

1 Assigning a social status from face 2 adornments: an fMRI study

3

4

5 Salagnon M^{1,2}, d'Errico F^{2,3}, Rigaud S², Mellet E^{1*},

6

7 ¹CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France

8 ²Univ. Bordeaux, PACEA UMR 5199, CNRS, Pessac, France

9 ³SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen,

10 Norway.

11

12 * Corresponding author

13 E-mail: emmanuel.mellet@u-bordeaux.fr

14

15 **KEYWORDS:** Human evolution, symbols, social cognition, face perception,

16 Neuroarchaeology, fMRI

17

18 **Abstract**

19 The human face has been culturally modified for at least 150,000 years using practices like
20 painting, tattooing and scarification to convey symbolic meanings and individual identity. The
21 present study used functional magnetic resonance imaging to explore the brain networks
22 involved in attributing social status from face decorations. Results showed the fusiform gyrus,
23 orbitofrontal cortex, and salience network were involved in social encoding, categorization,
24 and evaluation. The hippocampus and parahippocampus were activated due to the memory
25 and associative skills required for the task, while the inferior frontal gyrus likely interpreted
26 face ornaments as symbols. Resting-state functional connectivity analysis clarified the
27 interaction between these regions. The study highlights the importance of these neural
28 interactions in the symbolic interpretation of social markers on the human face, which were
29 likely active in early Homo species and intensified with Homo sapiens populations as more
30 complex technologies were developed to culturalize the human face.

31

32

33

34 **1. Introduction**

35 The use of technologies to change the appearance of our bodies to communicate information
36 about our identity and social role dates back hundreds of thousands of years. Body painting,
37 tattooing, scarification, wearing of ornaments, mutilations, hairstyles, and clothing are
38 amongst the best-known practices for performing these functions in traditional societies ¹⁻⁵.
39 Personal ornaments, in particular, play a crucial role in communicating ethnic affiliation,
40 reinforcing the sense of belonging to the group and its cohesion, establishing boundaries with
41 neighboring groups, and conveying information on linguistic, ideological, and religious
42 membership ⁶⁻¹⁴. Ornaments can also provide information about social status, gender, marital
43 situation, and the number of children the wearer has had. Special ornaments and body paints
44 may be put on at rites of passage occurring at the individual birth, during initiation
45 ceremonies, marriage, healing, or death ¹⁵⁻¹⁹.

46 The earliest use of red ochre goes back to 500 ka in Africa ²⁰⁻²³, 380 ka in Europe
47 ^{22,24,25}, and 73 ka in Asia ^{22,26,27}. Dapschauskas and colleagues (2022) identified three phases
48 of ochre use in the African Middle Stone Age: an initial phase from 500 ka to 330 ka, an
49 "emergent" phase from 330 ka to 160 ka, and a "habitual" phase from 160 ka to 40 ka. The
50 latter phase, when a third of archaeological sites contain ochre, is interpreted by these authors
51 as the manifestation of intensifying ritual activity in early populations of *Homo sapiens*. This
52 view is consistent with the results of studies indicating that in this last and the previous phase,
53 certain types of mineral pigments were transported over long distances ^{20,28,29}, that certain
54 shades of red were particularly sought after ³⁰⁻³², that ochre was modified by heating to
55 change its color ^{33,34} but see ³⁵, and that in some cases very small quantities of pigments were
56 produced ³⁶, a behavior more consistent with a symbolic than a utilitarian function.

57 The wearing of personal ornaments, many of which are deliberately covered with
58 ochre, is attested since at least 142 ka in North Africa, 80 ka in Southern Africa, and 120 ka in
59 the Near East ³⁷⁻⁴⁵. Because the understanding by others of the meaning attached to ornaments
60 and body paints presupposes the existence of shared codes, archaeological objects which have
61 fulfilled these functions are often considered reliable evidence for the emergence of language
62 and symbolic material cultures in our genus ^{40,41,46-49}. In this regard, wearing body
63 adornments can be considered an archaeological indicator of modern social cognition.

64 Although body symbols played a key role in all human societies and appeared very
65 early in human history, the cerebral regions mobilized by their perception and interpretation

66 remain unknown. Numerous studies have focused on the brain substrates of the emotional
67 aspects of social cognition and perspective-taking (Theory of Mind). They have emphasized
68 the role of the medial prefrontal cortex, the temporoparietal junction, and the temporal poles
69 ^{50,51}. However, one study showed that social status recognition was minimally disrupted
70 following ventromedial lesions, suggesting that the network involved in this function would
71 be distinct from that dealing with the emotional aspects of social cognition ⁵². Neuroimaging
72 studies have confirmed that the perception of social hierarchies relies on the intraparietal
73 sulcus, the dorsolateral and orbital frontal cortex, and the lateral occipital and
74 occipitotemporal cortex ^{53–56}. However, the identification of social markers does not
75 necessarily imply a ranking.

76 Body ornaments and facial paintings may convey information on social roles disconnected
77 from a social hierarchy. Although body paintings and the wearing of beads to express social
78 roles are attested in the earliest *Homo sapiens* and probably in Neanderthals ^{57–59}, very little is
79 known about the brain networks involved in processing such information, the possible
80 processes that led to a complexification of these behaviors, as well as their timeline. In the
81 present study, participants were asked to assign social roles or statuses to faces adorned with
82 paintings, beads, or both. At the same time, their brain activity was monitored using
83 functional magnetic resonance imaging (fMRI). Participants were given no guidance on the
84 meaning of the face decorations and had to create their arbitrary social code. The attribution
85 of a social status mobilizes implicit and explicit processes. Implicit processes are rapid,
86 require little cognitive effort, and can occur without awareness. Explicit processes are
87 cognitively demanding, slow, and deliberative ⁶⁰. To isolate explicit processes, we included,
88 using the same stimuli, a perceptual task (1-back) that does not explicitly require a social role
89 attribution. Brain activity during this task was compared to that performed during explicit
90 social status attributions. In addition, at rest, the functional connectivity of the brain regions
91 involved was analyzed to provide information on the interaction of the brain areas implicated
92 in the social status attribution task. Our results identify, for the first time, the brain networks
93 engaged in attributing social status from different arrangements of paintings and ornaments on
94 the human face, the way they work in synergy, and provide sound bases on which build an
95 evolutionary scenario for the gradual integration of these brain areas during the evolution of
96 our genus.

97

98 **2. Materials and methods**

99 **2.1. Ethics statements**

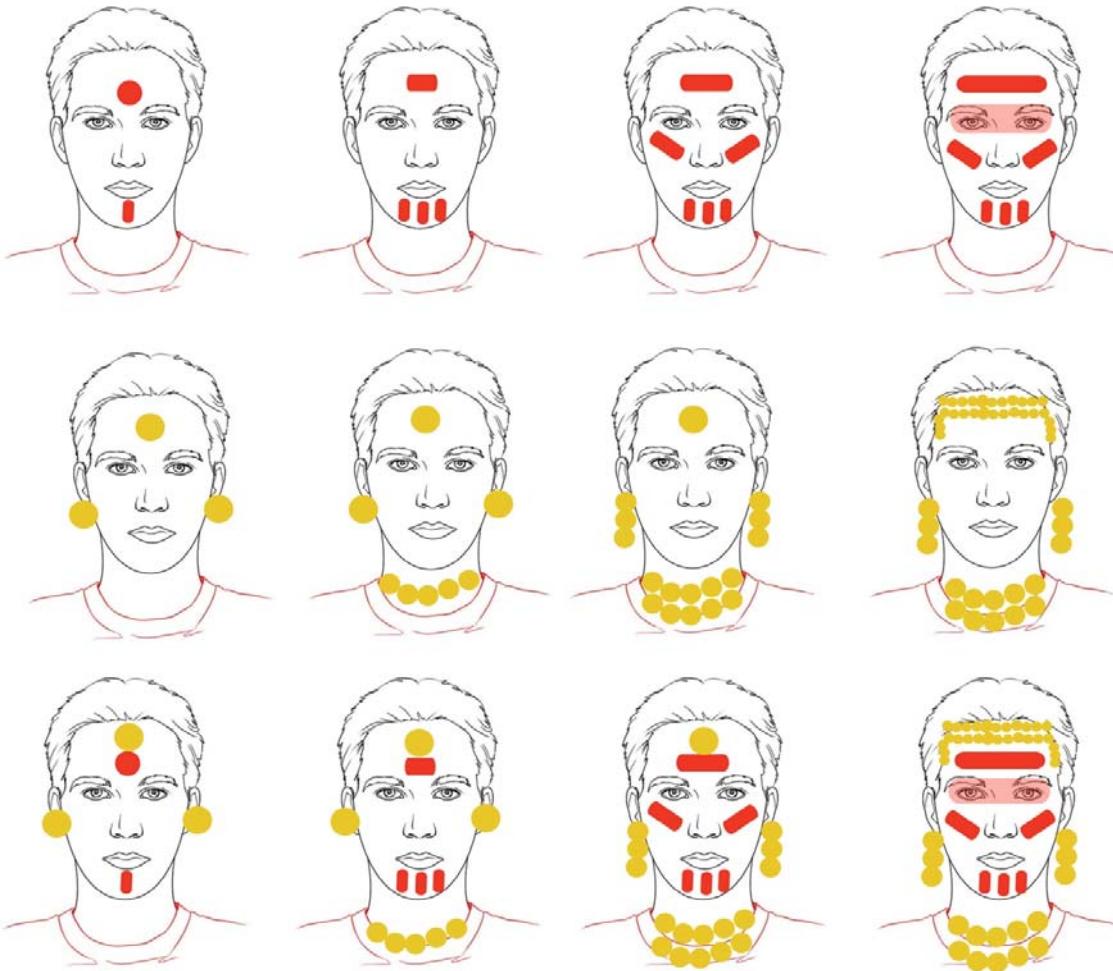
100 The 'Nord-Ouest III' local Ethics Committee approved the study on 10/14/2021 (N° IDRCB:
101 2021-A01817-34). All the participants signed informed consent before the MRI acquisition.

102

103 **2.2. Participants**

104 Thirty-five healthy adults (age range 18–29 years, mean age 22 ± 2 years (SD), 18 women,
105 four left-handed) with no neurological history were included. One participant was excluded
106 from the analysis because of a brain abnormality discovered during MRI acquisition.

107

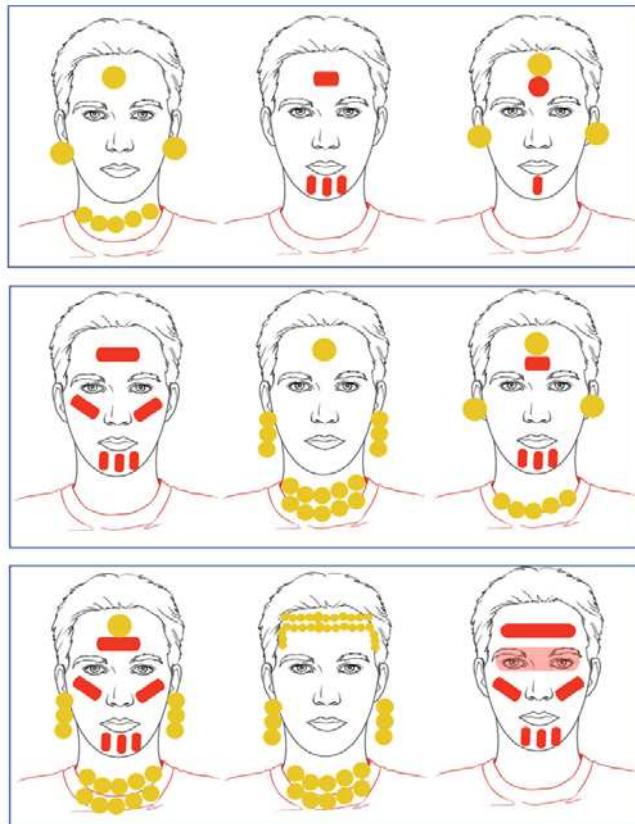

108 **2.3. Experimental design**

109 The functional acquisition was organized in a single session consisting of six runs during
110 which participants had to perform a selection task (first three runs), then a 1-back task (last
111 three runs). After receiving instructions for these tasks, participants completed a short training
112 run outside the MRI.

113

114 **2.3.1. Stimuli**

115 The set of stimuli included pictures of faces (up to below the shoulders) of 34 unknown
116 people in the same range of age (17 women, 17 men, around 30 years old) wearing ornaments
117 and adopting a neutral expression. Each face was ornamented with either spherical wooden
118 beads, red paintings, or a combination of both (Figure 1). Ornaments included earrings with
119 one or three beads, necklaces with one or two chains of beads, a diadem consisting of a chain
120 of beads, and a single large spherical bead in the middle of the forehead. Red paintings
121 included one or three vertical lines on the chin; a dot or a horizontal line on the forehead;
122 oblique lines on the cheeks; and a large horizontal band including the eyes. Associations of
123 paintings and beads were designed to make both types of ornamentation gradually more
124 invasive on the face. In all, twelve types of facial ornamentation have been designed and
125 implemented.


126
127

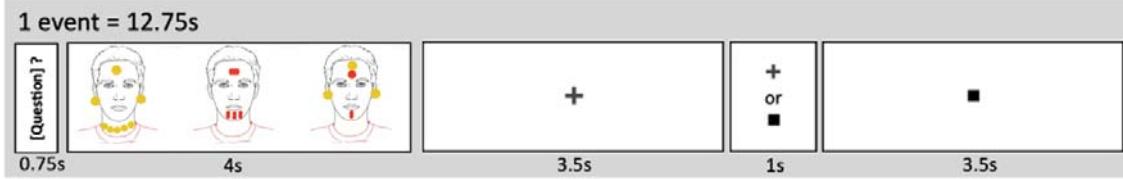
128 Figure 1. Face ornamentations used in the tasks. Top row: paint only. The middle row: beadworks only. Bottom
129 row: a combination of paint and beadworks.

130 **2.3.2. Selection task (event-related paradigm)**

131 These three runs followed a slow event-related design, i.e., the change in the BOLD signal
132 was collected for each stimulus presentation, and the time between each presentation allowed
133 the signal to return to its baseline level. The order of presentation was randomized. The
134 stimuli corresponded to a triplet of photos of three different persons of the same gender (male
135 or female), one wearing ornaments, one with paintings, and one with both (Figure 2). Within
136 a triplet, the richness of the ornaments was comparable between the pictures to avoid biases in
137 the choice. There were three levels of richness between the triplets (Figure 2).

138

139


140 Figure 2. Drawn version of some triplets of stimuli used in the selection task. Each triplet was composed of
141 individuals of the same sex (male or female). The three ranks correspond to three levels of richness. Note that in
142 the study, photographs of real people with adorned face were presented but could not be displayed here because
143 of their identifying nature.

144

145 The selection task was implemented as follows (Figure 3): a question was displayed
146 during 0.75 s. The question could concern either the displayed persons' social role (Social
147 status condition) or the type of ornamentation they displayed (Ornament check condition).
148 Then, a new triplet of pictures was shown for 4 s. The participant had to choose, by pressing
149 the corresponding button of a response box as soon as they made their decision, the person
150 who best fitted the proposed social status, e.g., "Shaman" (Social status condition) or the
151 person who corresponded to the ornament type proposition, e.g., "Painted cheeks" (Ornament
152 check condition). Each question was asked twice for each gender. The list of questions is
153 displayed in Table 1.

154 The Ornament check condition was designed as a control condition, bearing the same
155 pictures as the social status condition. It required attention to the ornaments without
156 implementing social cognition processes. Then, a fixation cross was displayed, and a square
157 appeared after a variable delay (3.5 s ± 1 s). Participants had to click the "1" button on the

158 response box when the square appeared. This constituted the baseline, allowing the BOLD
159 signal to return to its baseline level between events. Each event lasted 12.75 s.
160

161
162 Figure 3. Organization of one event of the selection task.

163 Table 1. Questions in the social status and ornament check conditions. The wording of the questions was
164 gendered according to the stimulus.

Questions	Social status attribution	Ornament (control)
1	Chief?	Painted eyes?
2	Healer?	Double necklace?
3	Warrior?	Diadem?
4	Hunter / Huntress?	Painted cheeks?
5	Shaman?	Painted circle?
6	Musician?	No beads?
7	Storyteller?	No necklace?
8	Married?	No earrings?
9	Mother / Father?	No paint?
10	Scout?	No lines?

165 Over the three runs, participants saw 80 stimuli, 40 in the social status condition and 40 in the
166 ornament check condition. Each run lasted 5 min and 51 s each and included 27 events
167 (except run C, which included one less event) for a total duration of 5 min 38 s). Stimuli were
168 presented in random order within each run. Immediately after the MRI acquisition, the
169 experimenter asked the participant the criteria on which they based their social role attribution
170 in the status condition.

171

172 2.3.3. 1-back task (block design)

173 In the 1-back task, participants viewed a succession of ornamented faces (displayed for 1 s
174 each, with an interstimulus interval of 983 ms). The participants had to report the repetition of
175 two faces (Face condition) or two types of ornamentation (Ornament condition, including
176 three modalities: paintings, beads, or both simultaneously) by pressing the "1" button on the
177 response box. This repetition criterion was displayed during 750 ms at the beginning of each
178 block. Fifteen stimuli belonging to the same category of ornamentation were presented within
179 the same block (i.e., within a block, there were no images belonging to different categories).

180 There were three repetitions per block. Each of the three runs lasted 4 min and 15 s and
181 included six experimental blocks of 30.6 s interspersed with seven fixation blocks of 10.2 s.
182 Each run had four blocks of ornament condition and two blocks of face condition. The
183 presentation order of the 1-back runs was randomized.

184

185 **2.4. MRI acquisition**

186 Neuroimaging data acquisition was performed using a Siemens Prisma 3 Tesla MRI scanner.
187 Structural images were acquired using a high-resolution T1-weighted 3D sequence (TR =
188 2000 ms, TE = 2.03 ms; flip angle = 8°; 192 slices and isotropic voxel volume of 1 mm³).
189 Functional images were obtained using a whole-brain T2*-weighted echo planar image
190 acquisition (T2*-EPI Multiband x6, sequence parameters: TR = 850 ms; TE = 35 ms; flip
191 angle = 56°; 66 axial slices and isotropic voxel size of 2.4 mm³). The first sequence lasted 8
192 min and recorded participants' brain activity during resting state (i.e., when they let their
193 thoughts flow freely, without having a task to perform or falling asleep). This acquisition was
194 used to perform a resting-state functional connectivity analysis. Then, functional images were
195 acquired when the participants performed tasks based on stimuli perception. This was done
196 during six runs (three for each task: selection and 1-back). The presentation of the experiment
197 was programmed in E-prime software 3.0 (Psychology Software Tools, Pittsburgh, PA, USA).
198 The stimuli were displayed on a 27" screen. Participants saw the stimuli through the back of
199 the magnet tunnel via a mirror mounted on the head antenna.

200

201 **2.5. Data analysis**

202 **2.5.1. Behavioral analysis**

203 For the selection task, we evaluated the effects of condition (Social status or Ornament
204 check), participant gender, and stimulus gender on reaction time using a linear mixed-effects
205 model, adjusting for random effects at the participant level. A three-factor interaction term
206 between condition, participant gender, and stimulus gender (and their lower-order terms) was
207 defined as fixed-effect predictors and reaction time as the dependent variable. The
208 significance of fixed effects was assessed through ANOVA components.

209

210 **2.5.2. Functional neuroimaging analysis**

211 T1-weighted scans were normalized via a specific template (T1-80TVS) corresponding to the
212 MNI space using SPM12. The 192 EPI-BOLD scans were realigned in each run using a rigid

213 transformation to correct the participant's motion during the fMRI sessions. Then, the EPI-
214 BOLD scans were rigidly registered structurally to the T1-weighted scan. All registration
215 matrices were combined to warp the EPI-BOLD functional scans to standard space with
216 trilinear interpolation. Once in standard space, a 5-mm-wavelength Gaussian filter was
217 applied.

218 In the first level analysis, a generalized linear model (GLM, statistical parametric
219 mapping (SPM 12), <http://www.fil.ion.ucl.ac.uk/spm/>) was performed for each participant to
220 process the task-related fMRI data, with the effects of interest (tasks) modeled by boxcar
221 functions corresponding to events or blocks, convolved with the standard hemodynamic SPM
222 temporal response function. We then calculated the effect of individual contrast maps
223 corresponding to each experimental condition. Note that eight non-interest regressors were
224 included in the GLM analysis: time series for white matter, CSF (average time series of
225 voxels belonging to each tissue class), the six motion parameters, and linear temporal drift.

226 Group analysis (second-level analysis) of fMRI data was conducted using JMP®
227 software, version 15. SAS Institute Inc, Cary, NC, 1989-2019. The first step was to select the
228 brain regions activated in the contrasts of interest, namely [Social status minus Ornament
229 check] in the selection task and [Ornament minus Face] in the 1-back task. We extracted
230 signal values from the [Social status minus Ornament check] contrast from each brain region
231 of each participant (hROI, homotopic region of interest) in the AICHA atlas⁶¹. The MNI
232 coordinates of the center of mass of each activated hROIs are given in the supplementary
233 material section. The hROIs included in the analysis fulfilled the following criteria:
234 significantly activated in the [Social status minus Ornament check] contrast (univariate t-test
235 p < 0.05 FDR corrected); and significantly activated in the [Social status minus baseline]
236 contrast (univariate t-test, p < 0.1 uncorrected) to eliminate deactivated hROIs. 32 regions
237 whose BOLD signal occupancy was less than 80% (susceptibility artifacts) were excluded
238 from the analysis. The hROIs excluded are listed in the supplementary material.

239 This procedure led to 95 hROIs being more activated in the social status condition than
240 in the ornament check condition. The same method was applied to the [Ornament minus Face]
241 contrast and [Ornament minus baseline] contrast leading to 81 activated hROIS for the 1-back
242 task. In addition, we applied a univariate t-test (FDR corrected, p < 0.05) to compare the
243 BOLD values in the 95 hROIs activated in the [Social status minus Ornament check] contrast
244 to those 81 hROIs elicited by the [Ornament minus Face] contrast of the 1-back task. This
245 allowed for refining the specificity of the regions involved in the social status attribution and

246 its explicit components. Thirty-seven hROIs were more activated in the [Social status minus
247 Ornament check] contrast than in the [Ornament minus Face] contrast.

248

249 **2.5.3. Resting-state analysis**

250 The task-based functional analysis was complemented with a resting-state functional
251 connectivity analysis using the CONN v 20.b toolbox software ⁶², which runs under
252 MATLAB 2021a.

253 Functional imaging data were pre-processed using the CONN default pre-processing
254 pipeline for volume-based analyses. The steps for functional data comprise realignment and
255 unwarping for subject motion estimation and correction (12 parameters). Next, centering to
256 (0,0,0) coordinates and ART-based outlier detection identification was applied. Segmentation
257 and normalization to MNI space were applied next. Structural data were translated to (0,0,0)
258 center coordinates, segmented (gray/white/CSF), and normalized to MNI space. In the
259 denoising step, we applied band-pass filtering (0.01–0.1 Hz) after regression of realignment
260 parameters (12), white and gray matter, and CSF confounds. Then, we applied linear
261 detrending and despiking after regression. For the ROI to ROI functional connectivity
262 analyses, we used AICHA atlas ⁶¹. We considered the 95 hROIs activated in the [Status minus
263 Ornament] contrast. For group-level results, we calculated ROI-to-ROI connectivity
264 correlations, threshold with a unilateral t-test, and FDR-corrected $p < 0.05$.

265

266 **3. Results**

267 **3.1. Behavioral results**

268 Participants responded faster in the ornament check condition (mean response time \pm SD: 1.3s
269 \pm 0.5s) than in the social status condition (mean response time \pm SD: 2s \pm 0.8s): $F_{(1,32)} = 227.8$
270 $p < 0.0001$. Participant gender and stimulus gender had no significant effects (either main or
271 interactions).

272

273 **3.2. Post-MRI debriefing of the selection task**

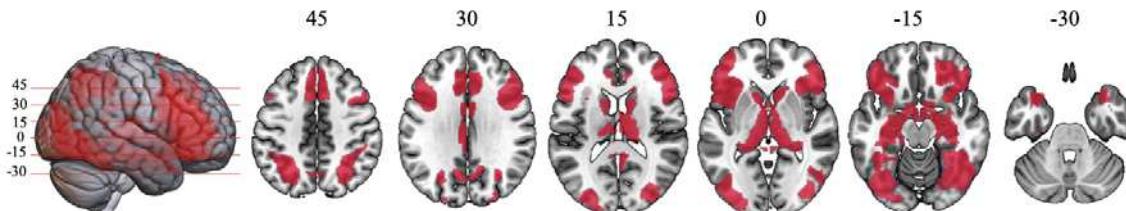
274 Twenty-two participants reported that they considered ornamentation a more important
275 criterion than phenotype in assigning a social role/status. A few reported they sometimes paid
276 attention to facial features, for example, in cases of indecision or for specific roles such as
277 father/mother. Eleven participants reported paying more attention to facial characteristics than
278 to ornamentation. Two participants stated that the most important criterion for them (facial

279 features or ornamentation) varied according to the questions. All participants reported that
280 they never answered randomly, except in rare exceptions. Participants generally reported
281 having an attribution strategy in place that they maintained throughout the experiment. For
282 example, some participants associated the absence of beads with a mobile role, such as scout
283 or hunter. For the same role, there was not necessarily a consensus among participants. For
284 example, some participants attributed warrior status to faces wearing only beads, while others
285 attributed this status to faces bearing only paintings.

286

287 **3.3. Neuroimaging results**

288 **3.3.1. Social status minus Ornament check (event-related paradigm)**


289 The [Social status minus Ornament check] contrast revealed a set of 95 cortical and
290 subcortical regions that were more activated when participants assigned social status to
291 adorned faces than when they assessed the type of ornamentation (

292 Table 2, Figure 4).

293 In the occipital lobe, these regions included the lateral occipital cortex and the fusiform gyrus
294 (including the Fusiform Face Area, FFA). We used the Neurosynth platform⁶³ to synthesize
295 the activations reported in the literature during face perception and ensure their consistency
296 with our results. We conducted a meta-analysis including 125 studies that contained the term
297 "neutral face" in their abstracts, i.e., pictures of faces adopting a neutral expression. It
298 evidenced the involvement of a right fusiform region (MNI coordinates of the activation peak:
299 38, -42, -16). This matched the location of the G_Fusiform-4-R in our AICHA atlas (MNI
300 coordinates of the center of mass: 44, -46, -18). The FFA occupied a large portion of this
301 functional region of the AICHA atlas.

302 The activations extended to the parahippocampal gyrus on the medial side of the
303 temporal lobe. In the parietal lobe, the intraparietal sulcus was activated bilaterally. In the
304 frontal lobe, activations included the middle and inferior frontal gyri on the lateral side and
305 the anterior part of the supplementary motor area medially. Activations also concerned
306 several paralimbic and limbic cortex regions, such as the anterior insula, the anterior
307 cingulate, the posterior cingulate and adjacent precuneus, the orbitofrontal cortex, the
308 temporal poles, and the hippocampus. The subcortical structures, the head of the caudate
309 nucleus, and the thalamus, especially in its mediodorsal part, were also involved.

310

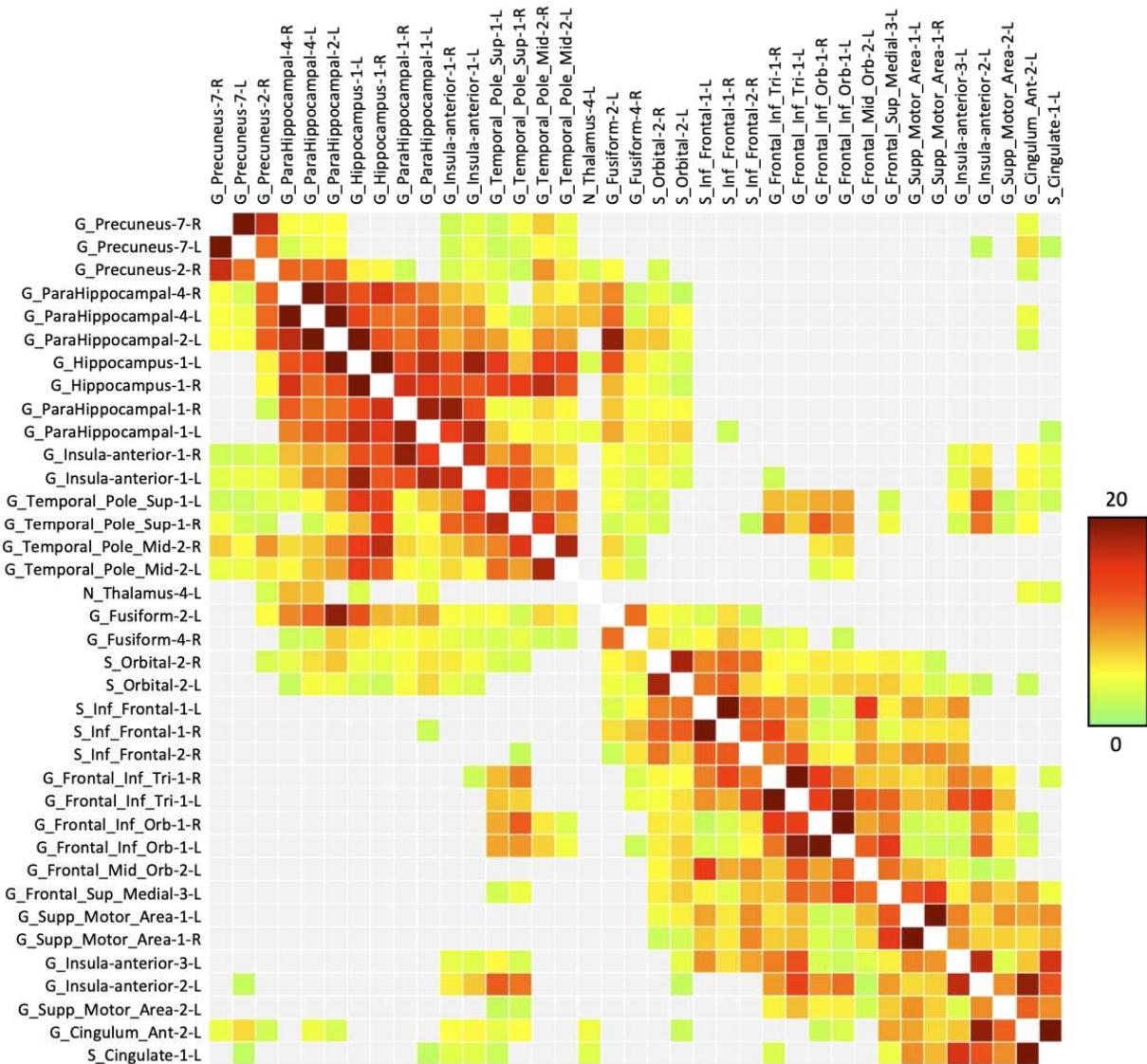
311
312 Figure 4. Activated regions in [Social status minus Ornament check] contrast superimposed on an MRI template.
313 Numbers indicate the z value of the axial slice in MNI space.

314 **3.3.2. Ornament minus Face (1-back paradigm)**

315 The [Ornament minus Face] contrast revealed a set of 81 cortical and subcortical regions,
316 which were more activated when participants checked the repetition of ornamentation than
317 when they looked for the repetition of faces. These regions were mostly located in the lateral
318 and inferior occipital cortices and the fusiform gyrus, extending to the inferior temporal
319 gyrus. Participants also activated the intraparietal sulcus, the anterior insula, and some frontal
320 regions, such as the superior frontal sulcus, inferior frontal sulcus, the supplementary area,
321 and the middle frontal gyrus.

322 Among these regions, 37 hROIs were significantly less activated in the [Ornament
323 minus Face] contrast than in the [Social status minus Ornament check] contrast (Table 2).
324

325 Table 2. Mean, standard deviation, and p-value of the activated regions in the [Social status minus Ornament
326 check] contrast.


hROI Social status - Ornament check (* Specific to Social status – Ornament check, i.e., more or not activated in Ornament block – faces)	MNI coordinates of the center of mass	Mean (BOLD)	Standard deviation (BOLD)	p (FDR corrected)
G_Cingulum_Ant-2-L*	-7 34 22	0.12	0.16	0.0005
G_Cingulum_Ant-2-R	7 33 23	0.08	0.16	0.0173
G_Cingulum_Mid-2-L	-4 3 30	0.15	0.16	<.0001
G_Cingulum_Mid-2-R	4 4 30	0.11	0.18	0.0045
S_Cingulate-1-L*	-7 27 30	0.23	0.20	<.0001
S_Cingulate-1-R	7 27 31	0.20	0.19	<.0001
S_Cingulate-2-L	-7 16 41	0.22	0.22	<.0001
S_Cingulate-2-R	8 14 46	0.14	0.20	0.0011
G_Cingulum_Post-1-L	-4 -26 29	0.12	0.22	0.0072
G_Cingulum_Post-2-L	-4 -39 27	0.11	0.23	0.0121
G_Cingulum_Post-3-L	-5 -43 10	0.13	0.24	0.0071
G_Cingulum_Post-3-R	6 -42 10	0.10	0.22	0.0253
G_Frontal_Inf_Orb-1-L*	-42 31 -17	0.21	0.22	<.0001
G_Frontal_Inf_Orb-1-R*	44 33 -14	0.13	0.16	0.0001
G_Frontal_Mid_Orb-2-L*	-41 49 -5	0.23	0.30	0.0005
S_Orbital-1-R	25 41 -15	0.07	0.11	0.0023
S_Orbital-2-L*	-31 34 -13	0.26	0.21	<.0001
S_Orbital-2-R*	29 34 -13	0.18	0.17	<.0001

G_Frontal_Mid-1-R	41 44 13	0.09	0.16	0.0075
G_Frontal_Mid-5-L	-43 20 37	0.21	0.35	0.0038
G_Frontal_Mid-5-R	42 17 41	0.09	0.17	0.0132
S_Inf_Frontal-1-L*	-44 38 12	0.37	0.31	<.0001
S_Inf_Frontal-1-R*	46 40 10	0.24	0.21	<.0001
S_Inf_Frontal-2-L	-43 15 29	0.38	0.34	<.0001
S_Inf_Frontal-2-R*	44 19 28	0.28	0.21	<.0001
G_Frontal_Inf_Tri-1-L*	-49 26 5	0.15	0.22	0.0011
G_Frontal_Inf_Tri-1-R*	50 29 5	0.07	0.17	0.0434
S_Precentral-1-R	50 10 24	0.11	0.24	0.0178
G_Frontal_Sup_Medial-3-L*	-5 35 43	0.19	0.23	0.0002
G_Frontal_Sup_Medial-3-R	6 33 44	0.14	0.19	0.0006
G_Supp_Motor_Area-1-L*	-6 22 46	0.39	0.23	<.0001
G_Supp_Motor_Area-1-R*	6 21 48	0.37	0.26	<.0001
G_Supp_Motor_Area-2-L	-11 18 61	0.08	0.16	0.0134
G_Insula-anterior-1-L*	-20 5 -19	0.12	0.18	0.0013
G_Insula-anterior-1-R*	19 7 -19	0.07	0.17	0.0329
G_Insula-anterior-2-L*	-34 17 -13	0.17	0.24	0.0009
G_Insula-anterior-2-R	35 18 -13	0.10	0.18	0.0054
G_Insula-anterior-3-L*	-34 24 1	0.31	0.22	<.0001
G_Insula-anterior-3-R	37 24 0	0.20	0.15	<.0001
G_Insula-anterior-4-L	-41 15 3	0.08	0.21	0.0457
G_Occipital_Inf-1-R	50 -60 -9	0.22	0.19	<.0001
G_Occipital_Inf-2-L	-45 -71 -7	0.13	0.17	0.0003
G_Occipital_Inf-2-R	47 -65 -7	0.19	0.18	<.0001
G_Occipital_Lat-2-L	-26 -94 -1	0.06	0.15	0.0253
G_Occipital_Lat-3-L	-40 -84 -12	0.10	0.16	0.0041
G_Occipital_Lat-3-R	43 -81 -10	0.11	0.20	0.0078
G_Occipital_Lat-4-L	-31 -89 8	0.08	0.15	0.0078
G_Occipital_Lat-4-R	34 -85 9	0.09	0.15	0.0054
G_Occipital_Lat-5-L	-35 -79 -1	0.07	0.15	0.0132
G_Occipital_Lat-5-R	36 -76 2	0.07	0.14	0.0116
G_Fusiform-2-L*	-35 -26 -23	0.09	0.10	<.0001
G_Fusiform-4-L	-43 -50 -17	0.19	0.18	<.0001
G_Fusiform-4-R*	44 -46 -18	0.22	0.15	<.0001
G_Fusiform-5-L	-31 -50 -12	0.09	0.12	0.0006
G_Fusiform-5-R	32 -47 -41	0.09	0.12	0.0006
G_Fusiform-6-R	29 -62 -9	0.05	0.12	0.0489
S_Intraparietal-1-L	-24 -72 32	0.09	0.23	0.0455
S_Intraparietal-1-R	28 -69 33	0.15	0.21	0.0007
G_Precuneus-2-R*	5 -56 20	0.27	0.29	<.0001
G_Precuneus-7-L*	-6 -65 35	0.16	0.31	0.0097
G_Precuneus-7-R*	7 -63 36	0.21	0.29	0.0006
S_Intraparietal-2-L	-34 -58 45	0.22	0.29	0.0005
S_Intraparietal-2-R	37 -52 48	0.14	0.20	0.0010
S_Intraparietal-3-L	-27 -60 43	0.16	0.27	0.0051
S_Intraparietal-3-R	27 -61 46	0.13	0.19	0.0012
G_Temporal_Inf-4-R	54 -58 -11	0.10	0.19	0.0086
G_Temporal_Pole_Sup-1-L*	-35 11 -24	0.09	0.13	0.0019
G_Temporal_Pole_Sup-1-R*	36 16 -24	0.10	0.16	0.0044
G_Temporal_Pole_Mid-2-L*	-35 9 -33	0.05	0.10	0.0097
G_Temporal_Pole_Mid-2-R*	35 12 -34	0.04	0.09	0.0121
G_Hippocampus-1-L*	-30 -7 -19	0.06	0.11	0.0115
G_Hippocampus-1-R*	30 -5 -18	0.08	0.11	0.0005
G_Hippocampus-2-L	-25 -32 -3	0.04	0.09	0.0430
G_Hippocampus-2-R	25 -31 -2	0.06	0.09	0.0041
G_ParaHippocampal-1-L*	-16 -4 -18	0.24	0.23	<.0001

G_ParaHippocampal-1-R*	14 -4 -18	0.17	0.20	0.0001
G_ParaHippocampal-2-L*	-28 -27 -19	0.07	0.17	0.0253
G_ParaHippocampal-2-R	29 -25 -19	0.07	0.14	0.0169
G_ParaHippocampal-4-L*	-17 -27 -13	0.12	0.21	0.0071
G_ParaHippocampal-4-R*	17 -27 -10	0.15	0.18	0.0002
<hr/>				
N_Caudate-4-R	14 20 8	0.06	0.13	0.0237
N_Caudate-5-L	-13 10 8	0.17	0.21	0.0003
N_Caudate-5-R	12 10 9	0.16	0.22	0.0006
N_Thalamus-1-L	-4 0 1	0.18	0.29	0.0032
N_Thalamus-1-R	4 0 1	0.16	0.24	0.0012
N_Thalamus-2-R	9 -7 13	0.09	0.18	0.0120
N_Thalamus-3-L	-3 -7 -1	0.15	0.22	0.0017
N_Thalamus-4-L*	-3 -14 8	0.20	0.27	0.0005
N_Thalamus-4-R	3 -14 9	0.17	0.25	0.0017
N_Thalamus-5-L	-12 -19 7	0.09	0.14	0.0026
N_Thalamus-5-R	13 -17 6	0.07	0.14	0.0148
N_Thalamus-6-R	15 -27 13	0.05	0.12	0.0455
N_Thalamus-7-L	-9 -28 11	0.09	0.15	0.0054
N_Thalamus-9-L	-5 -11 -7	0.12	0.13	<.0001
N_Thalamus-9-R	5 -10 -6	0.11	0.16	0.0007

327

328 3.3.3. Resting-state functional connectivity

330 Figure 5. Resting-state connectivity matrix of 37 hROIs specific to the social status assignment (i.e., positive in
331 the contrast [Social status minus Ornament check] and positive in contrast [Ornament (1-back) minus Faces].
332 The color scale (green to red) reflects the t-value on each connection averaged across subjects.

333 The resting-state functional connectivity analysis revealed 348 positive connections
334 significant across subjects ($p < 0.05$ FDR, univariate t-test) between the 37 hROIs. T-values
335 varied from 2 to 25 (Figure 5). These 37 hROIs can be divided into two groups based on their
336 resting-state functional connectivity. A network connected the precuneus and temporal lobe
337 regions, including the hippocampus, the parahippocampal cortex, the temporal pole, and a
338 part of the fusiform gyrus. A second network connected mainly frontal regions, including the

339 inferior frontal sulcus and gyrus, the orbitofrontal cortex, the dorsal anterior cingulate cortex,
340 the supplementary motor area, and the anterior insula.

341 The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were connected to 22 and
342 27 hROIS, respectively. The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were
343 strongly connected to their group and many regions of the other group (see supplementary
344 materials for detailed results). The S_Orbital-2 was connected to 26 hROIs.

345

346 **4. Discussion**

347 This study aimed to identify the brain regions involved in attributing social status from the
348 visual analysis of adorned faces. Adorning one's body to transmit social information
349 represents a symbolic behavior that appeared at least 150,000 years ago and probably much
350 earlier. Therefore, we can assume that the networks revealed in the present study were, at
351 least to a degree, functional in the earliest *Homo sapiens* and contemporary or earlier
352 hominins displaying such behaviors.

353 These regions can be categorized into four groups: 1. occipitotemporal regions of the
354 ventral visual pathway, including lateral occipital regions, fusiform gyrus, parahippocampal
355 gyrus extending to the hippocampus, and the temporal poles; 2. regions belonging to the
356 salience network such as the anterior insula and the anterior cingulate cortex; 3. the
357 intraparietal sulcus; and 4. the ventral and dorsal regions of the lateral prefrontal cortex and
358 the orbitofrontal cortex.

359 Some of these regions were also activated in the 1-back task, indicating that they are not
360 specific to an explicit social attribution but may be involved in an implicit social appraisal.
361 This is the case for most visual regions (except Fusiform-4-R and Fusiform-2-L), the
362 intraparietal sulcus, and most of the thalamus and retrosplenial regions. In contrast, activity in
363 the inferior and orbital frontal areas, hippocampal and parahippocampal regions, the temporal
364 poles, and the salience network, including the anterior cingulate and parts of the anterior
365 insula, remained significant when activity in these regions during the 1-back task was
366 subtracted.

367

368 **4.1. Visual Ventral pathway and medial temporal regions**

369 Lateral and ventral occipital regions were more activated by the social status attribution than
370 by the assessment of decoration type. This suggests that deeper visual processing is required
371 to attribute a social status. Most of these occipitotemporal regions were also activated during

372 the 1-back task and were thus not specifically involved in assigning a social status to adorned
373 faces. However, two hROIs were significantly more activated during social status attribution
374 than in the 1-back task, namely G_Fusiform-2-L and G_Fusiform-4-R. The latter is
375 particularly interesting since it includes the so-called fusiform face area (FFA), which is
376 sensitive to face perception⁶⁴⁻⁶⁶ and lateralized in the right hemisphere⁶⁷. Thus, although all
377 conditions included face perception and none required specific attention to faces, FFA
378 appeared more solicited by social status assignment. It has been shown that FFA is sensitive
379 to physical characteristics and their possible social correlates^{68,69}. More recently, a study
380 showed that FFA processes characteristics such as social traits, gender, and high-level visual
381 features of faces⁷⁰ and might thus initiate the social processing of faces. The results of the
382 present study suggest that, in the context of social role attribution, FFA can process non-
383 physiognomic features. This is consistent with the fact that the FFA promotes holistic rather
384 than local processing⁷¹⁻⁷³. Ornamented faces may have been perceived as a whole in the
385 social attribution task, while attention was focused on details during the assessment of
386 decoration type and the 1-back task. In other words, attributing social status involves a more
387 complex process relying on a set of components, such as the types of decoration, their
388 association, their location on the face, and the face itself.

389 In summary, the activation of FFA in our social status assignment task could reflect
390 the implementation of preliminary social categorization processes based on a holistic analysis
391 of ornamented faces, which is further achieved in other regions of the brain, particularly the
392 orbitofrontal cortex.

393 In the anterior extension of the ventral visual pathway, we found that the hippocampus
394 and parahippocampal gyrus were more activated by the social status attribution than by the
395 ornament type assignment and significantly more activated when compared to the 1-back
396 task, reflecting their specificity to social status attribution. The hippocampus reflects episodic
397 memorization processes strongly involved in social cognition^{74,75}. The parahippocampus
398 appears to play, among others, a pivotal role in contextual associative processing^{76,77}, i.e., in
399 binding elements composing stimuli. It provides a unified context for further processing (see
400⁷⁸ for a review). In the framework of the present study, participants arbitrarily associated face
401 decorations with social status. After the fMRI sessions, they reported that once they had
402 established an ornament/status association strategy, they stuck to it throughout the sessions,
403 with exceptional random responses. Contextual associations were thus an essential aspect of
404 the processes involved in the status assignment task. The activation of the parahippocampal
405 cortex reasonably reflects the implementation of these processes. It has been suggested that

406 the anterior part of the parahippocampus preferentially processes non-spatial contextual
407 associations, and the posterior part, comprising the parahippocampal Place Area (PPA),
408 spatial associations ^{76,79}. In the present study, the activation of the anterior parahippocampus
409 is consistent with the non-spatial nature of the associations.

410 The activation of the medial temporal gyrus might be linked to one of the temporal poles.
411 Several studies have documented the involvement of the temporal pole in social cognition,
412 and this region is considered part of the social brain network ⁸⁰⁻⁸⁴. Although its role is still
413 under discussion, it has been proposed that this brain area is involved in encoding and
414 retrieving social knowledge ⁸⁵. As was the case in this study, assigning social status mobilizes
415 stereotypical social knowledge (e.g., the chief must have the most ornaments) and entails
416 encoding: The participants associated a type of ornamentation with a social role and created
417 an arbitrary social code that they reused throughout the task. Thus, we propose that the
418 parahippocampus and the temporal pole, which are strongly functionally connected, work in
419 synergy to facilitate the association of a type of ornamentation with a specific social status
420 and then to encode and restore this association.

421

422 **4.2. Inferior and orbitofrontal cortex**

423 Assigning a social status involved many frontal regions not solicited during the ornament type
424 attribution condition. However, the specific areas for explicit processes, i.e., activated in the
425 social attribution task compared to the 1-back task, were mainly in the lateral part of the
426 inferior frontal gyrus and the orbitofrontal cortex as defined by Rudebeck and Rich ⁸⁶. The
427 resting-state connectivity analysis showed that these regions were highly functionally linked.
428 Previous studies have emphasized the role of the orbitofrontal cortex in social cognition in
429 non-human primates and humans. It has been argued that this cortical area contains neurons
430 sensitive to representing social categories ⁸⁷ and evaluating social information ⁸⁸ in non-
431 human primates. In humans, a deficit in social perception after orbitofrontal cortex lesions ⁸⁹,
432 an inability to judge social traits in a decision-making task ⁹⁰, or acquired sociopathy have
433 been reported ⁹¹.

434 In healthy participants, fMRI studies have emphasized the role of the orbitofrontal
435 cortex in social cognition and social behavior (^{55,92}; See ⁶⁰ for a review) and, more
436 specifically, in explicit processing ⁹³. The orbitofrontal cortex is sensitive to non-verbal social
437 signals ⁵⁵. Recent results indicate that this area is critical in representing social status ⁹². A
438 recent fMRI study showed that the OFC represented the stereotypic social traits of others and
439 that its pattern of activity was predictive of individual choices, highlighting its critical role in

440 social decision-making ⁹⁴. In these studies, participants had to behave according to the facial
441 expression, attitude, or social category of the individuals presented in the experiment. Our
442 results extend these findings. Unlike previous studies, participants based their decision on
443 symbolic features (the type and arrangement of ornamentations), to which they arbitrarily
444 attributed social meaning. This implies that the role of the orbitofrontal cortex in social
445 decision-making is not restricted to processing stereotypical attitudes or social groups, a
446 capacity shared with non-human primates. Social evaluation based on symbolic external
447 attributes also involves this region in humans.

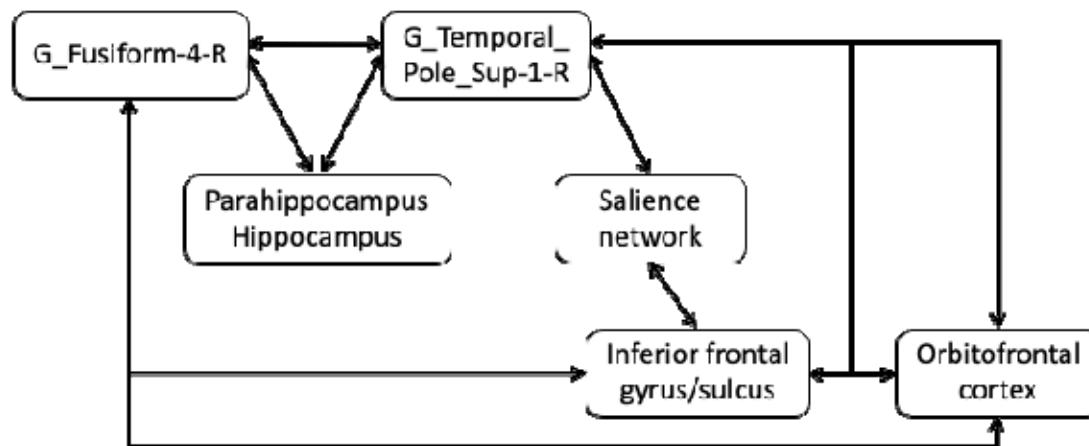
448 The social status attribution task heavily relies on high-order executive functions such
449 as attentional control, selection, and flexibility. The activation of the pars triangularis of the
450 inferior frontal gyrus extending to the inferior frontal sulcus reflects these aspects ⁹⁵.
451 Although the activation was bilateral, the right and left inferior frontal gyrus probably played
452 a different role in the task. The right inferior frontal gyrus is explicitly associated with high-
453 level social cognition ⁹⁶. The left inferior frontal gyrus is involved in selecting some aspects
454 or subsets of available information among competing alternatives ^{97,98}. This region also plays
455 a role in processing non-linguistic symbolic information ^{99,100}, consistent with the symbolic
456 value attributed by the participants to face adornments.

457 Overall, the prefrontal cortex's involvement in the present study underlines its role in
458 social decision-making. Our results extend their contribution to symbolic social
459 communication, here materialized by face ornamentations.

460

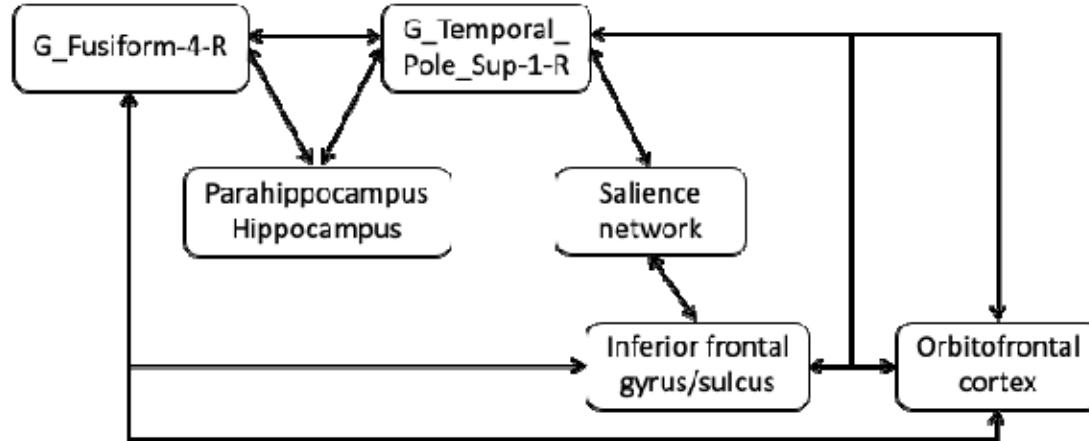
461 **4.3. Salience network**

462 Social status attribution elicited activation in the anterior insula, the dorsal anterior cingulate
463 cortex (dACC)/pre-SMA, and subcortical structures, such as the thalamus and the caudate
464 nuclei. These regions constitute the so-called salience network, whose key components are the
465 insula anterior and the dACC/pre-SMA ¹⁰¹⁻¹⁰³. This network is involved in selecting relevant
466 elements of the environment for perceptual decision-making ¹⁰⁴⁻¹⁰⁶. In our case, participants
467 had to extract salient information from the ornamented faces to associate the proposed social
468 status with one of the three faces presented to them. The salience network was also activated
469 in the 1-back task by the need to detect the repetition of ornamental patterns. However, the
470 greater uncertainty in decision-making during the attribution task can explain why activation
471 of the salience network was more extensive during status attribution than the 1-back task ¹⁰⁷.
472 To attribute a social status, participants had to make a forced choice among three possibilities,
473 with several plausible answers and had to compare the different options and arbitrate to

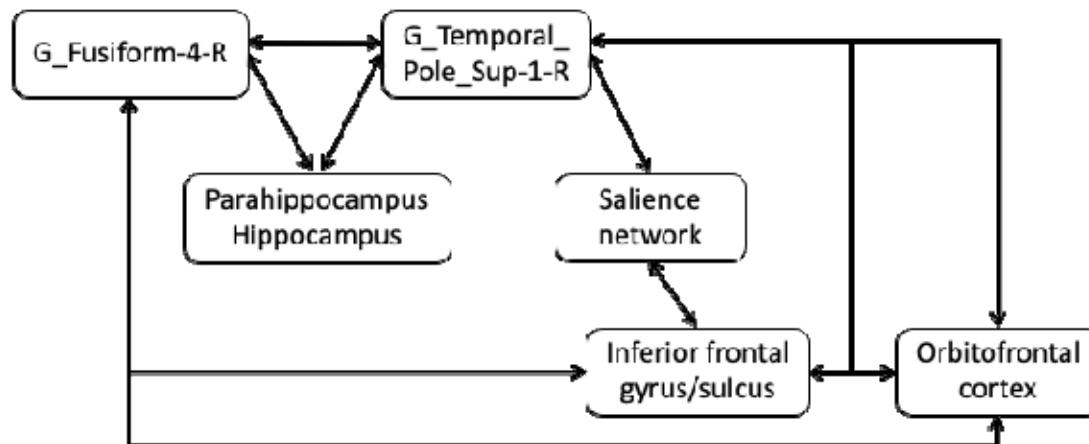

474 choose only one. These aspects of the task have probably triggered the activation of the
475 dACC/pre-SMA, belonging to the salience network. The dACC/pre-SMA has been reported
476 as involved in conflict and performance monitoring^{108–110}, and more recently in social
477 categorization domain¹¹¹.

478

479 **4.4. Resting-state functional connectivity**


480 Resting-state functional connectivity provides insight into the potential interactions between
481 neural assemblies activated by the social status assignment task. The G_Fusiform-4-R and the
482 G_Temporal_Pole_Sup-1-R were characterized by many connections with other activated
483 regions

(



500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1570
1571
1572
1573
1574
1575
1576
15

497 social status evaluation has been discussed above, could constitute the core network in the
498 social attribution task (

499
500 Figure 6). They must have allowed the integration of information leading to the assignment of
501 social status based on the perception of symbolic cues.

502
503 Figure 6. Schematic resting-state functional connectivity network between regions activated during a
504 social status attribution task based on symbolic culturalized faces. Black arrows indicate the reciprocal
505 resting-state functional connectivity between brain regions (univariate t-test, $p < 0.05$, FDR corrected).

506 Notably, none of the regions involved in assigning social status exclusively dealt with
507 social information. Most of these regions are involved in many cognitive functions. The
508 functional connection of structures whose processing properties are beneficial for the
509 execution of the task allows the social judgment function to emerge. Human connections

510 exceed those of animals, including primates, at both the structural and functional levels^{113–115}.
511 Thanks to creating functional connections (linking social cognition, memory, and executive
512 functions), humans could use symbolic items and markings to signify social status.
513

514 **5. Conclusion**

515 This study delved into the neural mechanisms involved in the social interpretation of facial
516 adornments and found that various brain regions, including the FFA, temporal poles, salience
517 network, and orbitofrontal cortex, were involved in this process. Furthermore, assigning a
518 social status from symbolic cues also activated the medial temporal regions and the inferior
519 frontal gyrus, reflecting the role of episodic memory, contextual association, and executive
520 functions. The complexity of this neural network raises questions about when it became fully
521 functional in our ancestors and whether it resulted from a gradual process of integration and
522 complexification or was already fully functional when the first archaeological evidence of
523 culturalization of the human face was recorded.

524 The gradual complexification and patchy emergence of face adornment technologies over the
525 last 500,000 years suggest a scenario of increasing but asynchronous integration of brain areas
526 involved in social status recognition based on facial culturalization. This growing integration
527 allowed the decoding of increasingly complex symbolic codes, supported by more demanding
528 technologies for face adornment.

529 The interplay between cultural and biological mechanisms likely drove this process, with
530 individuals gifted in acquiring, decoding, and creating these symbolic messages having
531 selective advantages that favored the permanent inscription of a more integrated connectivity
532 in the brain^{116–118}. A progressive co-option of brain regions has also been suggested for the
533 evolution of tool-making^{119–121}. It would have enabled the development of increasingly
534 complex tools.

535 The period between 140,000 and 70,000 years ago may have represented a key moment in
536 this integration process, as this was when red pigments use became almost ubiquitous at
537 African Middle Stone Age sites and marine shell beads were used for the first time in North
538 Africa, the Near East, and Southern Africa. This diversification of colors, shapes, and
539 technologies indicates a complexification of practices allowing wearers to use their faces to
540 communicate information about their social role using more complex shared symbolic codes.
541 It is reasonable to think that the human brain had largely equipped itself with the necessary
542 connections to process and interpret these stimuli 70,000 years ago.

543

544 **6. Acknowledgments**

545 We thank the Ginesis Lab (GIN, Fealinks, Labcom Programme 2016, ANR 16LCV2-0006-
546 01) for their help with data management and processing. We are also indebted to Violaine
547 Verrecchia and Marc Joliot for their help in data analysis. Our thanks also go to Marie
548 Guerlain, Annie Bardon-Lay, and her team members for their help with the face painting.
549 Warm thanks also go to all those who agreed to participate in our experiments.

550 **7. Authors' contributions**

551 MS, FE, SR, EM designed the study
552 MS, EM acquired the data
553 MS, EM analyzed the data
554 MS, FE, SR, EM wrote the article

555

556 **8. Fundings**

557 This work was supported by the CNRS project 80 Prime Neurobeads and a grant from the
558 IdEx Bordeaux/CNRS (PEPS 2015). Francesco d'Errico's work is supported by the European
559 Research Council through a Synergy Grant for the project Evolution of Cognitive Tools for
560 Quantification (QUANTA), No. 951388; the Research Council of Norway through its Centres
561 of Excellence funding scheme, SFF Centre for Early Sapiens Behaviour (SapienCE), project
562 number 262618, the Talents Program of the Bordeaux University [grant number:
563 191022_001] and the *Grand Programme de Recherche 'Human Past'* of
564 the *Initiative d'Excellence* (IdEx) of the Bordeaux University.

565 **9. Data Availability**

566 Raw BOLD values for all the hROIs and contrasts are available as supplementary material
567

568 **10. References**

- 569 1. Barth, F. *Ethnic Groups and Boundaries. The Social organization of culture*
570 *difference*. (George Allen and Uwin, 1969).
- 571 2. Dubin, L. S. *North American Indian Jewelry and Adornment. From Prehistory to the*
572 *Present*. (Harry N. Abrams Inc, 1999).

573 3. Hodder, I. *The Meanings of Things. Material Culture and Symbolic Expression.*
574 (Harper Collins, 1991).

575 4. Klumpp, D. & Kratz, C. Aesthetics, expertise, and ethnicity: Ogiek and Maasai
576 perspectives on personal ornament. in *Being Maasai: Ethnicity and Identity in East Africa*
577 (eds. Speart, T. & Waller, R.) 195–221 (1993).

578 5. Sanders, J. M. Ethnic Boundaries and Identity in Plural Societies. *Annu. Rev. Sociol.*
579 **28**, 327–357 (2002).

580 6. Dubin, L. S. *The history of beads: from 30,000 B.C. to the present.* (Thames and
581 Hudson, 1987).

582 7. Hatton, A., Collins, B., Schoville, B. J. & Wilkins, J. Ostrich eggshell beads from Ga-
583 Mohana Hill North Rockshelter, southern Kalahari, and the implications for understanding
584 social networks during Marine Isotope Stage 2. *PLOS ONE* **17**, e0268943 (2022).

585 8. Kuhn, S. L. & Stiner, M. C. Paleolithic Ornaments: Implications for Cognition,
586 Demography and Identity. *Diogenes* **54**, 40–48 (2007).

587 9. Kuper, H. Costume and Identity. *Comp. Stud. Soc. Hist.* **15**, 348–367 (1973).

588 10. Nițu, E.-C. *et al.* Mobility and social identity in the Mid Upper Paleolithic: New
589 personal ornaments from Poiana Cireșului (Piatra Neamă, Romania). *PLOS ONE* **14**,
590 e0214932 (2019).

591 11. Pitarch Martí, A., Wei, Y., Gao, X., Chen, F. & d'Errico, F. The earliest evidence of
592 coloured ornaments in China: The ochred ostrich eggshell beads from Shuidonggou Locality
593 2. *J. Anthropol. Archaeol.* **48**, 102–113 (2017).

594 12. *Beads and bead makers: gender, material culture, and meaning.* (Berg, 1998).

595 13. Vanhaeren, M. & d'Errico, F. Aurignacian ethno-linguistic geography of Europe
596 revealed by personal ornaments. *J. Archaeol. Sci.* **33**, 1105–1128 (2006).

597 14. Wright, D. *et al.* An Early Upper Palaeolithic decorated bone tubular rod from Pod
598 Hradem Cave, Czech Republic. *Antiquity* **88**, 30–46 (2014).

599 15. Beckwith, C. & Fisher, A. *African ceremonies.* (Harry N. Abrams, 1999).

600 16. Carey, M. *Beads and Beadwork of West and Central Africa.* (Shire, 1991).

601 17. Carter, B. & Helmer, M. Elite Dress and Regional Identity: Chimú-Inka Perforated
602 Ornaments from Samanco, Nepeña Valley, Coastal Peru. *BEADS J. Soc. Bead Res.* **20**, 46–74
603 (2015).

604 18. Ogundiran, A. Of Small Things Remembered: Beads, Cowries, and Cultural
605 Translations of the Atlantic Experience in Yorubaland. *Int. J. Afr. Hist. Stud.* **35**, 427–457
606 (2002).

607 19. Twala, R. G. Beads as regulating the social life of the Zulu and Swazi. *Afr. Stud.* **10**,
608 113–123 (1958).

609 20. Brooks, A. S. *et al.* Long-distance stone transport and pigment use in the earliest
610 Middle Stone Age. *Science* **360**, 90–94 (2018).

611 21. Dapschauskas, R., Göden, M. B., Sommer, C. & Kandel, A. W. The Emergence of
612 Habitual Ochre Use in Africa and its Significance for The Development of Ritual Behavior
613 During The Middle Stone Age. *J. World Prehistory* **35**, 233–319 (2022).

614 22. Rosso, D. E. The first uses of colour: what do we know? *J. Anthropol. Sci.* 45–69
615 (2022) doi:10.4436/JASS.10005.

616 23. Watts, I., Chazan, M. & Wilkins, J. Early Evidence for Brilliant Ritualized Display:
617 Specularite Use in the Northern Cape (South Africa) between ~500 and ~300 Ka. *Curr.*
618 *Anthropol.* **57**, 287–310 (2016).

619 24. de Lumley, H. *et al.* *Les crayons d'ocre du site acheuléen de Terra Amata.* (CNRS
620 Editions, 2016).

621 25. Roebroeks, W. *et al.* Use of red ochre by early Neandertals. *Proc. Natl. Acad. Sci.* **109**,
622 1889–1894 (2012).

623 26. d'Errico, F. L'émergence des comportements symboliques en Afrique et en Asie. in
624 *Atas do Côa Symposium: novos olhares sobre a arte paleolítica*: Museu do Côa: 4 a 6
625 dezembro 2018 (eds. Aubry, T., Santos, A. T. & Martins, A.) 22–51 (Associação dos
626 Arqueólogos Portugueses; Fundação Côa Parque, 2021).

627 27. Langley, M. C., Clarkson, C. & Ulm, S. Symbolic expression in Pleistocene Sahul,
628 Sunda, and Wallacea. *Quat. Sci. Rev.* **221**, 105883 (2019).

629 28. d'Errico, F., Salomon, H., Vignaud, C. & Stringer, C. Pigments from the Middle
630 Palaeolithic levels of Es-Skhul (Mount Carmel, Israel). *J. Archaeol. Sci.* **37**, 3099–3110
631 (2010).

632 29. Dayet, L., Le Bourdonnec, F.-X., Daniel, F., Porraz, G. & Texier, P.-J. Ochre
633 Provenance and Procurement Strategies During The Middle Stone Age at Diepkloof Rock
634 Shelter, South Africa: Ochre during the MSA at Diepkloof rock shelter. *Archaeometry* **58**,
635 807–829 (2016).

636 30. Hovers, E., Ilani, S., Bar-Yosef, O. & Vandermeersch, B. An Early Case of Color
637 Symbolism: Ochre Use by Modern Humans in Qafzeh Cave. *Curr. Anthropol.* **44**, 491–522
638 (2003).

639 31. Watts, I. Red ochre, body painting, and language: interpreting the Blombos ochre. in
640 *The cradle of language* (eds. Botha, R. & Knight, C.) vol. 2 93–129 (2009).

641 32. Watts, I. The pigments from Pinnacle Point Cave 13B, Western Cape, South Africa. *J.
642 Hum. Evol.* **59**, 392–411 (2010).

643 33. Godfrey-Smith, D. I. & Ilani, S. Past thermal history of goethite and hematite
644 fragments from Qafzeh Cave deduced from thermal activation characteristics of the 110°C TL
645 peak of enclosed quartz grains. *Rev. Archéom.* **28**, 185–190 (2004).

646 34. Salomon, H. *et al.* Selection and heating of colouring materials in the Mousterian level
647 of Es-Skhul (c. 100 000 years BP, Mount Carmel, Israel). *Archaeometry* **54**, 698–722 (2012).

648 35. Wadley, L. Post-depositional heating may cause over-representation of red-coloured
649 ochre in stone age sites. *South Afr. Archaeol. Bull.* **64**, 166–171 (2009).

650 36. Rosso, D. E., d'Errico, F. & Queffelec, A. Patterns of change and continuity in ochre
651 use during the late Middle Stone Age of the Horn of Africa: The Porc-Epic Cave record.
652 *PLOS ONE* **12**, e0177298 (2017).

653 37. Bar-Yosef Mayer, D. E., Vandermeersch, B. & Bar-Yosef, O. Shells and ochre in
654 Middle Paleolithic Qafzeh Cave, Israel: indications for modern behavior. *J. Hum. Evol.* **56**,
655 307–314 (2009).

656 38. Bar-Yosef Mayer, D. E. *et al.* On holes and strings: Earliest displays of human
657 adornment in the Middle Palaeolithic. *PLOS ONE* **15**, e0234924 (2020).

658 39. Bouzouggar, A. *et al.* 82,000-year-old shell beads from North Africa and implications
659 for the origins of modern human behavior. *Proc. Natl. Acad. Sci.* **104**, 9964–9969 (2007).

660 40. d'Errico, F., Henshilwood, C., Vanhaeren, M. & van Niekerk, K. Nassarius
661 kraussianus shell beads from Blombos Cave: evidence for symbolic behaviour in the Middle
662 Stone Age. *J. Hum. Evol.* **48**, 3–24 (2005).

663 41. d'Errico, F. *et al.* Additional evidence on the use of personal ornaments in the Middle
664 Paleolithic of North Africa. *Proc. Natl. Acad. Sci.* **106**, 16051–16056 (2009).

665 42. Sehassseh, E. M. *et al.* Early Middle Stone Age personal ornaments from Bizmoune
666 Cave, Essaouira, Morocco. *Sci. Adv.* **7**, eabi8620 (2021).

667 43. Shipton, C. *et al.* 78,000-year-old record of Middle and Later Stone Age innovation in
668 an East African tropical forest. *Nat. Commun.* **9**, 1832 (2018).

669 44. Steele, T. E., Álvarez-Fernández, E. & Hallet-Desguez, E. Personal ornaments in early
670 prehistory a review of shells as personal ornamentation during the African Middle Stone Age.
671 *PaleoAnthropology* 24–51 (2019).

672 45. Vanhaeren, M. *et al.* Middle Paleolithic Shell Beads in Israel and Algeria. *Science*
673 **312**, 1785–1788 (2006).

674 46. d'Errico, F., Henshilwood, M. C., Maureille, G. B., Gambier, D. & Tillier, A. M.

675 From the origin of language to the diversification of languages. *Becom. Eloquent Adv. Emergence Lang. Hum. Cogn. Mod. Cult.* (2009).

676

677 47. Davidson, I. & Noble, W. The Archaeology of Perception: traces of depiction and

678 language. *Curr. Anthropol.* **30**, 125–154 (1989).

679 48. Marshack, A. Some Implications of the Paleolithic Symbolic Evidence For the Origin

680 of Language. *Curr. Anthropol.* **17**, 274–282 (1976).

681 49. Vanhaeren, M., d'Errico, F., van Niekerk, K. L., Henshilwood, C. S. & Erasmus, R.

682 M. Thinking strings: Additional evidence for personal ornament use in the Middle Stone Age

683 at Blombos Cave, South Africa. *J. Hum. Evol.* **64**, 500–517 (2013).

684 50. Adolphs, R. The Social Brain: Neural Basis of Social Knowledge. *Annu. Rev. Psychol.*

685 **60**, 693–716 (2009).

686 51. Frith, C. D. The social brain? *Philos. Trans. R. Soc. B Biol. Sci.* **362**, 671–678 (2007).

687 52. Karafin, M. S., Tranel, D. & Adolphs, R. Dominance Attributions Following Damage

688 to the Ventromedial Prefrontal Cortex. *J. Cogn. Neurosci.* **16**, 1796–1804 (2004).

689 53. Chiao, J. Y. Neural basis of social status hierarchy across species. *Curr. Opin.*

690 *Neurobiol.* **20**, 803–809 (2010).

691 54. Chiao, J. Y. *et al.* Neural representations of social status hierarchy in human inferior

692 parietal cortex. *Neuropsychologia* **47**, 354–363 (2009).

693 55. Marsh, A. A., Blair, K. S., Jones, M. M., Soliman, N. & Blair, R. J. R. Dominance and

694 Submission: The Ventrolateral Prefrontal Cortex and Responses to Status Cues. *J. Cogn.*

695 *Neurosci.* **21**, 713–724 (2009).

696 56. Zink, C. F. *et al.* Know Your Place: Neural Processing of Social Hierarchy in Humans.

697 *Neuron* **58**, 273–283 (2008).

698 57. Jaubert, J., Maureille, B. & Peresani, M. Spiritual and symbolic activities of

699 Neanderthals. in *Updating Neanderthals* 261–274 (Elsevier, 2022). doi:10.1016/B978-0-12-

700 821428-2.00005-6.

701 58. Vanhaeren, M., Julien, M., d'Errico, F., Mourer-Chauviré, C. & Lozouet, P. Les objets

702 de parure. in *Le Châtelperronien de la Grotte du Renne (Arcy-Sur-Cure)*. (ed. Julien, M.)

703 259–285 (2019).

704 59. Zilhão, J. *et al.* Symbolic use of marine shells and mineral pigments by Iberian

705 Neandertals. *Proc. Natl. Acad. Sci.* **107**, 1023–1028 (2010).

706 60. Forbes, C. E. & Grafman, J. The Role of the Human Prefrontal Cortex in Social

707 Cognition and Moral Judgment. *Annu. Rev. Neurosci.* **33**, 299–324 (2010).

708 61. Joliot, M. *et al.* AICHA: An atlas of intrinsic connectivity of homotopic areas. *J.*

709 709 *Neurosci. Methods* **254**, 46–59 (2015).

710 62. Whitfield-Gabrieli, S. & Nieto-Castanon, A. *Conn*□: A Functional Connectivity
711 Toolbox for Correlated and Anticorrelated Brain Networks. *Brain Connect.* **2**, 125–141
712 (2012).

713 63. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-
714 scale automated synthesis of human functional neuroimaging data. *Nat. Methods* **8**, 665–670
715 (2011).

716 64. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in
717 human extrastriate cortex specialized for face perception. *J. Neurosci.* **17**, 4302–4311 (1997).

718 65. Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized for
719 the perception of faces. *Philos. Trans. R. Soc. B Biol. Sci.* **361**, 2109–2128 (2006).

720 66. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-Specific Processing in the
721 Human Fusiform Gyrus. *J. Cogn. Neurosci.* **9**, 605–610 (1997).

722 67. Rossion, B., Hanseeuw, B. & Dricot, L. Defining face perception areas in the human
723 brain: A large-scale factorial fMRI face localizer analysis. *Brain Cogn.* **79**, 138–157 (2012).

724 68. Contreras, J. M., Banaji, M. R. & Mitchell, J. P. Multivoxel Patterns in Fusiform Face
725 Area Differentiate Faces by Sex and Race. *PLoS ONE* **8**, e69684 (2013).

726 69. Freeman, J. B., Rule, N. O., Adams, R. B. & Ambady, N. The Neural Basis of
727 Categorical Face Perception: Graded Representations of Face Gender in Fusiform and
728 Orbitofrontal Cortices. *Cereb. Cortex* **20**, 1314–1322 (2010).

729 70. Tsantani, M. *et al.* FFA and OFA Encode Distinct Types of Face Identity Information.
730 *J. Neurosci.* **41**, 1952–1969 (2021).

731 71. Andrews, T. J., Davies-Thompson, J., Kingstone, A. & Young, A. W. Internal and
732 External Features of the Face Are Represented Holistically in Face-Selective Regions of
733 Visual Cortex. *J. Neurosci.* **30**, 3544–3552 (2010).

734 72. Kok, E. M. *et al.* Holistic processing only? The role of the right fusiform face area in
735 radiological expertise. *PLOS ONE* **16**, e0256849 (2021).

736 73. Zhang, J., Li, X., Song, Y. & Liu, J. The Fusiform Face Area Is Engaged in Holistic,
737 Not Parts-Based, Representation of Faces. *PLoS ONE* **7**, e40390 (2012).

738 74. Laurita, A. C. & Nathan Spreng, R. The Hippocampus and Social Cognition. in *The*
739 *Hippocampus from Cells to Systems* (eds. Hannula, D. E. & Duff, M. C.) 537–558 (Springer
740 International Publishing, 2017). doi:10.1007/978-3-319-50406-3_17.

741 75. Montagrin, A., Saiote, C. & Schiller, D. The social hippocampus: M ONTAGRIN ET AL .
742 *Hippocampus* **28**, 672–679 (2018).

743 76. Aminoff, E., Gronau, N. & Bar, M. The Parahippocampal Cortex Mediates Spatial and
744 Nonspatial Associations. *Cereb. Cortex* **17**, 1493–1503 (2007).

745 77. Li, M., Lu, S. & Zhong, N. The Parahippocampal Cortex Mediates Contextual
746 Associative Memory: Evidence from an fMRI Study. *BioMed Res. Int.* **2016**, 1–11 (2016).

747 78. Aminoff, E., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in
748 cognition. *Trends Cogn. Sci.* **17**, 379–390 (2013).

749 79. Bar, M. & Aminoff, E. Cortical analysis of visual context. *Neuron* **38**, 347–358
750 (2003).

751 80. Balgova, E., Diveica, V., Walbrin, J. & Binney, R. J. The role of the ventrolateral
752 anterior temporal lobes in social cognition. *Hum. Brain Mapp.* **43**, 4589–4608 (2022).

753 81. Bechara, A. The neurology of social cognition. *Brain* **125**, 1673–1675 (2002).

754 82. Frith, U. & Frith, C. The social brain: allowing humans to boldly go where no other
755 species has been. *Philos. Trans. R. Soc. B Biol. Sci.* **365**, 165–176 (2010).

756 83. Olson, I. R., Plotzker, A. & Ezzyat, Y. The Enigmatic temporal pole: a review of
757 findings on social and emotional processing. *Brain* **130**, 1718–1731 (2007).

758 84. Ross, L. A. & Olson, I. R. Social cognition and the anterior temporal lobes.
759 *NeuroImage* **49**, 3452–3462 (2010).

760 85. Olson, I. R., McCoy, D., Klobusicky, E. & Ross, L. A. Social cognition and the
761 anterior temporal lobes: a review and theoretical framework. *Soc. Cogn. Affect. Neurosci.* **8**,
762 123–133 (2013).

763 86. Rudebeck, P. H. & Rich, E. L. Orbitofrontal cortex. *Curr. Biol.* **28**, R1083–R1088
764 (2018).

765 87. Barat, E., Wirth, S. & Duhamel, J.-R. Face cells in orbitofrontal cortex represent social
766 categories. *Proc. Natl. Acad. Sci.* **115**, (2018).

767 88. Azzi, J. C. B., Sirigu, A. & Duhamel, J.-R. Modulation of value representation by
768 social context in the primate orbitofrontal cortex. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 2126–
769 2131 (2012).

770 89. Mah, L., Arnold, M. C. & Grafman, J. Impairment of Social Perception Associated
771 With Lesions of the Prefrontal Cortex. *Am. J. Psychiatry* **161**, 1247–1255 (2004).

772 90. Xia, C., Stolle, D., Gidengil, E. & Fellows, L. K. Lateral Orbitofrontal Cortex Links
773 Social Impressions to Political Choices. *J. Neurosci.* **35**, 8507–8514 (2015).

774 91. Blair, R. J. R. Impaired social response reversal: A case of ‘acquired sociopathy’.
775 *Brain* **123**, 1122–1141 (2000).

776 92. Koski, J. E., Collins, J. A. & Olson, I. R. The neural representation of social status in

777 the extended face-processing network. *Eur. J. Neurosci.* **46**, 2795–2806 (2017).

778 93. Cunningham, W. A. & Zelazo, P. D. Attitudes and evaluations: a social cognitive
779 neuroscience perspective. *Trends Cogn. Sci.* **11**, 97–104 (2007).

780 94. Kobayashi, K., Kable, J. W., Hsu, M. & Jenkins, A. C. Neural representations of
781 others' traits predict social decisions. *Proc. Natl. Acad. Sci.* **119**, e2116944119 (2022).

782 95. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal
783 executive function. *Trends Cogn. Sci.* **11**, 229–235 (2007).

784 96. Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S. & Eickhoff, S. B.
785 Functional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-
786 Based Parcellation. *Cereb. Cortex* **29**, 1532–1546 (2019).

787 97. Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left
788 inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. *Proc. Natl.
789 Acad. Sci.* **94**, 14792–14797 (1997).

790 98. Zhang, J. X., Feng, C.-M., Fox, P. T., Gao, J.-H. & Tan, L. H. Is left inferior frontal
791 gyrus a general mechanism for selection? *NeuroImage* **23**, 596–603 (2004).

792 99. Muayqil, T., Davies-Thompson, J. & Barton, J. J. S. Representation of visual symbols
793 in the visual word processing network. *Neuropsychologia* **69**, 232–241 (2015).

794 100. Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F. & Braun, A. R. Symbolic gestures
795 and spoken language are processed by a common neural system. *Proc. Natl. Acad. Sci.* **106**,
796 20664–20669 (2009).

797 101. Menon, V. Salience Network. in *Brain Mapping* 597–611 (Elsevier, 2015).
798 doi:10.1016/B978-0-12-397025-1.00052-X.

799 102. Seeley, W. W. *et al.* Dissociable Intrinsic Connectivity Networks for Salience
800 Processing and Executive Control. *J. Neurosci.* **27**, 2349–2356 (2007).

801 103. Zhou, K. *et al.* The Contribution of Thalamic Nuclei in Salience Processing. *Front.
802 Behav. Neurosci.* **15**, 634618 (2021).

803 104. Chand, G. B. & Dhamala, M. The salience network dynamics in perceptual decision-
804 making. *NeuroImage* **134**, 85–93 (2016).

805 105. Lamichhane, B., Adhikari, B. M. & Dhamala, M. Salience Network Activity in
806 Perceptual Decisions. *Brain Connect.* **6**, 558–571 (2016).

807 106. Uddin, L. Q. Salience processing and insular cortical function and dysfunction. *Nat.
808 Rev. Neurosci.* **16**, 55–61 (2015).

809 107. White, T. P., Engen, N. H., Sørensen, S., Overgaard, M. & Shergill, S. S. Uncertainty
810 and confidence from the triple-network perspective: Voxel-based meta-analyses. *Brain Cogn.*

811 85, 191–200 (2014).

812 108. Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior
813 cingulate cortex: an update. *Trends Cogn. Sci.* **8**, 539–546 (2004).

814 109. Dosenbach, N. U. F. *et al.* A Core System for the Implementation of Task Sets.
815 *Neuron* **50**, 799–812 (2006).

816 110. Neta, M., Schlaggar, B. L. & Petersen, S. E. Separable responses to error, ambiguity,
817 and reaction time in cingulo-opercular task control regions. *NeuroImage* **99**, 59–68 (2014).

818 111. Stolier, R. M. & Freeman, J. B. A Neural Mechanism of Social Categorization. *J.*
819 *Neurosci.* **37**, 5711–5721 (2017).

820 112. Sherman, M. T., Seth, A. K. & Kanai, R. Predictions Shape Confidence in Right
821 Inferior Frontal Gyrus. *J. Neurosci.* **36**, 10323–10336 (2016).

822 113. Mars, R. B. *et al.* Whole brain comparative anatomy using connectivity blueprints.
823 *eLife* **7**, e35237 (2018).

824 114. Thiebaut de Schotten, M. & Forkel, S. J. The emergent properties of the connected
825 brain. *Science* **378**, 505–510 (2022).

826 115. Xu, T. *et al.* Cross-species functional alignment reveals evolutionary hierarchy within
827 the connectome. *NeuroImage* **223**, 117346 (2020).

828 116. Colagè, I. & d'Errico, F. Culture: The Driving Force of Human Cognition. *Top. Cogn.*
829 *Sci.* (2018) doi:10.1111/tops.12372.

830 117. Colagè, I. & d'Errico, F. The Roots of Creativity: investing in Cultural Transmission.
831 *Acta Philos.* **32**, 95–116 (2023).

832 118. d'Errico, F. & Colagè, I. Cultural Exaptation and Cultural Neural Reuse: A
833 Mechanism for the Emergence of Modern Culture and Behavior. *Biol. Theory* **13**, 213–227
834 (2018).

835 119. Stout, D., Hecht, E., Khreisheh, N., Bradley, B. & Chaminade, T. Cognitive Demands
836 of Lower Paleolithic Toolmaking. *PLOS ONE* **10**, e0121804 (2015).

837 120. Hecht, E. E. *et al.* Acquisition of Paleolithic toolmaking abilities involves structural
838 remodeling to inferior frontoparietal regions. *Brain Struct. Funct.* **220**, 2315–2331 (2015).

839 121. Putt, S., Wijekumar, S. & Spencer, J. P. Prefrontal cortex activation supports the
840 emergence of early stone age toolmaking skill. *NeuroImage* **199**, 57–69 (2019).

841