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 2 

Abstract 18 

The human face has been culturally modified for at least 150,000 years using practices like 19 

painting, tattooing and scarification to convey symbolic meanings and individual identity. The 20 

present study used functional magnetic resonance imaging to explore the brain networks 21 

involved in attributing social status from face decorations. Results showed the fusiform gyrus, 22 

orbitofrontal cortex, and salience network were involved in social encoding, categorization, 23 

and evaluation. The hippocampus and parahippocampus were activated due to the memory 24 

and associative skills required for the task, while the inferior frontal gyrus likely interpreted 25 

face ornaments as symbols. Resting-state functional connectivity analysis clarified the 26 

interaction between these regions. The study highlights the importance of these neural 27 

interactions in the symbolic interpretation of social markers on the human face, which were 28 

likely active in early Homo species and intensified with Homo sapiens populations as more 29 

complex technologies were developed to culturalize the human face. 30 

 31 
  32 
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 33 

1. Introduction 34 

The use of technologies to change the appearance of our bodies to communicate information 35 

about our identity and social role dates back hundreds of thousands of years. Body painting, 36 

tattooing, scarification, wearing of ornaments, mutilations, hairstyles, and clothing are 37 

amongst the best-known practices for performing these functions in traditional societies 1–5. 38 

Personal ornaments, in particular, play a crucial role in communicating ethnic affiliation, 39 

reinforcing the sense of belonging to the group and its cohesion, establishing boundaries with 40 

neighboring groups, and conveying information on linguistic, ideological, and religious 41 

membership 6–14. Ornaments can also provide information about social status, gender, marital 42 

situation, and the number of children the wearer has had. Special ornaments and body paints 43 

may be put on at rites of passage occurring at the individual birth, during initiation 44 

ceremonies, marriage, healing, or death 15–19.  45 

 The earliest use of red ochre goes back to 500 ka in Africa 20–23, 380 ka in Europe 46 
22,24,25, and 73 ka in Asia 22,26,27. Dapschauskas and colleagues (2022) identified three phases 47 

of ochre use in the African Middle Stone Age: an initial phase from 500 ka to 330 ka, an 48 

"emergent" phase from 330 ka to 160 ka, and a "habitual" phase from 160 ka to 40 ka. The 49 

latter phase, when a third of archaeological sites contain ochre, is interpreted by these authors 50 

as the manifestation of intensifying ritual activity in early populations of Homo sapiens. This 51 

view is consistent with the results of studies indicating that in this last and the previous phase, 52 

certain types of mineral pigments were transported over long distances 20,28,29, that certain 53 

shades of red were particularly sought after 30–32, that ochre was modified by heating to 54 

change its color 33,34 but see 35, and that in some cases very small quantities of pigments were 55 

produced 36, a behavior more consistent with a symbolic than a utilitarian function. 56 

The wearing of personal ornaments, many of which are deliberately covered with 57 

ochre, is attested since at least 142 ka in North Africa, 80 ka in Southern Africa, and 120 ka in 58 

the Near East 37–45. Because the understanding by others of the meaning attached to ornaments 59 

and body paints presupposes the existence of shared codes, archaeological objects which have 60 

fulfilled these functions are often considered reliable evidence for the emergence of language 61 

and symbolic material cultures in our genus 40,41,46–49. In this regard, wearing body 62 

adornments can be considered an archaeological indicator of modern social cognition. 63 

Although body symbols played a key role in all human societies and appeared very 64 

early in human history, the cerebral regions mobilized by their perception and interpretation 65 
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remain unknown. Numerous studies have focused on the brain substrates of the emotional 66 

aspects of social cognition and perspective-taking (Theory of Mind). They have emphasized 67 

the role of the medial prefrontal cortex, the temporoparietal junction, and the temporal poles 68 
50,51. However, one study showed that social status recognition was minimally disrupted 69 

following ventromedial lesions, suggesting that the network involved in this function would 70 

be distinct from that dealing with the emotional aspects of social cognition 52. Neuroimaging 71 

studies have confirmed that the perception of social hierarchies relies on the intraparietal 72 

sulcus, the dorsolateral and orbital frontal cortex, and the lateral occipital and 73 

occipitotemporal cortex 53–56. However, the identification of social markers does not 74 

necessarily imply a ranking. 75 

Body ornaments and facial paintings may convey information on social roles disconnected 76 

from a social hierarchy. Although body paintings and the wearing of beads to express social 77 

roles are attested in the earliest Homo sapiens and probably in Neanderthals 57–59, very little is 78 

known about the brain networks involved in processing such information, the possible 79 

processes that led to a complexification of these behaviors, as well as their timeline. In the 80 

present study, participants were asked to assign social roles or statuses to faces adorned with 81 

paintings, beads, or both. At the same time, their brain activity was monitored using 82 

functional magnetic resonance imaging (fMRI). Participants were given no guidance on the 83 

meaning of the face decorations and had to create their arbitrary social code. The attribution 84 

of a social status mobilizes implicit and explicit processes. Implicit processes are rapid, 85 

require little cognitive effort, and can occur without awareness. Explicit processes are 86 

cognitively demanding, slow, and deliberative 60. To isolate explicit processes, we included, 87 

using the same stimuli, a perceptual task (1-back) that does not explicitly require a social role 88 

attribution. Brain activity during this task was compared to that performed during explicit 89 

social status attributions. In addition, at rest, the functional connectivity of the brain regions 90 

involved was analyzed to provide information on the interaction of the brain areas implicated 91 

in the social status attribution task. Our results identify, for the first time, the brain networks 92 

engaged in attributing social status from different arrangements of paintings and ornaments on 93 

the human face, the way they work in synergy, and provide sound bases on which build an 94 

evolutionary scenario for the gradual integration of these brain areas during the evolution of 95 

our genus. 96 

 97 
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2. Materials and methods 98 

2.1. Ethics statements 99 

The 'Nord-Ouest III' local Ethics Committee approved the study on 10/14/2021 (N° IDRCB: 100 

2021-A01817-34). All the participants signed informed consent before the MRI acquisition. 101 

 102 

2.2. Participants 103 

Thirty-five healthy adults (age range 18–29 years, mean age 22 ± 2 years (SD), 18 women, 104 

four left-handed) with no neurological history were included. One participant was excluded 105 

from the analysis because of a brain abnormality discovered during MRI acquisition. 106 

 107 

2.3. Experimental design 108 

The functional acquisition was organized in a single session consisting of six runs during 109 

which participants had to perform a selection task (first three runs), then a 1-back task (last 110 

three runs). After receiving instructions for these tasks, participants completed a short training 111 

run outside the MRI. 112 

 113 

2.3.1. Stimuli 114 

The set of stimuli included pictures of faces (up to below the shoulders) of 34 unknown 115 

people in the same range of age (17 women, 17 men, around 30 years old) wearing ornaments 116 

and adopting a neutral expression. Each face was ornamented with either spherical wooden 117 

beads, red paintings, or a combination of both (Figure 1). Ornaments included earrings with 118 

one or three beads, necklaces with one or two chains of beads, a diadem consisting of a chain 119 

of beads, and a single large spherical bead in the middle of the forehead. Red paintings 120 

included one or three vertical lines on the chin; a dot or a horizontal line on the forehead; 121 

oblique lines on the cheeks; and a large horizontal band including the eyes. Associations of 122 

paintings and beads were designed to make both types of ornamentation gradually more 123 

invasive on the face. In all, twelve types of facial ornamentation have been designed and 124 

implemented. 125 
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 126 
 127 

Figure 1. Face ornamentations used in the tasks. Top row: paint only. The middle row: beadworks only. Bottom 128 

row: a combination of paint and beadworks. 129 

2.3.2. Selection task (event-related paradigm) 130 

These three runs followed a slow event-related design, i.e., the change in the BOLD signal 131 

was collected for each stimulus presentation, and the time between each presentation allowed 132 

the signal to return to its baseline level. The order of presentation was randomized. The 133 

stimuli corresponded to a triplet of photos of three different persons of the same gender (male 134 

or female), one wearing ornaments, one with paintings, and one with both (Figure 2). Within 135 

a triplet, the richness of the ornaments was comparable between the pictures to avoid biases in 136 

the choice. There were three levels of richness between the triplets (Figure 2). 137 

 138 
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 139 
Figure 2. Drawn version of some triplets of stimuli used in the selection task. Each triplet was composed of 140 

individuals of the same sex (male or female). The three ranks correspond to three levels of richness. Note that in 141 

the study, photographs of real people with adorned face were presented but could not be displayed here because 142 

of their identifying nature. 143 

 144 

The selection task was implemented as follows (Figure 3): a question was displayed 145 

during 0.75 s. The question could concern either the displayed persons’ social role (Social 146 

status condition) or the type of ornamentation they displayed (Ornament check condition). 147 

Then, a new triplet of pictures was shown for 4 s. The participant had to choose, by pressing 148 

the corresponding button of a response box as soon as they made their decision, the person 149 

who best fitted the proposed social status, e.g., "Shaman" (Social status condition) or the 150 

person who corresponded to the ornament type proposition, e.g., "Painted cheeks" (Ornament 151 

check condition). Each question was asked twice for each gender. The list of questions is 152 

displayed in Table 1. 153 

The Ornament check condition was designed as a control condition, bearing the same 154 

pictures as the social status condition. It required attention to the ornaments without 155 

implementing social cognition processes. Then, a fixation cross was displayed, and a square 156 

appeared after a variable delay (3.5 s ± 1 s). Participants had to click the "1" button on the 157 
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response box when the square appeared. This constituted the baseline, allowing the BOLD 158 

signal to return to its baseline level between events. Each event lasted 12.75 s. 159 

 160 

 161 
Figure 3. Organization of one event of the selection task.  162 

Table 1. Questions in the social status and ornament check conditions. The wording of the questions was 163 

gendered according to the stimulus. 164 

Questions Social status attribution Ornament (control) 
1 Chief? Painted eyes? 
2 Healer? Double necklace? 
3 Warrior? Diadem? 
4 Hunter / Huntress? Painted cheeks? 
5 Shaman? Painted circle? 
6 Musician? No beads? 
7 Storyteller? No necklace? 
8 Married? No earrings? 
9 Mother / Father? No paint? 
10 Scout? No lines? 

 
Over the three runs, participants saw 80 stimuli, 40 in the social status condition and 40 in the 165 

ornament check condition. Each run lasted 5 min and 51 s each and included 27 events 166 

(except run C, which included one less event) for a total duration of 5 min 38 s). Stimuli were 167 

presented in random order within each run. Immediately after the MRI acquisition, the 168 

experimenter asked the participant the criteria on which they based their social role attribution 169 

in the status condition. 170 

 171 

2.3.3. 1-back task (block design) 172 

In the 1-back task, participants viewed a succession of ornamented faces (displayed for 1 s 173 

each, with an interstimulus interval of 983 ms). The participants had to report the repetition of 174 

two faces (Face condition) or two types of ornamentation (Ornament condition, including 175 

three modalities: paintings, beads, or both simultaneously) by pressing the "1" button on the 176 

response box. This repetition criterion was displayed during 750 ms at the beginning of each 177 

block. Fifteen stimuli belonging to the same category of ornamentation were presented within 178 

the same block (i.e., within a block, there were no images belonging to different categories). 179 
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There were three repetitions per block. Each of the three runs lasted 4 min and 15 s and 180 

included six experimental blocks of 30.6 s interspersed with seven fixation blocks of 10.2 s. 181 

Each run had four blocks of ornament condition and two blocks of face condition. The 182 

presentation order of the 1-back runs was randomized. 183 

 184 

2.4. MRI acquisition 185 

Neuroimaging data acquisition was performed using a Siemens Prisma 3 Tesla MRI scanner. 186 

Structural images were acquired using a high-resolution T1-weighted 3D sequence (TR = 187 

2000 ms, TE = 2.03 ms; flip angle = 8°; 192 slices and isotropic voxel volume of 1 mm3). 188 

Functional images were obtained using a whole-brain T2*-weighted echo planar image 189 

acquisition (T2*-EPI Multiband x6, sequence parameters: TR = 850 ms; TE = 35 ms; flip 190 

angle = 56°; 66 axial slices and isotropic voxel size of 2.4 mm3). The first sequence lasted 8 191 

min and recorded participants' brain activity during resting state (i.e., when they let their 192 

thoughts flow freely, without having a task to perform or falling asleep). This acquisition was 193 

used to perform a resting-state functional connectivity analysis. Then, functional images were 194 

acquired when the participants performed tasks based on stimuli perception. This was done 195 

during six runs (three for each task: selection and 1-back). The presentation of the experiment 196 

was programmed in E-prime software 3.0 (Psychology Software Tools, Pittsburgh, PA, USA). 197 

The stimuli were displayed on a 27″ screen. Participants saw the stimuli through the back of 198 

the magnet tunnel via a mirror mounted on the head antenna. 199 

 200 

2.5. Data analysis 201 

2.5.1. Behavioral analysis 202 

For the selection task, we evaluated the effects of condition (Social status or Ornament 203 

check), participant gender, and stimulus gender on reaction time using a linear mixed-effects 204 

model, adjusting for random effects at the participant level. A three-factor interaction term 205 

between condition, participant gender, and stimulus gender (and their lower-order terms) was 206 

defined as fixed-effect predictors and reaction time as the dependent variable. The 207 

significance of fixed effects was assessed through ANOVA components. 208 

 209 

2.5.2. Functional neuroimaging analysis 210 

T1-weighted scans were normalized via a specific template (T1-80TVS) corresponding to the 211 

MNI space using SPM12. The 192 EPI-BOLD scans were realigned in each run using a rigid 212 
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transformation to correct the participant's motion during the fMRI sessions. Then, the EPI-213 

BOLD scans were rigidly registered structurally to the T1-weighted scan. All registration 214 

matrices were combined to warp the EPI-BOLD functional scans to standard space with 215 

trilinear interpolation. Once in standard space, a 5-mm-wavelength Gaussian filter was 216 

applied. 217 

In the first level analysis, a generalized linear model (GLM, statistical parametric 218 

mapping (SPM 12), http://www.fil.ion.ucl.ac.uk/spm/) was performed for each participant to 219 

process the task-related fMRI data, with the effects of interest (tasks) modeled by boxcar 220 

functions corresponding to events or blocks, convolved with the standard hemodynamic SPM 221 

temporal response function. We then calculated the effect of individual contrast maps 222 

corresponding to each experimental condition. Note that eight non-interest regressors were 223 

included in the GLM analysis: time series for white matter, CSF (average time series of 224 

voxels belonging to each tissue class), the six motion parameters, and linear temporal drift. 225 

Group analysis (second-level analysis) of fMRI data was conducted using JMP® 226 

software, version 15. SAS Institute Inc, Cary, NC, 1989-2019. The first step was to select the 227 

brain regions activated in the contrasts of interest, namely [Social status minus Ornament 228 

check] in the selection task and [Ornament minus Face] in the 1-back task. We extracted 229 

signal values from the [Social status minus Ornament check] contrast from each brain region 230 

of each participant (hROI, homotopic region of interest) in the AICHA atlas 61. The MNI 231 

coordinates of the center of mass of each activated hROIs are given in the supplementary 232 

material section. The hROIs included in the analysis fulfilled the following criteria: 233 

significantly activated in the [Social status minus Ornament check] contrast (univariate t-test 234 

p < 0.05 FDR corrected); and significantly activated in the [Social status minus baseline] 235 

contrast (univariate t-test, p < 0.1 uncorrected) to eliminate deactivated hROIs. 32 regions 236 

whose BOLD signal occupancy was less than 80% (susceptibility artifacts) were excluded 237 

from the analysis. The hROIs excluded are listed in the supplementary material. 238 

This procedure led to 95 hROIs being more activated in the social status condition than 239 

in the ornament check condition. The same method was applied to the [Ornament minus Face] 240 

contrast and [Ornament minus baseline] contrast leading to 81 activated hROIS for the 1-back 241 

task. In addition, we applied a univariate t-test (FDR corrected, p < 0.05) to compare the 242 

BOLD values in the 95 hROIs activated in the [Social status minus Ornament check] contrast 243 

to those 81 hROIs elicited by the [Ornament minus Face] contrast of the 1-back task. This 244 

allowed for refining the specificity of the regions involved in the social status attribution and 245 
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its explicit components. Thirty-seven hROIs were more activated in the [Social status minus 246 

Ornament check] contrast than in the [Ornament minus Face] contrast. 247 

 248 

2.5.3. Resting-state analysis 249 

The task-based functional analysis was complemented with a resting-state functional 250 

connectivity analysis using the CONN v 20.b toolbox software 62, which runs under 251 

MATLAB 2021a. 252 

Functional imaging data were pre-processed using the CONN default pre-processing 253 

pipeline for volume-based analyses. The steps for functional data comprise realignment and 254 

unwarping for subject motion estimation and correction (12 parameters). Next, centering to 255 

(0,0,0) coordinates and ART-based outlier detection identification was applied. Segmentation 256 

and normalization to MNI space were applied next. Structural data were translated to (0,0,0) 257 

center coordinates, segmented (gray/white/CSF), and normalized to MNI space. In the 258 

denoising step, we applied band-pass filtering (0.01–0.1 Hz) after regression of realignment 259 

parameters (12), white and gray matter, and CSF confounds. Then, we applied linear 260 

detrending and despiking after regression. For the ROI to ROI functional connectivity 261 

analyses, we used AICHA atlas 61. We considered the 95 hROIs activated in the [Status minus 262 

Ornament] contrast. For group-level results, we calculated ROI-to-ROI connectivity 263 

correlations, threshold with a unilateral t-test, and FDR-corrected p < 0.05. 264 

 265 

3. Results 266 

3.1. Behavioral results 267 

Participants responded faster in the ornament check condition (mean response time ± SD: 1.3s 268 

± 0.5s) than in the social status condition (mean response time ± SD: 2s ± 0.8s): F(1,32) = 227.8 269 

p < 0.0001. Participant gender and stimulus gender had no significant effects (either main or 270 

interactions). 271 

 272 

3.2. Post-MRI debriefing of the selection task 273 

Twenty-two participants reported that they considered ornamentation a more important 274 

criterion than phenotype in assigning a social role/status. A few reported they sometimes paid 275 

attention to facial features, for example, in cases of indecision or for specific roles such as 276 

father/mother. Eleven participants reported paying more attention to facial characteristics than 277 

to ornamentation. Two participants stated that the most important criterion for them (facial 278 
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features or ornamentation) varied according to the questions. All participants reported that 279 

they never answered randomly, except in rare exceptions. Participants generally reported 280 

having an attribution strategy in place that they maintained throughout the experiment. For 281 

example, some participants associated the absence of beads with a mobile role, such as scout 282 

or hunter. For the same role, there was not necessarily a consensus among participants. For 283 

example, some participants attributed warrior status to faces wearing only beads, while others 284 

attributed this status to faces bearing only paintings. 285 

 286 

3.3. Neuroimaging results 287 

3.3.1. Social status minus Ornament check (event-related paradigm) 288 

The [Social status minus Ornament check] contrast revealed a set of 95 cortical and 289 

subcortical regions that were more activated when participants assigned social status to 290 

adorned faces than when they assessed the type of ornamentation ( 291 

Table 2, Figure 4).  292 

In the occipital lobe, these regions included the lateral occipital cortex and the fusiform gyrus 293 

(including the Fusiform Face Area, FFA). We used the Neurosynth platform 63 to synthesize 294 

the activations reported in the literature during face perception and ensure their consistency 295 

with our results. We conducted a meta-analysis including 125 studies that contained the term 296 

"neutral face" in their abstracts, i.e., pictures of faces adopting a neutral expression. It 297 

evidenced the involvement of a right fusiform region (MNI coordinates of the activation peak: 298 

38, -42, -16). This matched the location of the G_Fusiform-4-R in our AICHA atlas (MNI 299 

coordinates of the center of mass: 44, -46, -18). The FFA occupied a large portion of this 300 

functional region of the AICHA atlas. 301 

The activations extended to the parahippocampal gyrus on the medial side of the 302 

temporal lobe. In the parietal lobe, the intraparietal sulcus was activated bilaterally. In the 303 

frontal lobe, activations included the middle and inferior frontal gyri on the lateral side and 304 

the anterior part of the supplementary motor area medially. Activations also concerned 305 

several paralimbic and limbic cortex regions, such as the anterior insula, the anterior 306 

cingulate, the posterior cingulate and adjacent precuneus, the orbitofrontal cortex, the 307 

temporal poles, and the hippocampus. The subcortical structures, the head of the caudate 308 

nucleus, and the thalamus, especially in its mediodorsal part, were also involved. 309 

 310 
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 311 
Figure 4. Activated regions in [Social status minus Ornament check] contrast superimposed on an MRI template. 312 

Numbers indicate the z value of the axial slice in MNI space. 313 

3.3.2. Ornament minus Face (1-back paradigm) 314 

The [Ornament minus Face] contrast revealed a set of 81 cortical and subcortical regions, 315 

which were more activated when participants checked the repetition of ornamentation than 316 

when they looked for the repetition of faces. These regions were mostly located in the lateral 317 

and inferior occipital cortices and the fusiform gyrus, extending to the inferior temporal 318 

gyrus. Participants also activated the intraparietal sulcus, the anterior insula, and some frontal 319 

regions, such as the superior frontal sulcus, inferior frontal sulcus, the supplementary area, 320 

and the middle frontal gyrus.  321 

Among these regions, 37 hROIs were significantly less activated in the [Ornament 322 

minus Face] contrast than in the [Social status minus Ornament check] contrast (Table 2). 323 

 324 

Table 2. Mean, standard deviation, and p-value of the activated regions in the [Social status minus Ornament 325 

check] contrast. 326 

hROI Social status - Ornament check  

(* Specific to Social status – 

Ornament check, i.e., more or not 

activated in Ornament block – faces)  

MNI 

coordinates of 

the center of 

mass 

Mean 

(BOLD) 

Standard 

deviation 

(BOLD) 

p (FDR 

corrected) 

G_Cingulum_Ant-2-L* -7   34   22 0.12 0.16 0.0005 

G_Cingulum_Ant-2-R  7   33   23 0.08 0.16 0.0173 

G_Cingulum_Mid-2-L -4   3     30 0.15 0.16 <.0001 

G_Cingulum_Mid-2-R  4   4     30 0.11 0.18 0.0045 

S_Cingulate-1-L* -7   27   30 0.23 0.20 <.0001 

S_Cingulate-1-R  7   27   31 0.20 0.19 <.0001 

S_Cingulate-2-L -7   16   41 0.22 0.22 <.0001 

S_Cingulate-2-R  8   14   46 0.14 0.20 0.0011 

G_Cingulum_Post-1-L -4  -26  29 0.12 0.22 0.0072 

G_Cingulum_Post-2-L -4  -39  27 0.11 0.23 0.0121 

G_Cingulum_Post-3-L -5  -43  10 0.13 0.24 0.0071 

G_Cingulum_Post-3-R  6  -42  10 0.10 0.22 0.0253 

G_Frontal_Inf_Orb-1-L* -42 31 -17 0,21 0.22 <.0001 

G_Frontal_Inf_Orb-1-R*  44 33 -14 0.13 0.16 0.0001 

G_Frontal_Mid_Orb-2-L* -41 49 -5 0.23 0.30 0.0005 

S_Orbital-1-R  25 41 -15 0.07 0.11 0.0023 

S_Orbital-2-L* -31 34 -13 0.26 0.21 <.0001 

S_Orbital-2-R*  29 34 -13 0.18 0.17 <.0001 
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G_Frontal_Mid-1-R  41 44  13 0.09 0.16 0.0075 

G_Frontal_Mid-5-L -43 20  37 0.21 0.35 0.0038 

G_Frontal_Mid-5-R  42 17  41 0.09 0.17 0.0132 

S_Inf_Frontal-1-L* -44 38  12 0.37 0.31 <.0001 

S_Inf_Frontal-1-R*  46 40  10 0.24 0.21 <.0001 

S_Inf_Frontal-2-L -43 15  29 0.38 0.34 <.0001 

S_Inf_Frontal-2-R*  44 19  28 0.28 0.21 <.0001 

G_Frontal_Inf_Tri-1-L* -49 26  5 0.15 0.22 0.0011 

G_Frontal_Inf_Tri-1-R*  50 29  5 0.07 0.17 0.0434 

S_Precentral-1-R  50 10  24 0.11 0.24 0.0178 

G_Frontal_Sup_Medial-3-L* -5   35  43 0.19 0.23 0.0002 

G_Frontal_Sup_Medial-3-R  6    33  44 0.14 0.19 0.0006 

G_Supp_Motor_Area-1-L* -6   22  46 0.39 0.23 <.0001 

G_Supp_Motor_Area-1-R*  6    21  48 0.37 0.26 <.0001 

G_Supp_Motor_Area-2-L -11  18  61 0.08 0.16 0.0134 

G_Insula-anterior-1-L* -20  5  -19 0.12 0.18 0.0013 

G_Insula-anterior-1-R*  19  7  -19 0.07 0.17 0.0329 

G_Insula-anterior-2-L* -34  17 -13 0.17 0.24 0.0009 

G_Insula-anterior-2-R  35  18 -13 0.10 0.18 0.0054 

G_Insula-anterior-3-L* -34  24  1 0.31 0.22 <.0001 

G_Insula-anterior-3-R  37  24   0 0.20 0.15 <.0001 

G_Insula-anterior-4-L -41  15   3 0.08 0.21 0.0457 

G_Occipital_Inf-1-R  50 -60 -9 0.22 0.19 <.0001 

G_Occipital_Inf-2-L -45 -71 -7 0.13 0.17 0.0003 

G_Occipital_Inf-2-R  47 -65 -7 0.19 0.18 <.0001 

G_Occipital_Lat-2-L -26 -94 -1 0.06 0.15 0.0253 

G_Occipital_Lat-3-L -40 -84 -12 0.10 0.16 0.0041 

G_Occipital_Lat-3-R  43 -81 -10 0.11 0.20 0.0078 

G_Occipital_Lat-4-L -31 -89  8 0.08 0.15 0.0078 

G_Occipital_Lat-4-R  34 -85  9 0.09 0.15 0.0054 

G_Occipital_Lat-5-L -35 -79 -1 0.07 0.15 0.0132 

G_Occipital_Lat-5-R  36 -76   2 0.07 0.14 0.0116 

G_Fusiform-2-L* -35 -26 -23 0.09 0.10 <.0001 

G_Fusiform-4-L -43 -50 -17 0.19 0.18 <,0001 

G_Fusiform-4-R*  44 -46 -18 0.22 0.15 <.0001 

G_Fusiform-5-L -31 -50 -12 0.09 0.12 0.0006 

G_Fusiform-5-R  32 -47 -41 0.09 0.12 0.0006 

G_Fusiform-6-R  29 -62 -9 0.05 0.12 0.0489 

S_Intraoccipital-1-L -24 -72  32 0.09 0.23 0.0455 

S_Intraoccipital-1-R  28 -69  33 0.15 0.21 0.0007 

G_Precuneus-2-R*  5   -56  20 0.27 0.29 <.0001 

G_Precuneus-7-L* -6  -65  35 0.16 0.31 0.0097 

G_Precuneus-7-R*  7  -63  36 0.21 0.29 0.0006 

S_Intraparietal-2-L -34 -58 45 0.22 0.29 0.0005 

S_Intraparietal-2-R  37 -52 48 0.14 0.20 0.0010 

S_Intraparietal-3-L -27 -60 43 0.16 0.27 0.0051 

S_Intraparietal-3-R  27 -61 46 0.13 0.19 0.0012 

G_Temporal_Inf-4-R  54 -58 -11 0.10 0.19 0.0086 

G_Temporal_Pole_Sup-1-L* -35  11 -24 0.09 0.13 0.0019 

G_Temporal_Pole_Sup-1-R*  36  16 -24 0.10 0.16 0.0044 

G_Temporal_Pole_Mid-2-L* -35  9   -33 0.05 0.10 0.0097 

G_Temporal_Pole_Mid-2-R*  35  12 -34 0.04 0.09 0.0121 

G_Hippocampus-1-L* -30 -7  -19 0.06 0.11 0.0115 

G_Hippocampus-1-R*  30 -5  -18 0.08 0.11 0.0005 

G_Hippocampus-2-L -25 -32 -3 0.04 0.09 0.0430 

G_Hippocampus-2-R  25 -31 -2 0.06 0.09 0.0041 

G_ParaHippocampal-1-L* -16 -4 -18 0.24 0.23 <.0001 
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G_ParaHippocampal-1-R*  14 -4 -18 0.17 0.20 0.0001 

G_ParaHippocampal-2-L* -28 -27 -19 0.07 0.17 0.0253 

G_ParaHippocampal-2-R  29 -25 -19 0.07 0.14 0.0169 

G_ParaHippocampal-4-L* -17 -27 -13 0.12 0.21 0.0071 

G_ParaHippocampal-4-R*  17 -27 -10 0.15 0.18 0.0002 

N_Caudate-4-R  14  20  8 0.06 0.13 0.0237 

N_Caudate-5-L -13  10  8 0.17 0.21 0.0003 

N_Caudate-5-R  12  10  9 0.16 0.22 0.0006 

N_Thalamus-1-L -4    0    1 0.18 0.29 0.0032 

N_Thalamus-1-R  4    0    1 0.16 0.24 0.0012 

N_Thalamus-2-R  9   -7    13 0.09 0.18 0.0120 

N_Thalamus-3-L -3  -7   -1 0.15 0.22 0.0017 

N_Thalamus-4-L* -3 -14   8 0.20 0.27 0.0005 

N_Thalamus-4-R  3 -14   9 0.17 0.25 0.0017 

N_Thalamus-5-L -12 -19 7 0.09 0.14 0.0026 

N_Thalamus-5-R  13 -17 6 0.07 0.14 0.0148 

N_Thalamus-6-R  15 -27 13 0.05 0.12 0.0455 

N_Thalamus-7-L -9 -28  11 0.09 0.15 0.0054 

N_Thalamus-9-L -5 -11 -7 0.12 0.13 <.0001 

N_Thalamus-9-R  5 -10 -6 0.11 0.16 0.0007 

 327 
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3.3.3. Resting-state functional connectivity 328 

329 

Figure 5. Resting-state connectivity matrix of 37 hROIs specific to the social status assignment (i.e., positive in 330 

the contrast [Social status minus Ornament check] and positive in contrast [Ornament (1-back) minus Faces]. 331 

The color scale (green to red) reflects the t-value on each connection averaged across subjects.  332 

The resting-state functional connectivity analysis revealed 348 positive connections 333 

significant across subjects (p < 0.05 FDR, univariate t-test) between the 37 hROIs. T-values 334 

varied from 2 to 25 (Figure 5). These 37 hROIs can be divided into two groups based on their 335 

resting-state functional connectivity. A network connected the precuneus and temporal lobe 336 

regions, including the hippocampus, the parahippocampal cortex, the temporal pole, and a 337 

part of the fusiform gyrus. A second network connected mainly frontal regions, including the 338 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531503
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

inferior frontal sulcus and gyrus, the orbitofrontal cortex, the dorsal anterior cingulate cortex, 339 

the supplementary motor area, and the anterior insula.  340 

The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were connected to 22 and 341 

27 hROIS, respectively. The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were 342 

strongly connected to their group and many regions of the other group (see supplementary 343 

materials for detailed results). The S_Orbital-2 was connected to 26 hROIs.  344 

 345 

4. Discussion 346 

This study aimed to identify the brain regions involved in attributing social status from the 347 

visual analysis of adorned faces. Adorning one's body to transmit social information 348 

represents a symbolic behavior that appeared at least 150,000 years ago and probably much 349 

earlier. Therefore, we can assume that the networks revealed in the present study were, at 350 

least to a degree, functional in the earliest Homo sapiens and contemporary or earlier 351 

hominins displaying such behaviors. 352 

These regions can be categorized into four groups: 1. occipitotemporal regions of the 353 

ventral visual pathway, including lateral occipital regions, fusiform gyrus, parahippocampal 354 

gyrus extending to the hippocampus, and the temporal poles; 2. regions belonging to the 355 

salience network such as the anterior insula and the anterior cingulate cortex; 3. the 356 

intraparietal sulcus; and 4. the ventral and dorsal regions of the lateral prefrontal cortex and 357 

the orbitofrontal cortex. 358 

Some of these regions were also activated in the 1-back task, indicating that they are not 359 

specific to an explicit social attribution but may be involved in an implicit social appraisal. 360 

This is the case for most visual regions (except Fusiform-4-R and Fusiform-2-L), the 361 

intraparietal sulcus, and most of the thalamus and retrosplenial regions. In contrast, activity in 362 

the inferior and orbital frontal areas, hippocampal and parahippocampal regions, the temporal 363 

poles, and the salience network, including the anterior cingulate and parts of the anterior 364 

insula, remained significant when activity in these regions during the 1-back task was 365 

subtracted. 366 

 367 

4.1. Visual Ventral pathway and medial temporal regions 368 

Lateral and ventral occipital regions were more activated by the social status attribution than 369 

by the assessment of decoration type. This suggests that deeper visual processing is required 370 

to attribute a social status. Most of these occipitotemporal regions were also activated during 371 
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the 1-back task and were thus not specifically involved in assigning a social status to adorned 372 

faces. However, two hROIs were significantly more activated during social status attribution 373 

than in the 1-back task, namely G_Fusiform-2-L and G_Fusiform-4-R. The latter is 374 

particularly interesting since it includes the so-called fusiform face area (FFA), which is 375 

sensitive to face perception 64–66 and lateralized in the right hemisphere 67. Thus, although all 376 

conditions included face perception and none required specific attention to faces, FFA 377 

appeared more solicited by social status assignment. It has been shown that FFA is sensitive 378 

to physical characteristics and their possible social correlates 68,69. More recently, a study 379 

showed that FFA processes characteristics such as social traits, gender, and high-level visual 380 

features of faces 70 and might thus initiate the social processing of faces. The results of the 381 

present study suggest that, in the context of social role attribution, FFA can process non-382 

physiognomic features. This is consistent with the fact that the FFA promotes holistic rather 383 

than local processing 71–73. Ornamented faces may have been perceived as a whole in the 384 

social attribution task, while attention was focused on details during the assessment of 385 

decoration type and the 1-back task. In other words, attributing social status involves a more 386 

complex process relying on a set of components, such as the types of decoration, their 387 

association, their location on the face, and the face itself. 388 

In summary, the activation of FFA in our social status assignment task could reflect 389 

the implementation of preliminary social categorization processes based on a holistic analysis 390 

of ornamented faces, which is further achieved in other regions of the brain, particularly the 391 

orbitofrontal cortex. 392 

In the anterior extension of the ventral visual pathway, we found that the hippocampus 393 

and parahippocampal gyrus were more activated by the social status attribution than by the 394 

ornament type assignment and significantly more activated when compared to the 1-back 395 

task, reflecting their specificity to social status attribution. The hippocampus reflects episodic 396 

memorization processes strongly involved in social cognition 74,75. The parahippocampus 397 

appears to play, among others, a pivotal role in contextual associative processing 76,77, i.e., in 398 

binding elements composing stimuli. It provides a unified context for further processing (see 399 
78 for a review). In the framework of the present study, participants arbitrarily associated face 400 

decorations with social status. After the fMRI sessions, they reported that once they had 401 

established an ornament/status association strategy, they stuck to it throughout the sessions, 402 

with exceptional random responses. Contextual associations were thus an essential aspect of 403 

the processes involved in the status assignment task. The activation of the parahippocampal 404 

cortex reasonably reflects the implementation of these processes. It has been suggested that 405 
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the anterior part of the parahippocampus preferentially processes non-spatial contextual 406 

associations, and the posterior part, comprising the parahippocampal Place Area (PPA), 407 

spatial associations 76,79. In the present study, the activation of the anterior parahippocampus 408 

is consistent with the non-spatial nature of the associations. 409 

The activation of the medial temporal gyrus might be linked to one of the temporal poles. 410 

Several studies have documented the involvement of the temporal pole in social cognition, 411 

and this region is considered part of the social brain network 80–84. Although its role is still 412 

under discussion, it has been proposed that this brain area is involved in encoding and 413 

retrieving social knowledge 85. As was the case in this study, assigning social status mobilizes 414 

stereotypical social knowledge (e.g., the chief must have the most ornaments) and entails 415 

encoding: The participants associated a type of ornamentation with a social role and created 416 

an arbitrary social code that they reused throughout the task. Thus, we propose that the 417 

parahippocampus and the temporal pole, which are strongly functionally connected, work in 418 

synergy to facilitate the association of a type of ornamentation with a specific social status 419 

and then to encode and restore this association. 420 

 421 

4.2. Inferior and orbitofrontal cortex 422 

Assigning a social status involved many frontal regions not solicited during the ornament type 423 

attribution condition. However, the specific areas for explicit processes, i.e., activated in the 424 

social attribution task compared to the 1-back task, were mainly in the lateral part of the 425 

inferior frontal gyrus and the orbitofrontal cortex as defined by Rudebeck and Rich 86. The 426 

resting-state connectivity analysis showed that these regions were highly functionally linked. 427 

Previous studies have emphasized the role of the orbitofrontal cortex in social cognition in 428 

non-human primates and humans. It has been argued that this cortical area contains neurons 429 

sensitive to representing social categories 87 and evaluating social information 88 in non-430 

human primates. In humans, a deficit in social perception after orbitofrontal cortex lesions 89, 431 

an inability to judge social traits in a decision-making task 90, or acquired sociopathy have 432 

been reported 91. 433 

In healthy participants, fMRI studies have emphasized the role of the orbitofrontal 434 

cortex in social cognition and social behavior (55,92; See 60 for a review) and, more 435 

specifically, in explicit processing 93. The orbitofrontal cortex is sensitive to non-verbal social 436 

signals 55. Recent results indicate that this area is critical in representing social status 92. A 437 

recent fMRI study showed that the OFC represented the stereotypic social traits of others and 438 

that its pattern of activity was predictive of individual choices, highlighting its critical role in 439 
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social decision-making 94. In these studies, participants had to behave according to the facial 440 

expression, attitude, or social category of the individuals presented in the experiment. Our 441 

results extend these findings. Unlike previous studies, participants based their decision on 442 

symbolic features (the type and arrangement of ornamentations), to which they arbitrarily 443 

attributed social meaning. This implies that the role of the orbitofrontal cortex in social 444 

decision-making is not restricted to processing stereotypical attitudes or social groups, a 445 

capacity shared with non-human primates. Social evaluation based on symbolic external 446 

attributes also involves this region in humans. 447 

The social status attribution task heavily relies on high-order executive functions such 448 

as attentional control, selection, and flexibility. The activation of the pars triangularis of the 449 

inferior frontal gyrus extending to the inferior frontal sulcus reflects these aspects 95. 450 

Although the activation was bilateral, the right and left inferior frontal gyrus probably played 451 

a different role in the task. The right inferior frontal gyrus is explicitly associated with high-452 

level social cognition 96. The left inferior frontal gyrus is involved in selecting some aspects 453 

or subsets of available information among competing alternatives 97,98.  This region also plays 454 

a role in processing non-linguistic symbolic information 99,100, consistent with the symbolic 455 

value attributed by the participants to face adornments. 456 

Overall, the prefrontal cortex's involvement in the present study underlines its role in 457 

social decision-making. Our results extend their contribution to symbolic social 458 

communication, here materialized by face ornamentations. 459 

 460 

4.3. Salience network 461 

Social status attribution elicited activation in the anterior insula, the dorsal anterior cingulate 462 

cortex (dACC)/pre-SMA, and subcortical structures, such as the thalamus and the caudate 463 

nuclei. These regions constitute the so-called salience network, whose key components are the 464 

insula anterior and the dACC/pre-SMA 101–103. This network is involved in selecting relevant 465 

elements of the environment for perceptual decision-making 104–106. In our case, participants 466 

had to extract salient information from the ornamented faces to associate the proposed social 467 

status with one of the three faces presented to them. The salience network was also activated 468 

in the 1-back task by the need to detect the repetition of ornamental patterns. However, the 469 

greater uncertainty in decision-making during the attribution task can explain why activation 470 

of the salience network was more extensive during status attribution than the 1-back task 107. 471 

To attribute a social status, participants had to make a forced choice among three possibilities, 472 

with several plausible answers and had to compare the different options and arbitrate to 473 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531503
http://creativecommons.org/licenses/by-nc-nd/4.0/


choose only one. These aspects of the task have probably triggered the activation of the 474 

dACC/pre-SMA, belonging to the salience network. The dACC/pre-SMA has been reported 475 

as involved in conflict and performance monitoring 108–110, and more recently in social 476 

categorization domain 111. 477 

 478 

4.4. Resting-state functional connectivity 479 

Resting-state functional connectivity provides insight into the potential interactions between 480 

neural assemblies activated by the social status assignment task. The G_Fusiform-4-R and the 481 

G_Temporal_Pole_Sup-1-R were characterized by many connections with other activated 482 

regions (483 

 484 

Figure 6). These two regions were connected with 22 and 27 hROIs, respectively. The 485 

G_Fusiform-4-R included the FFA (see results) and is likely involved in the initial processing 486 

phase. The functional relationships between the medial temporal lobe, the fusiform gyrus, and 487 

the temporal pole reflected the association of the perceptive, social, mnemonic, and 488 

associative aspects of the task. In addition, the G_Temporal_Pole_Sup-1-R was connected 489 

with frontal regions and could act as a hub, allowing communication between visual areas and 490 

executive frontal regions. The connection between the temporal pole and the salience network 491 

enables the exchange of information necessary for evaluating and selecting inputs relevant to 492 

social decision-making. The temporal pole and the salience network were related to the 493 

inferior frontal gyrus, contributing to the evaluation of subjective confidence about a 494 

perceptual decision 112. The orbitofrontal cortex was functionally connected to the 495 

G_Temporal_Pole_Sup-1-R and the G_Fusiform-4-R. These regions, whose essential role in 496 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531503
http://creativecommons.org/licenses/by-nc-nd/4.0/


social status evaluation has been discussed above, could constitute the core network in the 497 

social attribution task (498 

 499 

Figure 6). They must have allowed the integration of information leading to the assignment of 500 

social status based on the perception of symbolic cues. 501 

 502 

Figure 6. Schematic resting-state functional connectivity network between regions activated during a 503 

social status attribution task based on symbolic culturalized faces. Black arrows indicate the reciprocal 504 

resting-state functional connectivity between brain regions (univariate t-test, p < 0.05, FDR corrected).  505 

Notably, none of the regions involved in assigning social status exclusively dealt with 506 

social information. Most of these regions are involved in many cognitive functions. The 507 

functional connection of structures whose processing properties are beneficial for the 508 

execution of the task allows the social judgment function to emerge. Human connections 509 
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exceed those of animals, including primates, at both the structural and functional levels 113–115. 510 

Thanks to creating functional connections (linking social cognition, memory, and executive 511 

functions), humans could use symbolic items and markings to signify social status. 512 

 513 

5. Conclusion 514 

This study delved into the neural mechanisms involved in the social interpretation of facial 515 

adornments and found that various brain regions, including the FFA, temporal poles, salience 516 

network, and orbitofrontal cortex, were involved in this process. Furthermore, assigning a 517 

social status from symbolic cues also activated the medial temporal regions and the inferior 518 

frontal gyrus, reflecting the role of episodic memory, contextual association, and executive 519 

functions. The complexity of this neural network raises questions about when it became fully 520 

functional in our ancestors and whether it resulted from a gradual process of integration and 521 

complexification or was already fully functional when the first archaeological evidence of 522 

culturalization of the human face was recorded. 523 

The gradual complexification and patchy emergence of face adornment technologies over the 524 

last 500,000 years suggest a scenario of increasing but asynchronous integration of brain areas 525 

involved in social status recognition based on facial culturalization. This growing integration 526 

allowed the decoding of increasingly complex symbolic codes, supported by more demanding 527 

technologies for face adornment.  528 

The interplay between cultural and biological mechanisms likely drove this process, with 529 

individuals gifted in acquiring, decoding, and creating these symbolic messages having 530 

selective advantages that favored the permanent inscription of a more integrated connectivity 531 

in the brain 116–118. A progressive co-option of brain regions has also been suggested for the 532 

evolution of tool-making 119–121. It would have enabled the development of increasingly 533 

complex tools. 534 

The period between 140,000 and 70,000 years ago may have represented a key moment in 535 

this integration process, as this was when red pigments use became almost ubiquitous at 536 

African Middle Stone Age sites and marine shell beads were used for the first time in North 537 

Africa, the Near East, and Southern Africa. This diversification of colors, shapes, and 538 

technologies indicates a complexification of practices allowing wearers to use their faces to 539 

communicate information about their social role using more complex shared symbolic codes. 540 

It is reasonable to think that the human brain had largely equipped itself with the necessary 541 

connections to process and interpret these stimuli 70,000 years ago. 542 
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