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ABSTRACT

Introduction: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to
unveil in living subjects. Virtual brain modelling (TVB), by exploiting structural and functional MRI,
yields mesoscopic parameters of connectivity and synaptic transmission.

Methods: We used TVB to simulate brain networks, which are key for human brain function, in
Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) patients, whose connectivity and
synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal
novel in vivo pathological hallmarks.

Results: The pattern of simulated parameter differed between AD and FTD, shedding light on
disease-specific alterations in brain networks. Individual subjects displayed subtle differences in
network parameter patterns that significantly correlated with their individual neuropsychological,
clinical, and pharmacological profiles.

Discussion: These TVB simulations, by informing about a new personalized set of networks
parameters, open new perspectives for understanding dementias mechanisms and design personalized

therapeutic approaches.

INTRODUCTION

The advent of advanced in human in vivo recordings of brain signals from e.g., magnetic
resonance imaging (MRI), has led to the identification of brain networks that subtend specific
functions [1]. The structural and/or functional alteration of such networks eventually leads to the
clinical manifestation of neurological diseases. In parallel, mathematical modelling of cellular and
microcircuit functions are emerging, providing tools to link the micro- to the meso- and the macro-
scale properties of brain signals [2].

Neurodegenerative dementias include several neuropathological forms, primarily Alzheimer
disease (AD) and frontotemporal dementia (FTD). Post-mortem histology and in vivo functional MRI
(fMRI) studies have suggested a differential engagement of various brain networks in these diseases.
However, a comprehensive assessment of functional connectivity (FC) changes in multiple networks
in vivo to compare dementias subtypes has been rarely performed [3], in favor of investigating
specific networks, in particular the default mode network (DMN) specifically in AD [4]. Increasing
evidence underlines the need to expand the investigation beyond the DMN, considering that
widespread increases and decreases in structural and functional connectivity have been observed in

different brain areas of AD patients [5]. Moreover, the development of in vivo imaging biomarkers
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of brain function becomes necessary to achieve efficient tailored diagnosis and personalized
treatment, especially in less frequent and more heterogeneous conditions, such as atypical forms of
AD or FTD variants [6].

Advanced recording techniques, such as MRI and/or high-density Electroencephalography
(hd-EEG), are mostly used to study structural and functional brain networks properties and their
changes in pathological conditions, but they provide little information about cellular properties such
as spatio-temporal dynamics of cellular communication, neuronal firing integrity or synaptic
transmission. Therefore, very little is known about the cellular and synaptic changes typical of
different diseases, and even more so about whether changes that have cascaded from cells to networks
are specific to individual patients.

Recent advances in multiscale brain modelling offer promising tools to study the whole brain
temporal dynamics, integrating macroscopic information from structural and functional MRI with
mathematical mesoscale representations of the underlying ensemble properties of cells and
microcircuits. In particular, The Virtual Brain (TVB) modelling workflow allows the non-invasive
investigation of brain features, such as network connectivity strength and excitatory/inhibitory (E/I)
balance [2,5], which are relevant to brain disease and can be determined for each patient. The E/I
balance, in turn, can be extracted at whole brain level or for specific brain networks from parameters
measuring excitatory coupling, inhibitory coupling, and recurrent excitation inside network nodes
[7]. Importantly, all neurological conditions involve changes at multiple scales and can gain from the
use of TVB for understanding the impact of cellular and microcircuit properties alterations on brain
function. The promise for clinical use of TVB has been already suggested in epilepsy surgery [8],
stroke [9], brain tumors [10], Multiple Sclerosis [11] and neurodegenerative conditions like dementia
[12-15]. Interestingly, the central position of an E/I imbalance in the cascade of pathophysiological
events in AD is increasingly recognized [16]. However, very little is known on how such network
neurophysiology acts in concert with structural and functional connectivity alterations to determine
cognitive decline. Retrieving E/I information, even if summarized in mesoscale network parameters,
is extremely important, as it will provide new insights in neurodegenerative mechanisms of disease
that will eventually impact on finding effective treatments.

In this work, we applied TVB to enable the non-invasive investigation of connectivity strength
and E/I balance in a heterogeneous cohort of dementia patients, including typical and atypical AD
and FTD variants. We explored the relationship between neurophysiological parameters provided by
TVB in multiple brain networks and neuropsychological scores recorded during patient examinations.
TVB parameters differentiated AD from FTD and proved to be sensitive to profiles of cognitive

performance and ongoing pharmacological treatment. In aggregate, this study shows how TVB
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analysis can be used to provide personalized fingerprints of dementia patients, opening new
perspectives for differential diagnosis and for tailoring pharmacological and interventional

workflows.

MATERIALS AND METHODS

Subjects

Twenty-three patients affected by neurodegenerative diseases were recruited at the IRCCS Mondino
Foundation. The study was approved by the local Ethical Committee and carried out in accordance
with the Declaration of Helsinki. Written informed consent was obtained from all subjects. The
protocol was approved by the local ethical committee of the IRCCS Mondino Foundation. Patients
underwent a complete diagnostic workup including clinical and neuropsychological assessment (see
section below) MRI, and, when available, cerebrospinal fluid (CSF) biomarkers (amyloid-p and t
protein) assessment following the harmonized protocol of the RIN network (Italian Network of the
Institutes (IRCCS) of Neuroscience and Neurorehabilitation) [17]. Subjects were classified into two
main groups: 16 AD patients (13 females, 70 + § years) and 7 FTD patients (1 female, 69 + 5 years),
further classified into distinct phenotypes. In particular, AD patients were additionally classified into:
typical AD (10 subjects, [18]); AD logopenic variant (2 subjects, [18]); AD frontal variant (ADfv, 1
subject, [18]); AD posterior cortical atrophy (ADpca, 1 subject,[18]). One patient was classified as
having corticobasal syndrome (CBS, 1 subject, [19]) and one with Dementia with Lewy bodies (DLB,
1 subject,[20]). On the other hand, FTD patients were classified into: behavioral FTD (FTDbv, 5
subjects, [21]); Primary Progressive Aphasia non-fluent variant (PPAnf, 1 subject, [22]) and Primary
Progressive Aphasia semantic variant (PPAsv, 1 subject, [22]). Pharmacological therapy was also
recorded.

10 Healthy Controls (HC, 6 females, 67 + 3 years) were enrolled on a voluntary basis as reference
group. All HC underwent clinical assessment to exclude any cognitive impairment. For all subjects,
exclusion criteria were: age>80 years, a diagnosis of significant medical, neurological and psychiatric
disorder, pharmacologically treated delirium or hallucinations and secondary causes of cognitive
decline (e.g. vascular metabolic, endocrine, toxic and iatrogenic). SUPPL TABLE 1 shows

demographic, clinical, and neuropsychological data.

Neuropsychological assessment
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All subjects underwent a neuropsychological examination based on a standardized battery of tests to
assess their global cognitive status (Mini-Mental State Examination, MMSE) and different cognitive
domains: memory (verbal: Rey’s Auditory Verbal Learning Test, RAVLT; visuo-spatial: Rey—
Osterrieth complex figure recall), phonemic and semantic fluency, visuo-constructional abilities
(Rey—Osterrieth complex figure copy), attention (Trial Making Test part A, TMT-A) and executive
functions (Frontal Assessment Battery, FAB; Trial Making Test part B and B-A; Stroop colour-word
test interference, time and errors; Raven's Coloured Progressive Matrices, CPM47).

Raw scores were corrected for the effect of age, education, and gender according to the reference
norms for the Italian population. Corrected scores were classified into five Equivalent Scores (ES),
from 0 to 4, with an ES of 0 reflecting a pathological performance. Domain scores, calculated by
averaging the ES of the single tests, were obtained for memory, language-fluency, visuo-

constructional abilities, attention, and executive functions, respectively.

MRI acquisitions

All subjects underwent MRI examination using a 3T Siemens Skyra scanner with a 32-channel head
coil. The MRI protocol was harmonized within the RIN network including both diffusion weighted
imaging (DWI) and resting-state fMRI (rs-fMRI) [17]. For DWI data a 2-shell standard single-shot
echo-planar imaging sequence (EPI) (voxel size = 2.5 x 2.5 x 2.5 mm?, TR/TE = 8400/93 ms, two
shells with 30 isotropically distributed diffusion-weighted directions, diffusion weightings of 1,000
and 2,000 s/mm?, 7 non-diffusion weighted b = 0 s/mm? images (by images) interleaved with
diffusion-weighted volumes) was implemented, and 3 non-diffusion weighted images with the
reversed phase-encoding acquisition were additionally acquired for distortion correction. For the rs-
fMRI data, GE-EPI sequence (voxel size = 3 x 3 x 3 mm?, TR/TE = 2400/30 ms, 200 volumes) was
set. For anatomical reference, the protocol included a whole brain high-resolution 3D sagittal T1-
weighted (3DTT1) scan (TR/TE = 2300/2.96 ms, TI = 900 ms, flip angle = 9°, voxel size=1x1x 1

mm?).

Preprocessing of DWI and fMRI data

Preprocessing of diffusion and fMRI data was performed according to [14]. Briefly, DWI data were
denoised, and corrected for motion and eddy currents distortions, then white matter, gray matter
(GM), subcortical GM and CSF were segmented from the co-registered 3DT1 volume. 30 million
streamlines whole-brain anatomically constrained tractography [23] was performed within MRtrix3,

estimating fibers orientation distribution with multi-shell multi-tissue constrained spherical
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deconvolution (CSD) and using probabilistic streamline tractography [24]. fMRI preprocessing
included denoising, slice-timing correction, realignment, co-registration to the 3DT1 volume,
polynomial detrending, nuisance regression of 24 motion parameters [25] and CSF temporal signal

[26], and temporal band-pass filtering (0.008-0.09 Hz).

Structural and functional connectivity

An ad-hoc anatomical atlas in MNI (Montreal Neurological Institute) space was created combining
93 cerebral (AAL) (including cortical/subcortical structures) and 33 cerebellar (SUIT) labels [27].
We then performed a mapping between our ad-hoc atlas and the Buckner and Yeo [28,29] cerebral
and cerebellar functional atlases to select the grey matter anatomical nodes of six networks known to
support specific functions: i) integrative networks: default mode network (DMN), frontoparietal
network (FPN), limbic network (LN), attention network (AN); ii) motor and sensory networks: visual
network (VN), somatomotor network (SMN) (Fig.1). For each subject, the grey matter parcellation
of our combined anatomical atlas was applied to the whole-brain tractography to extract a whole-
brain structural connectivity (SC) matrix, with the normalized number of streamlines as edges and
cortical/subcortical/cerebellar areas as nodes. The subset of nodes defining each network and their
connections were extracted from whole-brain SC obtaining specific network SC matrices, used as
input to TVB (as detailed below). In addition, both static and dynamic experimental FC (expFC and
expFCD, respectively) were reconstructed from rs-fMRI data for each of the six brain networks, to
capture not only synchronous fluctuations of BOLD signals but also their spatiotemporal-dynamics
during resting-state [30]. The expFC matrix was created by extracting the time-course of BOLD
signals for each node and computing the Pearson’s correlation coefficient (PCC) of the time-course
of pairs of atlas-defined brain regions. Matrix elements were converted with a Fisher’s z
transformation and thresholded at 0.1206 [31]. To obtain expFCD, expFC was first computed over a
sliding window of 40 seconds (expFCsw), shifted incrementally by 1 repetition time, which for our
data it means to have 178 expFCsw [32]. Then, expFCD was calculated as a time-versus-time matrix,
containing the Pearson correlation between each expFCsw and all expFCsw, centered at all other time

points along the total acquisition window, quantifying, therefore, time-evolving dynamics.

Virtual brain modelling

The TVB workflow (reported in [14] for the whole brain) was applied to each one of the six selected
brain networks (Fig.2). The Wong-Wang neural mass model [7] (SuPPL FiG.1), implemented with

an optimized C code [33], was chosen to simulate local microcircuits activity, resulting from two
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populations of interconnected excitatory and inhibitory neurons coupled through NMDA and GABA
receptor types. In our TVB simulations, this neural mass model was associated to each node of the
network, while the SC matrix was used for the nodes interconnection. A set of parameters had to be
tuned globally for each network: the global coupling (G), which is a scaling factor that represents the
connections strength, and three synaptic parameters, i.e. the excitatory (NMDA) synapses (Jnmpa),
the inhibitory (GABA) synapses (Ji), and the recurrent excitation (w+). The neural activity simulated
with TVB was fed into the Balloon-Windkessel hemodynamic model [34] to reconstruct resting-state
BOLD fMRI time-courses over 8 min length and compute simulated FC (simFC) and FCD (simFCD).
Parameters were adjusted iteratively using expFC and expFCD of each network as targets to optimize
model fitness and the validity of the result was assessed by iterating the optimization using different
initial conditions (SupPL F1G.2) [35]. For the simFC vs. expFC comparison, model parameters were
tuned until the PCC between experimental and simulated data reached the highest value. For the
simFCD vs. expFCD comparison, differences between experimental and simulated FCD were
assessed using the Kolmogorov-Smirnov (KS) distance: lower KS values corresponded to a lower
distance of frame-by-frame FCD properties, meaning that model and experimental matrices were
closest to each other. Thus, to achieve the optimal TVB simulation it was necessary to find both the
highest PCC and the lowest KS values. To this aim, an overall cost function was defined as (1 - PCC)
+ KS and lowest cost function values implied the best fit both to static and dynamic functional data

[36].

Statistical analysis

Statistical tests were performed using SPSS software version 21. Optimal TVB parameters derived
for each subject and for each network were tested for normality (Shapiro-Wilk) and then two control
tests were performed to assess: 1) whether different networks presented a different E/I balance within
the same clinical group (i.e., evaluation of the inter-network E/I balance); i1) whether inter-networks
E/I balance changed in healthy vs pathological subjects. Two statistical tests were used: 1) univariate
general linear model followed by bias-corrected accelerated Bootstrap [37] to correct for age and
gender differences in the groups and take into account non-Gaussian data distributions; ii)
multivariate general linear model between the mean difference (i.e. the difference between the mean
value) of TVB parameters in each network compared to the other networks in different clinical
groups. Then, a multiple regression analysis was performed to investigate the relationship between
individual scores of the 5 cognitive domains (memory, language-fluency, visuo-constructional
abilities, attention, and executive functions) and the optimal TVB parameters. Neuropsychological

scores in each cognitive domain were considered as dependent variables while model parameters
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derived for each network were used as predictors in a backward approach. The regression algorithm
automatically removed one or more predictors to identify which of them significantly (p<0.05)
explained neuropsychological scores variance.

Meaningful TVB parameters were given as an input to clustering analysis. To avoid overfitting in the
study design, the clustering algorithm first performed a feature selection reducing the number of TVB
parameters 1) through a semi-supervised approach using LASSO regression model with TVB
parameters as independent variables and the diagnostic class as dependent variable; ii) via PCC
between the survived TVB parameters and the diagnostic class; iii) through Variant Inflaction Factors
to find out just three meaningful but not correlated features. Then the number of clusters was derived
using Gap statistics and the K-means algorithm was applied to label each subject into one cluster

defining a personalized fingerprint [38].

Code and data accessibility

All codes used for this study are open source. The optimized TVB C code can be found at

https://github.com/BrainModes/fast_tvb. The dataset will be made available on Zenodo.

RESULTS

Networks E/I balance

Model optimization was performed in each of the six brain networks considered in this work. Global
coupling (G) and mesoscopic network parameters (Ji, Jnmpa, w+) were adjusted iteratively to fit the
experimental data. The reliability of the procedure was assessed by an extensive exploration of the
parameter space and by iterating the optimization using different initial conditions (SUPPL FiG.2)
[35]. Model optimization yielded subject-specific sets of model parameters describing connectivity
and E/I balance in each network. TVB parameters revealed differences between networks of healthy
and pathological subjects (SUPPL Fi1Gc.3; SuPPL TABLE 2) that will be further analyzed and

explained below.

Pathology and inter-networks E/I balance

The mean difference of each network compared to the others was computed in different clinical
groups for all the TVB parameters (i.e., G, Ji, Jnmpa, w+). Significant mean difference changes were

found both for the TVB parameters in several networks (Fig.3) with network changes summarized in
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Fig.4. In particular, both in AD and FTD, the connectivity strength (G) decreased in LN and increased
in DMN compared to HC; in FTD, G of FPN was lower with respect to other networks. Considering
mesoscale synaptic parameters, both FTD and AD showed lower excitatory coupling (Jnmpa) in SMN
compared to HC; in FTD, Jnmpa was lower in VN and higher in FPN; in AD, Jxmpa in DMN was
higher with respect to other networks. Both in AD and FTD, recurrent excitation (w-+) increased in
SMN compared to HC; in FTD, w+ was lower in FPN; in AD w+ was lower in DMN with respect to
other networks. In FTD, inhibitory coupling (J;) was lower in FPN and higher in DMN; in AD, AN

showed higher J; and LN lower J; with respect to other networks.

Clinical relevance of TVB parameters

To assess the significance of the observed mean difference changes in TVB parameters, these
were used in backward regression to explain the variation of scores associated to different
neuropsychological domains assessed in patients. Network-specific levels of global coupling,
excitatory coupling, inhibitory coupling and recurrent excitation (predictors) significantly (p<0.05)
explained a percentage of variance in the cognitive domains, in which the network is involved (Table
1). The explained variance ranged from ~20% to ~45%. Therefore, the mean difference changes in

TVB parameters were relevant to explain the neuropsychological performance of patients.

Patients’ labelling according to network properties

The TVB parameters that significantly explained the neuropsychological performance were
considered for patients’ labelling using machine learning strategies. From the nineteen parameters
identified with backward regression (Table 1) the LASSO algorithm allowed to reduce them to six.
Then, G of FPN was excluded, presenting PCC<0.1, and after Variant Inflation Factors three
independent and not correlated variables were considered as the most informative features to perform
patient’s labelling: J; of AN, G of the LN and G of the DMN. Gap statistics identified that seven
homogeneous classes would be appropriate and the K-means assigned each subject to one of the seven
clusters. Each of the identified clusters was characterized by a specific composition of TVB network
features (Fig.5A; suppPL FiG 4). Considering the biophysical meaning of each parameter, they could

be described as follows:

* (Cluster 0 and cluster 3 were mainly characterized by low connectivity strength of LN, high

connectivity strength of DMN and hyperinhibition in AN;
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* Cluster 1 and cluster 4 were mainly characterized by high connectivity strength of LN, low
connectivity strength of DMN and low inhibition in AN;

= (Cluster 5 and cluster 6 were mainly characterized by high connectivity strength of LN, high
connectivity strength of DMN and low inhibition in AN;

= (Cluster 2 was mainly characterized by low connectivity of LN, low connectivity strength of

DMN and hyperinhibition in AN.

Clusters 0 and 3 were associated with the lowest mean MMSE values (20.39+5.21 and 18.57+8.28
respectively) while clusters 1 and 4 were associated with the highest mean values (29.08+1.14 and
29.33+1.16 respectively) (Fig.5B; Table 2). No HC was classified into clusters 0 or 3. Moreover,
different disease phenotypes were distributed amongst the clusters (Fig.5B): typical AD subjects
spread through clusters supporting a heterogeneous distribution of connectivity values in the LN and
DMN networks and inhibition of the AN, but no AD patient was found in cluster 1 and the single AD
patient belonging to cluster 4 presented a high MMSE score; on the other hand, cluster 0 contained
the DLB phenotype, cluster 1 both the non-amnesic variants of AD (ADlv and ADpca), cluster 3 the
logopenic variant and the CBS characterized by low MMSE values and cluster 5 contained the frontal
variant. Considering the FTD group, FTDbv were heterogeneous and distributed amongst different
clusters, but no FTDbv were found in cluster 3. On the other hand, cluster O contained PPAsv and
cluster 5 PPAnf. Finally, pharmacological assessment of subjects belonging to different groups
indicated that the majority of subjects following an antidepressant or anxiolytic treatment belonged
to cluster 0 or 1 (Table 2). In particular, subjects belonging to cluster 0 were following an
antidepressant therapy mainly with selective serotonin reuptake inhibitors (SSRIs), with the
exception of one patient, treated with vortioxetine. Patients belonging to cluster 1, instead, were
taking antidepressant drugs different from SSRIs, such as tricyclic antidepressants (e.g.,
amitriptyline) and serotonin-norepinephrine reuptake inhibitors (e.g. duloxetine), apart from one HC

belonging to this group who was found to be on a SSRIs treatment.

DISCUSSION

In this work we have generated virtual brain models of dementia patients and simulated neural
dynamics of brain networks. The main result is the emergence of specific patterns of alteration in

DMN, FPN and LN, which allow to differentiate AD from FTD. Inter-subject differences, matching

the individual neuropsychological profiles and pharmacological treatment, suggest that this approach
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can generate personalized fingerprints of the disease that could be used to set up future stratification

and interventional strategies.

Average model parameters in brain networks of AD and FTD

In a first analysis, we compared AD and FTD for their average network model parameters.
Model parameters markedly differentiated the mechanisms underlying brain networks dynamics in
AD and FTD, with the most typical changes being concentrated in the DMN and LN of AD and in
the FPN of FTD.

Integrative networks

Global coupling. In both pathologies, G increased in DMN and decreased in LN, while it
decreased in FPN in FTD only. It is worth noting that, in these simulations, G represents the overall
strength of connections between nodes inside a specific brain network. Moreover, G derives from
dynamic TVB analysis and not from functional analysis on fMRI data [39], providing new insights
into brain connectivity that do not necessarily compare to previously reported connectivity
alterations.

In late onset AD there is meta-analytic evidence for a progressive decline of DMN FC, in
particular in the posterior component (precuneus, posterior cingulate cortex)[40]. Increased FC
between the posterior DMN and high connectivity hubs, mainly located in the frontal lobes, has been
reported in the prodromal stages [40]. The present observation of increased G in DMN reflects hyper
synchronicity, a state in which complexity is reduced along with mutual information transfer among
the nodes [41]. This concept, deriving from dynamic system theory, is clearly at odd with the common
belief that stronger connectivity might represent compensation, leading to the conclusion that a phase-
locked hypersynchronous network can perform very limited computations [3,39]. Consistent with
this hypothesis is the finding of diffused increase of spectral power in the EEG delta band of AD
patients [42].

Decreased FC inside LN and from LN nodes to neighboring regions has been associated with
deterioration of memory and emotional functions [43]. In FTDbv, a functional disconnection
between frontal and limbic areas and an increased FC between DMN regions have been proposed as
the probable correlates of apathy and stereotypic behavior [44,45]. The decreased G within LN and
FPN may be also very detrimental, leading to a reduction of computational states [12,39].

Synaptic parameters. Another typical pattern differentiating AD from FTD emerged from
synaptic parameters. Akin with neuropathology, the major AD changes were detected in DMN, while

FTD changes mainly occurred in FPN. DMN showed increased excitatory coupling (Jnmpa) and
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reduced recurrent excitation (w+) in AD, while it showed increased inhibitory coupling (J;) in FTD.
FPN showed no changes at all in AD but it showed a complex set of changes in FTD, including
increased Jnmpa, reduced w+ and reduced Ji. LN showed reduced J; in AD. Therefore, the E/I balance,
which remarkably impacts on brain dynamics [7], was altered in different brain networks, further
differentiating AD and FTD.

We can just speculate about the meaning of these changes since information on synaptic
parameters in AD and FTD pathologies is sparse. The increased Jnmpa in DMN may support the
hyperexcitability supposed to explain cognitive impairment in AD [46]. Local hyperexcitability in
the DMN was observed in previous studies, despite a net decrease in inhibitory and excitatory
synaptic proteins [47,48]. The reduced J; of the LN may support the limbic disinhibition reported in
AD, which has been associated with a loss of GABAergic receptors [49]. The reduced J; of the FPN
is consistent with the reduction of GABA concentration reported in FTD, which has been associated
with behavioral disinhibition [50]. Our simulations also predict overinhibition in the DMN of FTD,
which provides a further differentiation with AD, where inhibition is not changed while excitation is
enhanced. DMN has recently been suggested to take part in FTD pathophysiology [51]. Therefore,
the patterns of synaptic changes captured by our study prompts for further experimental and model

analysis of synaptic alterations in microcircuits of the AD and FTD brain.

Motor and sensory networks

Both in AD and FTD, the SMN showed reduced Jnvpa and increased w-+. Although the
impairment of GABAergic and glutamatergic systems in the motor and sensory networks still needs
to be clarified, it should be noted that motor dysfunctions are known to occur in both AD and FTD
[52,53] . In AD, a reduced motor cortex excitability has been reported in mild cognitive impairment
[55], suggesting that these parameters may change along the evolution of the disease. In FTD, motor
circuit abnormalities have been suggested to depend on altered glutamatergic transmission [54].
Interestingly, in FTD abnormalities of oculomotor functions have been reported [56], which might
be linked not only to SMN impairment, but also to a more extended involvement of VN, as supported

by our results.

The relationship between network neurophysiology and neuropsychology

Model parameters for individual subjects were correlated with behavioral observations.
Global coupling and synaptic parameters of each network significantly contributed to explain
neuropsychological scores in specific cognitive domains: LN, AN and VN with memory; DMN and

VN with language-fluency; LN with attention; SMN and FPN with visuo-constructional performance;
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FPN with executive functions. This evidence is in line with several reports on the importance of motor
regions in visuo-constructional performance [57], the contribution of AN and limbic areas in memory
[58], the relevance of frontoparietal areas for executive and visuo-constructional control [59,60], the
role of DMN integration for semantic fluency [61], and the involvement of visual structures in
memory and language-fluency [62,63].

Thus, the relationship between neurophysiological parameters in brain networks and
neuropsychological scores, which has not been investigated before, supports the clinical relevance of
model parameters and provides important cues for understanding the physiopathology of AD and

FTD.

Toward personalized fingerprints of AD and FTD patients

The most meaningful model biomarkers for patient’s labelling were G in DMN, G in LN, J;
in AN, consistent with known salient aspects of dementia affecting the ability of daydreaming
(DMN), emotional control (LN) and attention (AN). Subjects were found to be distributed between
seven different clusters revealing correspondence with their cognitive status (assessed with MMSE)

and pharmacological treament.

Cognitive performance

Patients with the lowest MMSE belong to clusters with low G in LN, high G in DMN and
high J; in AN (clusters 0, 2, 3 in Fig.5), while HC are not found in these clusters at all. Patients with
relatively high MMSE, as well as HC (MMSE>30), spread over clusters with high G in LN, low G
in DMN and low Ji in AN (clusters 1, 4, 5, 6 in Fig.5). These observations highlight the importance
of DMN, LN, and AN connectivity strength and E/I balance to ensure healthy cognitive function.
Interestingly, high G between DMN nodes is associated with a worse performance, being hence
disruptive and not compensatory.

Our findings suggest that the heterogeneity of subject-specific TVB parameters is able to
identify AD “subtypes” [64,65] and FTD variants. Indeed, subjects belonging to atypical forms of
AD and FTD variants were assigned to different clusters, capturing specific aspects of these
pathologies and mostly mapping clinical severity assessed with MMSE. A finer grained analysis

based on clinical phenotypes is not currently possible, given the limited sample size.

Pharmacological treatment.
Patients’ labelling based on TVB parameters was found to correlate with pharmacological

treatment. Most subjects belonging to clusters 0 and 1 were on antidepressant or anxiolytic treatment
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(cf. Table 2), which suggest that they may influence the connectivity strength and the E/I balance of
cognitive networks. The effect of SSRIs on LN and DMN FC is increasingly recognized in literature
[66,67]. The effect of antidepressant treatment with molecules different from SSRIs, such as
vortioxetine, tricyclic molecules or SNRIs [68], as well as the influence of antidepressants on GABA
and glutamate levels needs further assessment [69]. Considering that patients treated with SSRIs
belong to cluster 0 while patients treated with other antidepressant classes belong to cluster 1, our
results pose a very intriguing question: is there an opposite impact on cognitive networks exerted by
antidepressants with different mechanisms of action or does the cognitive networks profile determine
pharmacological treatment response? Future work should study TVB parameters longitudinally pre-
post treatment to answer this important question with major potential clinical impact.

It should be noted that, in our sample, patients were not treated with NMDA receptor
antagonists (like memantine) [87] or acetylcholinesterase inhibitors (like galantamine, rivastigmine,
and donepezil) [71], which are also known to act on AD. NMDA receptors are main triggers of
synaptic plasticity and excitotoxicity [72] and cholinergic receptors also impact on synaptic plasticity
and learning [73]. Since Jxmpa in the Wong-Wang neural mass model is mostly related to slow
synaptic mechanisms driven by NMDA receptors [7] and receptor density can be remapped onto TVB
[74], an assessment of these receptor-dependent functions could be an important development in

future studies.

STUDY CONSIDERATIONS

The small sample size can be seen as a potential limitation in the present study. However, the
main aim of this investigation was to assess the ability of TVB to provide a personalized fingerprint
of patients, potentially beyond known diagnosis. Virtual brain modelling provides a set of features at
single subject level, otherwise not available from standard signal/image analysis, which can be
grouped thereafter using appropriate statistical analysis. Thus, the small sample size does not impact
significantly on the TVB capacity of uncovering subject-specific features of connectivity, and E/I
profile. The high correlation of TVB parameters with both cognitive performance and
pharmacological treatment reveals indeed its exquisite sensitivity to single-subject features and opens
a broad perspective for clinical applications. On the other hand, the application of TVB to a larger
cohort bears the prospect of improving disease classification of subtypes and of establishing

interventional workflows.
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CONCLUSIONS AND PERSPECTIVES

The present study demonstrates that brain networks can be characterized in terms of a
meaningful set of mesoscale parameters of network connectivity strength and E/I balance at the
single-subject level in humans in vivo. These parameters are obtained by embedding structural and
functional MRI data into a virtual brain model (TVB). TVB parameters measured in AD and FTD
yield subject-specific profiles correlated with neuropsychological, pharmacological and clinical
scores. At present, it is unclear whether network properties influence or are influenced by therapy
suggesting that future studies should systematically address this issue to effectively instruct
therapeutic choices. The identification of network abnormalities in patients may be used to design
neuromodulation, neuropharmacological and neuropsychological paradigms capable of regulating
circuit function and plasticity [75]. In aggregate, TVB parameters are shedding light on the changes
occurring inside the brain networks of AD and FTD patients opening new perspectives for
understanding disease mechanisms and for designing personalized therapeutic approaches. Future
studies should involve larger cohorts of patients to confirm the implications of this first investigation

for dementia assessment and management.

FIGURES LEGENDS

Figure 1| Brain networks. The six networks considered for modelling brain dynamics with the
virtual brain (TVB): default-mode (DMN), frontoparietal (FPN), limbic (LN), attention (AN), visual
(VN), somatomotor (SMN) network. These networks were defined according to Buckner and Yeo
atlases and extracted from whole-brain structural connectivity matrices of each subject, choosing a
subset of nodes and connections from the whole brain parcellation. Nodes and edges considered for

each network are differently colored.

Figure 2| Analysis and modelling workflow. Schematic representation of MRI processing steps
integrated in the modelling workflow. From top left, clockwise: diffusion-weighted images after
preprocessing and tractography, extraction of a network, structural connectivity (SC) matrix
reconstruction for the selected network, TVB simulation performed for the network, reconstruction
of simulated static and dynamic (simFC and simFCD) functional connectivity matrices of the same
network, optimization of the simulation using model inversion with the experimental FC and FCD
(expFC and expFCD), derived from BOLD signals of nodes belonging to the network, as target.
Optimal TVB simulation implies both the highest Pearson Correlation Coefficient (PCC) for static

functional data and the lowest Kolmogorov-Smirnov (KS) distance for dynamic functional data.
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Figure 3| Changes of inter-network relationship. Mean difference of TVB parameters in each
given network (DMN, FPN, LN, AN, VN, SMN) against the others. Positive/negative values indicate
a higher/lower TVB parameter mean in a network (on the x axis) with respect to the TVB parameter
mean in the others (line at mean difference 0). Asterisks indicate significant differences (p<0.05)

between clinical groups (HC, FTD, AD).

Figure 4| Pathological impact on inter-network relationships. Inter-network (DMN, FPN, LN,
AN, VN, SMN) relationship patterns related to neurodegeneration are summarized in the tables. The
increase (yellow) or decrease (blue) of network TVB parameters (G=global coupling,
J NMDA=excitatory coupling, w+= recurrent synaptic excitation, Ji= inhibitory coupling) is

indicated with colored arrows.

Figure 5| Clustering analysis. A) Visual representation of the seven clusters (in different colors)
identified with k-means analysis using the most meaningful TVB biophysical parameters as input
variables. Cognitive network properties (Ji in AN, G in LN, G in DMN) were considered as the most
informative features to perform patient labelling and each of the identified clusters was characterized
by a combination of low and high TVB-derived optimal parameters. Each dot represents a subject
and lines connect subjects to their own cluster centroid. B) Each subject was assigned to one of the
seven clusters (HC=healthy control, AD=typical Alzheimer’s Disease, ADlv= AD logopenic variant,
ADfv= AD frontal variant, ADpca= AD posterior cortical atrophy, CBS= corticobasal syndrome,
DLB= Dementia with Lewy bodies, FTD=Frontotemporal Dementia, FTDbv= FTD behavioral,
PPAnf= Primary Progressive Aphasia non-fluent variant, PPAsv= Primary Progressive Aphasia
semantic variant) identifying a personalized fingerprint based on cognitive network properties. Each
dot represents a subject and lines connect subjects to their own cluster centroid. The dot dimension

corresponds to the MMSE value.
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Table |: Backward regressions results.

NETWORKS VARIABLE PREDICTORS EXPLAINED SIGNIFICANCE
(Neuropsychology) (TVB-parameters) VARIANCE

VISUAL MEMORY J_NMDA 21.3% 0.027
LANGUAGE-FLUENCY wH, Ji 30.1% 0.028
SOMATOMOTOR VISUO-CONSTRUCTIONAL Ji 21.3% 0.030
ATTENTION MEMORY w+, |_NMDA, Ji 33.4% 0.047
LUIMBIC MEMORY Ji 21.5% 0.026
ATTENTION w+, G, ] NMDA 42.0% 0.030
FRONTOPARIETAL VISUO-CONSTRUCTIONAL w+, G, J_NMDA Ji 45.7% 0.027
EXECUTIVE FUNCTION J_NMDA 21.3% 0.027
DMN LANGUAGE-FLUENCY G, ]_NMDA, Ji 39.1% 0.022

The variance explained by the parameters used in backward regressions is calculated with the R? index. Significant threshold is set at p<0.05. For
each cognitive domain a different combination of features significantly explains a percentage of the variance (ANOVA).
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Table 2: MMSE (mean,SDs) and ongoing pharmacological treatment

GROUP

CLUSTER MMSE

ANTIDEPRESSANTS

ANXIOLITICS

PPA sv
FTD bv
AD
DLB

0 20.35(5.21)

vortioxetine + mirtazapine

fluoxetine

citalopram + quetiapine

clonazepam

AD Iv
FTD bv
HC
HC
HC
HC

ADpca

[ 29.08(1.14)

duloxetine

vortioxetine

fluvoxamine

amitriptyline

lorazepam + lormetazepam + amisulpride

AD
FTD bv
AD
AD

2 25.04(2.84)

venlafaxine

AD Iv
AD

AD cbs

3 18.57(8.28)

alprazolam

AD
HC
HC

4 29.33(1.16)

PPA nf
HC
HC
AD

AD fv

5 27.50(3.43)

bupropion + paroxetine

FTD bv
AD
FTD bv
HC
HC
AD
AD

6 24.40(5.60)
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