate-and-map experiments were
analyzed with the HITRACE MATLAB package (Yoon et al. 2011). Lanes were aligned together,
bands fit to Gaussian peaks, background subtracted using the no-modification lane, corrected for
signal attenuation, and normalized to the internal hairpin control. The end result of these steps is a
numerical array of “reactivity” values for each RNA nucleotide that can be used as weights in structure

prediction.

UPF1 targeted CLIP-seq

Jurkat cells expressing RORC reporters (WT, 77-GA mutant variant or 116-CCCTAAG mutant
variant) were harvested and crosslinked by ultraviolet radiation (400 mJ/cm2). Cells were then lysed
with low salt wash buffer (1xPBS, 0.1%SDS, 0.5% Sodium Deoxycholate, 0.5% IGEPAL ). To probe
preferential UPF1 binding towards different reporters, lysates from 77-GA mutant cells were mixed
with lysates from either WT or 116-CCCTAAG mutant cells at a 1:1 ratio prior to immunoprecipitation.
Samples were then treated with high (1:3000 RNase A and 1:100 RNase |) and low dose (1:15000
RNase A and 1:500 RNase I) of RNase A and RNase | separately and combined after treatment. To
immunoprecipitate UPF1-RNA complex, a UPF1 antibody (Thermo A301-902A) was incubated with
Protein A/G beads (Pierce) first and then incubated with the mixed cell lysates for 2 hours at 4 °C.
Immunoprecipitated RNA fragments were then dephosphorylated (T4 PNK, NEB), polyadenylated,
and end labeled with 3'-Azido-3'-dUTP and IRDye® 800CW DBCO Infrared Dye (LI-COR) on beads.
SDS-PAGE was then performed to separate protein-RNA complexes, and RNA fragments were
collected from nitrocellulose membrane by proteinase K digestion. cDNA was then synthesized using
Takara smarter small RNA sequencing kit reagents with a custom UMI-oligoDT primer
(CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCTTTTTTTTTTTTTTT). RORC reporter locus was then amplified with a custom primer
(ACACTCTTTCCCTACACGACGCTCTTCCGATCT TGGGGTGATCCAAATACCACC) and

sequencing libraries were then prepared with SeqAmp DNA Polymerase (Takara). Libraries were then

sequenced on an illumina Hiseq 4000 sequencer.
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Fig 1: SwitchFinder identifies candidate RNA switches in the human genome

(A) Example of SwitchFinder locating the RNA switch within the VEGFA mRNA sequence. Top: arc
representation of the RNA base pairs that change between the two conformations of VEGFA RNA
switch, as in (Ray et al. 2009). The two conformations are shown in red and blue, respectively. Bottom:
the two conformations of the VEGFA RNA switch as predicted by SwitchFinder. Middle: SwitchFinder
score reflecting the likelihood of a given nucleotide to be involved in two mutually exclusive base

pairings.
(B) ROC curves of SwitchFinder predictions of RNA switches from the common RFAM families

(C) AUC values of RNA switch predictions across the RFAM families for two models: SwitchFinder and
SwiSpot (Barsacchi et al. 2016). Each dot represents one RFAM family. The lines show the change in
accuracy between the two models. The families that have higher AUC values for SwitchFinder are
shown with blue lines; the ones that have higher AUC values for SwiSpot are shown in red. P-value

calculated with paired T test.
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Fig 2: Massively parallel reporter assay captures the functional difference between the

conformations of candidate RNA switches
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(A) Overview of SwitchSeeker, the platform for RNA switch identification

(B) Examples of regulatory elements identified by the functional screen. Each row represents a
single candidate RNA switch, each column represents a single bin defined by the reporter
gene expression (eGFP fluorescence, normalized by mCherry fluorescence). The value in
each cell is the relative abundance of the given RNA switch in the given bin, normalized
across the 8 bins. The three plots show examples of candidate switches with repressive,
neutral, and activating effects on gene expression. The plots below show cumulative sequence

abundances across all the candidate switches within each group.

(C) The setup of the massively parallel mutagenesis analysis. For each candidate RNA switch, we
design 4 mutated sequence variants. Two of them lock the switch into the conformation 1, and
the other two lock it in the conformation 2. A sequence library is then generated (see Suppl.
Fig. 2A), where each candidate RNA switch is represented by the 4 mutated sequence

variants, along with the wild type sequence.

(D) Example of a high-confidence candidate RNA switch identified by the massively parallel
mutagenesis analysis. Bottom: two alternative conformations as predicted by SwitchSeeker.
The RNA secondary structure probing data collected with the Structure Screen is shown in
color. Top: the effect of the candidate RNA switch locked in one or another conformation on
reporter gene expression. Each row corresponds to a single sequence variation that locks the
RNA switch in one of the two conformations. Each column represents a single bin defined by
the reporter gene expression. The value in each cell is the relative abundance of the given

RNA switch in the given bin, normalized across the 8 bins.
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Fig. 3: A fragment of RORC 3’UTR forms an ensemble of two alternative structures

(A) Arc representation of the two alternative conformations of the RORC RNA switch as predicted by
SwitchSeeker. The two conformations are shown in blue and red, respectively. The predicted switching
regions are color coded: the &' region is shown in orange, the middle region - in gray, and the 3’ region -
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in purple. Middle: SwitchSeeker score reflecting the likelihood of a given nucleotide to be involved in two
mutually exclusive base pairings. Left: the schematic representations of the two conformations, as used
throughout the article.

(B) The setup of mutation-rescue experiments. The switching regions are color coded as in (A). A-U and C-
G base pairing is shown with compatible shapes (triangle and half-circle). The two conformations of the
switch reside in the equilibrium state. Mutation of the 3’ switching region disrupts the base pairing
between the 5' and the 3’ regions. This causes a shift of the equilibrium towards the conformation 2.
Rescue mutation of the 5' switching region restores the base pairing between the 5' and the 3’ regions,
but at the same time it disrupts the base pairing between the 5' and the middle regions. Therefore, the
equilibrium shifts towards conformation 1.

(C) In vitro SHAPE reactivity of the RORC RNA switch sequence in vitro. Left: SHAPE reactivity profiles for
the wild type sequence (in gray) and for the mutation-rescue pair of sequences (blue - “65-GT,117-AC”,
red - “117-AC”.). Shown is the average for 3 replicates with the respective error bars. The three
switching regions are labeled. The SHAPE reactivity changes in the non-mutated regions are
highlighted in bold arrows. Right: barplots of cumulative SHAPE reactivity within the switching regions.
The color scheme for the conformations is the same as in the left panel. N replicates = 3.

(D) DMS reactivity of the RORC RNA switch in vivo. Top: DMS reactivities of the two clusters identified by
the DRACO unsupervised deconvolution algorithm (Morandi et al. 2021). The algorithm was run on two
replicates independently, and identified the same clusters in both of them. The ratios of the clusters
reported by DRACO are 22% to 78% in replicate 1 and 32% to 68% in replicate 2. The ratio shown is an
average between the two replicates. The switching regions are shown in color. Bottom: secondary
structures of the two conformations of RORC RNA switch predicted by RNAstructure algorithm (Reuter
and Mathews 2010) guided by the DMS reactivity data. DMS reactivity is shown in color. The
basepairing of 5’ region with either 3’ region (conformation 1) or middle region (conformation 2) are
highlighted by a red frame.
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Fig. 4. Cryo-EM of RORC 3’ mRNA is consistent with dynamic exchange in a shallow energy landscape.

(A) Segments of cryo-EM micrographs of WT RORC mRNA (left), 77-GA mutant (middle), 117-AC mutant
(right) show qualitatively different distributions of compact and extended RNA-like particles. Examples
with different morphologies are indicated by numeric labels in each panel. Micrographs were phase-
flipped, Gaussian filtered, and contrast inverted for display.

(B) Cryo-EM of the refolded RORC 3' mRNA element reveals three classes with RNA-like features (top).
Class A is presented in red, Class B in blue, and Class C in yellow. Further cryo-EM imaging and 3D
classification of the 77-GA mutant (middle) and 117-AC mutant (bottom) indicate that Class A is present
in WT and 77-GA samples but absent from the 117-AC sample, and Class B is conversely present in
WT and 117-AC but absent from the 77-GA mutant. Class C is common to all three samples. We thus
putatively assign Class A as the conformation 1 state, and Class B as the conformation 2 state. We

propose Class 3 to represent a partly folded intermediate which is not disrupted in the mutated
constructs.
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Fig. 5: The two alternative conformations of the RORC RNA switch have opposing effects on target gene

expression.

(A-D) Bar plots of relative expression of the reporter construct. The relative expression values are
calculated as the ratios of eGFP and mCherry fluorescence values for individual cells, as measured on
a flow cytometer. Confidence intervals for the expression value are shown as calculated from the
distribution of N>10.000 individual cells. The dominating conformations of RORC RNA switch are shown
in color: conformation 1 - in blue, conformation 2 - in red, wild type - in gray, scrambled sequence with
the same dinucleotide content - in yellow. Additionally, diagrams depicting the balance of two
conformations in the RNA populations are shown below; the conformations present in the ensemble are

highlighted with the “+” sign. P-values were calculated using the Student’s T test.

(A) The effect of locking the RORC RNA switch in one or another conformation on reporter gene

expression. Bottom: the scheme of the RNA secondary structure ensemble within each sample. The two
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alternative conformations are depicted as simplified stem-loops; their presence in each sample is shown
by a “+” sign. Top: the relative expression of the reporter upon the RORC switch sequence
modifications. Each sample is a measurement of a HEK293 cell line with the reporter construct stably
integrated in the genome. The mutations left to right: “61-TATATAA,116-TTATATA”, “73-CCCTATGA”,
wildtype, “62-GCACAGT,73-ACTGTGC”, “116-CCCTAAG".

(B) The effect of shift in the equilibrium between two conformations of the RORC switch on reporter
gene expression. The mutation-rescue experiments were performed as shown in Fig. 3B. Bottom: the
direction of mutation-rescue experiments is shown schematically. Top: the relative expression of the
reporter upon the RORC switch sequence modifications. The dominating conformation of the switch
within a sample is shown in color and labeled under the plot. The mutations left to right: wildtype, “65-
GT,117-AC”, “117-AC”, “66-AC”, “66-AC,74-GT", “77-GA”, “63-TC,77-GA”

(C) The effect of antisense oligonucleotides (ASOs) on the reporter expression. A HEK293 cell line with
stably integrated reporter construct encoding the RORC RNA switch in the 3'UTR was transfected by
ASOs of 4 different chemistries. The targeting ASOs are complementary to the switching region of the
RNA switch in the way that would result in a shift towards conformation 1 within the ensemble; the
control ASOs have the same nucleotide composition but do not target the RORC RNA switch sequence.
Bottom: the RNA switch conformations present in each sample are shown by a “+” sign. Top: the

relative expression of the target gene upon the transfection of either targeting or control ASOs.

(D) The effect of shift in the equilibrium between two conformations of the RORC switch on reporter
gene expression in primary Th17 T cells. Human CD4+ T cells were infected with lentiviral constructs
carrying one of the three sequences in the reporter gene’s 3’'UTR. The dominating conformations within
each sample are shown in color as described above. Bottom: the RNA switch conformations present in
each sample are shown by a “+” sign. Top: the relative expression of the target gene upon the
transfection of either targeting or control ASOs. The mutations left to right: scrambled RORC RNA
switch, “77-GA”, wildtype.


https://doi.org/10.1101/2023.03.11.532161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.11.532161; this version posted March 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Difference between

A Expression change: B conformations: F Carfilzomib
high vs low . WT versus 77-GA mutant T
12 0 ~
e Core SURF Complex UPFSB. ® Core SURF complex .SMGB o 30 i\a/\;:;to(;?er
10{® NMD pathway UPF2, 4/ @ NMD pathway o5 Negative
Other genes e Other genes = 20 control
o n 3 O reporter
o) SMG8 o c
ke, 6 . o J UPF3B % 15 Change diff:
. SMG5 0 14%
‘ i 1 SMG9 8191 p<2zet6
5 . smar. UPEL S 5 /
“psMad . 7,‘5PF2 L
0 — 40 05 00 05 10 15 0
Sl T PP ST " Llogfoldchange 08 3 12 50
Logfoldchange .. ... T e ; .
88 - ulr 0.0 H—h ot e g Concentration [nM]
A — -0.2 N
:8% Enrichment NMD 04 Enrichment™ NMD G Bortezomib
—0.8.  Score Score e L35
0 5000 10000 15000 0 5000 10000 15000 % 30| . RORC
o PR ) % > S switch
QQ QQ QQ ())\ QQ QQ Q‘b QQ) cbg c reporter
000 00 a0 of o0 0% E  UPFICLIP G2 ;
C RPRPPPPAT D P 5 0] # ool
30 35 iy S |logFC = 0.41 : reporter
® A [ 5 S15
o < 304l - 3 P <2e-16 ° @
cg5 8 251 S 0.6 ® o 10 Change diff:
=5 . 25 2 o o o 10%
S F 52 = U ks 5 7 p<22e16
20% 20 504 ) 0
8% 2o 5 E 50 12 3 08
2& 310 - Concentration [nM]
@ 9 8 10 c 0.24
5+ 2 S 2
1%} % 5 5 ‘g Sequence ZZU%
o0 variant o Widtype
0 AL ]
> o DA T T
@ 5 <2<< Q“ <<'b ¥ &P R
O Q¥ 0T\ N
Gene Gene

Fig. 6: Genome wide CRISPRI screen identifies SURF complex as acting downstream of the RORC RNA
switch

(A) The comparison between the high expression and low expression quartiles. Top: volcano plot for gene-
wise comparison. The comparison of sgRNA representation between the bottom and the top quantiles
by expression (across both cell lines) is represented as a volcano plot. Genes, annotated as part of the
nonsense mediated decay (NMD) pathway by GO, are colored in red. The core components of the
canonical NMD pathway are colored in purple and labeled. All the other genes are colored in green.
Bottom: Gene Set Enrichment Analysis (GSEA) plot for NMD pathway for the above comparison.

(B) Comparison of ratios between top and bottom expression quantiles for the two cell lines. Higher values
on the X axis indicate that sgRNAs targeting this gene have a stronger effect on reporter gene
expression in the WT cell line compared to the RC cell line. Top: “ratio of ratios” comparison (“DESeq2

Testing Ratio of Ratios (RIP-Seq, CLIP-Seq, Ribosomal Profiling)” n.d.) represented as a volcano plot.

Genes, annotated as part of the nonsense mediated decay (NMD) pathway by GO, are colored in red.

The core components of the canonical NMD pathway are colored in purple and labeled. All the other

genes are colored in gray. Bottom: GSEA plot for NMD pathway for the above comparison.
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(C) (C and D) The effect of knockdown of SURF and EJC complex member proteins on the expression
change upon the conformation equilibrium shift. The individual genes were knocked down using the
CRISPRI system in both “wild type” and “scrambled” cell lines, then the change of reporter gene
expression was measured by flow cytometry (N replicates = 2). The bar plots demonstrate the
expression ratios of WT to the scrambled sequence of RORC RNA switch. P-values were calculated

using the Student’s T test.

(D) The effect of EJC complex knockdown on the expression change upon the conformation equilibrium
shift.

(E) The fractions of reads carrying the WT RORC switch sequence or 77-GA mutant variant in UPF1 cross-
linking and immunoprecipitation (CLIP) library. Left: input RNA libraries, extracted from the WT and 77-
GA mutant expressing Jurkat cells, mixed at 1:1 ratio. Right: libraries after anti-UPF1

immunoprecipitation. The fractions are normalized by the variant fractions in the input libraries.

(F) (F and G) The effect of proteasome inhibitors bortezomib and carfilzomib on the RNA switch-mediated
expression change. K562 cell lines expressing GFP/mCherry double reporter either with or without
RORC RNA switch in the 3'UTR of GFP were treated with the drugs for 24 hours, then the reporter gene
expression (GFP signal normalized by mCherry signal) was measured by flow cytometry (N replicates =
4). The dose curves for the cell lines expressing or not expressing the WT RORC switch are shown in
orange and in green, respectively.

(G) The effect of proteasome inhibitor bortezomib on the RNA switch-mediated expression change.
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Fig. 7: The proposed mechanism of RORC RNA switch functioning

(A) Schematic for a shallow energy landscape of the RORC 3’ mRNA element. Shallow global minima
characterizing the conformation 1 (cryo-EM Class A) and conformation 2 (cryo-EM Class B) structures
themselves comprise multiple local minima in which various secondary structure elements fold or unfold
while preserving overall tertiary structure and biological activity. These local minima are illustrated by
secondary structure models for various DRACO cluster members. The two global minima are separated
by a kinetic barrier that represents a partially folded intermediate (cryo-EM Class 3). The two dashed
lines indicate alterations to the global landscape exhibited by the mutant sequences, red for the 77-GA

mutant and blue for the 117-AC mutant. These altered landscapes eliminate one of the global minima
without disrupting the intermediate.
(B) Proposed mechanism of RORC RNA switch. The RNA switch exists in an ensemble of two states. One

of them is recognized by the SURF complex; such recognition triggers mRNA degradation (likely
mediated by SMG5) and protein degradation (mediated by proteasome), thus affecting gene

expression.
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