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ABSTRACT  

 

Introduction: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to 

unveil in living subjects. Virtual brain modelling (TVB), by exploiting structural and functional MRI, 

yields mesoscopic parameters of connectivity and synaptic transmission.  

Methods: We used TVB to simulate brain networks, which are key for human brain function, in 

Alzheimer9s disease (AD) and Frontotemporal Dementia (FTD) patients, whose connectivity and 

synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal 

novel in vivo pathological hallmarks.  

Results: The pattern of simulated parameter differed between AD and FTD, shedding light on 

disease-specific alterations in brain networks. Individual subjects displayed subtle differences in 

network parameter patterns that significantly correlated with their individual neuropsychological, 

clinical, and pharmacological profiles.  

Discussion: These TVB simulations, by informing about a new personalized set of networks 

parameters, open new perspectives for understanding dementias mechanisms and design personalized 

therapeutic approaches. 

 

INTRODUCTION  

 

The advent of advanced in human in vivo recordings of brain signals from e.g., magnetic 

resonance imaging (MRI), has led to the identification of brain networks that subtend specific 

functions [1]. The structural and/or functional alteration of such networks eventually leads to the 

clinical manifestation of neurological diseases. In parallel, mathematical modelling of cellular and 

microcircuit functions are emerging, providing tools to link the micro- to the meso- and the macro-

scale properties of brain signals [2]. 

 Neurodegenerative dementias include several neuropathological forms, primarily Alzheimer 

disease (AD) and frontotemporal dementia (FTD). Post-mortem histology and in vivo functional MRI 

(fMRI) studies have suggested a differential engagement of various brain networks in these diseases. 

However, a comprehensive assessment of functional connectivity (FC) changes in multiple networks 

in vivo to compare dementias subtypes has been rarely performed [3], in favor of investigating 

specific networks, in particular the default mode network (DMN) specifically in AD [4]. Increasing 

evidence underlines the need to expand the investigation beyond the DMN, considering that 

widespread increases and decreases in structural and functional connectivity have been observed in 

different brain areas of AD patients [5]. Moreover, the development of in vivo imaging biomarkers 
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of brain function becomes necessary to achieve efficient tailored diagnosis and personalized 

treatment, especially in less frequent and more heterogeneous conditions, such as atypical forms of 

AD or FTD variants [6]. 

 Advanced recording techniques, such as MRI and/or high-density Electroencephalography 

(hd-EEG), are mostly used to study structural and functional brain networks properties and their 

changes in pathological conditions, but they provide little information about cellular properties such 

as spatio-temporal dynamics of cellular communication, neuronal firing integrity or synaptic 

transmission. Therefore, very little is known about the cellular and synaptic changes typical of 

different diseases, and even more so about whether changes that have cascaded from cells to networks 

are specific to individual patients.  

Recent advances in multiscale brain modelling offer promising tools to study the whole brain 

temporal dynamics, integrating macroscopic information from structural and functional MRI with 

mathematical mesoscale representations of the underlying ensemble properties of cells and 

microcircuits. In particular, The Virtual Brain (TVB) modelling workflow allows the non-invasive 

investigation of brain features, such as network connectivity strength and excitatory/inhibitory (E/I) 

balance [2,5], which are relevant to brain disease and can be determined for each patient. The E/I 

balance, in turn, can be extracted at whole brain level or for specific brain networks from parameters 

measuring excitatory coupling, inhibitory coupling, and recurrent excitation inside network nodes  

[7]. Importantly, all neurological conditions involve changes at multiple scales and can gain from the 

use of TVB for understanding the impact of cellular and microcircuit properties alterations on brain 

function. The promise for clinical use of TVB has been already suggested in epilepsy surgery [8], 

stroke [9], brain tumors [10], Multiple Sclerosis [11] and neurodegenerative conditions like dementia 

[12-15]. Interestingly, the central position of an E/I imbalance in the cascade of pathophysiological 

events in AD is increasingly recognized [16]. However, very little is known on how such network 

neurophysiology acts in concert with structural and functional connectivity alterations to determine 

cognitive decline. Retrieving E/I information, even if summarized in mesoscale network parameters, 

is extremely important, as it will provide new insights in neurodegenerative mechanisms of disease 

that will eventually impact on finding effective treatments.  

In this work, we applied TVB to enable the non-invasive investigation of connectivity strength 

and E/I balance in a heterogeneous cohort of dementia patients, including typical and atypical AD 

and FTD variants. We explored the relationship between neurophysiological parameters provided by 

TVB in multiple brain networks and neuropsychological scores recorded during patient examinations. 

TVB parameters differentiated AD from FTD and proved to be sensitive to profiles of cognitive 

performance and ongoing pharmacological treatment. In aggregate, this study shows how TVB 
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analysis can be used to provide personalized fingerprints of dementia patients, opening new 

perspectives for differential diagnosis and for tailoring pharmacological and interventional 

workflows.  

 

MATERIALS AND METHODS 

 

Subjects 

 

Twenty-three patients affected by neurodegenerative diseases were recruited at the IRCCS Mondino 

Foundation. The study was approved by the local Ethical Committee and carried out in accordance 

with the Declaration of Helsinki. Written informed consent was obtained from all subjects. The 

protocol was approved by the local ethical committee of the IRCCS Mondino Foundation. Patients 

underwent a complete diagnostic workup including clinical and neuropsychological assessment (see 

section below) MRI, and, when available, cerebrospinal fluid (CSF) biomarkers (amyloid-³ and Ç 

protein) assessment following the harmonized protocol of the RIN network (Italian Network of the 

Institutes (IRCCS) of Neuroscience and Neurorehabilitation) [17]. Subjects were classified into two 

main groups: 16 AD patients (13 females, 70 ± 8 years) and 7 FTD patients (1 female, 69 ± 5 years), 

further classified into distinct phenotypes. In particular, AD patients were additionally classified into: 

typical AD (10 subjects, [18]); AD logopenic variant (2 subjects, [18]); AD frontal variant (ADfv, 1 

subject, [18]); AD posterior cortical atrophy (ADpca, 1 subject,[18]). One patient was classified as 

having corticobasal syndrome (CBS, 1 subject, [19]) and one with Dementia with Lewy bodies (DLB, 

1 subject,[20]). On the other hand, FTD patients were classified into: behavioral FTD (FTDbv, 5 

subjects, [21]); Primary Progressive Aphasia non-fluent variant (PPAnf, 1 subject, [22]) and Primary 

Progressive Aphasia semantic variant (PPAsv, 1 subject, [22]). Pharmacological therapy was also 

recorded.  

10 Healthy Controls (HC, 6 females, 67 ± 3 years) were enrolled on a voluntary basis as reference 

group. All HC underwent clinical assessment to exclude any cognitive impairment. For all subjects, 

exclusion criteria were: age>80 years, a diagnosis of significant medical, neurological and psychiatric 

disorder, pharmacologically treated delirium or hallucinations and secondary causes of cognitive 

decline (e.g. vascular metabolic, endocrine, toxic and iatrogenic). Suppl Table 1 shows 

demographic, clinical, and neuropsychological data. 

 

Neuropsychological assessment 
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All subjects underwent a neuropsychological examination based on a standardized battery of tests to 

assess their global cognitive status (Mini-Mental State Examination, MMSE) and different cognitive 

domains: memory  (verbal: Rey9s Auditory Verbal Learning Test, RAVLT; visuo-spatial: Rey3

Osterrieth complex figure recall), phonemic and semantic fluency, visuo-constructional abilities 

(Rey3Osterrieth complex figure copy), attention (Trial Making Test part A, TMT-A) and executive  

functions (Frontal Assessment Battery, FAB; Trial  Making Test part B and B-A; Stroop colour-word 

test interference, time and errors; Raven's Coloured Progressive Matrices, CPM47).  

Raw scores were corrected for the effect of age, education, and gender according to the reference 

norms for the Italian population. Corrected scores were classified into five Equivalent Scores (ES), 

from 0 to 4, with an ES of 0 reflecting a pathological performance. Domain scores, calculated by 

averaging the ES of the single tests, were obtained for memory, language-fluency, visuo-

constructional abilities, attention, and executive functions, respectively.  

 

MRI acquisitions 

 

All subjects underwent MRI examination using a 3T Siemens Skyra scanner with a 32-channel head 

coil. The MRI protocol was harmonized within the RIN network including both diffusion weighted 

imaging (DWI) and resting-state fMRI (rs-fMRI) [17]. For DWI data a 2-shell standard single-shot 

echo-planar imaging sequence (EPI) (voxel size = 2.5 × 2.5 × 2.5 mm3, TR/TE = 8400/93 ms, two 

shells with 30 isotropically distributed diffusion-weighted directions, diffusion weightings of 1,000 

and 2,000 s/mm2, 7 non-diffusion weighted b = 0 s/mm2 images (b0 images) interleaved with 

diffusion-weighted volumes) was implemented, and 3 non-diffusion weighted images with the 

reversed phase-encoding acquisition were additionally acquired for distortion correction. For the rs-

fMRI data, GE-EPI sequence (voxel size = 3 × 3 × 3 mm3, TR/TE = 2400/30 ms, 200 volumes) was 

set. For anatomical reference, the protocol included a whole brain high-resolution 3D sagittal T1-

weighted (3DT1) scan (TR/TE = 2300/2.96 ms, TI = 900 ms, flip angle = 9°, voxel size = 1 x 1 x 1 

mm3). 

 

Preprocessing of DWI and fMRI data 

 

Preprocessing of diffusion and fMRI data was performed according to [14]. Briefly, DWI data were 

denoised, and corrected for motion and eddy currents distortions, then white matter, gray matter 

(GM), subcortical GM and CSF were segmented from the co-registered 3DT1 volume. 30 million 

streamlines whole-brain anatomically constrained tractography [23] was performed within MRtrix3, 

estimating fibers orientation distribution with multi-shell multi-tissue constrained spherical 
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deconvolution (CSD) and using probabilistic streamline tractography [24]. fMRI preprocessing 

included denoising, slice-timing correction, realignment, co-registration to the 3DT1 volume, 

polynomial detrending, nuisance regression of 24 motion parameters [25] and CSF temporal signal 

[26], and temporal band-pass filtering (0.008-0.09 Hz). 

 

Structural and functional connectivity 

 

An ad-hoc anatomical atlas in MNI (Montreal Neurological Institute) space was created combining 

93 cerebral (AAL) (including cortical/subcortical structures) and 33 cerebellar (SUIT) labels [27]. 

We then performed a mapping between our ad-hoc atlas and the Buckner and Yeo [28,29] cerebral 

and cerebellar functional atlases to select the grey matter anatomical nodes of six networks known to 

support specific functions: i) integrative networks: default mode network (DMN), frontoparietal 

network (FPN), limbic network (LN), attention network (AN); ii) motor and sensory networks: visual 

network (VN), somatomotor network (SMN) (Fig.1).  For each subject, the grey matter parcellation 

of our combined anatomical atlas was applied to the whole-brain tractography to extract a whole-

brain structural connectivity (SC) matrix, with the normalized number of streamlines as edges and 

cortical/subcortical/cerebellar areas as nodes. The subset of nodes defining each network and their 

connections were extracted from whole-brain SC obtaining specific network SC matrices, used as 

input to TVB (as detailed below). In addition, both static and dynamic experimental FC (expFC and 

expFCD, respectively) were reconstructed from rs-fMRI data for each of the six brain networks, to 

capture not only synchronous fluctuations of BOLD signals but also their spatiotemporal-dynamics 

during resting-state [30]. The expFC matrix was created by extracting the time-course of BOLD 

signals for each node and computing the Pearson9s correlation coefficient (PCC) of the time-course 

of pairs of atlas-defined brain regions. Matrix elements were converted with a Fisher9s z 

transformation and thresholded at 0.1206 [31]. To obtain expFCD, expFC was first computed over a 

sliding window of 40 seconds (expFCsw), shifted incrementally by 1 repetition time, which for our 

data it means to have 178 expFCsw [32]. Then, expFCD was calculated as a time-versus-time matrix, 

containing the Pearson correlation between each expFCsw and all expFCsw, centered at all other time 

points along the total acquisition window, quantifying, therefore, time-evolving dynamics. 

  

Virtual brain modelling  

 

The TVB workflow (reported in [14] for the whole brain) was applied to each one of the six selected 

brain networks (Fig.2). The Wong-Wang neural mass model [7] (Suppl Fig.1), implemented with 

an optimized C code [33], was chosen to simulate local microcircuits activity, resulting from two 
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populations of interconnected excitatory and inhibitory neurons coupled through NMDA and GABA 

receptor types. In our TVB simulations, this neural mass model was associated to each node of the 

network, while the SC matrix was used for the nodes interconnection. A set of parameters had to be 

tuned globally for each network: the global coupling (G), which is a scaling factor that represents the 

connections strength, and three synaptic parameters, i.e. the excitatory (NMDA) synapses (JNMDA), 

the inhibitory (GABA) synapses (Ji), and the recurrent excitation (w+). The neural activity simulated 

with TVB was fed into the Balloon-Windkessel hemodynamic model [34] to reconstruct resting-state 

BOLD fMRI time-courses over 8 min length and compute simulated FC (simFC) and FCD (simFCD). 

Parameters were adjusted iteratively using expFC and expFCD of each network as targets to optimize 

model fitness and the validity of the result was assessed by iterating the optimization using different 

initial conditions (Suppl Fig.2) [35]. For the simFC vs. expFC comparison, model parameters were 

tuned until the PCC between experimental and simulated data reached the highest value. For the 

simFCD vs. expFCD comparison, differences between experimental and simulated FCD were 

assessed using the Kolmogorov-Smirnov (KS) distance: lower KS values corresponded to a lower 

distance of frame-by-frame FCD properties, meaning that model and experimental matrices were 

closest to each other. Thus, to achieve the optimal TVB simulation it was necessary to find both the 

highest PCC and the lowest KS values. To this aim, an overall cost function was defined as (1 - PCC) 

+ KS and lowest cost function values implied the best fit both to static and dynamic functional data 

[36].  

 

Statistical analysis 

 

Statistical tests were performed using SPSS software version 21. Optimal TVB parameters derived 

for each subject and for each network were tested for normality (Shapiro-Wilk) and then two control 

tests were performed to assess: i) whether different networks presented a different E/I balance within 

the same clinical group (i.e., evaluation of the inter-network E/I balance); ii) whether inter-networks 

E/I balance changed in healthy vs pathological subjects. Two statistical tests were used: i) univariate 

general linear model followed by bias-corrected accelerated Bootstrap [37] to correct for age and 

gender differences in the groups and take into account non-Gaussian data distributions; ii) 

multivariate general linear model between the mean difference (i.e. the difference between the mean 

value) of TVB parameters in each network compared to the other networks in different clinical 

groups. Then, a multiple regression analysis was performed to investigate the relationship between 

individual scores of the 5 cognitive domains (memory, language-fluency, visuo-constructional 

abilities, attention, and executive functions) and the optimal TVB parameters. Neuropsychological 

scores in each cognitive domain were considered as dependent variables while model parameters 
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derived for each network were used as predictors in a backward approach. The regression algorithm 

automatically removed one or more predictors to identify which of them significantly (p<0.05) 

explained neuropsychological scores variance.  

Meaningful TVB parameters were given as an input to clustering analysis. To avoid overfitting in the 

study design, the clustering algorithm first performed a feature selection reducing the number of TVB 

parameters i) through a semi-supervised approach using LASSO regression model with TVB 

parameters as independent variables and the diagnostic class as dependent variable; ii) via PCC 

between the survived TVB parameters and the diagnostic class; iii) through Variant Inflaction Factors 

to find out just three meaningful but not correlated features. Then the number of clusters was derived 

using Gap statistics and the K-means algorithm was applied to label each subject into one cluster 

defining a personalized fingerprint [38].  

 

Code and data accessibility 

 

All codes used for this study are open source. The optimized TVB C code can be found at 

https://github.com/BrainModes/fast_tvb. The dataset will be made available on Zenodo.  

 

RESULTS  

 

Networks E/I balance 

 

Model optimization was performed in each of the six brain networks considered in this work. Global 

coupling (G) and mesoscopic network parameters (Ji, JNMDA, w+) were adjusted iteratively to fit the 

experimental data. The reliability of the procedure was assessed by an extensive exploration of the 

parameter space and by iterating the optimization using different initial conditions (Suppl Fig.2) 

[35]. Model optimization yielded subject-specific sets of model parameters describing connectivity 

and E/I balance in each network. TVB parameters revealed differences between networks of healthy 

and pathological subjects (Suppl Fig.3; Suppl Table 2) that will be further analyzed and 

explained below.  

 

Pathology and inter-networks E/I balance 

 

The mean difference of each network compared to the others was computed in different clinical 

groups for all the TVB parameters (i.e., G, Ji, JNMDA, w+). Significant mean difference changes were 

found both for the TVB parameters in several networks (Fig.3) with network changes summarized in 
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Fig.4.  In particular, both in AD and FTD, the connectivity strength (G) decreased in LN and increased 

in DMN compared to HC; in FTD, G of FPN was lower with respect to other networks. Considering 

mesoscale synaptic parameters, both FTD and AD showed lower excitatory coupling (JNMDA) in SMN 

compared to HC; in FTD, JNMDA was lower in VN and higher in FPN; in AD, JNMDA in DMN was 

higher with respect to other networks. Both in AD and FTD, recurrent excitation (w+) increased in 

SMN compared to HC; in FTD, w+ was lower in FPN; in AD w+ was lower in DMN with respect to 

other networks. In FTD, inhibitory coupling (Ji) was lower in FPN and higher in DMN; in AD, AN 

showed higher Ji and LN lower Ji with respect to other networks.  

 

Clinical relevance of TVB parameters  

 

To assess the significance of the observed mean difference changes in TVB parameters, these 

were used in backward regression to explain the variation of scores associated to different 

neuropsychological domains assessed in patients. Network-specific levels of global coupling, 

excitatory coupling, inhibitory coupling and recurrent excitation (predictors) significantly (p<0.05) 

explained a percentage of variance in the cognitive domains, in which the network is involved (Table 

1). The explained variance ranged from ~20% to ~45%. Therefore, the mean difference changes in 

TVB parameters were relevant to explain the neuropsychological performance of patients. 

 

Patients9 labelling according to network properties 

 

The TVB parameters that significantly explained the neuropsychological performance were 

considered for patients9 labelling using machine learning strategies. From the nineteen parameters 

identified with backward regression (Table 1) the LASSO algorithm allowed to reduce them to six. 

Then, G of FPN was excluded, presenting PCC<0.1, and after Variant Inflation Factors three 

independent and not correlated variables were considered as the most informative features to perform 

patient9s labelling: Ji of AN, G of the LN and G of the DMN. Gap statistics identified that seven 

homogeneous classes would be appropriate and the K-means assigned each subject to one of the seven 

clusters. Each of the identified clusters was characterized by a specific composition of TVB network 

features (Fig.5A; Suppl Fig 4). Considering the biophysical meaning of each parameter, they could 

be described as follows: 

 

§ Cluster 0 and cluster 3 were mainly characterized by low connectivity strength of LN, high 

connectivity strength of DMN and hyperinhibition in AN; 
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§ Cluster 1 and cluster 4 were mainly characterized by high connectivity strength of LN, low 

connectivity strength of DMN and low inhibition in AN; 

§ Cluster 5 and cluster 6 were mainly characterized by high connectivity strength of LN, high 

connectivity strength of DMN and low inhibition in AN; 

§ Cluster 2 was mainly characterized by low connectivity of LN, low connectivity strength of 

DMN and hyperinhibition in AN.  

 

Clusters 0 and 3 were associated with the lowest mean MMSE values (20.39±5.21 and 18.57±8.28 

respectively) while clusters 1 and 4 were associated with the highest mean values (29.08±1.14 and 

29.33±1.16 respectively) (Fig.5B; Table 2). No HC was classified into clusters 0 or 3. Moreover, 

different disease phenotypes were distributed amongst the clusters (Fig.5B): typical AD subjects 

spread through clusters supporting a heterogeneous distribution of connectivity values in the LN and 

DMN networks and inhibition of the AN, but no AD patient was found in cluster 1 and the single AD 

patient belonging to cluster 4 presented a high MMSE score; on the other hand, cluster 0 contained 

the DLB phenotype, cluster 1 both the non-amnesic variants of AD (ADlv and ADpca), cluster 3 the 

logopenic variant and the CBS characterized by low MMSE values and cluster 5 contained the frontal 

variant. Considering the FTD group, FTDbv were heterogeneous and distributed amongst different 

clusters, but no FTDbv were found in cluster 3. On the other hand, cluster 0 contained PPAsv and 

cluster 5 PPAnf. Finally, pharmacological assessment of subjects belonging to different groups 

indicated that the majority of subjects following an antidepressant or anxiolytic treatment belonged 

to cluster 0 or 1 (Table 2). In particular, subjects belonging to cluster 0 were following an 

antidepressant therapy mainly with selective serotonin reuptake inhibitors (SSRIs), with the 

exception of one patient, treated with vortioxetine. Patients belonging to cluster 1, instead, were 

taking antidepressant drugs different from SSRIs, such as tricyclic antidepressants (e.g., 

amitriptyline) and serotonin-norepinephrine reuptake inhibitors (e.g. duloxetine), apart from one HC 

belonging to this group who was found to be on a SSRIs treatment.  

 

DISCUSSION 

 

In this work we have generated virtual brain models of dementia patients and simulated neural 

dynamics of brain networks. The main result is the emergence of specific patterns of alteration in 

DMN, FPN and LN, which allow to differentiate AD from FTD. Inter-subject differences, matching 

the individual neuropsychological profiles and pharmacological treatment, suggest that this approach 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.10.532087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532087
http://creativecommons.org/licenses/by-nd/4.0/


can generate personalized fingerprints of the disease that could be used to set up future stratification 

and interventional strategies. 

 

Average model parameters in brain networks of AD and FTD 

In a first analysis, we compared AD and FTD for their average network model parameters. 

Model parameters markedly differentiated the mechanisms underlying brain networks dynamics in 

AD and FTD, with the most typical changes being concentrated in the DMN and LN of AD and in 

the FPN of FTD. 

 

Integrative networks  

Global coupling. In both pathologies, G increased in DMN and decreased in LN, while it 

decreased in FPN in FTD only. It is worth noting that, in these simulations, G represents the overall 

strength of connections between nodes inside a specific brain network. Moreover, G derives from 

dynamic TVB analysis and not from functional analysis on fMRI data [39], providing new insights 

into brain connectivity that do not necessarily compare to previously reported connectivity 

alterations.   

In late onset AD there is meta-analytic evidence for a progressive decline of DMN FC, in 

particular in the posterior component (precuneus, posterior cingulate cortex)[40]. Increased FC 

between the posterior DMN and high connectivity hubs, mainly located in the frontal lobes, has been 

reported in the prodromal stages [40]. The present observation of increased G in DMN reflects hyper 

synchronicity, a state in which complexity is reduced along with mutual information transfer among 

the nodes [41]. This concept, deriving from dynamic system theory, is clearly at odd with the common 

belief that stronger connectivity might represent compensation, leading to the conclusion that a phase-

locked hypersynchronous network can perform very limited computations [3,39]. Consistent with 

this hypothesis is the finding of diffused increase of spectral power in the EEG delta band of AD 

patients [42]. 

Decreased FC inside LN and from LN nodes to neighboring regions has been associated with 

deterioration of  memory and emotional functions [43]. In FTDbv, a functional disconnection 

between frontal and limbic areas and an increased FC between DMN regions have been proposed as 

the probable correlates of apathy and stereotypic behavior [44,45]. The decreased G within LN and 

FPN may be also very detrimental, leading to a reduction of computational states [12,39]. 

Synaptic parameters. Another typical pattern differentiating AD from FTD emerged from 

synaptic parameters. Akin with neuropathology, the major AD changes were detected in DMN, while 

FTD changes mainly occurred in FPN. DMN showed increased excitatory coupling (JNMDA) and 
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reduced recurrent excitation (w+) in AD, while it showed increased inhibitory coupling (Ji) in FTD. 

FPN showed no changes at all in AD but it showed a complex set of changes in FTD, including 

increased JNMDA, reduced w+ and reduced Ji. LN showed reduced Ji in AD. Therefore, the E/I balance, 

which remarkably impacts on brain dynamics [7], was altered in different brain networks, further 

differentiating AD and FTD.  

We can just speculate about the meaning of these changes since information on synaptic 

parameters in AD and FTD pathologies is sparse. The increased JNMDA in DMN may support the 

hyperexcitability supposed to explain cognitive impairment in AD [46]. Local hyperexcitability in 

the DMN was observed in previous studies, despite a net decrease in inhibitory and excitatory 

synaptic proteins [47,48]. The reduced Ji of the LN may support the limbic disinhibition reported in 

AD, which has been associated with a loss of GABAergic receptors [49]. The reduced Ji of the FPN 

is consistent with the reduction of GABA concentration reported in FTD, which has been associated 

with behavioral disinhibition [50]. Our simulations also predict overinhibition in the DMN of FTD, 

which provides a further differentiation with AD, where inhibition is not changed while excitation is 

enhanced. DMN has recently been suggested to take part in FTD pathophysiology [51]. Therefore, 

the patterns of synaptic changes captured by our study prompts for further experimental and model 

analysis of synaptic alterations in microcircuits of the AD and FTD brain. 

 

Motor and sensory networks  

Both in AD and FTD, the SMN showed reduced JNMDA and increased w+. Although the 

impairment of GABAergic and glutamatergic systems in the motor and sensory networks still needs 

to be clarified, it should be noted that motor dysfunctions are known to occur in both AD and FTD 

[52,53] . In AD, a reduced motor cortex excitability has been reported in mild cognitive impairment 

[55], suggesting that these parameters may change along the evolution of the disease. In FTD, motor 

circuit abnormalities have been suggested to depend on altered glutamatergic transmission [54]. 

Interestingly, in FTD abnormalities of oculomotor functions have been reported [56], which might 

be linked not only to SMN impairment, but also to a more extended involvement of VN, as supported 

by our results.  

 

The relationship between network neurophysiology and neuropsychology 

Model parameters for individual subjects were correlated with behavioral observations. 

Global coupling and synaptic parameters of each network significantly contributed to explain 

neuropsychological scores in specific cognitive domains: LN, AN and VN with memory; DMN and 

VN with language-fluency; LN with attention; SMN and FPN with visuo-constructional performance; 
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FPN with executive functions. This evidence is in line with several reports on the importance of motor 

regions in visuo-constructional performance [57], the contribution of AN and limbic areas in memory 

[58], the relevance of frontoparietal areas for executive and visuo-constructional control [59,60], the 

role of DMN integration for semantic fluency [61], and the involvement of visual structures in 

memory and language-fluency [62,63].  

Thus, the relationship between neurophysiological parameters in brain networks and 

neuropsychological scores, which has not been investigated before, supports the clinical relevance of 

model parameters and provides important cues for understanding the physiopathology of AD and 

FTD. 

 

Toward personalized fingerprints of AD and FTD patients 

The most meaningful model biomarkers for patient9s labelling were G in DMN, G in LN, Ji 

in AN, consistent with known salient aspects of dementia affecting the ability of daydreaming 

(DMN), emotional control (LN) and attention (AN). Subjects were found to be distributed between 

seven different clusters revealing correspondence with their cognitive status (assessed with MMSE) 

and pharmacological treament.  

 

Cognitive performance 

Patients with the lowest MMSE belong to clusters with low G in LN, high G in DMN and 

high Ji in AN (clusters 0, 2, 3 in Fig.5), while HC are not found in these clusters at all. Patients with 

relatively high MMSE, as well as HC (MMSE>30), spread over clusters with high G in LN, low G 

in DMN and low Ji in AN (clusters 1, 4, 5, 6 in Fig.5). These observations highlight the importance 

of DMN, LN, and AN connectivity strength and E/I balance to ensure healthy cognitive function. 

Interestingly, high G between DMN nodes is associated with a worse performance, being hence 

disruptive and not compensatory.  

Our findings suggest that the heterogeneity of subject-specific TVB parameters is able to 

identify AD <subtypes= [64,65] and FTD variants. Indeed, subjects belonging to atypical forms of 

AD and FTD variants were assigned to different clusters, capturing specific aspects of these 

pathologies and mostly mapping clinical severity assessed with MMSE. A finer grained analysis 

based on clinical phenotypes is not currently possible, given the limited sample size.  

 

Pharmacological treatment. 

Patients9 labelling based on TVB parameters was found to correlate with pharmacological 

treatment. Most subjects belonging to clusters 0 and 1 were on antidepressant or anxiolytic treatment 
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(cf. Table 2), which suggest that they may influence the connectivity strength and the E/I balance of 

cognitive networks. The effect of SSRIs on LN and DMN FC is increasingly recognized in literature 

[66,67]. The effect of antidepressant treatment with molecules different from SSRIs, such as 

vortioxetine, tricyclic molecules or SNRIs [68], as well as the influence of antidepressants on GABA 

and glutamate levels needs further assessment [69]. Considering that patients treated with SSRIs 

belong to cluster 0 while patients treated with other antidepressant classes belong to cluster 1, our 

results pose a very intriguing question: is there an opposite impact on cognitive networks exerted by 

antidepressants with different mechanisms of action or does the cognitive networks profile determine 

pharmacological treatment response?  Future work should study TVB parameters longitudinally pre-

post treatment to answer this important question with major potential clinical impact. 

It should be noted that, in our sample, patients were not treated with NMDA receptor 

antagonists (like memantine) [87] or acetylcholinesterase inhibitors (like galantamine, rivastigmine, 

and donepezil) [71], which are also known to act on AD. NMDA receptors are main triggers of 

synaptic plasticity and excitotoxicity [72] and cholinergic receptors also impact on synaptic plasticity 

and learning [73]. Since JNMDA in the Wong-Wang neural mass model is mostly related to slow 

synaptic mechanisms driven by NMDA receptors [7] and receptor density can be remapped onto TVB 

[74], an assessment of these receptor-dependent functions could be an important development in 

future studies.  

 

STUDY CONSIDERATIONS 

 

The small sample size can be seen as a potential limitation in the present study. However, the 

main aim of this investigation was to assess the ability of TVB to provide a personalized fingerprint 

of patients, potentially beyond known diagnosis. Virtual brain modelling provides a set of features at 

single subject level, otherwise not available from standard signal/image analysis, which can be 

grouped thereafter using appropriate statistical analysis. Thus, the small sample size does not impact 

significantly on the TVB capacity of uncovering subject-specific features of connectivity, and E/I 

profile. The high correlation of TVB parameters with both cognitive performance and 

pharmacological treatment reveals indeed its exquisite sensitivity to single-subject features and opens 

a broad perspective for clinical applications. On the other hand, the application of TVB to a larger 

cohort bears the prospect of improving disease classification of subtypes and of establishing 

interventional workflows.  
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CONCLUSIONS AND PERSPECTIVES 

 

The present study demonstrates that brain networks can be characterized in terms of a 

meaningful set of mesoscale parameters of network connectivity strength and E/I balance at the 

single-subject level in humans in vivo. These parameters are obtained by embedding structural and 

functional MRI data into a virtual brain model (TVB). TVB parameters measured in AD and FTD 

yield subject-specific profiles correlated with neuropsychological, pharmacological and clinical 

scores. At present, it is unclear whether network properties influence or are influenced by therapy 

suggesting that future studies should systematically address this issue to effectively instruct 

therapeutic choices. The identification of network abnormalities in patients may be used to design 

neuromodulation, neuropharmacological and neuropsychological paradigms capable of regulating 

circuit function and plasticity [75]. In aggregate, TVB parameters are shedding light on the changes 

occurring inside the brain networks of AD and FTD patients opening new perspectives for 

understanding disease mechanisms and for designing personalized therapeutic approaches. Future 

studies should involve larger cohorts of patients to confirm the implications of this first investigation 

for dementia assessment and management. 

 

FIGURES LEGENDS 

 

Figure 1| Brain networks. The six networks considered for modelling brain dynamics with the 

virtual brain (TVB): default-mode (DMN), frontoparietal (FPN), limbic (LN), attention (AN), visual 

(VN), somatomotor (SMN) network. These networks were defined according to Buckner and Yeo 

atlases and extracted from whole-brain structural connectivity matrices of each subject, choosing a 

subset of nodes and connections from the whole brain parcellation. Nodes and edges considered for 

each network are differently colored.  

 

Figure 2| Analysis and modelling workflow. Schematic representation of MRI processing steps 

integrated in the modelling workflow. From top left, clockwise: diffusion-weighted images after 

preprocessing and tractography, extraction of a network, structural connectivity (SC) matrix 

reconstruction for the selected network, TVB simulation performed for the network, reconstruction 

of simulated static and dynamic (simFC and simFCD) functional connectivity matrices of the same 

network, optimization of the simulation using model inversion with the experimental FC and FCD 

(expFC and expFCD), derived from BOLD signals of nodes belonging to the network, as target. 

Optimal TVB simulation implies both the highest Pearson Correlation Coefficient (PCC) for static 

functional data and the lowest Kolmogorov-Smirnov (KS) distance for dynamic functional data. 
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Figure 3| Changes of inter-network relationship. Mean difference of TVB parameters in each 

given network (DMN, FPN, LN, AN, VN, SMN) against the others. Positive/negative values indicate 

a higher/lower TVB parameter mean in a network (on the x axis) with respect to the TVB parameter 

mean in the others (line at mean difference 0). Asterisks indicate significant differences (p<0.05) 

between clinical groups (HC, FTD, AD). 

 

Figure 4| Pathological impact on inter-network relationships. Inter-network (DMN, FPN, LN, 

AN, VN, SMN) relationship patterns related to neurodegeneration are summarized in the tables. The 

increase (yellow) or decrease (blue) of network TVB parameters (G=global coupling, 

J_NMDA=excitatory coupling, w+= recurrent synaptic excitation, Ji= inhibitory coupling) is 

indicated with colored arrows.  

 

Figure 5| Clustering analysis. A) Visual representation of the seven clusters (in different colors) 

identified with k-means analysis using the most meaningful TVB biophysical parameters as input 

variables. Cognitive network properties (Ji in AN, G in LN, G in DMN) were considered as the most 

informative features to perform patient labelling and each of the identified clusters was characterized 

by a combination of low and high TVB-derived optimal parameters. Each dot represents a subject 

and lines connect subjects to their own cluster centroid. B) Each subject was assigned to one of the 

seven clusters (HC=healthy control, AD=typical Alzheimer9s Disease, ADlv= AD logopenic variant, 

ADfv= AD frontal variant, ADpca= AD posterior cortical atrophy, CBS= corticobasal syndrome, 

DLB= Dementia with Lewy bodies, FTD=Frontotemporal Dementia, FTDbv= FTD behavioral, 

PPAnf= Primary Progressive Aphasia non-fluent variant, PPAsv= Primary Progressive Aphasia 

semantic variant) identifying a personalized fingerprint based on cognitive network properties. Each 

dot represents a subject and lines connect subjects to their own cluster centroid. The dot dimension 

corresponds to the MMSE value.  
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Table 1: Backward regressions results. 
 
 

NETWORKS 

 

VARIABLE 

(Neuropsychology) 

PREDICTORS 

(TVB-parameters) 

EXPLAINED 

VARIANCE 

SIGNIFICANCE 

 

VISUAL 
MEMORY 

LANGUAGE-FLUENCY 

J_NMDA 

w+, Ji 

21.3% 

30.1% 

0.027 

0.028 

SOMATOMOTOR VISUO-CONSTRUCTIONAL Ji 21.3% 0.030 

ATTENTION MEMORY w+, J_NMDA, Ji 33.4% 0.047 

LIMBIC 
MEMORY 

ATTENTION 

Ji 

w+, G, J_NMDA 

21.5% 

42.0% 

0.026 

0.030 

FRONTOPARIETAL 
VISUO-CONSTRUCTIONAL 

EXECUTIVE FUNCTION 

w+, G, J_NMDA,Ji 

J_NMDA  

45.7% 

21.3% 

0.027 

0.027 

DMN LANGUAGE-FLUENCY G, J_NMDA, Ji 39.1% 0.022 

 
 

The variance explained by the parameters used in backward regressions is calculated with the R2 index. Significant threshold is set at p<0.05. For 

each cognitive domain a different combination of features significantly explains a percentage of the variance (ANOVA). 
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Table 2: MMSE (mean,SDs) and ongoing pharmacological treatment 

 
GROUP CLUSTER MMSE ANTIDEPRESSANTS ANXIOLITICS 

PPA sv 

0 20.35(5.21) 

vortioxetine + mirtazapine 
 

FTD bv fluoxetine 
 

AD 
  

DLB citalopram + quetiapine clonazepam  

AD lv 

1 29.08(1.14) 

duloxetine  
 

FTD bv vortioxetine 
 

HC 
  

HC 
  

HC fluvoxamine lorazepam+ lormetazepam+ amisulpride 

HC 
  

ADpca amitriptyline 
 

AD 

2 25.04(2.84) 

  

FTD bv 
  

AD venlafaxine 
 

AD 
  

AD lv 

3 18.57(8.28) 

  

AD 
  

AD cbs 
 

alprazolam 

AD 

4 29.33(1.16) 

  

HC 
  

HC 
  

PPA nf 

5 27.50(3.43) 

  

HC 
  

HC 
  

AD bupropion + paroxetine 
 

AD fv 
  

FTD bv 

6 24.40(5.60) 
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HC 
  

HC 
  

AD 
  

AD 
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