

1 Optical coherence tomography of human fetal membrane sub-layers
2 during dynamic loading

3 **Kayvan Samimi¹, Emmanuel Contreras Guzman¹, May Wu¹, Lindsey Carlson²,**
4 **Helen Feltovich², Timothy J. Hall³, Kristin M. Myers⁴, Michelle L. Oyen⁵,**
5 **Melissa C. Skala^{1,6,*}**

6 ¹Morgridge Institute for Research, Madison, WI, USA

7 ²Department of Obstetrics and Gynecology, Intermountain Healthcare, Provo, UT, USA

8 ³Department of Medical Physics, University of Wisconsin, Madison, WI, USA

9 ⁴Department of Mechanical Engineering, Columbia University, New York, NY, USA

10 ⁵Department of Biomedical Engineering, Washington University, St. Louis, MO, USA

11 ⁶Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA

12 *** Correspondence:**

13 Melissa C. Skala

14 mcskala@wisc.edu

15

16 **Keywords:** Fetal membranes, amnionchorion, optical coherence tomography, collagen, inflation
17 loading

18

19 **Abstract**

20 Fetal membranes have important mechanical and antimicrobial roles in maintaining pregnancy.
21 However, the small thickness (<800 μm) of fetal membranes places them outside the resolution
22 limits of most ultrasound and magnetic resonance systems. Optical imaging methods like optical
23 coherence tomography (OCT) have the potential to fill this resolution gap. Here, OCT and machine
24 learning methods were developed to characterize the *ex vivo* properties of human fetal membranes
25 under dynamic loading. A saline inflation test was incorporated into an OCT system, and tests
26 were performed on n=33 and n=32 human samples obtained from labored and C-section donors,
27 respectively. Fetal membranes were collected in near-cervical and near-placental locations.
28 Histology, endogenous two photon fluorescence microscopy, and second harmonic generation
29 microscopy were used to identify sources of contrast in OCT images of fetal membranes. A
30 convolutional neural network was trained to automatically segment fetal membrane sub-layers
31 with high accuracy (Dice coefficients >0.8). Intact amnionchorion bilayer and separated amnion
32 and chorion were individually loaded, and the amnion layer was identified as the load-bearing
33 layer within intact fetal membranes for both labored and C-section samples, consistent with prior
34 work. Additionally, the rupture pressure and thickness of the amnionchorion bilayer from the near-
35 placental region were greater than those of the near-cervical region for labored samples. This
36 location-dependent change in fetal membrane thickness was not attributable to the load-bearing
37 amnion layer. Finally, the initial phase of the loading curve indicates that amnionchorion bilayer
38 from the near-cervical region is strain-hardened compared to the near-placental region in labored
39 samples. Overall, these studies fill a gap in our understanding of the structural and mechanical
40 properties of human fetal membranes at high resolution under dynamic loading events.

41 1 Introduction

42 The fetal membranes, also referred to as amnionchorion or chorioamnionic membranes, are fetal
43 tissues forming the amniotic sac composed of two closely adherent layers, amnion and chorion,
44 consisting of several cell types, including epithelial, mesenchymal, and trophoblast cells embedded
45 in a collagen matrix [1]. The amnion is the innermost layer and is in contact with the amniotic fluid
46 and the fetus. The chorion, which is attached to the outer surface of the amnion, separates the
47 amnion from the maternal decidua and uterus. A loose network of collagen and mucin forms the
48 spongy layer that lies between the amnion and the chorion and allows them to slide against one
49 another. Functionally, the fetal membranes support pregnancy by retaining amniotic fluid and
50 protecting the fetus against infection. The fetal membranes normally rupture during labor.
51 Premature (also referred to as prelabor) rupture of the membranes (PROM) is defined as rupture
52 before the onset of labor and has a prevalence of nearly 10% in term deliveries [2]. PROM
53 occurring before 37 weeks of gestation is referred to as preterm premature rupture of membranes
54 (PPROM) and has a prevalence of nearly 3% of all pregnancies and 30% of PROM cases [2].
55 These conditions increase the risk of intrauterine and neonatal infection and associated
56 complications, particularly when delivery is delayed following the rupture of membranes.

57 Prior studies of fetal membranes to establish mechanisms for structural alterations that lead to their
58 rupture, either normally intrapartum at term or pathologically premature or preterm, point to the
59 role of collagen matrix remodeling. Histological studies suggest that a “zone of altered
60 morphology” (ZAM) forms in the fetal membranes overlying the cervix [3–5] characterized by
61 swelling and disruption of fibrillar collagen network within the amnion (*i.e.*, compact, fibroblast,
62 and spongy layers) and thinning of cellular layers of the chorion (*i.e.*, trophoblast and decidua). It
63 has been hypothesized that the membranes in this zone have reduced tensile strength and become
64 the initiating point of rupture. Two-photon and second harmonic generation (SHG) microscopy [6]
65 has been used to investigate the structure of the fetal membranes and identify focal defects or
66 “microfractures” in the sub-epithelial matrix that increase in size and density with increased
67 oxidative stress and in PPROM cases [7]. The cause of PROM is likely multifactorial, involving
68 an interplay of biophysical and biochemical pathways [8]. Molecularly, the degradation of
69 collagen matrix is mediated by the balance of matrix metalloproteinase enzymes (MMP),
70 hormones that affect their concentrations (*e.g.*, progesterone and estradiol), and tissue inhibitors
71 of metalloproteinase (TIMP), which normally shifts towards the end of gestation [9]. Intrauterine
72 infection and host inflammatory response can alter this balance and increase the risk of
73 PROM [10]. Mechanically, repeated stretching and uterine contractions can reduce the tensile
74 strength of fetal membranes as evidenced by comparison of specimens from labored birth and
75 unlabored cesarian delivery [11].

76 Studies of fetal membranes mechanics have investigated the correlation between membranes’
77 structural morphology and their break strength [12], changes in membranes strength with
78 gestational age [13], and the difference between the mechanical properties of amnion and
79 chorion [13]. Mechanical test methods employed include uniaxial tension [14–16], fracture and
80 suture retention test [17,18], puncture test [19], planar biaxial tension [20], and biaxial
81 inflation [11,21,22]. The inflation test geometry best represents the kind of loading that fetal
82 membranes experience *in utero*. However, monitoring of tissue response to loading in these studies
83 has been limited to contour mapping of the tissue surface from side view profiles acquired using
84 an ordinary photography camera [21,23,24]. Thus, the response of individual sub-layers is not

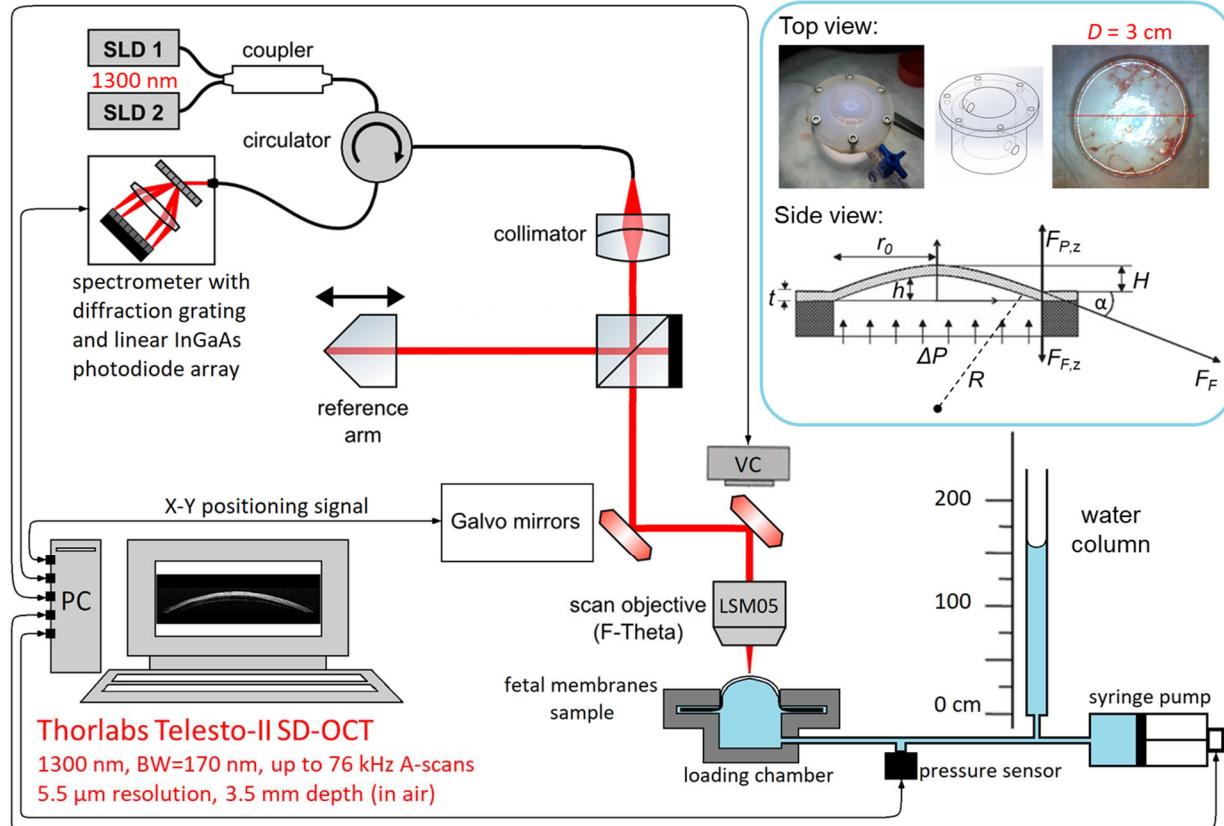
85 resolved. There is a need for a technique that can provide high-resolution and high-contrast
86 imaging of fresh and unfixed fetal membranes under dynamic loading conditions and resolve the
87 complex interactions of their constituting sub-layers. Such studies can inform computational
88 biomechanical modeling of the fetal membranes and further our understanding of their modes of
89 failure [25].

90 Optical coherence tomography (OCT) is an optical imaging technique akin to ultrasound imaging
91 that uses low-coherence near-infrared or visible light to capture cross-sectional 2D or 3D images
92 of the tissue with high (micrometer) resolution [26,27]. Previously, OCT was used to measure fetal
93 membranes thickness [28,29] and identify features like atrophic chorionic ghost villi and chorionic
94 pseudocysts [29,30]. However, these studies were limited to stationary samples without
95 investigation of the effects of loading. Other studies combined speckle pattern interferometric
96 thickness measurements with uniaxial loading to estimate the amnion rupture moduli in *ex vivo*
97 samples [31]. Here, we combined inflation loading of fresh fetal membranes with cross-sectional
98 OCT imaging to study their dynamic response to loading in a layer-resolved fashion at video frame
99 rates. We identified collagen as a source of contrast in OCT images by comparison to histological
100 sections and multiphoton microscopy, and trained machine learning semantic segmentation
101 networks to identify amniochorion sub-layers in OCT images and estimate their thickness at every
102 timepoint of the inflation loading experiments. Overall, these studies fill a gap in our understanding
103 of the structural and mechanical properties of human fetal membranes at high resolution under
104 dynamic loading events.

105 2 Materials and Methods

106 2.1 Sample acquisition and preparation

107 Fetal membranes and placentas were collected from normal term pregnancies between 37 and 41
108 weeks of gestation at the time of delivery. The study was deemed exempt human research by the
109 institutional review boards of UnityPoint Heath Meriter Hospital and Intermountain Healthcare
110 Utah Valley Hospital, and no active recruitment process was established. Two types of delivery
111 were sampled. Placenta and membranes from labored vaginal deliveries (n=33) and unlabored
112 elective Cesarian section deliveries (n=32) were collected at birth and placed in refrigerated
113 phosphate-buffered saline (4°C PBS) before mechanical testing within 36 hrs.


114 Two anatomical regions were sampled for mechanical testing. A near-placental sample was
115 obtained by cutting a 5-cm-diameter disk of membranes with an approximate 2 cm margin from
116 the placental disk's edge. Two near-cervical samples were obtained by cutting 5-cm-diameter disks
117 of membranes close to either an ink-marked location (when marked by the surgeon during C-
118 section delivery) or a best-guess cervical location based on presence of a clear fetal exit tear or
119 maximum distance from the placental disk. One cervical sample was maintained as composite
120 amniochorion (also referred to as chorioamnion in the literature), while the second sample was
121 gently pulled apart to provide separate samples of the constituting amnion and chorion. The
122 samples were maintained in room temperature PBS immediately before mechanical testing.

123 Smaller samples (1 cm squares) from the same near-cervical and near-placental locations were
124 fixed in 4% paraformaldehyde (PFA) solution for multiphoton microscopy and histology
125 preparation.

126 **2.2 Mechanical testing via inflation under OCT imaging**

127 Inflation tests were performed by laying the samples flat on a cylindrical 3D-printed resin loading
128 vessel with an internal diameter of 30 mm and a flange width of 15 mm (Fig. 1). A clamping ring
129 with the same dimensions and chamfered edges was placed over the sample and secured to the
130 vessel using six equally spaced through-hole M4 bolts and nuts tightened to 3 Nm of torque. Once
131 mounted, a 10-mm-wide uninterrupted margin of membranes on the flange supports the 30-mm-
132 diameter open face of the sample disk. The resin surfaces were sanded rough to improve their grip.
133 A constant-flow syringe pump connected to an open water column at the base of the vessel
134 provided a nearly linear saline pressure ramp at a rate of 10 kPa per minute until rupture. The OCT
135 imaging scan head and objective lens were positioned co-axially above the mounted sample disk
136 and transversely imaged the diameter of the inflating sample at a rate of three frames per second.
137 Whenever the sample apex reached the top of the OCT imaging depth range (2.65 mm), the
138 pressure ramp was paused and the OCT scan head was moved up to allow additional inflation
139 range, and the pressure ramp was resumed within a few seconds. An inline pressure sensor
140 measured the applied saline pressure at every time point. The inflation test was performed for the
141 composite amniochorion samples from the near-placental and near-cervical regions, as well as the
142 individual amnion and chorion samples from the near-cervical region.

143 OCT imaging was performed using a commercial spectral-domain system (Telesto-II, Thorlabs)
144 equipped with a super-luminescent diode pair light source centered at 1300 nm with a bandwidth
145 of 170 nm and a spectrometer with diffraction grating and a 2048-pixel linear photodiode array
146 camera. Corresponding axial resolution and imaging depth in water were 5.5 μ m and 2.65 mm,
147 respectively. An LSM05 telecentric scan lens (Thorlabs) with effective focal length of 110 mm
148 and working distance of 94 mm was used, providing a large field of view of 31 mm diameter and
149 a beam spot size of 33 μ m. Galvo mirror scan step size was set to 10 μ m. The acquired spectral
150 data were post-processed (including K-space linearization, dispersion compensation, and
151 apodization with a Hann window function) before being Fourier transformed to produce intensity
152 images with a pixel size of 10 μ m both axially and laterally (3100 \times 265 pixels in B-scans). The
153 resulting images were saved as multipage TIFF files.

154 **Fig. 1. Fetal membranes mechanical testing via inflation with normal saline.** Disks of fetal membranes (diameter
155 = 50 mm) were mounted onto a cylindrical loading chamber (internal diameter = 30 mm, flange width = 15 mm) and
156 secured with a clamping ring, resulting in an inflatable exposed disk of membranes with a 30 mm diameter. A constant
157 flow syringe pump connected to an open water column at the base of the loading chamber provided a nearly linear
158 saline pressure ramp at a rate of 10 kPa per minute until rupture. The OCT imaging scan head was positioned co-
159 axially above the sample and transversely imaged the diameter of the sample disk at a rate of 3 frames per second. An
160 inline pressure sensor measured the applied pressure at every timepoint. Inset shows the top view schematic and
161 photograph of the loading chamber as well as the side view schematic and force diagram of the sample in the loading
162 chamber. ΔP is the applied saline pressure. H is the sample's apex rise. r_0 is the sample disk radius. R is the radius of
163 curvature for the inflating sample. t is the sample thickness. F_F is the frame force applied to the sample at the clamping
164 edge. α is the angle between the sample and the flange. $F_{P,z}$ is the vertical component of the fluid force on the sample
165 at the clamping edge. $F_{F,z}$ is the vertical component of the frame force on the sample at the clamping edge. SLD,
166 superluminescent diode; VC, video camera; BW, bandwidth; SD-OCT, spectral domain optical coherence
167 tomography.

168 2.3 Multiphoton microscopy of fixed samples

169 Unstained fixed samples were imaged on a custom multiphoton microscope built around an Eclipse
170 Ti-E inverted microscope (Nikon Instruments) using a titanium:sapphire tunable femtosecond-
171 pulsed laser source (InSight DS+, Spectra Physics) and a 20 \times /1.0NA WI objective lens (Zeiss).
172 Emissions were filtered using bandpass filters (Semrock) 550/100 nm for channel 1 and 440/80
173 nm for channel 2 before detection by photomultiplier tubes (H7422P-40, Hamamatsu). The
174 excitation laser was tuned to a wavelength of 905 nm with an average power between 5 and 10
175 mW at the sample. Two-photon excited cellular autofluorescence was collected in channel 1 and
176 second harmonic generation of collagen was collected in channel 2. Image field of view was 500
177 μ m \times 500 μ m and the image pixel count was 512 \times 512. A z-stack with steps of 1 μ m was collected

178 using the motorized sample stage spanning the thickness of the amnionchorion sample. The z-stack
179 volume was resliced in post-processing to produce cross-sectional images of the amnionchorion
180 layers that are comparable to histology cross-sectional preparations.

181 **2.4 Histology**

182 Fixed amnionchorion samples were paraffin embedded and three consecutive microtome cross
183 sections with 5 μm thickness were stained with standard hematoxylin and eosin (H&E), picro-
184 sirius red for collagen, and Masson's trichrome for contrast between nuclei, cytoplasm, and
185 collagen. Stained sections were imaged using a brightfield microscope (Aperio ImageScope,
186 Leica) with 20 \times magnification.

187 **2.5 Convolutional neural network image segmentation**

188 To enable assessment of changes in sub-layer thicknesses during loading based on video-rate OCT
189 images (consisting of hundreds of B-scan frames per loading test), an automated semantic
190 segmentation algorithm was implemented that identifies constituting layers of amnionchorion. A
191 fully convolutional neural network (CNN), ReLayNet [32], that was originally proposed for
192 segmenting retinal layers and edema in ophthalmic OCT images was retrained using randomly
193 selected and hand-segmented B-scan frames (n=242) of composite amnionchorion samples under
194 various inflation loads. Images were manually segmented in ImageJ by experienced observers
195 using OCT image landmarks identified through comparison to histology and microscopy images
196 of amnionchorion. Image pixels were assigned one of six distinct labels: Four tissue layers for fetal
197 amnion, spongy layer, chorion, and maternal decidua, and two non-tissue layers for saline below
198 and air above the sample. The hand-segmented dataset was expanded (by a factor of five) using
199 standard geometric image transformations such as scaling, cropping, rotation, translation, and
200 horizontal mirroring, to create an augmented dataset. Ten-fold cross-validation was performed by
201 splitting the augmented hand-segmented dataset into ten subsets. The CNN was trained ten times,
202 leaving one subset out as the test dataset each time. Segmentation performance was evaluated
203 using the Dice coefficient of these test images, defined as two times the area of the intersection of
204 ground truth mask and CNN-generated mask, divided by the sum of the areas of both masks. Then
205 the CNN was used to segment OCT images of complete inflation experiments and create
206 corresponding layer masks.

207 Mean thickness of each layer for every frame was calculated in post processing by dividing the
208 area of the layer mask by its length. The layer length was calculated as the length of a second-
209 degree polynomial curve (i.e., parabola) fitted to the layer mask.

210 **2.6 Analysis of inflation loading test data**

211 Upon application of saline pressure, the membrane sample bulges into a pseudo-spherical shape.
212 Given the saline pressure readouts from the sensor and cross-sectional OCT images of the sample
213 at every timepoint, the loading curve for each inflation test is attainable. First, sample deformation
214 was estimated from the OCT images by tracking the bulging sample's apex rise between
215 consecutive OCT frames using a custom image registration code in MATLAB (MathWorks)

216 maximizing the 2D cross-correlation of a region of interest (ROI) containing the sample apex
217 between frames. Knowing the fixed geometry of the loading chamber and clamping ring (Fig. 1),
218 this measured dome apex rise can be converted to a measure of strain. We estimate strain as

219
$$(1) \epsilon = \ln(t_0/t_b),$$

220 where t_0 is the initial thickness of the membrane and t_b is the thickness of the bulged membrane.
221 For simplicity, we assume that the bulged membrane is spherical with a radius of curvature, R , and
222 that the material is incompressible. As such, the total volume of the bulged membrane is assumed
223 constant across timepoints. The radius of curvature can be calculated from the apex rise, h , and
224 the radius of the sample disk, r_0 (which is 15 mm in our experiments), as $R = (h^2 + r_0^2)/2h$.
225 Equating the initial and the bulged membrane volumes, $\pi r_0^2 t_0 = 2\pi R h t_b$, allows us to estimate
226 the strain from (1) as:

227
$$(2) \epsilon \cong \ln\left(1 + \frac{h^2}{r_0^2}\right).$$

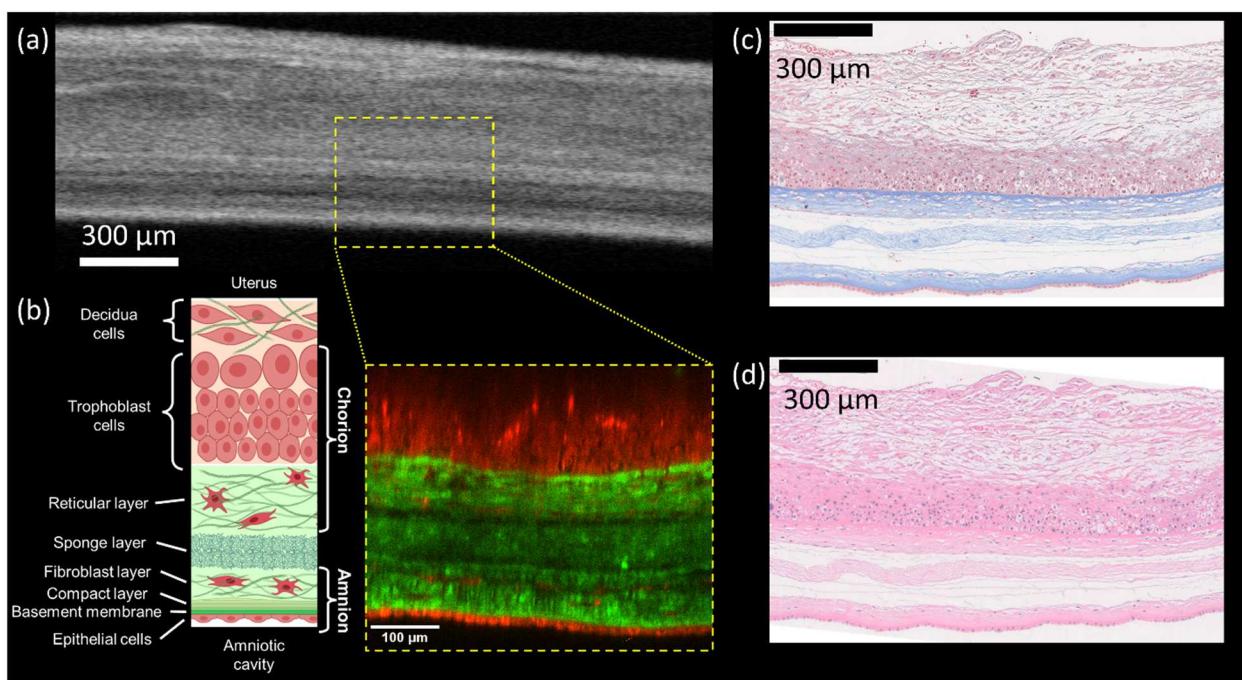
228 Given the slow inflation of the sample, we can estimate the membrane tension and stress from the
229 equilibrium of counter-acting vertical forces on the membrane, from the pressurized saline on one
230 side, and from the frame forces at the clamping ring edge, at any timepoint. This equilibrium can
231 be written as $P\pi r_0^2 = 2\pi r_0 T \frac{r_0}{R}$, where P is the saline pressure, T is the membrane tension, and
232 r_0/R gives the sine of the angle that the membrane makes with the clamping edge of the frame.
233 From this equation, the membrane tension and stress can be estimated as:

234
$$(3) T \cong \frac{PR}{2} = \frac{P}{4} \cdot \frac{h^2 + r_0^2}{h},$$

235
$$(4) \sigma \cong \frac{PR}{2t_b}.$$

236 However, (4) assumes that the composite amniochorion is uniformly stressed along its thickness,
237 which, given the non-uniform composition of collagen matrix across amniochorion layers, is likely
238 not a valid assumption. Therefore, in all analysis in this work, we refrain from converting the
239 tension estimates to stress estimates, and analyze tension-strain loading curves instead of stress-
240 strain curves. Accordingly, we only report tangent stiffness in [N/m] instead of Young's moduli
241 in [Pa].

242 **2.7 Statistical analysis**

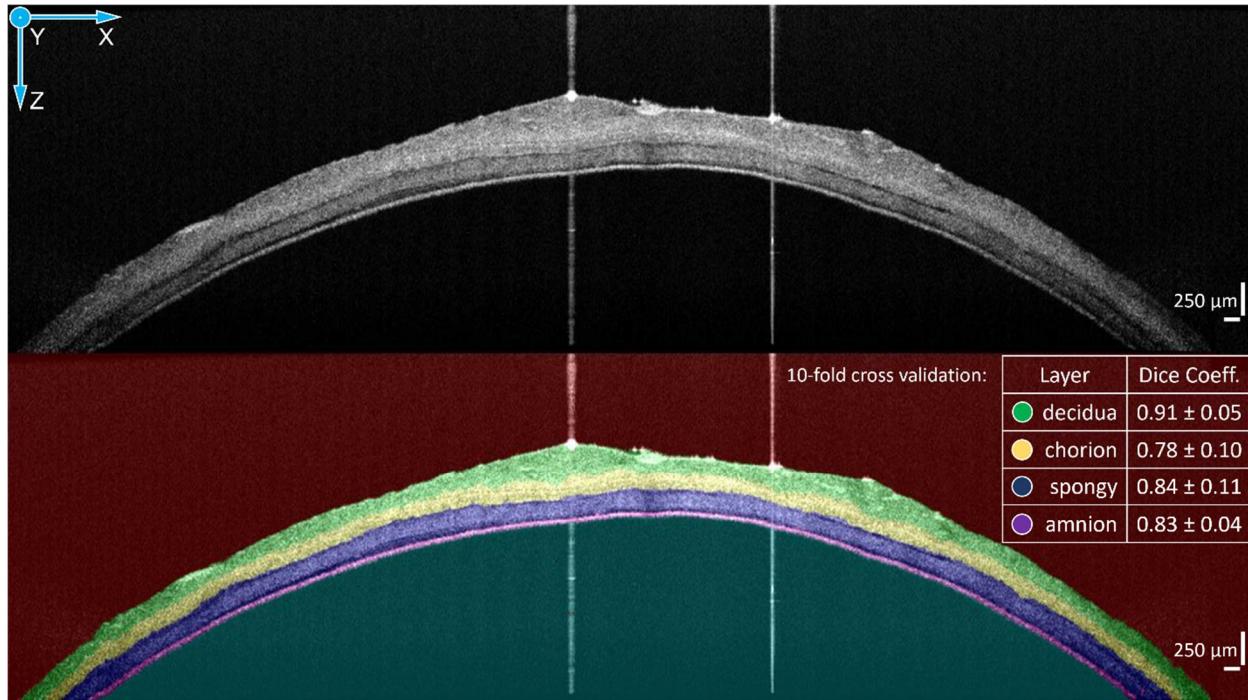

243 Statistical analysis and graph creation were done in MATLAB (MathWorks). Pearson's correlation
244 coefficient was used to evaluate presence of linear correlation, or lack thereof, between
245 morphological measurements of the samples and their loading test outcomes.

246 Significance of differences in morphological or mechanical measurements between different
247 sample groups (*i.e.*, near-cervical or near-placental sampling locations) was determined using the
248 two-tailed paired sample *t*-test.

249 **3 Results**

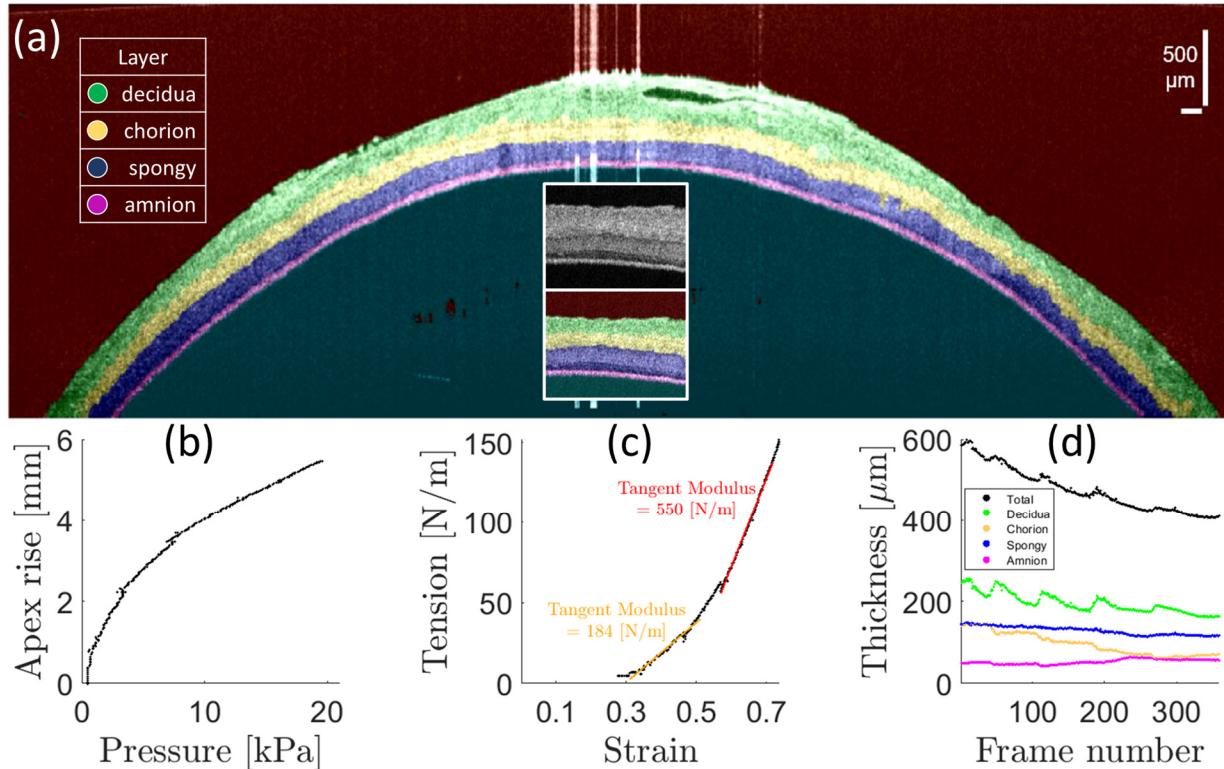
250 3.1 OCT intensity imaging is sensitive to collagen gradients in amnionchorion layers

251 Prior studies have defined the layers of the amnionchorion with histology [28–30] and two-photon
252 endogenous microscopy (2P microscopy) [6,7]. Therefore, histology and 2P microscopy were
253 performed in paired samples with OCT volume imaging under mechanical loading to identify
254 sources of contrast in the OCT volumes. Cross-sectional views of 2P microscopy z-stacks (Fig. 2)
255 show cellular autofluorescence (in red) and second harmonic generation of collagen (in green)
256 which characterize the constituting layers of the amnionchorion. From the bottom, amnion consists
257 of a monolayer of epithelial cells followed by the highest density of collagen in its basement
258 membrane and compact layer (compared to any other layer). Next, the amnion's fibroblast cell
259 layer is seen within its collagen matrix. A mostly acellular loose network of collagen and mucin
260 forms the spongy layer that separates the amnion from the chorion and allows them to slide against
261 one another. The spongy layer can accumulate fluids and shows large variability in thickness. The
262 reticular layer of the chorion presents with chorionic mesenchymal cells in the collagen network
263 ending with a more densely collagenated pseudo-basement membrane at the interface with the
264 trophoblast layer. The trophoblast layer is the outermost layer of chorion that consists of several
265 layers of trophoblast cells that are in contact with maternal decidua. This layer does not present
266 with collagen, in contrast to the reticular layer below and maternal decidua above. Histological
267 staining for collagen confirms the observed gradients in collagen content across amnionchorion
268 layers in two-photon microscopy images, with the amnion showing the highest density of collagen,
269 the spongy layer showing a loose network of collagen fibers, and the trophoblast layer showing a
270 distinct collagen-free band of cytotrophoblasts with an epithelial-like structure, followed by
271 maternal parietal decidua cells and collagen (which the trophoblasts invade).


272 **Fig. 2. The multilayered amnionchorion presents with cellular and acellular layers with gradients in collagen**
273 **content which produce contrast in OCT images.** Samples of human fetal membranes acquired from a term C-section
274 delivery at 39 weeks and 2 days of gestation were imaged using optical coherence tomography, two-photon
275 fluorescence microscopy, and bright field microscopy after histological staining. (a) OCT image visualizes the

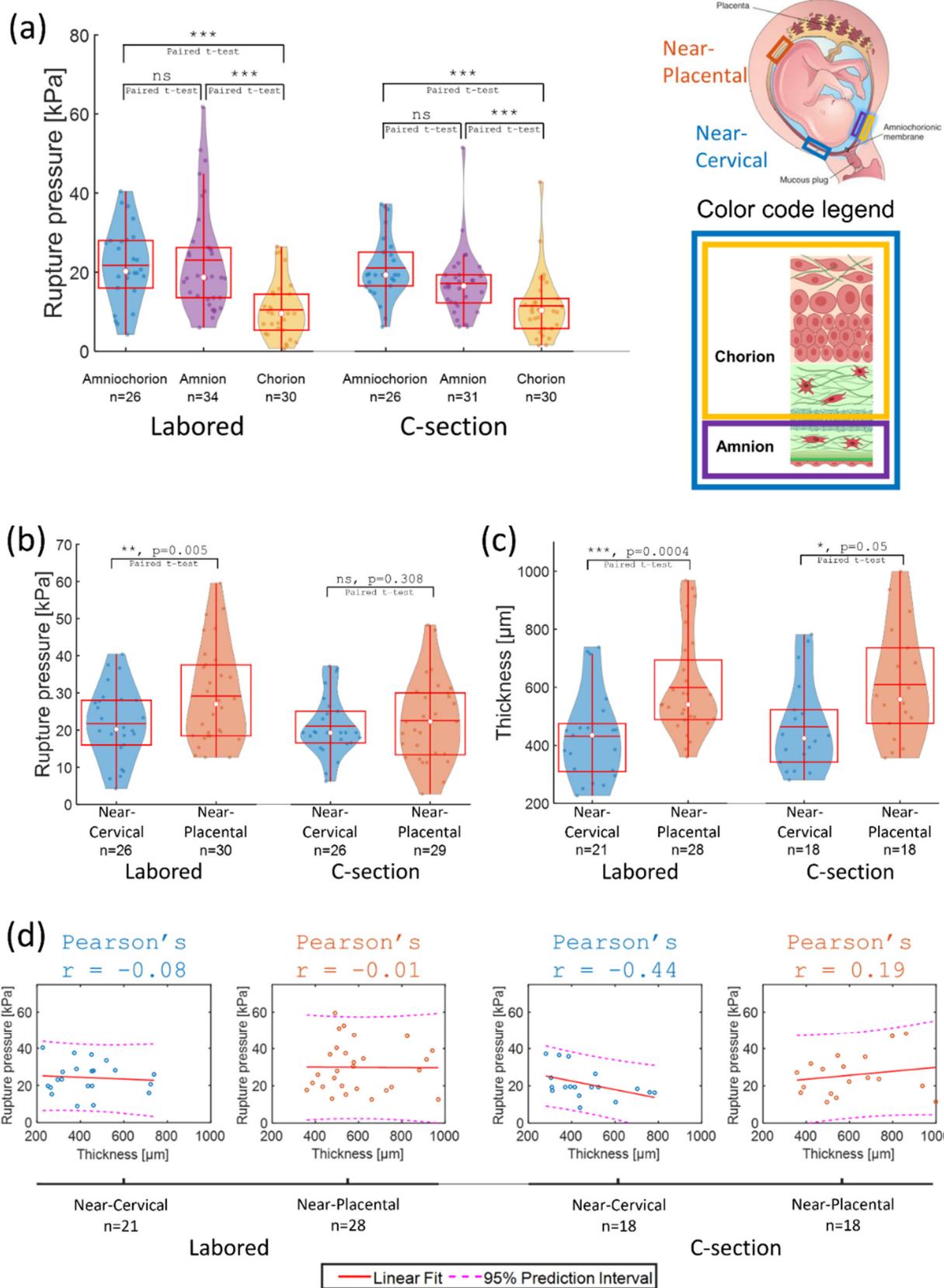
276 constituting layers of the amnionchorion, with dense collagen layers and collagen fibers generating higher
277 backscattering and appearing brighter while water and air gaps appear darker. (b) Illustration diagram and cross-
278 sectional view of a two photon-excited autofluorescence microscopy Z stack of fetal membranes acquired in two
279 spectral channels. Femtosecond-pulsed excitation laser was tuned to 905 nm and cellular autofluorescence was
280 captured using a 550/100 nm emission filter (shown in red) and second harmonic generation of collagen was captured
281 using a 460/50 nm emission filter (shown in green). Amnion (bottom) presents with an epithelial monolayer followed
282 by a compact collagen layer and fibroblast layer. A loose network of collagen forms the spongy layer that separates
283 and allows amnion to slide against chorion. Chorion consists of a collagen-rich reticular layer with sparse stromal
284 cells followed by collagen-free and densely packed trophoblast cells. Decidua are maternal cells from the uterine
285 lining that are fused to the outer fetal trophoblast layer. (c) Histology section of the amnionchorion with Masson's
286 trichrome staining shows presence of collagen (in blue) in the basement and mesenchymal cell layers of amnion and
287 chorion as well as the spongy layer in between. Cells cytoplasm are stained pink and cells nuclei are stained brown.
288 The trophoblast layer of the chorion presents a collagen-free band of densely packed trophoblast cells that is distinct
289 from the collagenated layers of chorion basement below and decidua above it. (d) H&E staining shows the nuclei and
290 cytoplasm in the cellular layers of amnion and chorion. Comparison with two-photon microscopy and histology
291 images suggests collagen is a source of contrast in OCT images, and that the constituting layers (i.e., amnion, spongy,
292 chorion, decidua) can be differentiated on OCT intensity images based on the identified landmarks.

293 Comparison of OCT intensity images with corresponding 2P microscopy and histology images
294 (Fig. 2) reveals collagen density as a source of contrast in OCT images. Dense collagen layers and
295 collagen fibers generate high backscattering and appear bright, while water and air gaps are less
296 backscattering and appear dark on OCT intensity images. The collagen-free band of
297 cytotrophoblast cells in the chorion produces a low-intensity band on OCT images that stands in
298 contrast to its collagen-rich basement membrane in the reticular layer below which has higher OCT
299 intensity. The spongy layer with its loose collagen network and high water content typically
300 presents with lower intensity on OCT images. However, due to its compressibility and perfusion,
301 its OCT intensity tends to increase as its thickness decreases under load. The amnion generates
302 high OCT signal intensity and stands out against the lower-intensity spongy layer above and the
303 zero-intensity saline below it. This characterization of OCT intensity images of composite
304 amnionchorion allows for segmentation of individual layers on video-rate OCT images acquired
305 during inflation loading tests and observation of associated dynamics.


306 **3.2 Automated CNN segmentation of OCT images reveals dynamic morphological 307 changes during inflation loading**

308 The OCT image landmarks identified through comparison to 2P microscopy and histology were
309 used to inform manual segmentation of a randomly selected OCT image set of amnionchorion
310 samples under various inflation loads between 0 and 20 kPa (n=242 images) for training and testing
311 of the semantic segmentation CNN. Ten-fold cross-validation was performed by splitting the hand-
312 segmented dataset into ten subsets. The CNN was trained ten times, leaving one subset out as the
313 test dataset each time. The Dice coefficient metric was calculated between the CNN-generated
314 masks and human-segmented masks in the test set. The mean and standard deviation of the
315 achieved Dice coefficients for the four amnionchorion tissue layers were 0.83 ± 0.04 for the amnion,
316 0.84 ± 0.11 for the spongy layer, 0.78 ± 0.10 for the chorion, and 0.91 ± 0.05 for the decidua. Fig.
317 3 shows a representative amnionchorion OCT intensity image along with its corresponding CNN-
318 generated layer mask overlays, along with the test image set mean Dice coefficients for each layer.

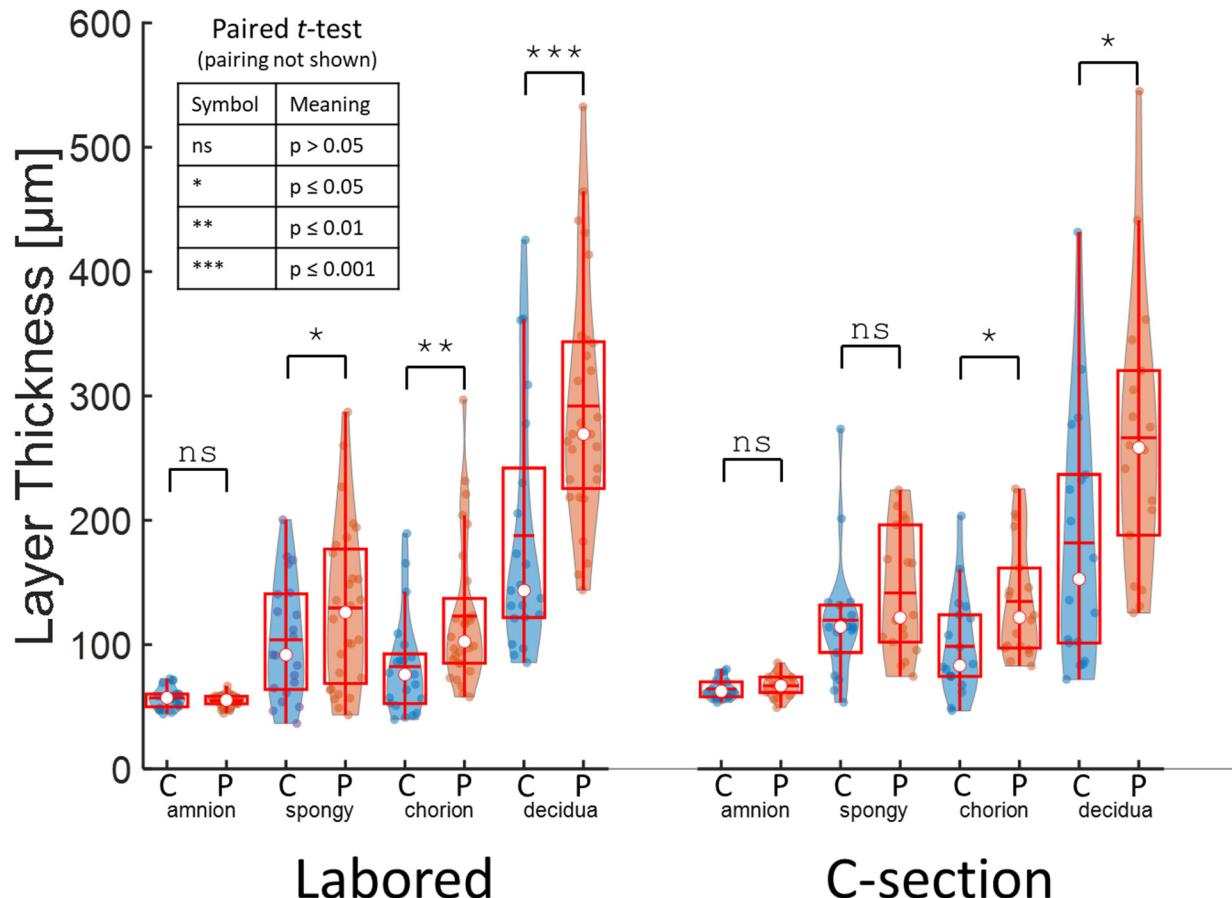
319 **Fig. 3. Convolutional Neural Network can segment amniochorion layers on OCT images in good agreement**
320 **with human expert.** A fully convolutional neural network from retinal OCT literature (ReLayNet [32]) was retrained
321 using hand-segmented OCT images (n=242) of fetal membranes acquired during inflation loading tests. 10-fold cross
322 validation was performed by splitting the hand-segmented images into ten subsets. The CNN was trained ten times by
323 leaving one subset out as the test dataset. The agreement of the CNN segmentation output with the human
324 segmentation was measured using the Dice coefficient metric on the test dataset. The automated CNN segmentation
325 performs well with Dice coefficients of 0.8 or better for all constituting layers of the amniochorion.


326 The trained CNN was used to segment entire inflation loading test OCT image sets and the CNN-
327 generated masks were post-processed in MATLAB to extract mean layer thickness values for each
328 of the four layers at every timepoint, as described in the Methods section. Additionally, sample
329 apex rise was estimated from the images and used, along with the sensor pressure readings, to
330 generate loading curves. These values were then converted to strain and tension estimates to
331 generate the tension-strain loading curve and calculate the slopes (*i.e.*, tangent stiffness) at low-
332 and high-load portions of the inflation test. Fig. 4 shows a representative inflation loading
333 experiment and its associated loading curves and layer thicknesses over time. Supplemental videos
334 (Visualization 1-2) show the complete inflation loading time course for near-cervical and near-
335 placental samples, respectively, from the same delivery (labored natural birth at 39 weeks and 1
336 day of gestation).

337 **Fig. 4. Loading curve and layer thicknesses can be extracted from OCT images of the inflation test.** (a)
338 Representative segmented OCT image frame from an inflation loading test. Inset shows raw intensity and layer-
339 segmented images using a convolutional neural network. (b) Tissue deflection (apex rise) plotted against applied saline
340 pressure at every time point. (c) Sample loading curve (tension vs. strain) derived from apex rise and pressure
341 measurements. (d) Average thickness of individual layers plotted over time (see Visualization 2 for the complete
342 inflation time course).

343 **3.3 Layer-specific OCT inflation test confirms that the amnion is the major load-bearing
344 layer in fetal membranes**

345 Next, we confirm that the layer-specific OCT inflation test is consistent with prior work [13] that
346 showed that the amnion is the major load-bearing layer in fetal membranes. The inflation pressure
347 at the moment of rupture is plotted for composite amniochorion, separated amnion, and separated
348 chorion samples from the near-cervical region in both the labored delivery and unlabored C-section
349 birth groups (Fig. 5(a)). Using paired *t*-tests, we found that the rupture pressure for amnion alone
350 is not significantly different from the composite amniochorion, while the chorion alone ruptures
351 at a significantly lower pressure (nearly half) compared to the amnion or composite amniochorion.
352 Therefore, while amnion is the thinnest constituting layer of the fetal membranes (<100 μm), it is
353 also the major load-bearing layer responsible for the bulk of the amniochorion's strength.

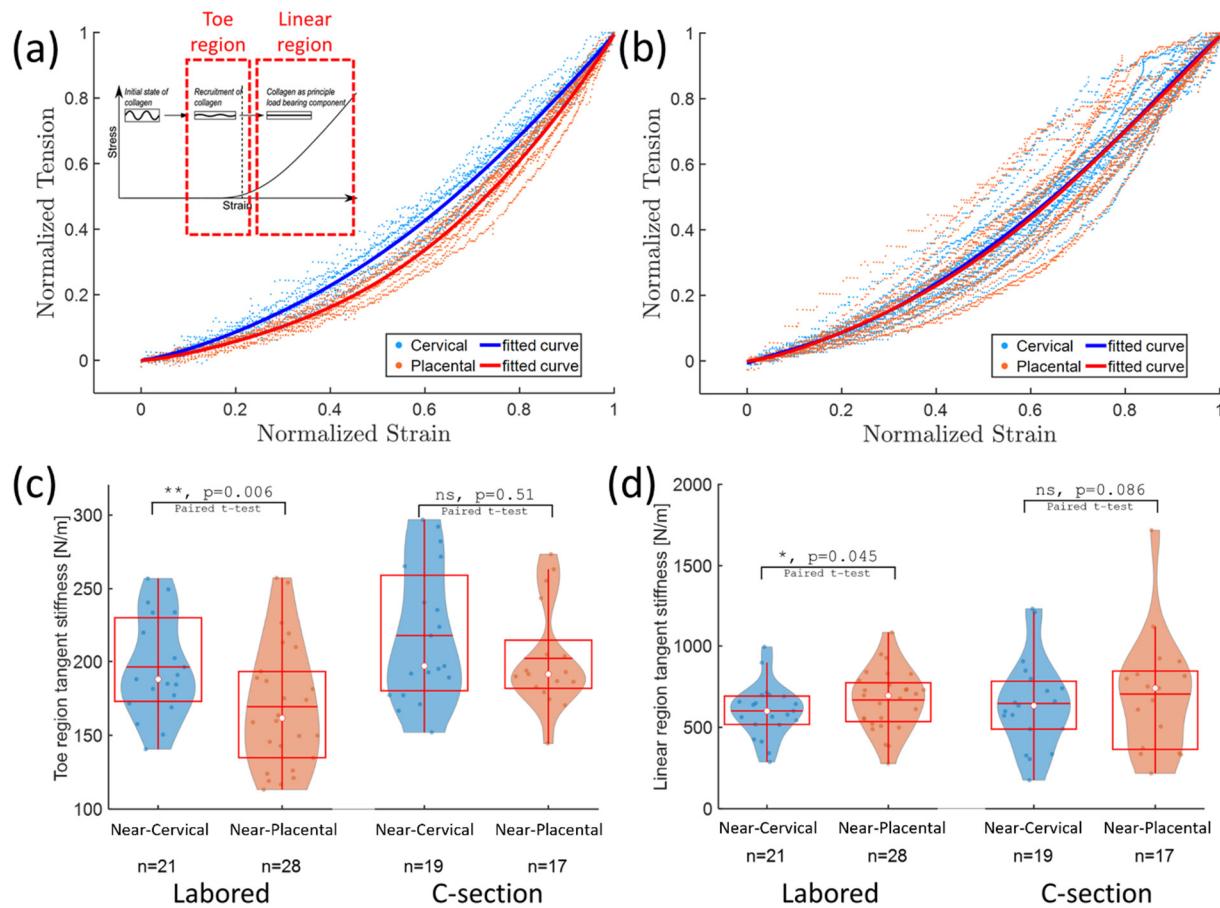

354 **Fig. 5. (a) Amnion is the major load-bearing layer.** For both the labored and the C-section delivery groups, intact
355 amniochorion bilayer and separated amnion and chorion were sampled from the near-cervical region and subjected to
356 saline inflation until rupture. Paired *t*-test shows that the rupture pressure of amnion alone is not significantly different
357 from the composite amniochorion. However, the chorion ruptures at significantly lower pressures than either amnion
358 or amniochorion. Despite being thinner, amnion is the major load-bearing layer of the fetal membranes. **(b,c) Strength**

359 and thickness are location dependent. Composite amniochorion was sampled from the near-cervical region and the
360 near-placental region in both labored and C-section delivery groups. The two samples from each delivery were
361 subjected to the inflation test and their rupture pressure and total thickness were compared against one another. **(b)**
362 The rupture pressure of the near-placental sample was significantly higher than the near-cervical sample in the labored
363 delivery group. However, the difference did not reach statistical significance in the C-section delivery group. The
364 rupture pressure of the near-placental samples in the C-section group was also lower than the labored group. **(c)** The
365 total thickness of the amniochorion in the near-cervical region is significantly lower than the near-placental region for
366 both labored and C-section delivery groups. **(d) Thickness does not predict strength.** Total thickness of the
367 amniochorion does not correlate strongly with the rupture pressure of the fetal membranes in any of the sampled
368 regions or delivery groups. This finding is consistent with the results of individual amnion and chorion inflation
369 loading tests that suggest amnion is the major load-bearing layer and that other layers, despite their higher and variable
370 thickness, contribute minimally to the load-bearing strength of the composite amniochorion. These results are
371 consistent with prior reports [12]. Box plots show the interquartile range and whiskers extend from the box to 1.5
372 times the interquartile range. White dots show the median and red horizontal lines show the mean.

373 **3.4 Strength and total thickness of fetal membranes are reduced near the cervical os, but**
374 **the two measures are not correlated**

375 Location dependence of morphology and mechanical strength of the composite amniochorion was
376 investigated by comparing samples from the near-cervical region against samples from the near-
377 placental region in both the labored delivery and the unlabored C-section groups. Fig. 5 (b) shows
378 the rupture pressure plots. The near-cervical samples have lower rupture pressure than the near-
379 placental samples in the labored delivery group ($p = 0.005$, paired *t*-test). However, the difference
380 does not reach statistical significance in the C-section group ($p = 0.308$). Fig. 5 (c) shows the total
381 thickness of the amniochorion samples. The near-cervical samples are significantly thinner than
382 the near-placental samples in both labored ($p = 0.0004$) and C-section ($p = 0.05$) delivery groups.

383 The correlation between total thickness and amniochorion strength was investigated in Fig. 5 (d)
384 by performing a linear regression analysis. We found that a decreased total thickness of the
385 amniochorion is not coincident with a reduced rupture pressure in either of the sampling regions
386 or birth groups and that, consequently, total thickness is not a predictor of fetal membranes
387 strength. Fig. 6 takes a closer look at the breakdown of constituting layer thicknesses between
388 near-cervical and near-placental samples as measured from the CNN-segmented OCT images. We
389 found that the higher thickness of the membranes in the near-placental region is attributable to
390 non-loadbearing layers (*i.e.*, spongy layer, chorion, and decidua) and that the load-bearing amnion
391 layer is not significantly different in thickness between the two anatomical regions (within the
392 resolution and precision of our OCT imaging and segmentation). Therefore, the decrease in the
393 strength of amnion in the near-cervical region must have a microstructural and biochemical source
394 that is not reflected in measurements of its thickness.



395 **Fig. 6. Non-load bearing layers account for location-dependent variability in thickness.** Thickness of constituting
396 layers of amniochorion, as estimated from the segmented OCT images, are compared between near-cervical (C) and
397 other non-load bearing layers are significantly thicker in the near-placental region. Box plots show the interquartile range and whiskers extend from the
398 accuracy of OCT images, is not significantly different between the two locations. Other non-load bearing layers are
399 significantly thicker in the near-placental region. Box plots show the interquartile range and whiskers extend from the
400 box to 1.5 times the interquartile range. White dots show the median and red horizontal lines show the mean.

401 **3.5 Tangent stiffnesses of fetal membranes near the cervical os are different from near
402 the placental disk**

403 Load response was investigated by analyzing the tension-strain loading curves of the samples from
404 the two locations and comparing their tangent stiffness in the low-load toe region and the high-
405 load linear region. Given the variable strain and tension ranges across samples, for a qualitative
406 visual comparison of the loading curves from the near-cervical and near-placental locations, we
407 normalized each loading curve strain and tension values by their respective maxima and plotted
408 them in the same graph. Fig. 7 (a) and (b) show the normalized loading curves for the labored
409 delivery group and the C-section group, respectively. In the labored delivery group (Fig. 7 (a)),
410 samples from the near-cervical and near-placental locations group separately from each other. The
411 near-cervical samples show a more linear loading curve, while the near-placental samples show a
412 more non-linear elastic (*i.e.*, more convex) loading curve. However, in the C-section delivery

413 group (Fig. 7(b)), the near-cervical and near-placental samples do not show the same separation.
 414 There is also higher inter-sample variability in this group. For a more quantitative comparison of
 415 the sampling locations, tangent stiffness of the loading curves in the low-load toe region (Fig. 7
 416 (c)) and the high-load linear region (Fig. 7 (d)) were plotted. In the labored delivery group, near-
 417 cervical samples compared to near-placental samples present with higher toe region tangent
 418 stiffness ($p=0.006$, paired t -test) and lower linear region tangent stiffness ($p=0.045$, paired t -test).
 419 However, these location-dependent trends do not hold for the C-section delivery group.

420 **Fig. 7. Cervical samples show signs of strain hardening and work fatigue.** The loading curve of the composite
 421 amniochorion from near-cervical and near-placental locations are compared. The loading curve is divided into a toe
 422 region where collagen fibers are not fully tensioned, and a linear region where collagen fibers are tensioned and loaded
 423 until rupture. For a visual comparison, (a) shows the normalized loading curves of the labored delivery group samples
 424 and their fitted curves. The cervical samples show more linear loading curves that cluster separately from the placental
 425 samples with more nonlinear loading curves. The slope of the tension-strain loading curve (tension modulus) in either
 426 region is reported. The toe region was defined as the portion of the loading curve between 0.5 and 5 kPa of saline
 427 pressure, and the linear region was defined as the portion of the loading curve between 7.5 and 20 kPa of saline
 428 pressure. (b) shows the normalized loading curves and fitted curves for the C-section delivery group. Cervical and
 429 placental sample curves in this group do not cluster separately. (c) The tension modulus in the toe region is higher in
 430 the near-cervical location than the near-placental sampling location. However, the C-section group shows higher toe
 431 modulus than the labored group in both sampling locations and the location dependent difference does not reach
 432 significance in the C-section group. (d) The linear region modulus is higher in the near-placental location than the
 433 near-cervical location in the labored group, but the difference is less significant in the C-section group. Box plots show

434 the interquartile range and whiskers extend from the box to 1.5 times the interquartile range. White dots show the
435 median and red horizontal lines show the mean.

436 4 Discussion

437 This study presents the first application of OCT imaging for resolving the dynamic loading
438 response of fetal membranes sub-layers from full-depth cross-sectional images along with
439 application of a convolutional neural network for automated segmentation of the sub-layers.
440 Previously, static OCT images of fetal membranes were compared to histology sections and
441 features like obliterated chorionic villi, pseudo-cysts, and calcifications were identified, and
442 thicknesses were measured [28–30]. Separately, mechanical studies of fetal membranes loading
443 response to inflation by pressurized saline or aspiration by vacuum have evaluated mechanical
444 properties of these tissues using video camera measurements of membrane deflections (either side
445 view of apex rise or top view of ink markings) [24]. Here, we developed *ex vivo* methods to
446 combine these approaches, specifically, to assess changes in sub-layer thickness within human
447 fetal membranes during dynamic loading using an inflation test, volumetric OCT, and automated
448 sub-layer segmentation with convolutional neural networks. Sources of contrast in OCT volumes
449 were identified using corresponding histology and 2P microscopy and new neural networks were
450 trained to identify layers within human fetal membranes under varying loading states. Differences
451 in layer thickness and loading properties were compared between near-cervical and near-placental
452 locations, and between labored and C-section deliveries.

453 Interestingly, unlike in the labored group, there was no significant difference in stiffness between
454 the near-placental and near-cervical regions in the C-section group. This may be due to the manner
455 in which the placenta and fetal membranes are manually extracted during C-section birth.
456 Compared to spontaneous separation or controlled cord traction (CCT), manual removal may
457 subject the placenta and fetal membranes to larger stresses particularly near the placental disk
458 where adherence to the uterine wall is strongest [33]. As such, we hypothesize that these large
459 stresses and the resulting plastic deformations may mask any pre-existing location-dependent
460 mechanical differences between fetal membranes from near-placental and near-cervical regions in
461 the C-section group. For example, rupture pressures of near-placental samples in the C-section
462 group are smaller than the labored group (Fig. 5(b)) and are not significantly different from the
463 near-cervical samples. The C-section near-placental amnionchorion samples also show higher
464 stiffness in the toe region of the loading curve (Fig. 7(c)) and are not significantly different from
465 the near-cervical C-section samples, in contrast to the labored group amnionchorion samples that
466 show location-dependent differences in tangent stiffness. Therefore, it may be beneficial to control
467 for the method of placenta extraction in future studies.

468 Prior studies indicated that overall thickness of the membranes is not correlated with their tensile
469 strength [12], a finding replicated in our study (Fig. 5(d)). This confirms that, for an *in vivo*
470 measurement of fetal membranes to provide diagnostically relevant information for PPROM risk
471 assessment, resolution of the sub-layer breakdown of fetal membranes and their collagen matrix is
472 necessary. Our results show that OCT provides the necessary resolution and contrast for such
473 measurements. While our study was limited to term specimens due to difficulty of obtaining
474 preterm samples in large numbers, the methods developed here may be applied in future studies to

475 identify predictive markers of PPROM. The possibility of developing small-diameter fiber optic-
476 based endoscopic OCT probes [34] for trans-cervical imaging of the fetal membranes further adds
477 to the appeal of this technique for clinical use.

478 Overall, these studies fill a gap in our understanding of the structural and mechanical properties of
479 human fetal membranes at high resolution under dynamic loading events, and inspire further study,
480 particularly *in vivo*.

481 **Acknowledgements**

482 We acknowledge funding from the Morgridge Institute for Research (KS and MCS), Carol
483 Skornicka Chair of Biomedical Imaging (MCS), Retina Research Foundation (RRF) Daniel M.
484 Albert Chair (MCS). We thank the Birthing Center at the UnityPoint Heath Meriter Hospital and
485 the Intermountain Healthcare Utah Valley Hospital Labor and Delivery for their support in sample
486 collection. Illustration cartoon was created with BioRender.com.

487 **Disclosures**

488 The authors declare no conflicts of interest.

489 **Data availability**

490 Data underlying the results presented in this paper are not publicly available at this time but may
491 be obtained from the authors upon reasonable request.

492 **References**

- 493 1. G. D. Bryant-Greenwood, "The extracellular matrix of the human fetal membranes: Structure
494 and function," *Placenta* **19**, 1–11 (1998).
- 495 2. S. E. Calvin and M. L. Oyen, "Microstructure and Mechanics of the Chorioamnion
496 Membrane with an Emphasis on Fracture Properties," *Annals of the New York Academy of
497 Sciences* **1101**, 166–185 (2007).
- 498 3. T. M. Malak and S. C. Bell, "Structural characteristics of term human fetal membranes: a
499 novel zone of extreme morphological alteration within the rupture site," *BJOG: An
500 International Journal of Obstetrics & Gynaecology* **101**, 375–386 (1994).
- 501 4. T. M. Malak, C. D. Ockleford, S. C. Bell, R. Dalglish, N. Bright, and J. Macvicar,
502 "Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their
503 ultrastructural organization in term human fetal membranes," *Placenta* **14**, 385–406 (1993).
- 504 5. J. McLaren, T. M. Malak, and S. C. Bell, "Structural characteristics of term human fetal
505 membranes prior to labour: identification of an area of altered morphology overlying the
506 cervix," *Human Reproduction* **14**, 237–241 (1999).
- 507 6. A. Mauri, A. E. Ehret, M. Perrini, C. Maake, N. Ochsenbein-Kölble, M. Ehrbar, M. L. Oyen,
508 and E. Mazza, "Deformation mechanisms of human amnion: Quantitative studies based on
509 second harmonic generation microscopy," *Journal of Biomechanics* **48**, 1606–1613 (2015).
- 510 7. L. S. Richardson, G. Vargas, T. Brown, L. Ochoa, S. Sheller-Miller, G. R. Saade, R. N.
511 Taylor, and R. Menon, "Discovery and Characterization of Human Amniochorionic
512 Membrane Microfractures," *The American Journal of Pathology* **187**, 2821–2830 (2017).

513 8. S. Parry and J. F. Strauss, "Premature Rupture of the Fetal Membranes," *N Engl J Med* **338**,
514 663–670 (1998).

515 9. F. Vadillo-Ortega, A. Hernandez, G. Gonzalez-Avila, L. Bermejo, K. Iwata, and J. F.
516 Strauss, "Increased matrix metalloproteinase activity and reduced tissue inhibitor of
517 metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature
518 rupture of membranes," *American Journal of Obstetrics and Gynecology* **174**, 1371–1376
519 (1996).

520 10. E. E. Ekwo, C. A. Gosselink, R. Woolson, and A. Moawad, "Risks for Premature Rupture of
521 Amniotic Membranes," *International Journal of Epidemiology* **22**, 495–503 (1993).

522 11. J. P. Lavery, C. E. Miller, and R. D. Knight, "The Effect of Labor on the Rheologic
523 Response of Chorioamniotic Membranes," *Obstetrics & Gynecology* **60**, 87 (1982).

524 12. A. Grémare, S. Jean-Gilles, P. Musqui, L. Magnan, Y. Torres, M. Fénelon, S. Brun, J.-C.
525 Fricain, and N. L'Heureux, "Cartography of the mechanical properties of the human
526 amniotic membrane," *Journal of the Mechanical Behavior of Biomedical Materials* **99**, 18–
527 26 (2019).

528 13. M. L. Oyen, S. E. Calvin, and D. V. Landers, "Premature rupture of the fetal membranes: Is
529 the amnion the major determinant?," *American Journal of Obstetrics and Gynecology* **195**,
530 510–515 (2006).

531 14. M. Jabareen, A. S. Mallik, G. Bilic, A. H. Zisch, and E. Mazza, "Relation between
532 mechanical properties and microstructure of human fetal membranes: An attempt towards a
533 quantitative analysis," *European Journal of Obstetrics & Gynecology and Reproductive
534 Biology* **144**, S134–S141 (2009).

535 15. R. Helmig, H. Oxlund, L. K. Petersen, and N. Uldbjerg, "Different biomechanical properties
536 of human fetal membranes obtained before and after delivery," *European Journal of
537 Obstetrics & Gynecology and Reproductive Biology* **48**, 183–189 (1993).

538 16. M. L. Oyen, S. E. Calvin, and R. F. Cook, "Uniaxial stress–relaxation and stress–strain
539 responses of human amnion," *Journal of Materials Science: Materials in Medicine* **15**, 619–
540 624 (2004).

541 17. K. Bircher, A. E. Ehret, D. Spiess, M. Ehrbar, A. P. Simões-Wüst, N. Ochsenbein-Köble, R.
542 Zimmermann, and E. Mazza, "On the defect tolerance of fetal membranes," *Interface Focus*
543 **9**, 20190010 (2019).

544 18. M. Pensalfini, S. Meneghelli, V. Lintas, K. Bircher, A. E. Ehret, and E. Mazza, "The suture
545 retention test, revisited and revised," *Journal of the Mechanical Behavior of Biomedical
546 Materials* **77**, 711–717 (2018).

547 19. M. L. Oyen, R. F. Cook, and S. E. Calvin, "Mechanical failure of human fetal membrane
548 tissues," *Journal of Materials Science: Materials in Medicine* **15**, 651–658 (2004).

549 20. M. L. Oyen, R. F. Cook, T. Stylianopoulos, V. H. Barocas, S. E. Calvin, and D. V. Landers,
550 "Uniaxial and biaxial mechanical behavior of human amnion," *Journal of Materials Research*
551 **20**, 2902–2909 (2005).

552 21. W. Bürzle, "Mechanical characterization and modeling of human fetal membrane tissue,"
553 Doctoral Thesis, ETH Zurich (2014).

554 22. E. M. Joyce, P. Diaz, S. Tamarkin, R. Moore, A. Strohl, B. Stetzer, D. Kumar, M. S. Sacks,
555 and J. J. Moore, "In-vivo stretch of term human fetal membranes," *Placenta* **38**, 57–66
556 (2016).

557 23. K. M. Myers, F. Cone, H. Quigley, B. Coudrillier, and T. D. Nguyen, "The Inflation
558 Response of Mouse Sclera: Age Effects on the Mechanical Properties of Scleral Tissue," in
559 (American Society of Mechanical Engineers Digital Collection, 2013), pp. 395–396.

560 24. W. Buerzle, C. M. Haller, M. Jabareen, J. Egger, A. S. Mallik, N. Ochsenbein-Koelble, M.
561 Ehrbar, and E. Mazza, "Multiaxial mechanical behavior of human fetal membranes and its
562 relationship to microstructure," *Biomech Model Mechanobiol* **12**, 747–762 (2013).

563 25. A. R. Clark, K. Yoshida, and M. L. Oyen, "Computational modeling in pregnancy
564 biomechanics research," *Journal of the Mechanical Behavior of Biomedical Materials* **128**,
565 105099 (2022).

566 26. J. G. Fujimoto, C. Pitriss, S. A. Boppart, and M. E. Brezinski, "Optical Coherence
567 Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,"
568 *Neoplasia* **2**, 9–25 (2000).

569 27. S. Aumann, S. Donner, J. Fischer, and F. Müller, "Optical Coherence Tomography (OCT):
570 Principle and Technical Realization," in *High Resolution Imaging in Microscopy and*
571 *Ophthalmology: New Frontiers in Biomedical Optics*, J. F. Bille, ed. (Springer International
572 Publishing, 2019), pp. 59–85.

573 28. S. C. Micili, M. Valter, H. Oflaz, C. Ozogul, P. Linder, N. Föckler, G. M. Artmann, I. Digel,
574 and A. T. Artmann, "Optical coherence tomography: A potential tool to predict premature
575 rupture of fetal membranes," *Proc Inst Mech Eng H* **227**, 393–401 (2013).

576 29. H. Ren, C. Avila, and C. Kaplan, "High-resolution imaging diagnosis of human fetal
577 membrane by three-dimensional optical coherence tomography," *JBO* **16**, 116006 (2011).

578 30. C. Avila, J. Santorelli, J. Mathai, S. Ishkin, M. Jabsky, J. Willins, R. Figueroa, and C.
579 Kaplan, "Anatomy of the fetal membranes using optical coherence tomography: Part 1,"
580 *Placenta* **35**, 1065–1069 (2014).

581 31. T. Zhang, Y. Zhang, J. Yang, P. Wen, H. Li, N. Wei, Y. Gao, B. Li, and Y. Huo, "Dynamic
582 measurement of amnion thickness during loading by speckle pattern interferometry,"
583 *Placenta* **104**, 284–294 (2021).

584 32. A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab,
585 "ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography
586 using fully convolutional networks," *Biomed. Opt. Express*, **BOE 8**, 3627–3642 (2017).

587 33. R. I. Anorlu, B. Maholwana, and G. J. Hofmeyr, "Methods of delivering the placenta at
588 caesarean section," *Cochrane Database of Systematic Reviews* (2008).

589 34. X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, "Fiber-optic
590 catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring," *Opt.*
591 *Lett.*, **OL 39**, 5066–5069 (2014).

592