

1 **A high soluble-fibre allele in wheat encodes a defective cell wall peroxidase responsible for
2 dimerization of ferulate moieties on arabinoxylan**

3

4 Rowan A.C. Mitchell^{1,2}, Maria Oszvald¹, Till K. Pellny¹, Jackie Freeman¹, Kirstie Halsey¹, Caroline A.
5 Sparks¹, Alison Huttly¹, Sébastien Specel³, Michelle Leverington-Waite⁴, Simon Griffiths⁴, Peter R.
6 Shewry¹, Alison Lovegrove¹

7 ¹ Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom; ²
8 www.rowanmitchell-grassscience.co.uk; ³ Limagrain, Centre de Recherche, Bâtiment 1, Route
9 d'Ennezat, 63720 Chappes, France; ⁴ John Innes Centre, Norwich Research Park, Colney Lane,
10 Norwich, United Kingdom

11

12

13 **Abstract**

14 Increasing dietary fibre (DF) intake is an important target to improve health and an attractive
15 strategy for this is to increase the fibre content of staple foods, particularly white bread which is the
16 staple food in many countries. DF in wheat white flour is derived principally from the endosperm cell
17 wall polysaccharide arabinoxylan (AX) and the water-extractable form of this (WE-AX) accounts for
18 the majority of soluble dietary fibre (SDF), which is believed to confer particular health benefits. We
19 previously identified QTLs for soluble dietary fibre (SDF) on 1B and 6B chromosomes in wheat in
20 biparental populations. Here we show that the 6B high SDF allele encodes a peroxidase protein
21 (PER1-v) with a single missense compared to the more common low SDF form (PER1). Wheat lines
22 with the natural PER1-v allele and with an induced knock-out mutation in PER1 showed similar
23 characteristics of reduced dimerization of ferulate associated with water-extractable WE-AX.
24 Decreased ferulate dimerization is associated with decreased cross-linking of the WE-AX chains and
25 increased solubility of AX. Transiently expressed PER1_RFP fusion driven by native promoter in
26 wheat endosperm was shown to localise to cell walls whereas PER1-v_RFP did not; we therefore
27 propose that PER1-v lacks capacity to dimerise AX ferulate *in vivo* due to mis-localisation. PER1 is
28 the first peroxidase reported to be responsible for oxidative coupling of ferulate on AX, a key process
29 in all grass cell walls. Understanding its role and the effect of variants on AX properties offers a route
30 to control the properties of wheat DF in the human diet.

31

32 Background

33 Bread wheat is the most widely grown food crop globally and this single species accounts for ~20%
34 of human food calories [www.fao.org/faostat]. Dietary fibre (DF) is an essential component of the
35 human diet and the intake of cereal fibre is associated with a reduced risk of a range of chronic
36 diseases (Gill et al., 2021). The mechanisms of action of fibre are complex and still incompletely
37 understood. However, it has been suggested that the balance of three properties, solubility, viscosity
38 and fermentability in the colon, are important in determining the behaviour of fibre in the GI tract
39 (Gill et al., 2021). Hence, soluble and insoluble forms of fibre share some health benefits but also
40 differ in others.

41 Wheat is a major source of DF in the western diet, but most products consumed are made from
42 white flour which has a lower content of DF than whole grain (about 4% dry wt. compared with over
43 10% dry wt.). Increasing the fibre content of white flour is therefore an attractive strategy to deliver
44 health benefits to consumers. The major DF component in white flour is the cell wall polysaccharide
45 arabinoxylan (AX), accounting for about half of the total DF with water-extractable (WE)-AX
46 accounting for most SDF and nearly all of the associated viscosity (Freeman et al., 2016). The
47 amounts of both total AX and WE-AX in white flour vary between wheat genotypes, from about 1.35
48 to 2.75% dry wt. and 20% and 50% of the total, respectively (Gebruers et al., 2008). Several studies
49 have found QTLs and Marker-Trait Associations (MTAs) for total and WE-AX in wheat (Charmet et al.,
50 2009; Nguyen et al., 2011; Quraishi et al., 2011; Yang et al., 2014; Marcotuli et al., 2015; Yang et al.,
51 2016; Zhan et al., 2019; Lovegrove et al., 2020; Ibba et al., 2021) but no causal genes have been
52 experimentally demonstrated.

53 Possible candidate genes include those involved in synthesis of AX. AX is a chain of β -1,4-linked
54 xylopyraonsyl units decorated with α -1,3- and α -1,2-linked arabinofuranosyl units; some of α -1,3-
55 linked arabinofuranosyl are themselves 5-O- substituted with ester-linked feruloyl residues. These
56 ferulate moieties are key for functionality because they allow for radical oxidative coupling to form
57 ferulate dimers that can cross-link chains of AX (Burr and Fry, 2009; Pellny et al., 2020). This cross-
58 linking is believed to bind AX more tightly into the endosperm cell wall (Saulnier et al., 2007) so
59 decreasing the extent of cross-linking would be expected to increase the amount of WE-AX. Cross-
60 linking of ferulate moieties on AX has significance beyond wheat grain as it is a key process in all grass
61 cell walls, determining primary wall extensibility and biomass recalcitrance to digestion and is likely a
62 capability that contributed to evolutionary success of the grasses (Chandrakanth et al., 2023). It has
63 been shown that dimerization of ferulate on AX in grass cell walls requires the action of an

64 apoplastic peroxidase (Burr and Fry, 2009) but the peroxidase gene family is large (Passardi et al.,
65 2004), and the identity of these peroxidases has not been established for any grass cell wall.

66 Previous studies have identified a QTL for SDF on chromosome 6B in a Yumai34 x Valoris wheat
67 population (Charmet et al., 2009; Lovegrove et al., 2020). Here we show that the causal gene is
68 *TraesCS6B02G042500* encoding a peroxidase responsible for cross-linking ferulate moieties on AX,
69 decreasing water extractability. The high SDF Valoris allele contains a single missense SNP that
70 appears to prevent localisation of the encoded protein to the cell wall thus disrupting function,
71 resulting in less cross-linking and more WE-AX.

72

73

74 Results

75 *RNAseq from endosperm of lines from Yumai34 x Valoris population identifies PER1 as candidate*
76 *causal gene*

77 We previously mapped significant QTLs for relative viscosity of grain extracts (a property conferred
78 by WE-AX) on chromosomes 1B and 6B and a more minor QTL on 1A in the Yumai34 x Valoris
79 population of doubled-haploid lines (DHLs) (Lovegrove et al., 2020). To identify candidate genes for
80 the 1B and 6B QTLs we analysed RNA-seq from pools of 4 DHLs with contrasting genotypes at these
81 two QTLs (but all with Yumai34 allele at 1A).

82 Transcripts for enzymes of AX synthesis typically peak around 12-18 days post anthesis (dpa) (Pellny
83 et al., 2012), so we isolated RNA from endosperm at 17 dpa. The 95% confidence intervals
84 [19,946,488 – 28,116,185] for the 6B QTL encompass 323 protein-coding genes annotated in wheat
85 reference genome IWGSC Refseq 1.1; of these 27 were expressed (average FPKM>0.5) and 16 were
86 differentially expressed (FDR<0.05) and/or had splicing differences or coding polymorphisms. From
87 these 16, we identified neighbouring genes TraesCS6B02G042500 and TraesCS6B02G042600
88 annotated as peroxidases as top candidates due to their expression pattern (high in endosperm
89 during grain fill, not expressed in non-grain tissue) and proximity to the QTL peak. The two genes are
90 result of tandem duplication (sharing 85% CDS identity) and each has 4 exons. RNA-seq mapped to
91 these two genes (Figure 1A) shows that all abundant transcripts are made up of 4 exons but can be
92 from either gene or from TraesCS6B02G042500 exons 1 and 2 combined with TraesCS6B02G042600
93 exons 3 and 4. Therefore these two separate gene models actually represent splice variants, albeit
94 ones sharing no exons. We named the transcripts and encoded proteins PER1 (identical to
95 TraesCS6B02G042500.1) PER2 (identical to TraesCS6B02G04600.1) and PER1&2 for the hybrid
96 comprised of PER1 exons 1,2 and PER2 exons 3,4. DHLs with the Valoris allele at this 6B locus
97 showed highly significant ($P<0.001$) differences in expression and splicing with marked decreases in
98 PER1&2 and increases in PER2 expression (Fig. 1B); the Yumai34 sequence is identical to Chinese
99 Spring reference whereas Valoris PER1 has 3 synonymous SNPs and one missense SNP in exon 1 of
100 PER1. The missense results in a Ser51Phe change in the protein encoded by the Valoris allele which
101 we call PER1-v. Both PER1 and PER2 have homeologues on the A and D subgenomes but PER1A is
102 not expressed, and the other forms are less expressed than PER1 and PER2 (Fig. 1B). We
103 hypothesised that, despite the likely redundancy between these forms, the missense and/or lower
104 expression of PER1-v in Valoris might be the cause of the higher SDF.

105

106 *DHLs with Valoris allele at 6B have lower dimerization of ferulate in endosperm WE-AX*

107 The identification of PER1 as candidate causal gene suggested that the mode of action for the 6B
108 QTL could be via the dimerization of ferulate on AX, with lower dimerization associated with the
109 Valoris PER1-v allele. We have previously determined dimerization of wheat endosperm AX ferulate
110 in total and WE endosperm fractions and increases were seen in both when genes responsible for
111 synthesis of the AX xylan backbone were downregulated (Freeman et al., 2017; Pellny et al., 2020).
112 Here, we observed significantly lower ferulate dimerization on WE-AX in DHLs with the Valoris
113 genotype (6B:H) to those with the Yumai34 genotype (6B:L) in the 6B QTL region (Table 1). Out of
114 the five ferulate dimer (diFA) peaks detected, the ratios to FA monomer were all decreased in 6B:H
115 DHLs and the sum of all dimers expressed as % dimerization was significantly decreased (F. prob =
116 0.014) by ~30%. The effects of 1B:H were more complex, decreasing some dimers significantly but
117 having no significant effect on overall dimerization. There were also significant effects of 1B and 6B
118 genotypes and interaction of these on FA monomer amount per unit dwt endosperm (Table 1).

119

120

121

122 Table 1 Amounts of ferulate monomer (FA) and dimers (diFA) in WE fractions from endosperm of
123 DHLs grouped according to genotype at 1B and 6B QTLs. Results from a 2-way ANOVA of 1B x 6B
124 genotype showing means for each group (n=3) and F probability for effects.

diFA / FA (w/w)								
		Dimerisation						
means	Dimerisation [tot diFA / (tot diFA + FA)]					diF8-0-4	FA (g / g dwt)	
		diF8-8AT	diF8-8	diF8-5	diF5-5	& diF8- 5BF		
	1B:L 6B:L	22%	0.065	0.024	0.046	0.08	0.061	6.3
	1B:H 6B:L	19%	0.038	0.072	0.032	0.048	0.049	12.9
	1B:L 6B:H	15%	0.032	0.017	0.023	0.058	0.05	10.5
	1B:H 6B:H	14%	0.032	0.015	0.027	0.046	0.04	13.4
F prob.								
	1B	0.319	0.11	0.405	0.665	0.004	0.024	<.001
	6B	0.014	0.026	0.251	0.266	0.072	0.041	0.013
	interaction	0.794	0.09	0.362	0.477	0.125	0.755	0.035

125

126

127

128 Table 2 Amounts of ferulate monomer (FA) and dimers (diFA) in endosperm of Cadenza BC2F2 lines
129 segregating for KO mutation in PER1. Results from a 1-way ANOVA of mutation showing means for
130 each group (n=7) and F probability for effect.

131

diFA / FA (w/w)									
		Dimerisation							
means	Dimerisation [tot diFA / (tot diFA + FA)]					diF8- 0-4	FA (g / g dwt)		
		diF8-8AT	diF8-8	diF8-5	diF5-5	diF8- 5BF			
	mutant	15.5%	0.018	0.036	0.049	0.027	0.052	0.053	88.8
	null	17.0%	0.024	0.04	0.05	0.035	0.056	0.061	79.3
F prob.									
	mutation	0.037	0.019	0.227	0.830	0.030	0.346	0.046	0.194

132

133

134

135

136 *Wheat lines with an induced mutation in PER1 have lower dimerization of ferulate in endosperm*

137 Using the mutagenised, exome-sequenced population of wheat var. Cadenza (Krasileva et al., 2017),
138 we identified a line carrying a premature stop codon in exon 2 of PER1. We twice backcrossed lines
139 to Cadenza wild-type and allowed lines to self-fertilise for 2 further generations (BC2F2 lines) and
140 identified segregants that were homozygous for the mutation and those that were homozygous for
141 the wild-type allele. We then compared the ferulate dimerization in endosperm tissues from these;
142 BC2F2 lines carrying the mutation had significantly (F prob. = 0.037) lower ferulate dimerization in
143 endosperm (Table 2) supporting the putative role of PER1.

144

145 *PER1_RFP fusion protein transiently expressed in wheat endosperm localises partially to cell wall but*
146 *PER1-v_RFP does not*

147 To investigate whether the missense SNP could explain the effect of PER1-v allele (as opposed to the
148 expression difference; Fig. 1B) we made constructs with and without the missense SNP to encode
149 PER1 and PER1-v, both fused at C-terminal to RFP reporter and driven by the endogenous promoter.
150 We transiently transformed wheat endosperm tissue with plasmids containing these constructs. For
151 both constructs, the RFP signal was mostly in the cytoplasm, possibly as a result of high expression
152 overloading the capacity of the cell to normally process the protein which is predicted to require
153 signal peptide cleavage and N-glycosylation. However in plasmolysed cells expressing PER1_RFP we
154 also observed RFP signal associated with the cell wall whereas in plasmolysed cells expressing PER1-
155 v_RFP we never observed cell wall RFP signal (examples shown in Figure 2, the complete set of
156 images with clearly plasmolysed cells are in Supplemental Figures S1-S4). In total, we observed cell
157 wall RFP signal in 41 out of 43 plasmolysed cells with PER1_RFP whereas there were none in 40
158 plasmolysed cells expressing PER1-v_RFP). Since we would expect most or all AX ferulate
159 dimerization to occur in the cell wall (Burr and Fry, 2009), the failure of PER1-v to localise to the cell
160 wall means it is likely defective in function.

161

162 *Occurrence of missense SNP in wheat varieties*

163 The effect of the single missense SNP on PER1 localisation strongly suggests that this is the cause of
164 the 6B QTL for SDF. If this is the case, this SNP which is chr6B 26076727 C->T on IWGSC 1.0 reference
165 (Axiom marker AX-94816599) represents a perfect marker for the trait. This SNP was also one of 5
166 closely neighbouring SNPs on 6B found by GWAS as associated with equal significance to high

167 relative viscosity of aqueous extracts in the WHEALBI panel (Lovegrove et al., 2020). The increasing
168 allele found in Valoris is not rare, being present in 150 out of 426 panel members (www.whealbi.eu).
169 We further investigated allele frequency in another panel (an elite high fibre panel, comprised of
170 advanced commercial breeding lines of UK, French and German winter wheats) using a KASP marker
171 designed to the SNP. In this panel, we found the Valoris allele in 57 lines, 287 giving reference allele
172 and 27 scored as het.

173

174 Discussion

175 Soluble dietary fibre may confer health benefits via several mechanisms including fermentation to
176 release short-chain fatty acids in the colon, and by increasing viscosity which may reduce the rate of
177 glucose release from starch in the duodenum (Gill et al., 2021). In the case of wheat SDF, nearly all of
178 the viscosity of aqueous extracts of white flour is due to WE-AX (Freeman et al., 2016). AX is a major
179 component of all grass cell walls, but is normally not extractable in water, so wheat endosperm WE-
180 AX is unusual in this respect. Extractability of AX in water is determined by several structural factors
181 of which cross-linking via ferulate dimerization may be the most important (Saulnier et al., 2007).
182 The AX in the starchy endosperm, and particularly the WE-AX fraction, has less ferulate [AX ~0.5%;
183 WE-AX ~0.2% (Freeman et al., 2017)] , and therefore potential for cross-linking, than AX from other
184 tissues in wheat and in grasses generally, which varies greatly but can be up to 20% (Hatfield et al.,
185 2017).

186 It has been shown that oxidative coupling of ferulate that results in dimers and higher oligomers
187 bound to AX in grass cell walls occurs in the apoplast and is mediated by peroxidases (Burr and Fry,
188 2009) but these have not been identified. Here we provide strong evidence that the dimerization of
189 ferulate on wheat endosperm AX is mediated by the PER1 protein, since both a natural allele and an
190 induced KO mutant result in lower dimerization (Tables 1 and 2). The natural allele has a missense
191 SNP that prevents localisation of PER1 to the cell wall (Fig. 2), the likely site for AX dimerization. We
192 therefore attribute the 6B QTL effect on SDF to this SNP resulting in a defective PER1 that lowers the
193 capacity for AX ferulate dimerization, resulting in a higher proportion of AX being extractable in
194 water. This conclusion is clear despite the changes in expression of PER1, PER1&2 and PER2
195 associated with the Valoris 6B genotype (Fig. 1) which could be due to nearby *cis* factors rather the
196 missense SNP itself.

197 PER1 is a member of a large gene family of class III haem peroxidases that are specific to green
198 plants. These peroxidases apparently all catalyse the same reaction *in vitro*, generating radical
199 oxygen species from H₂O₂ and it has been hypothesised that *in vivo* specificity is achieved by
200 localisation close to the intended substrate (Francoz et al., 2015). This is supported by observation of
201 precise localisation of peroxidases associated with lignification in *Arabidopsis*, (Hoffmann et al.,
202 2020) and has been demonstrated for a peroxidase that binds to a particular cell wall microdomain
203 on the polysaccharide homogalacturonan in order to function in mucilage extrusion (Francoz et al.,
204 2019) and for a lignin peroxidase that localises to the Casparyan strip via binding to another protein
205 (Lee et al., 2013). It is therefore probable that a large family of peroxidase genes is required for the
206 multiplicity of peroxidase binding sites that confer specificity of function. This is consistent with our

207 result showing that PER1 is present in the cell wall whilst PER1-v is not and this difference is
208 associated with decreased dimerization of AX ferulate. The single amino acid difference between the
209 natural and mutant peroxidases is at a serine residue in PER1 which is predicted by AlphaFold to be
210 involved in H-bonding in an α -helix on the exterior of the protein (Figure S5). This is changed in
211 PER1-v to the aromatic amino acid phenylalanine which would prevent H-bonding and disrupt the α -
212 helix. PER1 and PER2 are in a grass-specific subclade of Group VI of the class III peroxidase gene
213 family as defined in (Passardi et al., 2004) (Figure S6). This is consistent with a specific role in cross-
214 linking of AX ferulate, which is confined to grasses and other commelinid monocots (Chandrakanth
215 et al., 2023). PER1 and PER2 are only expressed in grain out of the major wheat tissues (Figure S5)
216 suggesting they may have specific properties related to the unusual structure of grain AX.
217 Our identification of PER1 as the cause of the high SDF trait from the 6B QTL will allow the specific
218 tailoring of the solubility of wheat grain AX to increase benefits for human health. It also represents
219 an important step forward in our broader understanding of grass cell walls.

220

221 Methods

222 Plant Growth

223 We grew the Yumai34 x Valoris population in the field in 2018 and in the glasshouse in 2022 in
224 randomised designs at Rothamsted Research, UK. In both experiments, we selected DHLs as having
225 the same genotype for all Axiom genotyping markers on 35K SNP platform within the 1A, 1B, 6B
226 QTLs and assigned these to 4 pools of contrasting parental genotype at 1B and 6B but all with
227 Yumai34 genotype at 1A. Three biological reps of these pools from different blocks were used from
228 2018 field experiment for transcriptome analysis and from 2022 glasshouse experiment for ferulate
229 determination.

230 KASP marker for Valoris missense SNP

231 We designed KASP marker to Valoris chr6B 26076727 SNP and used this to confirm SNP genotype of
232 the selected lines in Yumai34 x Valoris population and in elite high fibre panel. Primers and PCR
233 conditions are given in Table S1.

234 RNA-seq analysis

235 Total RNA was isolated from developing endosperm of 20 selected DHLs at 17 days post anthesis as
236 previously described (Pellny et al., 2012; Pellny et al., 2020) to give 3 biological replicates of each
237 pool. Library preparation and mRNA sequencing was done by Novogene (HK, China). We mapped
238 reads to IWGSC refseq 1.1 genome using HISAT2 (Kim et al., 2015), visualised alignments using
239 Integrative Genomics Viewer (Robinson et al., 2011) and estimated transcript abundance and
240 differentially expressed genes using DESeq2 (Love et al., 2014). Transcript abundances for
241 TraesCS6B02G042500.1 and TraesCS6B02G042600.1 gene models in reference were reallocated to
242 PER1, PER1&2 and PER2 based on manually determined ratios of counts of read pairs that could be
243 clearly assigned to these.

244

245 Ferulate Monomer and Dimer Analysis

246 We analysed the ferulate monomer and dimer content of endosperm fraction from mature grain by
247 HPLC analysis as previously described (Freeman et al., 2017) using pure ferulate dimer standards
248 kindly supplied by Professor John Ralph (Lu et al., 2012).

249

250 PER1 Knock-Out Mutant

251 From the database of mutations in the exome sequenced collection of mutagenised wheat cv
252 Cadenza available at Ensembl Plants, we identified line Cadenza1644 carrying a G->A mutation at
253 26,076,941 on chr6B causing a premature stop codon Trp94STOP in exon 2 of PER1. We backcrossed
254 this line twice to Cadenza, allowed to self-fertilise over two further generations and identified BC2F2
255 homozygotes for both mutation and wild-type allele using crossing and genotyping procedures
256 previously described (Pellny et al., 2020); subgenome specific primers for genotyping are given in
257 Table S1. We grew these lines in a randomised design in the glasshouse with 7 replicate pots per
258 line.

259

260 Transient expression of PER1_RFP and PER1-v_RFP in immature wheat endosperm
261 We designed a version of PER1 CDS (TraesCS6B02G042500.1) that contained additional cloning sites
262 immediately before the natural Ncol site present over the ATG codon and an Hpal site at the C'
263 terminal end of the gene that involved the addition of an extra serine residue to the protein. Nine
264 synonymous changes were also engineered into the coding sequence to facilitate cloning while
265 retaining the natural PER1 protein sequence. We designed PER1-v from this with a single bp change
266 corresponding to the Valoris allele missense SNP giving rise to the Ser51Phe peptide sequence
267 change. From alignment analysis of the 5' upstream sequences of PER1 and the Chinese Spring, A,
268 and D homeologues and other wheat relatives, we selected 2135 bp of the PER1 sequence as likely
269 to contain a complete promoter including the 5' transcribed untranslated sequences. Bases
270 immediately upstream of the ATG codon were modified to contain the same restriction sites as
271 engineered into the PER1 and PER1-v genes sequences for cloning purposes and to remove the out
272 of frame ATG codon present 5bp upstream of the PER1 start codon. The designed PER1, PER1-v and
273 PER1 promoter sequences were synthesised by Genscript (Oxford, UK) and transferred using
274 standard cloning techniques to pRRes208, a biolistic vector backbone. Two plasmids were generated
275 with the PER1 promoter driving either PER1 [pRRes208.618] or PER1-v [pRRes208.617]. In each
276 construct the PER1 sequences were fused in frame upstream of a six amino acid linker sequence and
277 the fluorescence marker gene Tag-RFP_T. Immature wheat endosperm sections were isolated from
278 7-10 dpa wheat seeds cv Cadenza, as described in (Jones et al., 2008). The tissues were bombarded
279 on the same day as isolation using 0.6µm gold particles (Bio-Rad Laboratories Ltd, UK) coated with
280 the constructs pRRes208.617, pRRes208.618 or pRRes.380, a plasmid containing Tag-RFP under the
281 control of the constitutive rice actin promoter which acted as a positive control. Bombardment was
282 carried out using the PDS-1000/He particle gun with 650psi rupture pressure and 29" Hg vacuum;

283 full details of bombardment parameters can be found in (Sparks and Doherty, 2020). Plates were
284 incubated in the dark at 22°C for 1 day prior to bioimaging.

285 Imaging of wheat endosperm transiently expressing PER1_RFP and PER1-v_RFP
286 Transformed, immature wheat endosperm sections were mounted on glass slides with coverslips for
287 imaging with a Zeiss LSM 780 confocal microscope (Carl Zeiss Ltd. Cambourne, Cambridge, UK). The
288 endosperm tissue was mounted in distilled water for initial imaging and the water replaced under
289 the coverslip with 2M NaCl by capillary action to induce plasmolysis. Cells were monitored for up to
290 10 mins to observe plasmolysis and imaged with the 40x objective using 405nm excitation, 428nm –
291 490nm emission for cell wall auto-fluorescence, and 561nm excitation, 580nm – 700nm emission for
292 Tag-RFP.

293 Figure captions

294 Figure 1. RNAseq analysis of PER transcripts from 17 dpa endosperm of DHLs in Yumai34 x Valoris
295 mapping population. **A.** Read coverage for 6B chromosome region containing TraesCS6B02G042500
296 and TraesCS6B02G042600 genes from 12 samples of DHLs selected to have Yumai34 (Y34) or Valoris
297 alleles (VAL) at 1B and 6B QTLs with 3 reps of each combination. The arrow indicates the missense
298 SNP in Valoris. Analysis of paired reads showed nearly all transcripts were one of the 3 forms
299 depicted PER1, PER1&2 or PER2. These inferred transcripts are shown as blocks and lines where
300 blocks represent coding exons and the missense SNP in Valoris allele is marked in red. **B.** Transcript
301 abundance of the splice variants PER1, PER1&2 or PER2 and their homeologues on sub-genomes A
302 and D. PER1A exons are not expressed. Bar heights and error bars are estimated means and 5% LSD
303 for 6B alleles of each transcript from a 2-way ANOVA of 1B and 6B allele effects. No 1B effects were
304 significant ($P>0.05$) so results shown group DHLs differing in 1B alleles (n=6).

305

306 Figure 2. Example images of sections of plasmolysed wheat endosperm cells transiently expressing
307 PER1_RFP and PER1-v_RFP proteins. Pairs of images show RFP fluorescence signal alone in top panel
308 and combined with autofluorescence (+AF) in lower panel to show cell walls. Plasmolysis caused
309 complete (**A, B**) or partial (**C, D**) separation of cell contents from cell wall allowing identification of
310 RFP signal from cell wall indicated by arrows. Cell wall localisation of RFP signal is present in cells
311 expressing PER1_RFP (**A, C**) but not those expressing PER1-v_RFP (**B, D**).

312

313 Supplementary material

314 Figures S1. Images from endosperm grain sections transiently expressing PER1_RFP and PER1-v_RFP
315 where clear cell plasmolysis was observed. Pairs of images show RFP fluorescence signal alone in top
316 panel and combined with autofluorescence (+AF) in lower panel to show cell walls. Plasmolysis
317 separation of cell contents from cell wall allowing identification of RFP signal from cell wall indicated
318 by arrows. Cell wall localisation of RFP signal is present in cells expressing PER1_RFP (**A, B, E, F, I, J**)
319 but not those expressing PER1-v_RFP (**C, D, G, H, K, L**).

320 Figures S2. Further images from endosperm grain sections transiently expressing PER1_RFP and
321 PER1-v_RFP where clear cell plasmolysis was observed. Details as for Fig. S1, except for image pairs
322 (**D, G, H, K, L**) where image in upper panel is pre-plasmolysis and after plasmolysis in lower panel.

323 Figures S3. Further images from endosperm grain sections transiently expressing PER1_RFP and
324 PER1-v_RFP where clear cell plasmolysis was observed. Details as for Fig. S1, except for image pairs
325 (**C-L**) where image in upper panel is pre-plasmolysis and after plasmolysis in lower panel. Image pair
326 **F** is the single exception where we could not see clear cell wall localisation of RFP signal in cells
327 expressing PER1_RFP.

328 Figures S4. Further images from endosperm grain sections transiently expressing PER1_RFP and
329 PER1-v_RFP where clear cell plasmolysis was observed. Pairs of images show pre-plasmolysis image
330 in upper panel and after plasmolysis in lower panel. Plasmolysis causes separation of cell contents
331 from cell wall allowing identification of RFP signal from cell wall indicated by arrows. Cell wall
332 localisation of RFP signal is present in cells expressing PER1_RFP (**A**) but not those expressing PER1-
333 v_RFP (**B, C, D**).

334 Figure S5. AlphaFold predicted structure of PER1 (TraesCS6B02G04600.1) protein with Ser51 residue
335 that is changed in PER1-v highlighted. Predicted N-glycosylation Asn, haem-binding and signal
336 peptide cleavage sites are indicated.

337 Figure S6. Phylogeny of subclade within class III peroxidase family containing PER1 and PER2 genes.
338 For phylogenetic analyses of protein sequences, we selected the rice ortholog of PER genes
339 (OsPRX91) and its three closest paralogs (OsPrx90, OsPrx92, OsPrx93) which are all neighbouring
340 genes on rice chromosome 6. We then selected all orthologs of these from wheat, *Arabidopsis*,
341 *Ananas comosus*, *Glycine max*, *Hordeum vulgare*, *Populus trichocarpa* and *Sorghum bicolor* as
342 defined Ensembl Plants release 56 (Yates et al., 2021) and aligned with MUSCLE (Edgar, 2004) and
343 generated phylogenetic tree with Phymol (Guindon et al., 2010) as previously described (Pellny et al.,

344 2012). Wheat expression data was taken from wheat-expression.com (Borrill et al., 2016) averaged
345 across 34 studies encompassing many genotypes and environments.

346

347

348 References

349 **Borrill P, Ramirez-Gonzalez R, Uaupy C** (2016) expVIP: a Customizable RNA-seq Data Analysis and
350 Visualization Platform. **170**: 2172-2186

351 **Burr SJ, Fry SC** (2009) Feruloylated Arabinoxylans Are Oxidatively Cross-Linked by Extracellular Maize
352 Peroxidase but Not by Horseradish Peroxidase. *Molecular Plant* **2**: 883-892

353 **Chandrakanth NN, Zhang C, Freeman J, de Souza WR, Bartley LE, Mitchell RAC** (2023) Modification
354 of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. *Frontiers in Plant
355 Science* **13**: doi.org/10.3389/fpls.2022.1088879

356 **Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, Perretant MR, Joseph JL, Rakszegi
357 M, Guillou F, Sado PE, et al.** (2009) Genetics of dietary fibre in bread wheat. *Euphytica* **170**:
358 155-168

359 **Edgar RC** (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
360 *Nucleic Acids Research* **32**: 1792-1797

361 **Francoz E, Ranocha P, Le Ru A, Martinez Y, Fourquaux I, Jauneau A, Dunand C, Burlat V** (2019)
362 Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel
363 Plant Cell Wall Domains. *Developmental Cell* **48**: 261-+

364 **Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C** (2015) Roles of cell wall
365 peroxidases in plant development. *Phytochemistry* **112**: 15-21

366 **Freeman J, Lovegrove A, Wilkinson MD, Saulnier L, Shewry PR, Mitchell RAC** (2016) Effect of
367 suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of
368 arabinoxylan and extract viscosity. *Plant Biotechnology Journal* **14**: 109-116

369 **Freeman J, Ward JL, Kosik O, Lovegrove A, Wilkinson MD, Shewry PR, Mitchell RAC** (2017)
370 Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines
371 with suppression of genes responsible for backbone synthesis and decoration. *Plant
372 Biotechnol J* **15**: 1429-1438

373 **Gebruers K, Dornez E, Boros D, Fras A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin CM**
374 (2008) Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the
375 HEALTHGRAIN Diversity Screen. *Journal of Agricultural and Food Chemistry* **56**: 9740-9749

376 **Gill SK, Rossi M, Bajka B, Whelan K** (2021) Dietary fibre in gastrointestinal health and disease. *Nat
377 Rev Gastroenterol Hepatol* **18**: 101-116

378 **Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O** (2010) New algorithms and
379 methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML
380 3.0. *Systematic Biology* **59**: 307-321

381 **Hatfield RD, Rancour DM, Marita JM** (2017) Grass Cell Walls: A Story of Cross-Linking. *Frontiers in
382 Plant Science* **7**: doi.org/10.3389/fpls.2016.02056

383 **Hoffmann N, Benske A, Betz H, Schuetz M, Samuels AL** (2020) Laccases and Peroxidases Co-Localize
384 in Lignified Secondary Cell Walls throughout Stem Development. *Plant Physiology* **184**: 806-
385 822

386 **Ibba MI, Juliana P, Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Sehgal D, Crespo-
387 Herrera L, Singh R, Guzmán C** (2021) Genome-wide association analysis for arabinoxylan
388 content in common wheat (*T. Aestivum* L.) flour. *Journal of Cereal Science* **98**: 103166

389 **Jones HD, Doherty A, Sparks CA** (2008) Transient Transformation of Plants. *In* DJ Somers, P
390 Langridge, JP Gustafson, eds, *Plant Genomics, Methods in Molecular Biology*. Humana Press,
391 Totowa, NJ, USA, pp 131-152

392 **Kim D, Langmead B, Salzberg SL** (2015) HISAT: a fast spliced aligner with low memory requirements.
393 *Nature Methods* **12**: 357

394 **Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-
395 Gonzalez RH, Wang XD, Borrill P, et al.** (2017) Uncovering hidden variation in polyploid

396 wheat. *Proceedings of the National Academy of Sciences of the United States of America*
397 **114:** E913-E921

398 **Lee Y, Rubio MC, Alassimone J, Geldner N** (2013) A mechanism for localized lignin deposition in the
399 endodermis. *Cell* **153:** 402-412

400 **Love MI, Huber W, Anders S** (2014) Moderated estimation of fold change and dispersion for RNA-
401 seq data with DESeq2. *Genome Biology* **15:** 550

402 **Lovegrove A, Wingen LU, Plummer A, Wood A, Passmore D, Kosik O, Freeman J, Mitchell RAC,**
403 **Hassell K, Ulker M, et al.** (2020) Identification of a major QTL and associated molecular
404 marker for high arabinoxylan fibre in white wheat flour. *Plos One* **15:** e0227826

405 **Lu FC, Wei LP, Azarpira A, Ralph J** (2012) Rapid Syntheses of Dehydrodiferulates via Biomimetic
406 Radical Coupling Reactions of Ethyl Ferulate. *Journal of Agricultural and Food Chemistry* **60:**
407 8272-8277

408 **Marcotuli I, Houston K, Waugh R, Fincher GB, Burton RA, Blanco A, Gadaleta A** (2015) Genome
409 wide association mapping for arabinoxylan content in a collection of tetraploid wheats. *PLoS*
410 **One** **10:** e0132787

411 **Nguyen VL, Huynh BL, Wallwork H, Stangoulis J** (2011) Identification of quantitative trait loci for
412 grain arabinoxylan concentration in bread wheat. *Crop Science* **51:** 1143-1150

413 **Passardi F, Longet D, Penel C, Dunand C** (2004) The class III peroxidase multigenic family in rice and
414 its evolution in land plants. *Phytochemistry* **65:** 1879-1893

415 **Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox JP, Shewry PR, Mitchell RAC** (2012) Cell
416 walls of developing wheat starchy endosperm: comparison of composition and RNA-seq
417 transcriptome. *Plant Physiology* **158:** 612-627

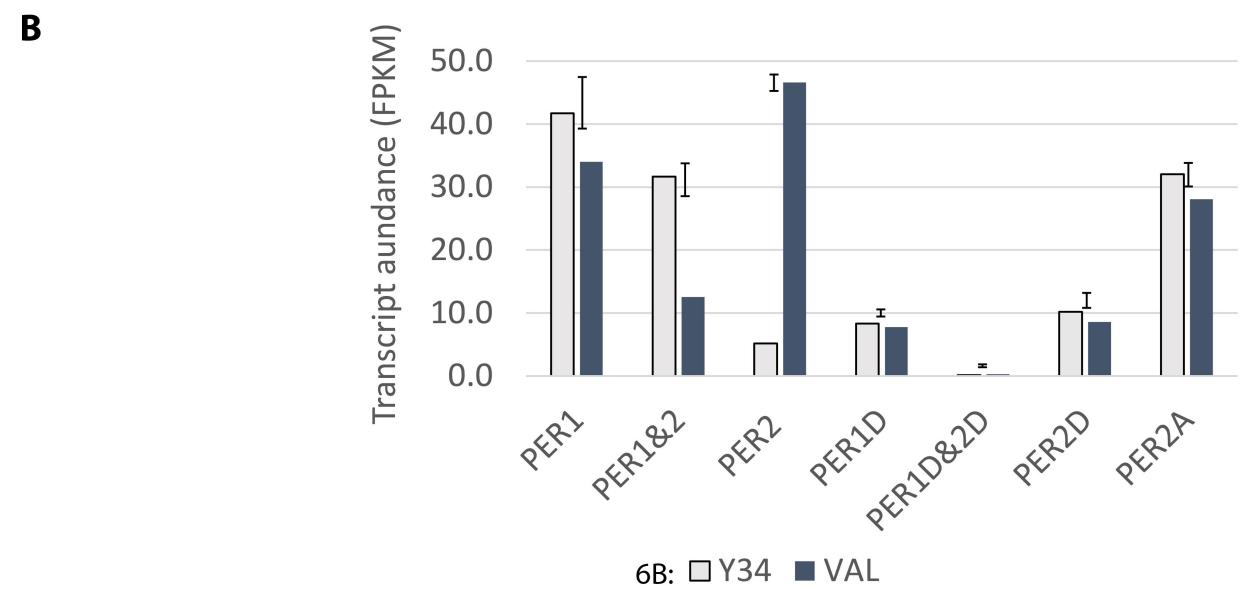
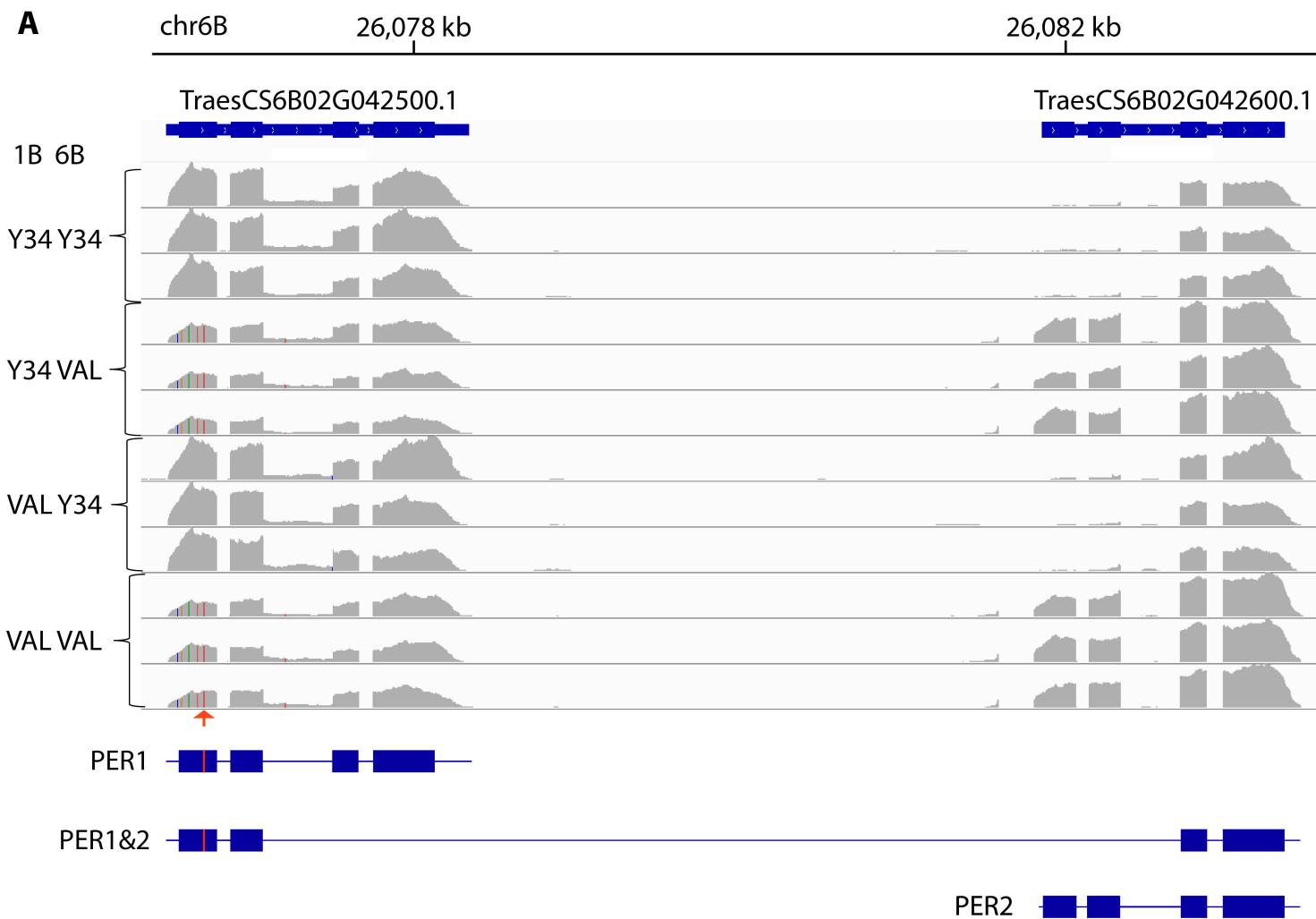
418 **Pellny TK, Patil A, Wood AJ, Freeman J, Halsey K, Plummer A, Kosik O, Temple H, Collins JD, Dupree**
419 **P, et al.** (2020) Loss of *Ta1RX9b* gene function in wheat decreases chain length and amount
420 of arabinoxylan in grain but increases cross-linking. *Plant Biotechnology Journal* **18:** 2316-
421 2327

422 **Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K,**
423 **Delcour JA, et al.** (2011) Combined meta-genomics analyses unravel candidate genes for the
424 grain dietary fiber content in bread wheat (*Triticum aestivum* L.). *Functional & Integrative*
425 *Genomics* **11:** 71-83

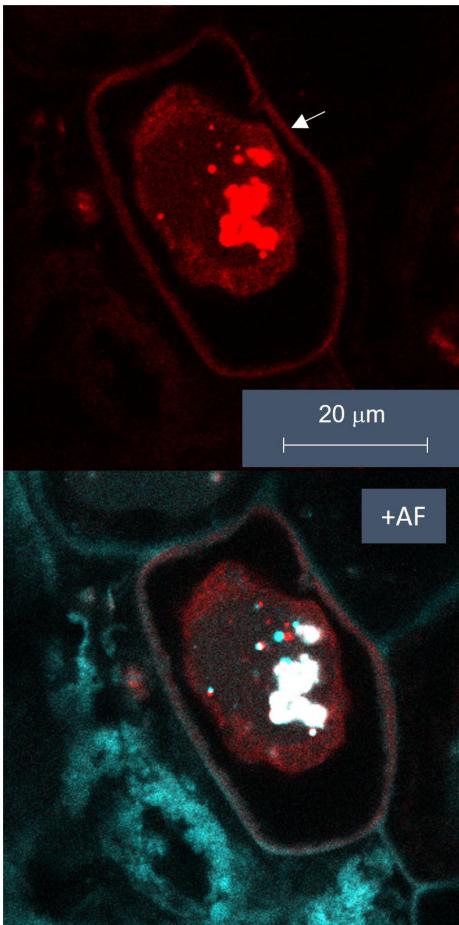
426 **Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP** (2011)
427 Integrative genomics viewer. *Nature Biotechnology* **29:** 24-26

428 **Sauvionier L, Sado PE, Branlard G, Charmet G, Guillon F** (2007) Wheat arabinoxylans: Exploiting
429 variation in amount and composition to develop enhanced varieties. *Journal of Cereal*
430 *Science* **46:** 261-281

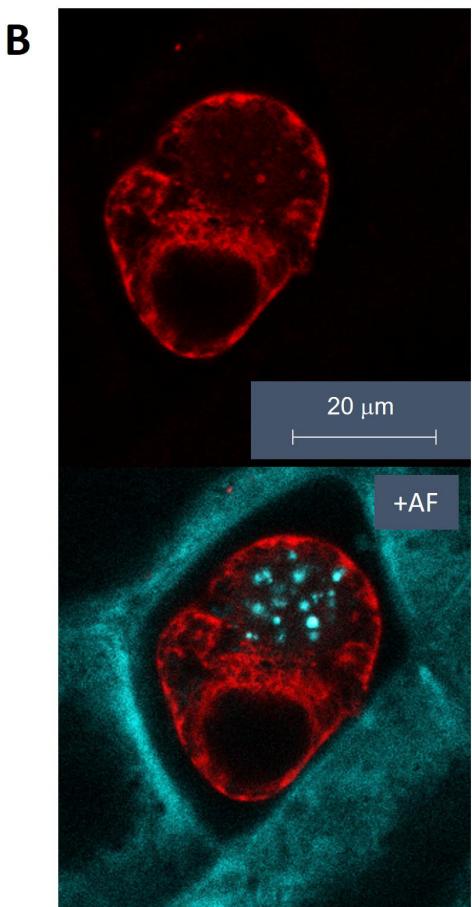
431 **Sparks CA, Doherty A** (2020) Genetic transformation of common wheat (*Triticum aestivum* L.) using
432 biolistics. *In* S Rustgi, H Luo, eds, *Biolistic DNA Delivery in Plants*. , Vol 2124. Springer Nature,
433 US

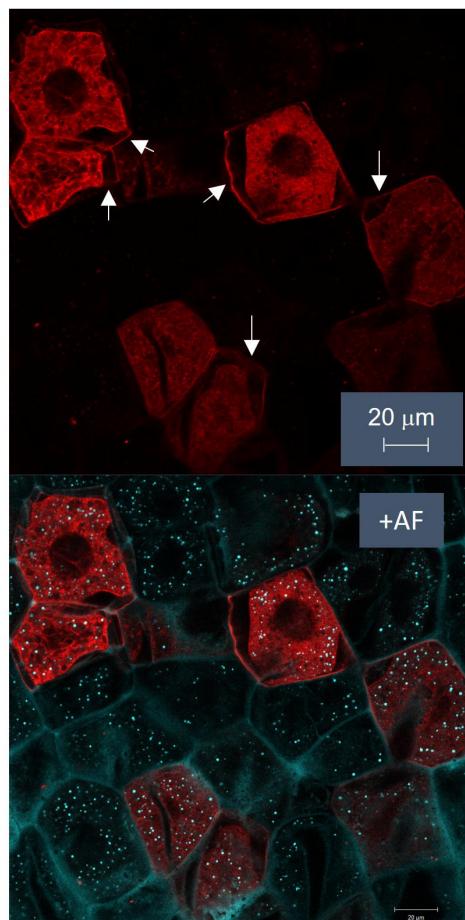


434 **Yang L, Huang Y, Chang P, Yan J, Zhang Y, Xia X, Tian Y, He Z, Zhang Y** (2014) QTL mapping for
435 arabinoxylans content and its relationship with processing quality in common wheat. *Acta*
436 *Agronomica Sinica* **40:** 1695-1701

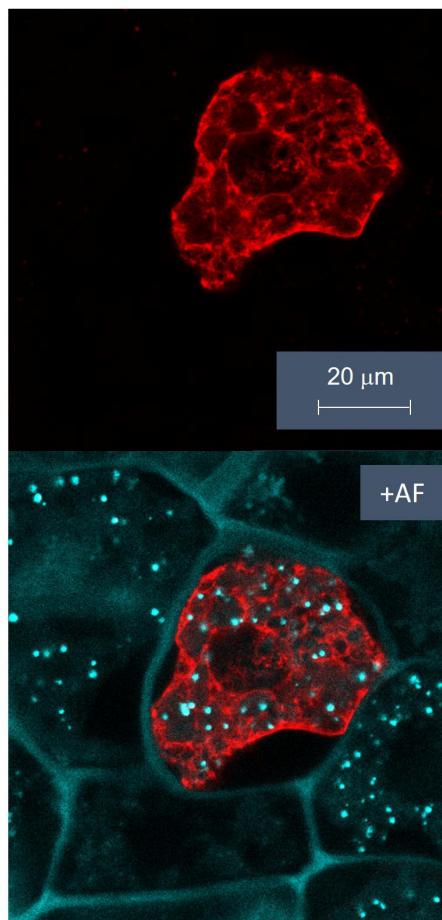
437 **Yang L, Zhao D, Yan J, Zhang Y, Xia X, Tian Y, He Z, Zhang Y** (2016) QTL mapping of grain
438 arabinoxylan contents in common wheat using a recombinant inbred line population.
439 *Euphytica* **208:** 205-214


440 **Yates Andrew D, Allen J, Amode RM, Azov AG, Barba M, Becerra A, Bhai J, Campbell Lahcen I,**
441 **Carbajo Martinez M, Chakiachvili M, et al.** (2021) Ensembl Genomes 2022: an expanding
442 genome resource for non-vertebrates. *Nucleic Acids Research* **50:** D996-D1003

443 **Zhan S, Ren Y, Liu J, Fuerst EP, Xia X, Lv W, Morris CF, Geng H** (2019) Genome-wide association
444 study of feruloyl arabinoxylan content in common wheat grain. *Journal of Cereal Science* **89:**
445 102787


446


PER1_RFP


PER1-v_RFP

C

D

