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ABSTRACT 

 Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction 

behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and 

drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes 

unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2%  of expressed genes within microglia, 

oligodendrocytes, and astrocytes,  with prominent activation of the immune response including interferon, NFkB 

signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling 

and plasticity genes in VM non-dopaminergic neurons.  VM transcriptomic reprogramming in the context of opioid 

exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader 

population, thereby pointing to heritable risk architectures in the genomic organization of the brain9s reward 

circuitry.  
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INTRODUCTION 

Ventral midbrain (VM), including the ventral tegmental area (VTA) and substantia nigra (SN)1,2, 

is important for mediating habitual behaviors and salience of cues associated with drug use, as well 

as withdrawal-related anhedonia and dysphoria3,4. It has become increasingly clear in recent years 

that, in addition to the well-established roles of DA and non-DA (e.g., GABAergic) neurons, the VM9s 

glial and other non-neuronal populations may play an important role for drug responsiveness and 

substance use. To mention just three representative examples, excessive activation of VM microglia 

is thought to disrupt chloride homeostasis in GABA neurons, which in turn, negatively affects opioid- 

and stimulant-induced dopamine release and associated reward behaviors5. Likewise, VM astrocytes 

play an essential role in drug-induced synaptic plasticity in DA neurons6, a reflection of astrocytic 

regulation of neuronal glutamine supply and glutamatergic neurotransmission7. Finally, 

oligodendrogenesis in VM is essential for morphine-mediated reward behavior, and proliferation and 

differentiation of VM oligodendrocytes is regulated by the firing activity of their surrounding 

dopaminergic neurons, in addition to direct effects exerts by activated opioid receptors expressed on 

the oligodendrocytes8. 

   

However, despite these intriguing mechanistic studies in animal models, the functional and 

clinical significance of VM glial populations in subjects diagnosed with substance use disorder 

remains unexplored. To this end, cell-specific transcriptomic profiling of VM dissected from human 

post-mortem brain could deliver critical insights. This task is particularly urgent for opioid use disorder 

(OUD), considering that opioid overdose (OD) is now the leading cause of accidental deaths in the 

United States, with ~70,000 deaths annually reflecting a > 8-fold increase over the course of just two 

decades9. However, to date, with the exception of a single study profiling RNA from VM bulk tissue in 

a limited cohort of cases and controls10, no knowledge exists about genome-scale dysregulation 

associated with chronic opioid exposure and overdose. Further, RNA-seq profiling of VM bulk tissue 

is insufficient to disentangle cell type-specific contributions in neuropsychiatric disease11.  

 

Of note, recent pilot studies exploring adult postmortem human VM single cell genomics (by 10x 

chromium single nuclei transcriptomic profiling; Smajic and colleagues12 , and others13, reported very 

high recovery rates of glial and other non-neuronal nuclei in these 8dopaminergic9 brain structures, 

with >95-96% of the total population of nuclei recovered from the SN contributed by prototypical glia, 

including oligodendrocytes and their precursors, astrocytes, and microglia. In contrast, DA and GABA 

neurons taken together contributed only a very minor (< 4%) share of nuclei in this type of single 
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nuclei RNA-seq assay12,13. This approach thus lends itself to an in-depth characterization of opioid-

related changes in gene expression in these relatively under-studied glial cell types in human VM. 

 

Here, we present our findings from a transcriptomic study at single nuclei resolution in the VM, 

built from two independent case-control cohorts (totaling 95 subjects) from different geographical 

areas in the U.S. We report, for the first time, highly reproducible alterations affecting hundreds of 

microglia-, astrocyte- and oligodendroglia-associated transcripts. Remarkably, these widespread, cell 

type-specific disruptions of the glial VM transcriptome in opioid overdose cases occurred in the 

context of completely conserved cellular composition, with stoichiometric proportions for all neuronal 

and glial subtypes indistinguishable between cases and controls. Our findings point to profound 

alterations of gene expression in victims of opioid overdose,  indicative of neuroinflammation and 

activation of cytokine signaling in the VM,  primarily affecting microglia and astrocytes, with additional 

alterations of oligodendrocyte-specific transcriptomes. More broadly, the dataset presented here will 

provide a much needed human neurogenomics resource at single cell resolution for the wider field of 

drug abuse research. 

 

 

RESULTS 

Chronic opioid exposure does not alter the cellular composition of the ventral midbrain 

We generated VM single nuclei RNA-seq libraries for 95 brain donors  (84M/11F), including 45 subjects 

with documented histories of opioid abuse and overdose, and 50 demographically-matched, opioid-free control 

subjects, collected from two geographically distinct regions within the U.S. (greater Detroit area, Michigan and 

Miami, Florida) (Figure 1A, Table S1). Each VM sample included both substantia nigra and the adjacent 

ventral tegmental area (SN/VTA) (see Methods). Nuclei were processed in pools of 3-4 brains using the 10X 

Chromium system followed by Illumina sequencing, read alignment and processing by 10X Cellranger. Each 

single nucleus was matched to a donor using Demuxlet, confirming a 100% match by donor by pool against 

the background of all 95 donors (Figure S1A). After removal of doublets and quality-control filtering (see 

Methods), we obtained a total of 212,713 transcriptionally profiled single nuclei, each unique to a singular donor 

(median, 2,008 nuclei/donor). We collected 2,696~21,363 (median, 8,274) reads/nucleus (Table S2) and 

measured the expression of 1,383~5,079 (median, 3,070) genes/nucleus.  Total numbers of single 
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nuclei/specimen, genes called/single nucleus/specimen and read depth/nucleus/specimen showed no 

Figure 1: Consistent proportions of VM cell types across specimen collection sites and 

cohorts (A) Experimental design and workflow for N=95 VM samples, including collection at two 

different geographical areas, pooling of 3-4 VM/substantia nigra specimens, nuclei purification by 

FACS and 10x chromium snRNA-seq pipeline and genetic fingerprinting of nuclei by donor, yielding a 

total of 212,713 nuclei. (B) Marker gene expression for each of the 10 glial and neuronal 

subpopulations as indicated. DA, dopaminergic neuron. non-DA, non-dopaminergic neurons;  ODC 

oligodendrocyte, OPC, oligodendrocyte precursor cell. Color represents the ratio of average gene 

expression across cells in the cell type relative to maximum in the most highly enriched in some cell-

type.(C) Uniform Manifold Approximation and Projection (UMAP) plot showing identified 10 major cell 

types by cluster, as indicated,  for total collection of n=212,713 nuclei. (D) Proportional representation 

(mean and S.D. of each of the 10 major cell types by diagnosis (red opioid-related death, blue 

control) as indicated. (E) VM cell type composition by UMAP plot, shown for cases and controls 

separately for each of the two collection sites. 
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significant differences between cases and controls (Figure S1B-D).  

 

Resolving the entire collection of 212,713 nuclei  by cluster analysis in Seurat v.4.0 with 2,000 highly 

variable genes and 50 harmony-adjusted principal components produced in the Uniform Manifold 

Approximation and Projection (UMAP) plot 10 principal cell types, further confirmed by computational 

annotation to a reference dataset built from 18 SN samples from an independent study14 (Figure S1E-G) and 

by marker gene expression (Figure 1B, C). Representative examples of gene expression uniquely defining a 

specific cell type include oligodendrocyte transcription factors 1 & 2 (OLIG1/2) for oligodendrocyte precursor 

cells (OPCs), myelin-associated oligodendrocyte basic  protein (MOBP) for oligodendrocytes (ODCs), the 

classical astrocytic markers Aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP), complement  and 

chemokine signaling genes C3 and CX3CR1 for microglia, neurotransmitter biosynthetic genes for dopamine 

(DA) neurons (dopa decarboxylase and tyrosine hydroxylase [DDC, TH]) and non-DA neurons representing  

gabaergic (glutamic acid decarboxylase GAD1/2) and glutamatergic (SLC17A17) neurons, and various 

markers specific to each of the remaining cell types including endothelium, pericytes, ependyma and T-

lymphocytes  (Figure 1B). 

We then asked whether opioid exposure altered the proportions of various cell types. In controls, 

oligodendrocytes (ODC) and their precursors (OPC) taken together comprised 64.3% of all SN nuclei, a 

proportion that is highly consistent with an independent dataset14, followed by astrocytes (15.0%) and microglia 

(13.5%). In contrast,  DA and GABA/non-DA neurons together accounted for 3.8% of VM nuclei, while 

pericytes, endothelium, T-cells, and ependyma together represented the remaining 3.1% of nuclei in our VM 

specimens from control cases. (Figure 1D). Of note, our overdose cases showed very similar numbers and 

proportions for each cell type compared to controls.  We conclude that opioid exposure and OD is not 

associated with proportional shifts among the neuronal and glial constituents in the VM (FIg. 1D). Consistent 

with this observation, case and control groups from each of our two collection areas, when plotted separately 

into our UMAP coordinates, showed highly similar distributions by cell type (Fig. 1E). 
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Hundreds of glial transcripts show altered expression in opioid-exposed midbrain  

Next, we explored cell-type specific differential gene expression (DEG) by diagnosis (history of opioid use 

and overdose vs. drug-free control). Focusing on autosomal gene expression, we first obtained a counts matrix 

of 30,801 genes, presenting in 531 combinations (each comprised of a minimum of 30 single nuclei) defined 

by sample and cell type.  Importantly, the Detroit and Miami cohorts, each analyzed separately, showed on a 

genome-wide scale strong positive correlations for cell-type specific transcriptome differences between their 

respective cases and controls, speaking to the generalizability of findings. Specifically, the highest z-score 

correlations (Miami vs. Detroit) were observed for OPC (R=0.44), ODC (R=0.32), astrocytes (R=0.30) and 

microglia (R=0.29) (P< 2.2-10-16) (Figure S2A),  

Therefore, in order to further examine cell type-specific gene expression changes in the VM from overdose 

cases, we next conducted differential gene expression (DEG) analysis by combining the Detroit and Miami 

cohorts, using sex, genetic ancestry (genotype principal components), age, and postmortem confounders (e.g. 

brain pH) as covariates. Our initial round of covariate-corrected DEG analysis, with a log fold-change threshold 

(FCT)  >0.25 and FDR corrected P <0.1, we called 5,239 DEGs from a total of 25,728 genes included in the 

DEG analyses, with 2,999 up- and 2,381 down-regulated,  with many of these genes dysregulated in more 

than one cell type (Table S3). However, the impact of OD on the genome-wide VM transcriptome showed 

striking disparities by cell-type due to the preponderance of glial-specific alterations. Thus, 9.5% (2,131/22,536) 

of microglia-, and 7.5-6.2% (1,503/20,050 to 1,462/22,536) of astrocyte- and ODC/OPC-associated transcripts 

were differentially regulated in comparison to drug-free control cases. In sharp contrast, only 0.32% (70/21,881) 

of the GABA/non-DA neuronal transcriptome, and none (0/15,041) of DA neuron expressed transcripts, were 

detected as altered in OD cases (Table S3). Furthermore, while the largest share of DEG, or 2,131/5,239 

(42.5%) was contributed by the microglial population, each of the major glial subtypes shared between 246-

395 DEGs with at least one additional glial subtype (Figure 2), with shared directionality in a large majority of 

these DEGs (83-95%, depending on cell type) (Figure S2B).  
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Transcriptomic signatures of opioid-exposed midbrain include glial activation and downregulation 

of synaptic functions in non-dopaminergic neurons 

We noted that expression of molecules broadly linked to glial activation and neuroinflammation, including 

STAT3, STAT5A/B and other members of the STAT (Signal Transducer and Activator of Transcription) 

transcription factor family15,16 were upregulated in various glial populations of OD VM (Table S3). Therefore, 

in order to explore this phenomenon on a genome-wide scale, we next conducted cell-type specific gene 

ontology (GO) over-representation analyses. Indeed, up-regulation of immune response pathways including, 

for example, interferon, NFkB signaling, and cell motility ranked top in all glial populations of VM, including 

astrocytes, pericytes, microglia, and ODC/OPC (Figure 3, Figures S3,S4, Table S4). In striking contrast to 

these types of glial activation, top ranking GOs enriched in neuronal DEGs revealed downregulation of 

functions related to synaptic connectivity including ionotropic glutamate receptor signaling, long-term 

Figure 2: Representation of differentially expressed genes (DEGs) shared across 

VM cell types. (left) Counts of shared DEGs across cell types, as indicated. (right) 

Number (N) of DEGs for each cell type, from  (top) microglia, N = 2131 DEGs to 

(bottom) non-dopaminergic neurons, N = 70 DEGs. 
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potentiation, neurite extension and others, in conjunction with increased chromatin repression by histone (H3-

lysine 9) methylation (Figure 3, Figure S4, Table S4). 

 

 

Having shown widespread reprogramming of the nuclear transcriptome in multiple cell populations of VM 

from opioid cases, with activation of immune signaling in multiple glial populations and decreased synapse-

related gene expression in (non-dopaminergic) neurons, we then asked whether these observations would be 

broadly reproducible by gene expression profiling from whole cells or even bulk tissue. To this end, we 

compared the differential gene expression between opioid and control cases in the current study for each VM 

cell type to an earlier, smaller (N=50)  study10 involving RNA-seq profiling of bulk VM tissue (NB: there was no 

overlap in cases used in the two studies). We observed positive z-score correlations that were strongest for 

the astrocytic (R=0.19), ODC (R=0.18) and microglia (R=0.17) populations (Figure S5). These correlations 

were highly significant (p< 1.96 x 10-4). In addition, previously reported GO enrichments from bulk VM tissue 

analysis strikingly resonated with the findings presented here, including upregulation of NFkB signaling and 

Figure 3: Pathway enrichments of up- and down-regulated VM transcripts by cell type. Biological 

Process GO enrichments as indicated. For additional details, see Figures S3 and S4 and Table S4. 
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inflammatory, cytokine and hypoxia response pathways, and were highly reminiscent of the glial activation 

patterns identified in the present study.  

 

 

Many individual 

glial transcripts 

significantly altered in 

our opioid cases in a 

cell-specific manner 

replicated the most 

robust changes seen 

in the aforementioned 

VM whole-tissue 

RNA-seq study10 

(Figure 4). For 

example, among the 

group of immune 

signaling genes with 

increased expression 

in opioid-exposed VM, 

up-regulated 

Interleukin 4 receptor 

(IL4R) expression in 

VM bulk tissue was 

previously reported to be strongly predictive of diagnostic categorization (opioid vs control)10. According to the 

cell-specific results presented here, the IL4R gene is highly expressed in microglia, consistent with a role in 

anti-inflammatory reprogramming of microglia and macrophages after brain or nerve injury17. Another top 

ranking gene in the VM opioid overdose whole-tissue RNA-seq study was MAP3K6 kinase, a  gene 

Figure 4: Differentially expressed genes in VM from opioid cases: 

Comparison of whole-tissue and cell-specific data.  Forest plots of selected 

DEGs (FDR P<0.1) in overdose VM, comparing (x axis log fold change compared 

to control) previous VM bulk tissue RNA-seq (ref.10) to cell-type specific profilings 

in current study. * , bold font, FDR P<0.1. See also Figure S5. 
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predominantly expressed  by astrocytes and implicated in angiogenesis18. In the current study, MAP3K6 and 

the related molecule MAP3K7, implicated in abnormal neurovascular regulation in opioid use disorder and 

overdose brain19, were confirmed as being dysregulated specifically within astrocytic nuclei.. Furthermore, 

notable pathway alterations in the OPC/ODC cell population of OD cases of the present study included CNS 

injury-mediated differentiation programs, including the bZIP MAF transcription factor MAFF20 and the cell cycle 

regulator Cyclin Dependent Kinase Inhibitor CDKN1A which, again, were among the top scoring DEG in the 

previous VM bulk tissue-based gene expression study (Figure 4). Furthermore, the latter gene is robustly 

induced in ventral striatum of morphine-exposed mice21 and in VM of subjects diagnosed with cocaine use 

disorder22, implicating a broader role for CDKN1A in addiction biology beyond opioids in the midbrain. 

We note that in both the previous VM bulk tissue RNA-seq10 and the present VM single nuclei RNA-seq 

studies, neuron-specific transcriptional programs for structural and functional neuronal connectivity, and 

synaptic transmission were downregulated in the opioid group. According to the present study, this effect is 

driven by transcriptomic alterations in the non-dopaminergic neurons. Furthermore, the AP-1 transcription 

factor and early response gene, FOSL2, previously found to be induced in rodent addiction circuitry by chronic 

morphine administration23, showed increased expression  in numerous neuronal and glial cell populations of 

our sn-RNA-seq study, including OPC, microglia and non-dopaminergic neurons. Similarly, FOSL2 was among 

the top scoring DEGs in the bulk VM RNA-seq study (Figure 4).  

To summarize, the current study identified robust changes in human VM gene expression and associated 

GO pathways in cases with a history of opioid use and OD that are consonant with a previous report, but reveal 

the cell type-specific nature of these changes, which can be characterized as broad glial activation with a 

prominent representation of immune signaling pathways, in conjunction with downregulation of glial support 

and neuronal signaling genes. This transcriptomic signature observed was independent of the period of 

specimen collection or geographical location of the cohorts. 

 

Cell-specific DEGs associated with genetic risk for Addiction Disorder 

Next, we wanted to explore whether any cell type-specific DEGs in our opioid exposed cases are 

associated with the genetic risk for addiction disorder. Of note, while opioid use disorder is considered 

moderately heritable, with an estimated 60% of population variability attributable to genetic factors24,25, to date 
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only two or three loci have been genome-wide reproducibly linked to opioid use and substance-associated 

traits26. Remarkably, these loci include the cell motility regulator, SCAI (chr. 9q33.3)26, which in our study is 

significantly down-regulated in VM microglia from opioid cases (Table S3). However, opioid exposure is 

broadly associated with genetic risk for substance use and dependence overall27. Therefore, we wanted to 

explore whether any gene expression alterations in our opioid cases, including cell type-specific dysregulation, 

could match a broader list of genes linked to heritable substance use traits. To this end, we screened 

PhenomeXcan28, a resource for transcriptome-wide association studies linking genes to phenotypes by 

genetically predicted variation in gene expression. We focused on brain gene expression and population-scale 

substance use phenotypes in PhenomeXcan including 40 traits related to caffeine, nicotine, alcohol, and 

marijuana consumption or dependence29 (Table S5) and, for comparison, a number of medical traits 

associated with hundreds or thousands of significant genes in the PhenomeXcan resource.  While we found 

no specific enrichment of our cell type-specific DEG datasets with traits linked to any specific drug or substance 

(Figure S6), among the 1,260 PhenomeXcan genes linked to a substance use trait and expressed by at least 

one cell type in the present study, 325, or 25.8%, were called as significantly altered in our study, including 

149 DEGs in microglial nuclei, and 100-70 DEGs in astrocytes and oligodendrocytes and their precursors, 

respectively, and only very minimal contributions from some of the remaining cell types including pericytes and 

non-dopaminergic neurons (Figure S7, Tables S6, S7). This  included 17 genes called as DEG in one or more 

VM cell types of the present  study, and in the VM bulk tissue RNA-seq study10, with 14/17 of genes showing 

the same direction of change across studies (Table S5). Among these, NUPR1, a regulator of chromatin 

acetylation, showed upregulation of expression in VM tissue10 and VM astrocytes of our opioid cases, and was 

identified as a risk gene in caffeine, alcohol and marijuana abuse and dependence Interestingly, NUPR1, also 

known as STRESS PROTEIN 8 or p8, sensitizes astrocytes to oxidative stress when upregulated30, in effect 

exerting a protective effect by decreasing the production of oxygen radicals31. Other notable SUD 

PhenomeXcan genes up-regulated in VM astrocytes, and in VM tissue10, of opioid cases include the A2B 

adenosine receptor (ADORA2B), which regulates synaptogenesis and synaptic plasticity by downregulating 

glutamate receptor 5 signaling in astrocytes32. Furthermore, the NFKB2 transcription factor, previously linked 

to tobacco smoking by transcriptome-wide association, was upregulated in our study in multiple glial subtypes 

including microglia, astrocytes and OPC of our opioid cases, again consistent with previous observations made 
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in VM tissue10. Interestingly, NFKB2, a broad regulator of the genomic response to inflammatory stimuli, is 

down-regulated in the brains of rats after extinction training for cocaine self-administration33 in a model for 

cocaine use disorder. Furthermore, the Cytokine Inducible SH2 containing Protein (CISH), linked to substance 

use in PhenomeXcan, which was upregulated in VM microglia of our overdose cases, and in the VM bulk tissue 

RNA-seq study10, encodes a JAK/STAT pathway signaling molecule linked to the anti-inflammatory response 

in that cell type34.  

In addition to this set of 17 substance use-associated  genes that showed significant expression changes 

in the opioid group, we also identify a new set of 312 PhenomeX substance use-associated genes with 

significant expression changes in multiple glial subtypes of opioid-exposed VM and including several  genes 

linked to the pharmacogenomics of opiate use disorder. For example,  GSG1L has been linked to plasma 

Figure 5: Differentially expressed genes in the VM of opioid cases linked to 

substance use in the general human population. Forest plots of selected DEGs 

(FDR P<0.1) in OUDd VM (x axis log fold change compared to contro; y-axis VM bulk 

tissue and single nuclei by cell-type RNA-seq) that are linked to alcohol and caffeine 

consumption, and smoking in PhenomeX database. * , bold font , FDR P<0.1. See also 

Tables S4, S5. 
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methadone levels35, and the myeloid zinc finger transcription factor MZF1 to cis-regulatory sequences driving 

expression of the mu-opioid receptor 136. Another noteworthy example of a PhenomeX substance use gene 

with altered expression in all three  major glial prototypes, including astrocytes, microglia and ODC/OPC 

(Figure 5) is the nuclear paraspeckles-associated  long non-coding RNA, NEAT1, which has been broadly 

linked to astrocytic and microglial activation37,38, and has been previous reported as up-regulated in ventral 

striatum of heroin abusers39. Consistent with these findings, multiple inflammatory response- and cell 

activation- and migration-associated  GOs involving NEAT1, and additional PhenomeX substance use-

associated glial DEGs such as ATP1B3, BARD1 and HESX1 (Figure 5) were significantly enriched among the 

glial DEGs of the present study (Table S4). 

  

 

DISCUSSION 

 The glial response to opioid exposure 

The present study, which involved cases with a history of opioid use and dying of opioid overdose 

matched with drug-free controls, from two independent specimen collection sites in geographically 

distinct areas of the continental U.S., is one of the largest postmortem studies in this field, profiling the 

transcriptome in a total of 212,713 single nuclei from the ventral midbrain. Key findings included up-

regulation of pro-inflammatory cytokine and immune response pathways, NFkB signaling and 

generalized activation affecting all major glial populations including microglia, astrocytes, and 

oligodendrocytes and their precursors. In contrast, transcript reprogramming in VM neurons, and 

specifically in the non-dopaminergic (and thus mostly GABAergic) neuronal population, was defined by 

down-regulated expression of genes involved in synaptic plasticity and neuronal connectivity.  

Furthermore,  there was significant overlap in differentially expressed genes and associated Gene 

Ontology pathways between the current VM single nuclei RNA-seq study, and a previous VM bulk 

(whole-tissue) RNA-seq study10 of a smaller but distinct cohort of subjects, which showed a similar 

activation of inflammatory signaling. Thus, the  current study identified robust changes in human VM gene 

expression and associated GO pathways in cases with a history of opioid use and overdose that are consonant 
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with the previous report, but revealed the cell type-specific nature of these changes, which can be 

characterized as broad glial activation with a prominent representation of immune signaling pathways, 

in conjunction with downregulation of glial support and neuronal signaling.  It is remarkable that the 

aforementioned transcriptomic signatures were independent of the period of specimen collection and  

geographical location of the cohorts. 

 

Recent transcriptome profiling of bulk tissue from prefrontal cortex and nucleus accumbens 

(using an independent brain collection) reported prominent upregulation of immune signaling genes and 

transcriptomic signatures indicative of microglial activation and glial motility in the forebrain associated 

with opioid exposure and overdose40. Moreover, a RNA-seq study in ventral striatum of mice exposed 

to morphine, conducted on FACS-sorted oligodendrocytes in conjunction with a general survey of striatal 

transcription at single nucleus resolution, also broadly resonate with the current findings by 

demonstrating drug-induced activation of stress and differentiation pathways in all major glial prototypes, 

with some key genes (e.g. CDKN1A and NFKBIA) found differentially regulated in the ODC and 

astrocytes of opioid VM samples in the present study also changed in the opioid-exposed 

mouse21(Table S8). For a subset of differentially regulated glial activation markers, including Glial 

Fibrillary Acidic Protein (GFAP), opioid-induced up-regulation in VM was first reported, in a rat model, 

three decades ago41.  

These studies, taken together, lead to a remarkably consistent consensus implicating glial 

activation with up-regulation of inflammatory and immune signaling pathways across multiple nodes in 

the addiction circuitry of the opioid exposed brain, including the ventral midbrain. Therefore, it is 

extremely interesting that drugs acting as inhibitors for the pro-inflammatory glial response reduce 

morphine-induced withdrawal effects in the rat model42, and attenuate the addictive features  of opioids, 

including positive reward (for example, ‘feeling high’) and withdrawal-associate symptoms, in human 

volunteers diagnosed with Opioid Use Disorder43–45. The precise pharmaco-molecular and -cellular 

cascades linking opioid addiction and dependence to glial activation remain to be elucidated. Potential 
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mechanisms could include drug-induced activation of TLR4 and other Toll-like receptors which, in turn, 

activate NFkB to drive transcriptional activation of cytokine and chemokine46. Furthermore, there is 

evidence for functional interaction between  opioid-receptor and NFkB signaling  as discussed in40. 

Given that the transcriptomic alterations in striatum of subjects with cocaine use disorder point to an 

opposite effect, i.e., decreased neuroinflammation47, interventions against the pro-inflammatory effects 

of opioids could provide unique drug class-specific therapeutic opportunities.  

 

Limitations of the present study  

The present study provided new insights into cell type-specific gene expression changes in each 

of the major glial populations, including OPC, ODC, astrocytes, and microglia, within the VM of opioid 

overdose cases. However, our experimental design included pooling of up to 4 VM specimens for 

10K nuclei  target recovery for each 10x chromium gel bed assay and, in agreement with previous 

single nucleus RNA-seq work on human VM12-14, less abundant cell types such as dopaminergic and 

non-dopaminergic VM neurons, as well as pericytes, T-cells, and endothelial and ependymal cells, 

each comprise only a very small fraction (0.8% - 3%) of the total population !"#$%#&'()*+#+&#,-*#('..*&,#

/,'012#%'),+3)*#(4/*#4&0#(!&,.!)#/453)*/#)4(6*0#,-*#5+&+5'5#&'57*.#!"#&'()*+#".!5#/!5*#!"#,-*/*#

(*))#,13*/#+&#!.0*.#,!#*&,*.#89:#4&4)1/+/#71#(*))#,13*#;/*,#4,#<#=#>?#&'()*+#3*.#(*))#,13*@#/**#%*,-!0/A@#

.*0'(+&B#,-*#!C*.4))#3!D*.#"!.#54&1#!"#,-*/*#.4.*.#$%#(*))#3!3')4,+!&/#;Table S2). Future studies 

that specifically enrich for cell types such as VM dopaminergic neuron nuclei based on fluorescence-

activated nuclei sorting48 will be required in order to more fully elucidate opioid-induced transcriptional 

alterations for these relatively rare VM cell types.  

 

Neuron-specific alterations in VM from opioid overdose cases 
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The present study identified 69  genes dysregulated in the non-dopaminergic neuronal population in the 

opioid exposed VM (Table S3). These included neuropsychiatric risk genes such as AUTS2 and NCALD, which 

reportedly are transcriptionally dysregulated in a VM target, the  ventral striatum, after cocaine and 

amphetamine abuse49,50. Furthermore, the aforementioned AP-1 transcription factor FOSL2 was up-regulated 

in VM non-dopaminergic neurons. We counted 9/69 (13%) of differentially regulated neuron-specific genes in 

VM in our opioid group that matched to neuron-specific enhancer or promoter sequences reportedly affected 

by histone hypo-acetylation in prefrontal cortex (PFC) neurons from opioid overdose cases51 (Table S9). These 

included genes conferring heritable risk for nicotine and other substance dependence, such as GABBR2 

encoding  a GABAB receptor, and SHC3 involved in MAP kinase and neurotrophin signaling 52,53. These findings 

then further support the emerging hypothesis that opioid exposure and addiction is associated with a 

coordinated transcriptional dysregulation in various neuronal and non-neuronal subpopulations residing in  

specific nodes of addiction circuitry including VM, striatum, and PFC54,55.  

 

We predict that future studies, by constructing a neurogenomic atlas of cell specific gene expression 

alterations and related changes in epigenomic regulation,  across  multiple regions of opioid-exposed brains 

and conducting integrative analyses combined with the  emerging genetic risk architecture for substance use 

disorders, will provide deep insight into neuronal and glial mechanisms highly relevant to the neurobiology and 

treatment of opiate addiction.  

 

FIGURE LEGENDS 

Figure 1: Consistent proportions of VM cell types across specimen collection sites and cohorts (A) 

Experimental design and workflow for N=95 VM samples, including collection at two different geographical areas, 

pooling of 3-4 VM/substantia nigra specimens, nuclei purification by FACS and 10x chromium snRNA-seq pipeline 

and genetic demultiplexing yielding a total of 212,713 nuclei. (B) Marker gene expression for each of the 10 glial 

and neuronal subpopulations as indicated. DA, dopaminergic neuron. non-DA, non-dopaminergic neurons;  ODC 

oligodendrocyte, OPC, oligodendrocyte precursor cell. Color represents the ratio of average gene expression 

across cells in the cell type relative to maximum in the most highly enriched cell type.(C) Uniform Manifold 

Approximation and Projection (UMAP) plot showing the identified 10 major cell types by cluster, as indicated,  for 
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total collection of n=212,713 nuclei. (D) Proportional representation of cell types across individual donors (mean 

and S.D. of each of the 10 major cell types by diagnosis (red opioid-related death, blue control) as indicated. (E) 

VM cell type composition by UMAP plot, shown for cases and controls separately for each of the two collection 

sites.  

 

Figure 2: Representation of differentially expressed genes (DEGs) shared across VM cell types. (left) 

Counts of shared DEGs across cell types, as indicated by the UpSet diagram. (right) Number (N) of DEGs for each 

cell type, from  (top) microglia, N = 2131 DEGs to (bottom) non-dopaminergic neurons, N = 70 DEGs. 

 

Figure 3: Pathway enrichments of up- and down-regulated VM transcripts by cell type. Biological 

Process GO enrichments as indicated. For additional cell types and pathways see Figures S3 and S4 and Table 

S4.  

 

Figure 4: Differentially expressed genes in VM from opioid cases: Comparison of whole-tissue and 

cell-specific data.  Forest plots of selected DEGs (FDR P<0.1) in overdose VM, comparing (x axis log fold change 

compared to control) previous VM bulk tissue RNA-seq (ref. 10) to cell type specific profilings in current study. * , 

bold font, FDR P<0.1. 

 

Figure 5: Differentially expressed genes in the VM of opioid cases linked to substance use in the 

general human population. Forest plots of selected DEGs (FDR P<0.1) in OUDd VM (x axis log fold change 

compared to control; y-axis VM bulk tissue and single nuclei by cell-type RNA-seq) that are linked to alcohol and 

caffeine consumption, and smoking in PhenomeX database. * , bold font , FDR P<0.1. See also Tables S4, S5.  

 

 

Supplementary Figure 1: Quality controls for VM single nuclei RNA-seq profiling. (A) Dexmulet 

genotyping confirms 100% match by donor by pool against the background of all 95 donors. Y-axis represents 

the library pools for 95 individuals.  X axis represents the individual, prefix of which denoting the expected library 

for each individual. Heat bar, percentage of nuclei for specific a individual in library, as indicated. (B-D) Violin 
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plots, showing separately for 45 opioid cases (blue)  and 50 controls (red), (B) the distribution of numbers of 

nuclei per sample, (C) the numbers of genes per nucleus, and (D) numbers of reads per sample. (E) UMAP plot 

for VM from 95 samples (present) study, (F, G) automatic annotation of major VM cell types from previous study 

in small reference sample14. 

 

Supplementary Figure 2: Differential gene expression across cohorts and cell types. (A) Z-score 

(case control differential) correlations comparing (y-axis, Miami; x-axis Detroit) cohorts for 4 major glial 

populations , as indicated, and non-dopaminergic neurons in the VM. (B) Proportional representation of DEGs 

shared between specific pairs of glial subtypes, as indicated on x-axis, based on shared vs. opposite directionality.  

 

Supplementary Figure 3: Cell-type specific pathway enrichments of differentially expressed genes 

in astrocytes and microglia. GO pathway enrichments for Biological Process, shown separately for up- and 

down-regulated DEGs, as indicated.  See also Figure 3 and Table S4. 

 

Supplementary Figure 4: Cell-type specific pathway enrichments of differentially expressed genes 

in oligodendrocytes (ODC) and non-dopaminergic neurons (NON-DA).  GO pathway enrichments for 

Biological Process, shown separately for up- and down-regulated, as indicated.  See also Figure 3 and Table S4.    

 

Supplementary Figure 5: Correlations between prior bulk RNA-seq study and the current RNA-seq 

analysis with single cell resolution. Z-score (case control differential) correlations comparing (y-axis, bulk 

tissue RNA-seq study10; x-axis, cell type specific RNA-seq at single nuclei resolution, current study) for 7 cell 

types, as indicated. 

 

Supplementary Figure 6: DEGs linked to TWAS. Percentages representing, for each cell type the 

normalized proportion of DEGs overlapping with PhenomeXcan TWAS for substance use and medical or 

neurological traits, as indicated. 
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Supplementary Figure 7: TWAS DEG by cell type. Cell-type specific counts of genes called as DEG in 

current study and linked to substance use trait(s) in PhenomeXcan (see Table S6). 
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METHODS: 

 

Case and control brains were collected within two separate geographical areas of the U.S., representing 

the greater Detroit and Miami metropolitan areas. The two brain specimen repositories operate independently. 

Detroit 

Human midbrain specimens were collected during routine autopsy and de-identified specimens were 

characterized as described previously10,22,56. Briefly, cause of death was determined by forensic pathologists 

following medico-legal investigations evaluating the circumstances of death including medical records, police 

reports, autopsy results, and toxicological data. Case inclusion in the opioid abuse group was based on a 

documented history of opioid abuse, toxicology report positive for opioids, and forensic determination of opioids 

as cause of death. Opioid abusers with a positive toxicology for common non-opioid drugs of abuse (e.g. alcohol, 
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cocaine, cannabinoids, anxiolytics, barbiturates) were excluded from the study, with the exception of inclusion 

of a subset of cases positive for opioids plus benzodiazepines, as this reflects a drug class commonly co-abused 

with opioids with deadly consequences57. Cases in the control group had no documented history of drug abuse, 

and tested negative for opiates, cocaine, and other drugs of abuse or CNS medications at time of death. Causes 

of death for control cases were primarily cardiovascular events or gunshot wounds.  Exclusion criteria for either 

group included a known history of neurological or psychiatric disorder, death by suicide, evidence of 

neuropathology at autopsy, debilitating chronic illness, estimated postmortem interval > 20h, or biochemical 

evidence of poor tissue sample quality or prolonged perimortem agonal state (i.e. brain pH <6.2 or RNA integrity 

number [RIN] <6.0). To reduce variance unrelated to drug abuse, the two groups were matched in terms of 

gender, race, age, brain pH, and RIN at the time of processing. Table S1 includes demographic and sample 

quality characteristics.  Brains were sectioned transversely at the level of the posterior diencephalon and mid-

pons to obtain a tissue block encompassing the entire human midbrain (corresponding approximately to plates 

51356 of DeArmond et al, 198958. 

Miami 

Cases were selected from an opportunistic sample of opioid intoxication deaths defined by circumstances 

of death and forensic and supplemental toxicology data. All cases and unaffected controls were evaluated to 

rule out comorbid psychopathological diagnoses. Common drugs of abuse and alcohol and positive urine 

screens were confirmed by quantitative analysis of blood and brain. Retrospective chart reviews were conducted 

to confirm history of opioid abuse, methadone or addiction treatment, drug-related arrests or drug paraphernalia 

found at the scene. Supplemental brain toxicology was done on select cases for comparison to blood levels at 

the time of death. Case inclusion in the opioid group was based on a documented history of opioid abuse, 

toxicology report positive for opioids, and forensic determination of opioids as cause of death. The detection of 

6-acetyl morphine (6-AM) was taken as definitive evidence of acute heroin exposure. Cases of polysubstance 

abuse, where there was positive toxicology and a history of use of cocaine, methamphetamine, alcohol, and 

other drugs, were excluded from the study. Drug-free control subjects, with negative urine screens for all common 

drugs and no history of licit or illicit drug use prior to death, and with no known history of neurological or 

psychiatric disease, were selected from accidental (motor vehicle accidents or trauma) or cardiac sudden deaths. 

All cases and unaffected controls were selected from persons who died suddenly without a prolonged agonal 
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state, since agonal state affects brain tissue quality control metrics. Care was taken for cohort selection to match 

subject groups as closely as possible for non-Hispanic Caucasian ancestry, age, gender, postmortem interval 

(PMI), RNA integrity number (RIN) values, and brain pH (Table S1). 

 

Sample processing: Sample processing for both brain cohorts, including purification of nuclei, RNA 

extraction, and generation of single nuclei RNA-seq libraries, was performed in New York. Brains were 

processed in pools of N=3-4 unique brains (donors). From each unique brain, a tissue aliquot, containing 

approximately 20mg of ventral midbrain from the area of the substantia nigra (A10) and portions of the adjacent 

ventral tegmental area (A9), was homogenized using a douncer at least 20x in 1ml lysis buffer (0.32M sucrose, 

5mM CaCl2, 3mM Mg(Ace)2, 0.1mM EDTA, 10mM Tris pH8, 0.5mM DTT, 0.1% Triton X-100) with 400U RNase 

inhibitor (Takara Bio Recombinant RNase Inhibitor, Cat. 2313) added to it. Then, an additional 4ml of lysis buffer 

was added and the sample solution was dounced an additional 20x until homogenous. After douncing, each pool 

of 4 unique samples was transferred to an ultracentrifuge tube (Beckman Coulter Polypropylene Centrifuge 

Tubes } x 3 ¾ in., Ref. 361707) and underlayed with 9ml of sucrose buffer (1.8M sucrose, 3mM Mg(Ace)2, 

0.5mM DTT, 10mM Tris-HCl pH8), then ultracentrifuged with 24,000rpm in a SureSpin 630 (17mL) Rotor 

(106,803x g)  for 1hr at 4oC. After centrifugation, the supernatant was removed and each pellet of nuclei was 

carefully resuspended in 1ml of 1% BSA with 1,000U RRI added to it, transferred to a sterile tube, and 1 µl of 

the nucleophilic dye, DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride, Invitrogen Cat. D1306), was added. 

For FACS collection, sterile tubes were coated with 5% BSA. After residual BSA solution at bottom of tubes was 

removed, DAPI+ nuclei were sorted into the collection tubes using a BD FACSAria Cell Sorter, with 

approximately 300,000 DAPI+ nuclei for each pool of 4 unique midbrain samples collected and processed using 

the 10x Chromium Next GEM Single Cell 39 v3.1 (Dual Index) Protocol (CG000315 Rev A) according to the 

manufacturer9s instructions. The Agilent 2100 High Sensitivity DNA Bioanalyzer Kit was used as a quality control 

step at Step 2.4 and end of the library preparation, also as per 10x Genomics9 guidelines. To prepare samples 

for sequencing, sample concentration was determined using the KAPA Biosystems Library Quantification Kit 

(ROX Low qPCR Master Mix, Cat. KK4873). 
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Libraries were sequenced by the New York Genome Center using the Illumina NovaSeq platform aimed 

at a sequencing depth of 50,000 read pairs per nucleus. Libraries consisted of paired-end reads with a read 

length of 100bp.  

 

Genotyping 

Miami Cohort: Genomic (g) DNA was extracted from cerebellar tissue using a QIAamp DNA Micro Kit, 

followed by SNP genotyping was done with Illumina9s MEGA multiethnic array at Rutgers University Cell and 

DNA Repository (RUCDR Infinite BiologiX).   

 

Detroit Cohort: DNA was extracted from 25mg of tissue using QIAamp DNA mini kit from Qiagen Cat# 

51304 (Qiagen, Germantown, MD). Tissues were lysed manually and then processed through the QIAcube DNA 

isolation protocol. For genotyping Infinium Global Diversity Array-8 v1.0 Kit microarrays were processed by the 

Advanced Genomics Core of University of Michigan (Ann Arbor, MI, USA). Genotype information was converted 

to vcf format using <iaap-cli gencall= and <gtc_to_vcf.py= from Illumina. 

For both cohorts imputation was performed using the TOPMed Imputation Server version 1.5.7 

(https://imputation.biodatacatalyst.nhlbi.nih.gov) to a total of 292,140,970 genetic variants. The vcf files from the 

two cohorts were then merged and filtered for high-quality imputation and coverage for at least ten scRNAseq 

transcripts using bcftools resulting in a vcf file with 8,184,813 genetic variants.  

 

 

scRNA-seq raw data processing (Alignment and demultiplexing) 

We processed each scRNAseq library using cellranger (V7.0) count using the GRCh38 human reference 

genome and the default parameters except for the --include-introns option which is recommended for single 

nuclei preparations. The resulting aligned reads bam files were further processed with demuxlet59 together with 

the genotype vcf files. Demuxlet assigns the most likely individual for each cell barcode based on the reads 

overlapping genetic variants. Based on the demuxlet assignments, we removed barcodes that were called 
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doublets, ambiguous, or that could not be assigned to an individual that corresponded to the pool that was used 

to create the library. Any library that did not contain at least a case and a control individual was also excluded. 

Additionally we removed any cells with mitochondrial read rates higher than 20%. These filtering procedures 

resulted in a total of 212,713 high-quality cells with 36,601 genes across 95 individuals. A median value of 2,008 

cells are detected for each sample, with a median value of 8,274 reads per cell and 3,070 genes per cell (Figure 

S1B-D).  

 

Clustering analysis and cell type annotation 

We employed the standard pipeline of Seurat R package (v4.0) to process our scRNA data60. We first 

utilized the log1pCP10K approach to normalize data and then standardized the gene expression across cells. 

For dimensionality reduction analysis, we performed principal component analysis (PCA) on 2,000 highly 

variable genes to obtain 100 principal components (PCs). To correct batch effects, we calculated the harmony-

adjusted PCs using RunHarmony considering various library effects61. The Uniform Manifold Approximation and 

Projection was used to visualize our scRNA data using the top 50 harmony-adjusted PCs. For cluster analysis 

with the top 50 harmony-adjusted PCs, we identified 14 distinct clusters across samples at 0.07 resolution.  

To annotate cell-type for the scRNA data, we performed differential gene expression analysis between 

the compared cluster and the remaining clusters (grouped together) to identify cluster-specific expressed genes. 

The canonical cell-type marker genes were expected to be highly expressed in the corresponding clusters 

(Figure S1E-F, Figure 1B): (1) Oligodendrocytes (ODC) marker genes (such as MOBP, MBP,  PLP1 and CNP) 

were highly expressed in clusters 0, 5, 10 and 13; (2). astrocyte-marker genes (such as GFAP, AQP4 and 

SLC1A2) are mainly enriched  in the cluster 1; (3) microglia-marker genes (such as C3, CSF1R, CX3CR1, 

LRRK1, DOCK8 and P2BY12) are highly expressed the cluster 2 and 11; (4) oligodendrocyte precursor cells 

(OPC)-marker genes including VCAN, PDGFRA, OLIG1 and OLIG2  are mostly expressed in the cluster 3; (5) 

dopaminergic neuron (DaN)-specific genes such as DDC, SLC6A3, SLC18A2, and SLC18A2 tend to be highly 

expressed in the cluster 7; (6) Non-dopaminergic (Non-DA) neuron genes including GAD1, GAD2 and SLC17A7 
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gene family tend to  be highly enriched in the cluster 4; (7) pericytes-marker genes (MYO1B, NR4A2, PDGFRB 

and RGS5) are highly expressed in the cluster 6; (8) While endothelial-specific genes such as (CDH5, CLDN5, 

FLT1, KDR, PECAM1 and PTPRB) are highly expressed in cluster 8; (8) We also identified some T cell specific 

genes including CD96, IL7R, SKAP1 and THEMIS highly expressed in the cluster 9; (9) For the cluster 12 with 

very few number of cells,  the genes including HTR2C and TTR are highly enriched, which are related to the 

function of ependymal cell.  

We also inspected our dataset with an automatically generated cell-type annotation using an independent 

high quality reference data set14 collected from human substantia nigra (SN). This reference set is comprised of  

387,483 cells across 18 samples, annotated by 7 major cell types, including ODC, astrocyte, microglia, OPC, 

dopamine neurons (DA), Non_DA neurons and endothelial14. We constructed a heatmap to visualize in our 

dataset the proportion of different cell types accounting for each cluster (Figure S1G). We note that the above 

7 major cell types are dominant in the corresponding clusters that highly expressed cell-type marker genes.  After 

combining the cell type marker genes and automatic cell-type annotation,  eventually we assigned the cluster 0, 

5, 10 and 13 to be ODC, the cluster 1 as astrocytes, cluster 2 as microglia cells, cluster 3 as OPC, cluster 4 as 

Non-DA neuron, cluster 6 as pericytes, cluster 7 as DaN, cluster 8 as endothelial cells, cluster 9 as T-cells and 

cluster 12 as ependymal-cells. This cell-type annotation was used for all downstream analyses. 

 Differential gene expression analysis 

We generated the pseudo-bulk counts data by summing the reads for each gene across cells that were 

from the same sample and cell-type. Focusing on the autosomal genes, we obtained a counts matrix of 30,801 

genes in 531 combinations of the sample and cell-types with at least 30 nuclei (in pilot studies, we varied the 

minimally required number of nuclei per cell type and sample from 20 to 100, and determined N = 30 nuclei per 

sample and cell types as minimum number to enter into the case vs. control DEG because smaller N9s increased 

overall noise factor in the DEG and higher N9s were overly restrictive by excluding larger number of subjects for 

some of the rare cell type). Combinations were also eliminated if the remaining batches did not include at least 

one individual from both the control and opioid group. This resulted in 7 cell-types considered for the final 

differential gene expression analysis. For four of these cell-types we have a large number of individuals, while 
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for three the number of individuals is more reduced and the statistical power is more limited.  We performed 

differential gene expression analysis between opioid and control groups for each cell-type separately using R 

DESeq2 package62 and the following model  

Gene expression~Opioid+Library+Sex+pH+Age+genotype PC1+genotype PC2+genotype PC3 

which would correct the noises arising from various experimental batch, ethnicity and other covariates 

(gender, age and pH).   To filter out lowly expressed genes,  we only considered genes that were expressed 

higher than 0.5 CPM in at least 3 samples from opioid and control (respectively) across libraries. To correct for 

multiple hypothesis testing,  we used the Benjamini3Hochberg approach implemented in results function in the 

DESeq2 package with default parameters.  We defined the differentially expressed genes as those with False 

Discovery Rate (FDR) < 10% and the fold change at least 1.189.  

 

Gene Ontology (GO) enrichment analysis  

Using the ClusterProfiler (4.0) R package63, we performed Gene Ontology (GO) enrichment analysis for 

DEGs from the 6 cell types for up-regulated and down-regulated genes separately. To correct for multiple 

hypothesis testing, we applied the Benjamini3Hochberg approach to calculate the FDR across all the 12 

conditions ( 6 cell types × 2 directions) implemented in p.adjust in R (4.1).  The significantly enriched biological 

process (BP) terms are defined as those terms (gene size ranging from 5 to 500) with FDR<10%.  

Transcriptome-wide association analysis (TWAS) 

To investigate whether DEGs are associated with the genetic risk variants for  substance use traits and 

disorder (SUD), we screened the PhonomeXcan database, a resource for transcriptome-wide association 

studies linking genes to phenotypes by genetically predicted variation in gene expression28. We focused on 

Substantia Nigra (SN) gene expression and population-scale SUD phenotypes in PhenomeXcan. We focused 

on a total of 40 SUD-related traits from the following categories of traits or diseases: addiction, alcohol, caffeine, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

marijuana, and smoking (Table S5).  We conducted the proportion test using prop.test in R(4.1) to examine 

whether the DEGs overlapping with SUD are enriched in some cell type or some specific trait. We also integrated 

other polygenic traits (including BMI, height, CAD, ADHD and Parkinson's Disease). In the trait-specific analysis, 

we compared to those from all the traits of interest while those across cell types being the contrasted group in 

the cell type-specific analysis.      

 

 

 

 

REFERENCES 

1. Ilango, A. et al. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward 

and aversion. J. Neurosci. 34, 8173822 (2014). 

2. Wise, R. A. Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. 

Trends Neurosci. 32, 5173524 (2009). 

3. Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 2173238 

(2010). 

4. Berridge, K. C. The debate over dopamine9s role in reward: the case for incentive salience. 

Psychopharmacology  191, 3913431 (2007). 

5. Taylor, A. M. W. et al. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci. 35, 

844238450 (2015). 

6. Liu, Z. et al. Riluzole blocks HU210-facilitated ventral tegmental long-term depression by enhancing 

glutamate uptake in astrocytes. Neurosci. Lett. 704, 2013207 (2019). 

7. Scofield, M. D. & Kalivas, P. W. Astrocytic dysfunction and addiction: consequences of impaired 

glutamate homeostasis. Neuroscientist 20, 6103622 (2014). 

8. Yalç1n, B. et al. Myelin plasticity in ventral tegmental area is required for opioid reward. bioRxiv 

2022.09.01.506263 (2022) doi:10.1101/2022.09.01.506263. 

9. Hedegaard, H., Miniño, A. M., Spencer, M. R. & Warner, M. Drug overdose deaths in the United 

States, 1999-2020. NCHS Data Brief 138 (2021). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

10. Saad, M. H. et al. Differentially expressed gene networks, biomarkers, long noncoding RNAs, and 

shared responses with cocaine identified in the midbrains of human opioid abusers. Sci. Rep. 9, 

1534 (2019). 

11. Borrageiro, G., Haylett, W., Seedat, S., Kuivaniemi, H. & Bardien, S. A review of genome-wide 

transcriptomics studies in Parkinson9s disease. Eur. J. Neurosci. 47, 1316 (2018). 

12. Smaji�, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-

specific neuronal state. Brain 145, 9643978 (2022). 

13. Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways 

associated with neurological disorders. Nat. Commun. 11, 4183 (2020). 

14. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population 

that selectively degenerates in Parkinson9s disease. Nat. Neurosci. 25, 5883595 (2022). 

15. Natarajan, C., Sriram, S., Muthian, G. & Bright, J. J. Signaling through JAK2-STAT5 pathway is 

essential for IL-3-induced activation of microglia. Glia 45, 1883196 (2004). 

16. Virtuoso, A., De Luca, C., Korai, S. A., Papa, M. & Cirillo, G. Neuroinflammation and glial activation 

in the central nervous system: a metabolic perspective. Neural Regeneration Res. 18, 102531026 

(2023). 

17. Kiguchi, N. et al. Peripheral interleukin-4 ameliorates inflammatory macrophage-dependent 

neuropathic pain. Pain 156, 6843693 (2015). 

18. Ilinca, A. et al. MAP3K6 Mutations in a Neurovascular Disease Causing Stroke, Cognitive 

Impairment, and Tremor. Neurol Genet 7, e548 (2021). 

19. Mendez, E. F. et al. Angiogenic gene networks are dysregulated in opioid use disorder: evidence 

from multi-omics and imaging of postmortem human brain. Mol. Psychiatry 26, 780337812 (2021). 

20. Kang, S. et al. A Comparative Analysis of Reactive Müller Glia Gene Expression After Light Damage 

and microRNA-Depleted Müller Glia4Focus on microRNAs. Frontiers in Cell and Developmental 

Biology 8, (2021). 

21. Avey, D. et al. Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by 

Glia. Cell Rep. 24, 361933629.e4 (2018). 

22. Bannon, M. J. et al. A molecular profile of cocaine abuse includes the differential expression of 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

genes that regulate transcription, chromatin, and dopamine cell phenotype. 

Neuropsychopharmacology 39, 219132199 (2014). 

23. Nye, H. E. & Nestler, E. J. Induction of chronic Fos-related antigens in rat brain by chronic morphine 

administration. Mol. Pharmacol. 49, 6363645 (1996). 

24. Kendler, K. S., Jacobson, K. C., Prescott, C. A. & Neale, M. C. Specificity of genetic and 

environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, 

sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 160, 6873695 (2003). 

25. Goldman, D., Oroszi, G. & Ducci, F. The genetics of addictions: uncovering the genes. Nat. Rev. 

Genet. 6, 5213532 (2005). 

26. Gaddis, N. et al. Multi-trait genome-wide association study of opioid addiction: OPRM1 and beyond. 

Sci. Rep. 12, 16873 (2022). 

27. Rabinowitz, J. A. et al. Positive associations between cannabis and alcohol use polygenic risk scores 

and phenotypic opioid misuse among African-Americans. PLoS One 17, e0266384 (2022). 

28. Pividori, M. et al. PhenomeXcan: Mapping the genome to the phenome through the transcriptome. 

Sci Adv 6, (2020). 

29. Li, B. & Ritchie, M. D. From GWAS to Gene: Transcriptome-Wide Association Studies and Other 

Methods to Functionally Understand GWAS Discoveries. Front. Genet. 12, 713230 (2021). 

30. Carracedo, A., Egia, A., Guzmán, M. & Velasco, G. p8 Upregulation sensitizes astrocytes to 

oxidative stress. FEBS Lett. 580, 157131575 (2006). 

31. Weis, S. et al. P8 deficiency increases cellular ROS and induces HO-1. Arch. Biochem. Biophys. 

565, 89394 (2015). 

32. Tanaka, M. et al. Adenosine A2B receptor down-regulates metabotropic glutamate receptor 5 in 

astrocytes during postnatal development. Glia 69, 254632558 (2021). 

33. Smaga, I. et al. Extinction Training after Cocaine Self-Administration Influences the Epigenetic and 

Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain. 

Neuroscience 451, 993110 (2020). 

34. Juknat, A. et al. Microarray and pathway analysis reveal distinct mechanisms underlying 

cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells. PLoS One 8, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

e61462 (2013). 

35. Yang, H.-C. et al. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment 

Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated 

with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients. 

PLoS Genet. 12, e1005910 (2016). 

36. Bayerer, B., Stamer, U., Hoeft, A. & Stüber, F. Genomic variations and transcriptional regulation of 

the human mu-opioid receptor gene. Eur. J. Pain 11, 4213427 (2007). 

37. Lian, X.-W. & Luo, B. Knockdown of NEAT1 induced microglial M2 polarization via 

miR-374a-5p/NFAT5 axis to inhibit inflammatory response caused by OGD/R. Acta Neurobiol. Exp.  

81, 3623374 (2021). 

38. Zheng, H., Zhang, G., Liu, G. & Wang, L. Up-regulation of lncRNA NEAT1 in cerebral ischemic 

stroke promotes activation of astrocytes by modulation of miR-488-3p/RAC1. Exp. Brain Res. 241, 

3953406 (2023). 

39. Michelhaugh, S. K. et al. Mining Affymetrix microarray data for long non-coding RNAs: altered 

expression in the nucleus accumbens of heroin abusers. J. Neurochem. 116, 4593466 (2011). 

40. Seney, M. L. et al. Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus 

Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder. Biol. 

Psychiatry 90, 5503562 (2021). 

41. Beitner-Johnson, D., Guitart, X. & Nestler, E. J. Glial fibrillary acidic protein and the mesolimbic 

dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat 

ventral tegmental area. J. Neurochem. 61, 176631773 (1993). 

42. Hutchinson, M. R. et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by 

systemic AV411 (ibudilast). Brain Behav. Immun. 23, 2403250 (2009). 

43. Mogali, S., Askalsky, P., Madera, G., Jones, J. D. & Comer, S. D. Minocycline attenuates 

oxycodone-induced positive subjective responses in non-dependent, recreational opioid users. 

Pharmacol. Biochem. Behav. 209, 173241 (2021). 

44. Cooper, Z. D. et al. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms 

in opioid-dependent volunteers. Addict. Biol. 21, 8953903 (2016). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

45. Metz, V. E. et al. Effects of Ibudilast on the Subjective, Reinforcing, and Analgesic Effects of 

Oxycodone in Recently Detoxified Adults with Opioid Dependence. Neuropsychopharmacology 42, 

182531832 (2017). 

46. Eisenstein, T. K. The Role of Opioid Receptors in Immune System Function. Front. Immunol. 10, 

2904 (2019). 

47. Mews, P. et al. Convergent abnormalities in striatal gene networks in human cocaine use disorder 

and mouse cocaine administration models. Sci Adv 9, eadd8946 (2023). 

48. Espeso-Gil, S. et al. A chromosomal connectome for psychiatric and metabolic risk variants in adult 

dopaminergic neurons. Genome Med. 12, 19 (2020). 

49. Engmann, O. et al. Cocaine-Induced Chromatin Modifications Associate With Increased Expression 

and Three-Dimensional Looping of Auts2. Biol. Psychiatry 82, 7943805 (2017). 

50. Kim, M. et al. Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable 

Responses against Methamphetamine. Biomol. Ther.  29, 1353143 (2021). 

51. Corradin, O. et al. Convergence of case-specific epigenetic alterations identify a confluence of 

genetic vulnerabilities tied to opioid overdose. Mol. Psychiatry 27, 215832170 (2022). 

52. Yang, J. et al. The contribution of rare and common variants in 30 genes to risk nicotine 

dependence. Mol. Psychiatry 20, 146731478 (2015). 

53. Li, M. D. et al. Linkage and association studies in African- and Caucasian-American populations 

demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol. Psychiatry 12, 

4623473 (2007). 

54. Day, J. J. & Martinowich, K. Single-cell transcriptional profiling in brain reward structures. 

Neuropsychopharmacology 48, 2433244 (2023). 

55. Reiner, B. C. et al. Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell 

type-specific patterns of gene expression associated with volitional morphine intake. Transl. 

Psychiatry 12, 374 (2022). 

56. Bannon, M. J. et al. Decreased expression of the transcription factor NURR1 in dopamine neurons of 

cocaine abusers. Proc. Natl. Acad. Sci. U. S. A. 99, 638236385 (2002). 

57. Bannon, M. J. et al. Opioid deaths involving concurrent benzodiazepine use: Assessing risk factors 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/


 

through the analysis of prescription drug monitoring data and postmortem toxicology. Drug Alcohol 

Depend. 225, 108854 (2021). 

58. DeArmond, S. J., Fusco, M. M. & Dewey, M. M. Structure of the human brain: A photographic atlas, 

3rd ed. 3, 202 (1989). 

59. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. 

Nat. Biotechnol. 36, 89394 (2018). 

60. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 188831902.e21 (2019). 

61. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. 

Methods 16, 128931296 (2019). 

62. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq 

data with DESeq2. Genome Biol. 15, 550 (2014). 

63. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 

(Camb) 2, 100141 (2021). 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.531400doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.07.531400
http://creativecommons.org/licenses/by-nd/4.0/

