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Abstract: The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-
value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in 
particular nicotine, which complicates the downstream purification processes. Here, we report the assembly of an 
improved N. benthamiana genome as well as the generation of low-nicotine lines by CRISPR/Cas9-based 
inactivation of berberine bridge enzyme-like proteins (BBLs). Triple as well as quintuple mutants accumulated 3-4 
times less nicotine than the respective control lines. The availability of lines without functional BBLs allowed us to 
probe their catalytic role in nicotine biosynthesis, which has remained obscure. Notably, chiral analysis revealed 
that the enantiomeric purity of nicotine was fully lost in the quintuple mutants. In addition, precursor feeding 
experiments showed that these mutants cannot facilitate the specific loss of C6 hydrogen that characterizes natural 
nicotine biosynthesis. Our work delivers an improved N. benthamiana chassis for bioproduction and opens the 
possibility that BBLs are the sought-after coupling enzymes in nicotine biosynthesis.  

Keywords: nicotine, alkaloid biosynthesis, gene editing, metabolic engineering, Nicotiana benthamiana. 

 
Introduction 

Nicotiana benthamiana is a widely-used model plant 
native to Australia (Goodin et al., 2008; Bally et al., 
2018). Following early observations of hyper-
susceptibility to viruses, N. benthamiana became 
valued for studying plant-pathogen interactions, and 
seeds were shared among the global plant science 
community (Bally et al., 2015). The hyper-susceptibility 
trait was eventually linked to a disruptive mutation in 
RNA-dependent RNA polymerase 1 (Rdr1) present in 
ecotypes from arid regions (Bally et al., 2015). The 
mutation trades viral defense in favor of early vigor and 
thus confers an advantage in climates with low and 
unpredictable rainfall, where lifecycles must be 
completed in limited time (Bally et al., 2015; Karasov et 

al., 2017). Young N. benthamiana plants are also highly 
susceptible to Agrobacterium tumefaciens, a trait which 
has been exploited for transient gene expression in leaf 
tissues using a technique known as agroinfiltration 
(Chen et al., 2013b). In the last decade, facilities for the 
agroinfiltration of large numbers of plants have been 
constructed, thus enabling commercial-scale protein 
production (D9Aoust et al., 2010; Chen et al., 2013b; 
Lomonossoff & D9Aoust, 2016). Notably, N. 

benthamiana leaves can be agroinfiltrated using a 

complex mixture of Agrobacterium strains, leading to 
the transient co-expression of a multiplicity of genes. 
This has been exploited by the plant natural product 
community, who adopted it as the golden standard for 
enzyme discovery in the context of pathway elucidation 
(Geu-Flores et al., 2009; Gnanasekaran et al., 2015; 
Lau & Sattely, 2015; Reed et al., 2017; Stephenson et 

al., 2020; Davis et al., 2020; Dudley et al., 2022a). As 
more and more natural product pathways are elucidated 
this way, the facilities constructed for industrial protein 
production are likely to be repurposed for the production 
of high-value plant natural products such as terpenoids 
(Forman et al., 2022) or alkaloids (Nett & Sattely, 2021). 

While N. benthamiana is a promising chassis for 
biomanufacturing, the yield and purity of protein 
products can be hampered by unintended proteolysis 
(Grosse-Holz et al., 2018). Similarly, small molecules 
can be further metabolized by oxidoreductases, 
hydrolases, and transferases that participate in N. 

benthamiana's own metabolism or xenobiotic 
detoxification systems (van Herpen et al., 2010; Liu et 

al., 2011; Brückner & Tissier, 2013; Miettinen et al., 
2014; Dong et al., 2016; Dudley et al., 2022a). In 
addition, like other Nicotiana species, N. benthamiana 

accumulates high amounts of nicotine and related 
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pyridine alkaloids. Nicotine is the most abundant of 
these, with levels varying from 2.9 to 14.28 mg/g dry leaf 
weight (DW) (Sisson & Severson). This is of concern 
when producing therapeutic or dietary proteins, as 
nicotine is highly neuroactive and also potentially toxic 
in large amounts. In the production of thaumatin II, a 
small protein from the katemfe fruit used as sweetener, 
a chromatographic purification step was able to lower 
the levels of pyrimidine alkaloids down to levels 
encountered naturally in other Solanaceae vegetables 
such as tomato or pepper (GRAS Notice 910, 2020). 
We predict that the presence of nicotine will be more 
problematic for the industrial production of small 
molecules, in particular, other alkaloids with similar 
physio-chemical properties.  

Nicotine biosynthesis occurs primarily in roots from 
where it is transported to aerial tissues via the xylem 
(Zenkner et al., 2019). On top of a basal level of 
production, nicotine biosynthesis can be induced by 
herbivore attack or by methyl jasmonate (MeJa) 
treatment (Steppuhn et al., 2004). The nicotine 
molecule is composed of two nitrogen-containing rings 
coupled directly to each other: a pyridine ring likely 
derived from nicotinic acid and a pyrrolidine ring 
evolutionarily derived from polyamine biosynthesis (Xu 
et al., 2017) (Figure 1). The pyridine branch is well 
characterized up to nicotinic acid mononucleotide, from 
which nicotinic acid is thought to derive (Shoji & 
Hashimoto, 2011). The pyrrolidine branch is fully 
characterized and gives rise to the N-

methylpyrrolidinium cation, which is proposed to be 
coupled directly to a reduced & decarboxylated form of 
nicotinic acid (Shoji & Hashimoto, 2011). Finally, the 
coupled intermediate likely undergoes oxidation to give 
the final nicotine molecule (Figure 1). The details of 
these last steps of nicotine biosynthesis remain 
undefined; however, one important clue is that the 
hydrogen at position C6 of the pyrimidine ring in 
nicotinic acid is lost during biosynthesis (Dawson et al., 
1960; Leete & Liu, 1973; Leete, 1978) (Figure 1). The 
related pyridine alkaloids anatabine and anabasine are 
also composed of two coupled nitrogen rings each; 
however the composition of the non-pyridine rings 
varies. In the case of anatabine, both rings are derived 
from the pyridine branch, while in the case of 
anabasine, one ring comes from the pyridine branch 
and the second one comes from a piperidine branch 
originating from the amino acid L-lysine (Figure 1). All 
three pyridine alkaloids possess a stereocenter at 
position C2 of the non-pyridine ring. In N. tabacum, the 

(S) forms predominate (Armstrong et al., 1998, 1999), 
most notably for nicotine, where the enantiomeric ratio 
reaches ca. 99.8% (Armstrong et al., 1999). In animals, 
the (S) enantiomer of nicotine is more toxic and displays 
greater pharmacological effects (Yildiz, 2004). The 
biosynthetic step that determines the (S) configuration 
remains to be determined, but it is conceivable that the 
coupling step is under stereoselective enzymatic 
control, thus producing the right stereochemistry that is 
retained during the final oxidation step.  

Two enigmatic enzymes have been implicated in the 
late biosynthetic steps mentioned above for all pyridine 
alkaloids. The first one is a reductase of the 
phosphatidylinositol phosphate (PIP) family called 
A622. Conditional suppression of two A622 copies in N. 

tabacum hairy roots via RNAi resulted in cell growth 
inhibition, lower levels of pyridine alkaloids, and 
accumulation of a nicotinic acid N-glucoside as well as 
the N-methylpyrrolidinium cation (Kajikawa et al., 2009). 
This suggests that A622 catalyzes the putative 
reduction & decarboxylation of nicotinic acid and/or the 
coupling step (Kajikawa et al., 2009). However, there 
are no reports showing the catalytic properties of A622. 
The second implicated enzyme is a berberine bridge 
enzyme-like protein (BBL). Simultaneous suppression 
of several BBL copies in N. tabacum plants and hairy 
roots via RNAi led to a reduction in pyridine alkaloid 
levels and accumulation of dihydrometanicotine (DMN) 
(Kajikawa et al., 2011) (Lewis et al., 2015). DMN itself 
does not appear to be a substrate of BBLs, as 
recombinant proteins expressed in Pichia pastoris 

exhibited no activity towards it (Kajikawa et al., 2011). 
Further evidence for BBL involvement has come from 
the simultaneous inactivation of two or three N. tabacum 
BBL copies via chemical mutagenesis, which reduced 
the nicotine content up to 13-fold (Lewis et al., 2015). 
Later, CRISPR/Cas9 technology was used to introduce 
mutations into all six BBL copies found in the N. 

tabacum genome, producing lines reported to be 
nicotine free (Schachtsiek & Stehle, 2019). By contrast, 
a follow-up study on the chemically mutagenized double 
and triple BBL mutants showed that further inactivation 
of the remaining BBL genes by CRISPR/Cas9 
technology did not result in any further nicotine 
reductions (Lewis et al., 2020).  

While the involvement of A622 and BBL in nicotine 
biosynthesis is undisputed, the exact reactions that they 
catalyze are yet to be determined. In this study, we 
report an improved assembly of the N. benthamiana 

genome and identify five BBL genes. We use 
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CRISPR/Cas9 technology to generate low-nicotine 
lines with loss-of-function mutations in individual and 
multiple combinations of BBL genes. Surprisingly, 
analysis of lines with no functional BBL revealed that the 
residual nicotine was fully racemic. Furthermore, 
precursor feeding studies indicated that the mutants did 

not undergo the specific loss of C6 hydrogen as 
observed in the control lines. Our work provides an 
improved low-nicotine N. benthamiana chassis for 
bioproduction and sheds light into the precise catalytic 
role of BBL enzymes in nicotine biosynthesis.

 

 

Figure 1. Schematic diagram of pyridine alkaloid biosynthesis in Nicotiana spp. The three colored boxes highlight 

the different biosynthetic branches involved. Full arrows represent single characterized steps, and dotted arrows 

represent one or more putative steps. The intermediates shown in brackets are putative. The asterisk in nicotinic acid 

indicates position C6, whose hydrogen is lost during biosynthesis (Dawson et al., 1960). Enzymes are represented by 

dark gray ovals. For the piperidine branch (left), question marks on enzyme names indicate that the enzymes have not 

yet been cloned. For A622 and BBL, the question marks indicate uncertainty about precisely which reactions these 

enzymes catalyze. AO: aspartate oxidase; QS: quinolinate synthase; QPT quinolinate phosphorybosyltransferase; ODC: 

ornithine decarboxylase; PMT: putrescine methyltransferase; MPO: methylputrescine oxidase; A622: PIP-family 

reductase; BBL: berberine bridge enzyme-like protein; L-Lys: L-lysine; L-Orn: L-ornithine; RibP: ribose phosphate 

residue; NAD: nicotinamide adenine dinucleotide.
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METHODS 

Plant growth 

N. benthamiana plants were grown in a controlled 
environment room with 16 hr light, 8 hr dark at 22 °C, 
80% humidity, and ~200 µmol/m2/s light intensity.  

Production of paired end reads 

DNA was purified from young leaf tissue using a 
modified CTAB-based protocol (Michael et al., 2018). 
Briefly, 5 g of frozen powdered leaf tissue was 
incubated with 20 mL CTAB lysis buffer (100 mM Tris-
HCl, 2% CTAB, 1.4 M NaCl, 20 mM EDTA, pH 8.0) 
containing 20 ¿g/mL proteinase K for 20 minutes at 55 
°C. Aliquots of 2.5 mL were extracted with 0.5 volumes 
of chloroform followed by an equal volume of 25:24:1 
phenol:chloroform:isoamyl alcohol (PCI). DNA was 
precipitated from the upper aqueous phase with 0.7 
volumes of ice-cold isopropanol. The pellet was washed 
with ice-cold 70% ethanol and air-dried at room 
temperature before resuspension in TE (10 mM Tris-
HCl pH 7.5, 1 mM EDTA) containing 1.4 mg/mL RNase 
A. RNase A was then removed by two extractions with 
PCI and DNA was precipitated as above and 
resuspended in TE. Samples were pooled on a 
Genomic DNA Clean & Concentrator-10 column (Zymo 
Research, Irvine, CA, USA) and eluted in 50 µL DNA 
elution buffer (10 mM Tris-HCl, pH 8.5, 0.1 mM EDTA). 
Amplification free, Illumina compatible libraries were 
constructed using the Hyper Prep kit (Kapa Biosystems, 
Wilmington, MA, USA). DNA was sheared to 1 Kbp 
using an S2 column (Covaris, Woburn, MA, USA) and 
Kapa Pure Beads (Kapa Biosystems) were used to 
remove molecules of less than <500 bp. DNA molecules 
were end repaired, A-tailed and appropriate Illumina-
compatible indexed adapters were ligated. Library QC 
was performed using a BioAnalyzer high sensitivity chip 
(Agilent, Santa Clara, CA, USA) and the concentration 
of viable library molecules measured using qPCR. For 
sequencing, libraries were loaded at 9 pM based on the 
qPCR concentration with an average molecule size of 
625 bp. Libraries were sequenced on an Illumina HiSeq 
2500 yielding 272,102,680 250 bp reads. Paired end 
reads were deposited in the European Nucleotide 
Archive (ENA) under project number PRJEB37024 
(accession numbers: ERR3971933 and ERR3971934). 

Production of Oxford Nanopore Technologies 

(ONT) long-reads  

DNA for sequencing on the MinION (Oxford Nanopore, 
Oxford, UK) was purified from leaf tissue sampled from 
an individual plant, using a modified version of the 
CTAB protocol above. Briefly 1.0 g of frozen powdered 
leaf tissue was mixed with 3 mL CTAB lysis buffer 
containing 20 ¿g/mL proteinase K and incubated at 55 
°C at 500 rpm. After 15 minutes, 20 µL of 100 mg/mL 
RNaseA was added and incubation continued for 15 
minutes before a further 20 µL of 100 mg/mL RNaseA 
was added. Extractions with chloroform and PCI were 
performed as above except that wide-bore pipette tips 
were used at all stages. DNA was precipitated and 
resuspended in 25 µL TE. Yields (8-21 µg at 350-900 
ng/µL) were determined using the Qubit fluorometer 
(ThermoFisher, Waltham, MA, USA). Fragments of >40 
Kbp were collected for library preparation using 
BluePippin pulsed-field electrophoresis (Sage Science, 
Beverly, MA, USA). DNA was stored at 4 °C overnight 
before proceeding directly to library preparation. 
Libraries were constructed and sequenced using the 
Oxford Nanopore Technologies (ONT) SQK-LSK109 
library construction kit and FLO-106 flow cells according 
to the manufacturers9 instructions. A total of nine 
MinION flow cells were used yielding between 3 and 20 
Gbp per flow cell. Two flow cells were loaded with 
libraries constructed from non-fragmented DNA. Two 
flow cells were loaded with libraries constructed from 
DNA sheared to 40 Kbp using the Hydroshear (Digilab, 
Hopkinton, Massachusetts, USA). Molecules <25 Kbp 
were removed using a Blue Pippin (Sage Scientific, 
Massachusetts, USA) with a 0.75% cassette. Two flow 
cells were loaded with libraries constructed from DNA 
sheared to 40 Kbp and molecules of  <15 Kbp removed. 
Three flow cells were loaded with libraries constructed 
from DNA sheared to 20 Kbp using a G-tube (Covaris, 
Woburn, Massachusetts, USA). Reads were deposited 
in the ENA under project number PRJEB37025, 
accession numbers ERR3971506-509 and 
ERR3972081-83. 

Production of Chromium linked reads 

DNA for Chromium linked-read sequencing (10X 
Genomics) was purified from leaf tissue sampled from 
an individual plant using the GE Healthcare Nucleon# 
PhytoPure# Genomic DNA Extraction Kit (Fisher 
Scientific, Loughborough, Leicestershire, UK) following 
the manufacturer9s instructions except that, following 
precipitation with an equal volume of ice-cold 
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isopropanol, DNA was collected by centrifugation at 
1,300 x g for 10 min at 4 °C and the resulting DNA pellet 
washed with 1 mL 70% ethanol air-dried and 
resuspended in 40 µL Low TE (10 mM Tris-HCl pH 7.5, 
0.1 mM EDTA). Purified DNA was quantified by Qubit 
(21 ng/µL) and analyzed on the Femto Pulse System 
(FP-1002-0275, Agilent, Santa Clara, CA, USA) with the 
dominant peak at 150,000 bp and 67% of the material 
being greater than 50 Kbp. The Chromium Controller 
instrument (10x Genomics, Pleasanton, California, 
USA) was used to produce a barcoded linked read 
library using 1.25 ng DNA input and the Chromium# 
Genome Library Kit & Gel bead Kit v2 (120258, 10x 
Genomics) following the Chromium Genome Reagent 
Kits Version 2 User Guide (CG00043, 10x Genomics). 
Library yield was quantified using the Qubit dsDNA HS 
assay and insert size was determined using the 2100 
Bioanalyzer High Sensitivity DNA chip (5067-4627, 
Agilent Technologies, Santa Clara, California, USA) 
and verified by qPCR. The library was diluted to 0.5 nM 
with EB in 18 ¿L and spiked with 1% PhiX Control v3 
(Illumina) before being prepared for loading using a 
NovaSeq XP 2 lane kit v1.5 (20043130, Illumina). This 
was sequenced with 150 paired-end reads on an 
Illumina NovaSeq 6000 with NVCS 1.7.5 and RTA 
v3.4.4 on one lane of a NovaSeq S4 v1.5 flow cell with 
accompanying reagent cartridges (20028312, Illumina) 
yielding 891 Gb (2,971,099,042 reads). Sequencing 
data was demultiplexed and converted from base call 
(BCL) files to FASTQ files using the Illumina bcl2fastq2 
conversion software (bcl2fastq version. 2.20.0), 
allowing for a one base-pair mismatch to the index 
sequence. Reads were deposited in the ENA under 
project numbers PRJEB37026 (accession number 
ERR3972084 and ERR3972085) and ERX10379414. 

Genome assembly 
A combination of Chromium linked-reads and ONT 
long-reads were utilized to generate the N. 

benthamiana genome assembly. Chromium linked-
reads were assembled using Supernova v2.1.1 
(https://bio.tools/supernova) (Weisenfeld et al., 2017) 
with the reads subsampled to 56x raw coverage (--
maxreads= 1136580012) as recommended by the 
Supernova documentation, resulting in an initial draft 
assembly with a N50 of 5.4 Mb. The assembly was 
scaffolded using ONT long-reads. To improve the 
quality of the scaffolding process, ONT long-reads were 
polished using the Illumina paired-end short reads with 
the tool ratatosk (v0.7.6.3; 
https://github.com/DecodeGenetics/Ratatosk) (Holley 

et al., 2021) with default options. Long read scaffolding 
was performed with ntLink (v1.3.4; 
https://github.com/bcgsc/ntLink) in gap-filling mode, 
with a k-mer size of 40 for mapping (--k=40), and a 
requirement that at least four reads validate the joined 
contigs (--a=4). This process was repeated five times. 
Fragments of assembled chloroplast and mitochondrial 
genome were identified and excluded from the final 
assembly. Specifically, Minimap2 v2.22 (Li, 2018) was 
used to align a reference chloroplast genome 
(accession number: MF577082.1) and multiple 
mitochondrial genomes of related Nicotiana species 
(accession numbers: MN651321.1, MN651322.1, and 
MN651323.1) to the scaffolded assembly. Contigs with 
greater than 99% identity and with comparable size to 
the reference chloroplast genome were removed, while 
all contigs that mapped to the three mitochondrial 
genomes and that had more than 70% of their sequence 
covered were considered mitochondrial content and 
also removed from the assembly. 

To further identify and remove any remaining 
contamination, the FCSx contamination pipeline 
(v0.3.0; https://github.com/ncbi/fcs) was employed, 
which identified several contigs of bacterial and primate 
origin. These contigs were subsequently removed from 
the final assembly. To assess the completeness of the 
final assembly, (Benchmarking Universal Single-Copy 
Orthologs) BUSCO v5.3.2  
(https://gitlab.com/ezlab/busco/-/releases#5.4.4) 
(Simão et al., 2015) was run with metaEuk as the 
aligner against the eudicots_odb10 database. 
Additionally, a Merqury v1.3 (Rhie et al., 2020) analysis 
was performed to obtain the k-mer completeness and 
the QV of the assembly, which provides a 
complementary assessment metric to the BUSCO 
score. The final scaffolded assembly can be accessed 
from the following url:  
https://opendata.earlham.ac.uk/opendata/data/Patron_
2023-03-
01_Nicotiana_benthamiana_genome_assembly/. 

Expression analysis 

For expression analysis, wild type plants were treated 
with a foliar spray of 2.5 mM MeJa in dimethyl sulfoxide 
(DMSO) or DMSO (control plants) seven days before 
sampling. Total RNA was isolated from 100 mg of fresh 
root tissue sampled from three individual plants 
(biological replicates) using the Spectrum Plant RNA 
Purification Kit (Merck). RNA was treated with RNase-
free DNase Set (Qiagen) and cDNA was synthesized 
from 300 ng of total RNA using the M-MLV Reverse 
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Transcriptase (ThermoFisher Scientific). SYBR® Green 
JumpStart# Taq ReadyMix# (Merck) was employed 
for reporting successful amplification using a 
QuantStudio 6 Pro real-time PCR system (Applied 
Biosystems, Waltham MA) with specific primer pairs for 
each target NbBBL gene. Primer sequences used for 
expression analysis are provided in Table S1. NbEF1a 
was amplified as an internal reference (Liu et al., 2012) 
for relative gene expression. Four technical replicates 
were performed for each sample and primer pair. 

Cas9-mediated targeted mutagenesis by 

Agrobacterium-mediated transformation 

A binary vector for Cas9-mediated targeted 
mutagenesis via Agrobacterium tumefaciens-mediated 
transgenesis was assembled using the plant modular 
cloning toolkit (Engler et al., 2014) as previously 
described (Dudley et al., 2022b). Two single guide RNA 
(sgRNA) expression cassettes were assembled by 
amplifying the sgRNA scaffold with an extended stem 
(Chen et al., 2013a) from plasmid pEPOR1CB0022 
(Addgene #117537) and integrating the spacer 
sequence for each target as a 5' extension of the 
forward primer. Primer sequences used to amplify 
sgRNAs are provided in Table S2. The resulting 
amplicons were assembled in Level 1 acceptors with an 
AtU626 promoter (pICSL90002, AtU6-26 
Addgene#68261). The final construct was assembled 
by combining the two Level 1 sgRNA cassettes with 
cassettes for resistance to kanamycin pICSL11024 
(Addgene#51144) and constitutive expression of 
SpCas9 (pEPQD1CB0001, Addgene #185625). All four 
Level 1 cassettes were assembled in a one-step 
reaction into the Level 2 acceptor plasmid (pAGM4723 
Addgene #48015) as previously described (Dudley et 

al., 2022b). The efficacy of the resulting binary construct 
was tested by transient infiltration as previously 
described (Dudley et al., 2022b). The resulting 
constructs were transformed into A. tumefaciens strain 
AGL1 and used for transformation of N. benthamiana 
as previously described (Dudley et al., 2022a). 

Cas9-mediated targeted mutagenesis using a TRV2 

viral vector 

Spacer sequences for selected targets were 
incorporated into pEPQD0KN0750 (Addgene #185627) 
by Golden Gate assembly into AarI sites as previously 
described (Dudley et al., 2022a). Primer sequences are 
provided in Table S3. Constructs were transformed into 
A. tumefaciens GV3101 and infiltrated into transgenic 
N. benthamiana plants constitutively expressing Cas9 
(Cas9 Benthe 193.22 T5 Homozygous; gratefully 

received from Dan Voytas) together with a strain 
containing pTRV1 (Addgene #148968) as previously 
described (Ellison et al., 2020; Dudley et al., 2022a). 
Plants were allowed to grow for 13 weeks before 
samples of leaf tissue were taken from two different 
stems. 

Genotyping of gene-edited lines 

Genomic DNA was isolated from the leaves of T0 plants 
generated by agrobacterium-mediated transformation 
or from leaves sampled from E0 plants infiltrated with 
TRV viral vectors as previously described (Dudley et al., 
2022a). Target loci were amplified using a proof-reading 
polymerase (Q5® High-Fidelity DNA Polymerase, New 
England Biolabs, Ipswich, MA; Phusion# High-Fidelity 
DNA Polymerase, Thermo Fisher Scientific, Waltham, 
USA) and primers flanking the target sites. Primer 
sequences used to genotype edited lines are provided 
in Table S4. Amplicons were sequenced by Sanger 
sequencing (Eurofins, Luxembourg). Seeds were 
harvested from primary  transgenic plants (T0) in which 
mutations were detected at one or more target loci. 
Seeds from plants infiltrated with TRV viral vectors (E0 
plants) were harvested from seed pods on stems in 
which mutations had been detected. The resulting T1 

and E1 plants were grown and the genotype of each 
target loci was confirmed. Stable, non-chimeric lines 
with homozygous or biallelic mutations at one or more 
target loci were selected for further analysis and T2/E2 
seed collection. The genotypes of all BBL genes were 
confirmed in the T2/E2 generation. 

Leaf alkaloid analysis of gene-edited lines 

T2/E2 plants were grown in soil in a greenhouse under 
long day conditions (16 h light) and day/night 
temperatures of 20/19 °C. After 34 days, six 1-cm leaf 
discs per plant representing three different leaves (two 
leaf discs per leaf) were harvested. The leaf discs were 
snap-frozen and stored at -70°C until further use 
(uninduced samples). Subsequently, alkaloid 
biosynthesis was induced by spraying leaves with 0.1% 
(v/v) MeJa solution containing 0.1% (v/v) Tween 20 
(source of MeJA: Duchefa Biochemie, Haarlem, 
Netherlands). Five days after induction, another six leaf 
discs were harvested from the same leaves as before, 
snap-frozen and stored at -70°C. Frozen leaf discs from 
uninduced and induced leaves were subjected to 
metabolite extraction, LC-MS analysis, and, for three of 
the lines, (R)- and (S)-nicotine analysis as described 
below.  
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Precursor feeding experiments 

Seedlings were grown using a hydroponic system 
illustrated in Figure S1. For each sample, 20 seeds 
were germinated and grown on cotton gauze (28 
thread) glued onto ¾-inch rubber O-rings fitted onto the 
wells of 12-well plates. Seedlings were grown under 
long day conditions (16 hr light) in tap water that was 
refilled when needed. Clear plate lids were placed on 
the plates (touching the O-rings) for the first five days. 
Alkaloid biosynthesis was induced 17 days after placing 
the seeds on the cotton gauze. For the induction, two 
filter papers with 5 µL MeJa (Duchefa Biochemie, 
Haarlem, Netherlands) each were placed next to the 
plates, and one large cover (clear plastic) was placed 
over all plates, facilitating a closed environment. Two 
days later, the tap water was replaced with either 0.8 
mM D4-nicotinamide (D4 98%, Cambridge Isotope 
Laboratories, Tewksbury, USA) or 0.8 mM unlabeled 
nicotinamide, both solutions in tap water. The 
respective nicotinamide solutions were refilled two days 
after the start of the feeding (continuous feeding). Fresh 
MeJa was added to the filter papers at the start of the 
feeding and also during the refill. Seedlings were 
harvested five days after the commencement of 
feeding. All seedlings from one sample were pooled and 
rinsed three times with 1 mL ultrapure water. Rinsed 
seedlings were snap-frozen and stored at -70°C. 
Frozen samples were subjected to metabolite extraction 
and LC-MS analysis as described below.  

Root alkaloid analysis of gene-edited lines 

To examine DMN formation in roots, seedlings were 
grown in a hydroponic system (Figure S1) as described 
above, except that 6-well plates with 1¼-inch O-rings 
were used instead, as well as 40 seeds per sample. 35 
days after placing the seeds on the cotton gauze, 
alkaloid biosynthesis was induced using the MeJa filter 
paper method described above. Three days after the 
start of the induction, the wells were refilled with tap 
water and fresh MeJa was added to the filter papers. 
The seedlings were harvested five days after the start 
of the induction. For harvesting, seedlings were rinsed 
six times with 500 µL ultrapure water, and the roots 
were cut off, snap-frozen, and stored at -70°C. Frozen 
samples were subjected to metabolite extraction and 
LC-MS analysis as described below.  

Metabolite extraction 

Frozen samples of leaf discs, whole seedlings, or 
seedling roots were lyophilized using a freeze dryer 
(CooleSafe#, Scanvac). Freeze-dried tissues were 
homogenized using chrome balls and a TissueLyzer 

(Qiagen). Metabolites were extracted with 60% (v/v) 
methanol containing 0.06% (v/v) formic acid and either 
75 ppm caffeine (for leaf discs) or 25 ppm caffeine (for 
whole seedlings and seedling roots). The proportions of 
dry tissue (mg) to extractant (µL) varied depending on 
the tissue source: 4 mg/100 µL for leaf discs, 4 mg/300 
µL for whole seedlings, and 4 mg/1000 µL for seedling 
roots. After 1 hr incubation at room temperature with 
constant shaking (1,200 rpm), samples were spun down 
for 1 min at 16,200 x g. Supernatants were diluted in 
ultrapure water at a proportion of 1:15 in the case of leaf 
discs or 1:5 in the case of whole seedlings and seedling 
roots. Diluted samples were filtered through a 0.22 µm 
PVDF filter (MultiScreenHTS GV Filter Plate, 0.22 µm, 
clear, non-sterile, Merck Millipore, Billerica, USA) and 
stored at -70°C until further analysis. 

LC-MS analysis 

Methanolic extracts were analyzed via reversed-phase 
LC-MS on a Dionex UltiMate 3000 Quaternary Rapid 
Separation UHPLC+ focussed system (ThermoFisher 
Scientific) coupled to an ESI QTOF Compact mass 
spectrometer (Bruker, Bremen, Germany). Compounds 
were separated on a Kinetex® 1.7 µm EVO C18 100 Å 
column (100 x 2.1 mm, Phenomenex, Torrance, USA) 
applying an eluent flow rate of 0.3 mL/min and a column 
temperature of 40°C. Mobiles phases A and B consisted 
of 10 mM ammonia bicarbonate (pH 9.2) in water and 
acetonitrile, respectively, and the elution profile 
consisted of 0-1 min 2% B (constant), 1-16 min 2-25% 
B (linear), 16-24 min 25-65% B (linear), 24-26 min 65-
100% B (linear), 26-27 min 100% B (constant), 27-27.5 
min 100-2% B (linear), and 27.5-33 min 2% B 
(constant). Mass spectra were obtained in positive 
ionization mode with automatic MS/MS acquisition and 
using the following parameters: capillary voltage 4500 
V, end plate off set 500 V, dry temperature 250°C, dry 
gas nitrogen flow rate 8.0 L/min, and nebulizing gas 
pressure 2.5 bar. MS spectra were recorded in an m/z 
range from 50-1000 Da (spectra rate: 6 Hz). Internal 
mass calibration was facilitated with Na-formate 
clusters. The injection volume was either 2 µL (induced 
leaf discs) or 10 µL (uninduced leaf discs, whole 
seedlings, and seedling roots). Data was visualized 
using DataAnalysis Version 4.3 (Bruker Compass 
DataAnalysis 4.3 (x64), Bruker Daltonik GmbH) and 
automated peak integration was performed with 
QuantAnalysis Version 4.3 (Bruker Compass 
DataAnalysis 4.3 (x64), Bruker Daltonik GmbH). 
Compounds were identified by comparison to 
commercial standards: anabasine [(±)-anabasine 
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hydrochloride, Cayman Chemical, Ann Arbor, USA], 
anatabine [(R/S)-anatabine tartrate, Cayman Chemical, 
Ann Arbor, USA], caffeine (Sigma-Aldrich, St. Louis, 
USA), dihydrometanicotine (dihydrometanicotine 
dihydrochloride, Toronto Research Chemicals, Toronto 
Canada), and nicotine [(-)-nicotine, Fluka, Morristwon, 
USA]. Quantification of nicotine, anabasine and 
anatabine was carried out using external calibration 
curves. 

(R)- and (S)-nicotine analysis 

Chiral LC-MS analysis was performed as indicated 
above (LC-MS analysis) with the following 
modifications. Separation was achieved on a Lux® 3 µm 
AMP column (150 x 3.0 mm, Phenomenex, Torrance, 
USA) with an eluent flow rate of 0.3 mL/min and a 
column temperature of 40°C. Mobile phases A and B 
consisted of 10 mM ammonia bicarbonate (pH 9.2) in 
water and 2-propanol, respectively, and the elution 
program was isocratic at 20% B with a total run time of 
20 min. Injection volumes were either 2 µL (MeJa-
induced leaf discs) or 10 µL (uninduced leaf discs). 
Compounds were identified by comparison to 
commercial standards: caffeine (Sigma-Aldrich, St. 
Louis, USA), (-)-nicotine (Fluka, Morristwon, USA), and 
(±)-nicotine (Sigma-Aldrich, St. Louis, USA  

 

RESULTS 

An N. benthamiana genome assembled from 

Chromium linked reads and ONT-generated long 

reads 

The use of Chromium linked-reads and ONT long reads 
resulted in a genome assembly of 2,995.0 Mb, 
consisting of 50,663 scaffolds, with an N50 of 14.0 Mb 
and a L50 of 67. The assembly has high completeness, 
as evidenced by a BUSCO completeness of 97.6% and 
a k-mer completeness of 97.82%. Additionally, the 
assembly quality value (QV) score of 37,88, indicates 
good per base accuracy. Comparison of our assembly 
with a recently published assembly generated using 
Pacific BioScience Highly Accurate Long Read 
Sequencing chemistry (PacBio HiFi) and HiC (Omni-C 
reads), indicates that our assembly is of comparable 
completeness and quality (Table S5). However, the 
HiFi+HiC assembly exhibits higher contiguity, as 
evidenced by the larger N50 and the smaller number of 
contigs. The assembly is available for download and 
can be accessed at the following link: 
https://opendata.earlham.ac.uk/opendata/data/Patron_

2023-03-
01_Nicotiana_benthamiana_genome_assembly/ 

N. benthamiana encodes five BBL genes 

Using the NtBBL genes as queries, we identified five 
candidate BBL genes in the N. benthamiana genome, 
four of which (NbBBLa-d) encoded open reading frames 
that translate to proteins of similar length to the BBL 
proteins encoded in the N. tabacum genome. The fifth 
gene, NbBBLd', contained a premature stop codon 
(Figure 2A and Figure S2). Phylogenetic analysis 
indicates that NbBBLa-d may be orthologues of the 
equivalently named genes in N. tabacum but there is no 
obvious orthologue for NtBBLe in the N. benthamiana 

genome (Figure S2).  

We analyzed the expression levels of NbBBLa-d in root 
tissues using reverse-transcription quantitative (real-
time) polymerase chain reaction (RT-qPCR). NbBBLa 
and NbBBLb were expressed at a higher level than 
NbBBLc and NbBBLd (Figure 2B) and the expression of 
all genes except NbBBLd increased following exposure 
of plants to MeJa (Figure 2B). 

Production of N. benthamiana lines with Cas9-

mediated targeted mutations in NbBBL genes 

We first constructed a binary vector expressing two 
single guide RNAs (sgRNA19 and sgRNA35) for the 
stable transformation of wild-type N. benthamiana 
plants to introduce Cas9-mediated targeted mutations 
in NbBBLa-c (Figure 2A and C). The genotypes of 
transgenic (T0) plants were determined by PCR-
amplification and sequencing of target loci. Lines in 
which the genotype was unclear or indicated genetic 
chimerism were discarded and T1 seed was collected 
from lines with homozygous, heterozygous or biallelic 
mutations in one or more NbBBL genes. The genotype 
at each locus as well as the presence or absence of the 
T-DNA was analyzed in T1 plants. T2 seeds were 
collected from plants in which the T-DNA had 
segregated and that contained homozygous or biallelic 
mutations at one or more NbBBL genes. Genotypes 
were confirmed in T2 plants and are provided in Figure 
3 and Tables S6-S10. We also constructed two TMV-
based viral vectors encoding mobile guide RNAs 
(mbgRNA) as previously described (Ellison et al., 2020). 
The first vector contained a single mbgRNA, mbgRNA5, 
targeting a single locus present in all NbBBL genes 
(Figure 2A and C). A second vector contained two 
mbgRNAs, mbgRNA17 and mbgRNA97, targeting 
sequences unique to NbBBLd/d' (Figure 2A and C). 
These vectors were infiltrated into the leaves of 
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transgenic plants constitutively expressing Cas9, and 
progeny seeds were collected from pods that formed on 
stems in which mutations were detected at the target 
sites (see Methods). The genotypes of E1 plants were 
analyzed, and individuals with homozygous or biallelic 
mutations at loci of interest were selected (Figure 3, 
Tables S6-S10).  

Overall all guide RNAs except for mbgRNA17 resulted 
in mutations at the target locus. From these two 
methods, we were able to obtain lines with mutations in 
NbBBLb, NbBBLc or NbBBLd alone, as well as lines 
with mutations in combinations of two, three or five 
genes (Figure 3, Tables S6-S10).

 
 

 

 

Figure 2. Nicotiana benthamiana berberine bridge enzyme-like (NbBBL) enzymes. A. Schematic of NbBBL 

enzymes indicating the locations and sequences of guide RNAs used for Cas9-mediated targeted mutagenesis. 

Canonical NGG protospacer adjacent motifs are underlined, * = stop codon. Background shading of bases indicates a 

mismatch to the guide RNA sequence. B. Expression of NbBBL genes relative to NbEF1a in roots of plants following 

treatment with 2.5 mM methyl jasmonate. Expression was determined by reverse transcription quantitative PCR (RT-

qPCR). Error bars indicate the standard error of the mean of three biological replicates (4 technical replicates per 

sample). C. Schematics of plasmid constructs used for Cas9-mediated targeted mutagenesis by integration of T-DNA 

(above) or transient expression of a mobile guide RNA (mbgRNA). LB, left border; RB, right border; RZ, self-cleaving 

ribozyme; MP, movement protein, RDRP, RNA-dependent RNA polymerase; 16k, 16k gene; nos, nopaline synthase 

promoter or terminator; ocs, octopine synthase terminator; PEBV, pea early browning virus promoter; 35s, cauliflower 

mosaic virus 35s promoter; FT, flowering locus T mobile signal. This figure contains graphics from Biorender 

(biorender.com). 
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Figure 3. Workflow for the selection of gene-edited lines, and genotypes of all NbBBL genes in each line. The 

size of insertions (+) and deletions (-) are provided in base pairs (bp) together with position of the first premature stop 

codon (*aa). Where lines are mutated at two positions, only the first disruptive mutation is shown; details of all mutations 

can be found in Supplemental Data Tables S6-S10. Green font = homozygous mutation, purple font = biallelic mutation; 

gray shading = mutation may not result in loss of activity due to size, type or location, = = in line 193, five residues of 

NbBBLb (AYINY) are replaced with a new residue (D). This figure contains graphics from Biorender (biorender.com). 

 

Inactivation of NbBBL genes leads to low pyridine 

alkaloid levels 

We analyzed the levels of nicotine, anabasine, and 
anatabine in leaves of the different NbBBL mutant lines 
(T2/E2 generation). We included three different control 
lines: a wild type line (WT; control for all lines), a tissue 
culture control (TC WT; a wild type line recently 
regenerated in tissue culture, used as additional control 
for lines 159-198), and a transgenic Cas9 line (Cas9; 
the parental line constitutively expressing Cas9,  used 
as additional control for lines 102 and 138) (Figure 4). 
In general, the levels of nicotine were always the 
highest, followed by anabasine and then anatabine. 
Single NbBBLb, NbBBLc, and NbBBLd mutants did not 
differ from control lines, and neither did the double 
NbBBLb/c mutant. Gratifyingly, the double NbBBLa/b 
mutant displayed lower nicotine levels compared to the 
control lines, although this difference was not significant 
in the absence of MeJa induction. Triple NbBBLa/b/c 

and quintuple NbBBLa/b/c/d/d9 mutants did not appear 
to vary in nicotine content compared to the double 
NbBBLa/b mutant. However, one of the triple mutant 
lines (line 193) as well as the quintuple mutant 
displayed significantly lower nicotine content compared 
to the corresponding control lines under both induced 
and uninduced conditions (~3-4 fold reduction). The 
overall picture for anabasine and anatabine was similar. 
However, the anatabine levels in the triple and quintuple 
mutants were below our lowest calibration point and 
thus were not quantified (Figure 4). 

Inactivation of NbBBL genes leads to a racemic 

nicotine mixture 

The analysis of pyridine alkaloids described above did 
not discriminate between S and R enantiomers. Thus, 
we switched to chiral LC-MS analysis to determine 
whether inactivation of NbBBL genes had any effect on 
enantiomeric purity.  
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Figure 4. Pyridine alkaloid content in leaves of N. benthamiana BBL mutant in comparison to control lines as analyzed 

by LC-MS. Three control lines were analyzed: WT, wildtype (control for all lines); TC WT, tissue culture control (additional 

control for lines 159-198); Cas9, transgenic plants constitutively expressing Cas9 (additional control for lines 102 and 138). 

Graphs to the left represent the levels of nicotine, anabasine, and anatabine in leaves of greenhouse-grown plants (nd, not 

determined). Graphs to the right represent the analogous measurements 5 days after induction with 0.1% MeJa. For each line, 

four to five biological replicates were measured (black diamonds). Results are presented as box plots, with the center line 

representing the median, the unfilled square representing the mean, the box delimiting the upper and lower quartiles, and the 

whiskers representing the outlier range with a coefficient of 1.5. Significant differences were determined using ANOVA and 

post hoc Tukey tests on log transformed data. ANOVA p-values can be found in Table S11. The genotypes of NbBBL genes 

in each of the edited and control plants are indicated below the graphs, with green shading representing a homozygous 

knockout, purple shading indicating a biallelic knockout, and gray shading indicating uncertainty with respect to loss of function 

due to size, type or location of the mutation. Details of all mutations are provided in Figure 3 and Tables S6-S10. 
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Figure 5. Analysis of (S)- and (R)-nicotine in leaves of the quintuple NbBBL mutant (line 102) in comparison to 

control lines (WT and Cas9). Traces correspond to extracted ion chromatograms (nicotine, [M+H]+) resulting from 

chiral LC-MS analyses (Lux® 3 µm AMP column). Traces on the left are from uninduced plants, while traces on the 

right are from the same plants 5 days after induction with MeJa. Higher injection volumes were used for all uninduced 

samples (10 µL compared to 2 µL) to obtain comparable peak sizes. A total of four to five biological replicates were 

analyzed. While only one replicate is shown in this figure, all data is provided in Figure S3. The two bottom rows show 

the results of running a racemic nicotine standard and a (S)-nicotine standard along with the uninduced and induced 

samples. 

 

We used a method able to separate (S)- and (R)-
nicotine with near baseline resolution, and we focused 
on two control lines (wildtype and Cas9 transformant) 
versus the quintuple NbBBLa/b/c/d/d9 mutant (line 102). 
While the control lines accumulated (S)-nicotine almost 
exclusively, the residual nicotine in the quintuple 
mutants was fully racemic (Figure 5, Figure S3). 

Inactivation of NbBBL genes prevents hydrogen 

loss from position C6 

As mentioned in the introduction, feeding experiments 
with isotopically labeled nicotinic acid have shown the 
loss of hydrogen at position C6 during its incorporation 
into nicotine in N. tabacum (Dawson et al., 1960). 
Subsequent publications have supported this finding for 
nicotine biosynthesis (Leete & Liu, 1973) and extended 
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it to anatabine and anabasine biosynthesis (Leete, 
1978). Furthermore, nicotinamide has been found to 
incorporate into nicotine to a similar extent as nicotinic 
acid (Dawson et al., 1960).  

We examined the incorporation of labeled D4-
nicotinamide into nicotine, anabasine and anatabine in 
the two control lines (wildtype and Cas9 transformant) 
versus the quintuple NbBBLa/b/c/d/d9 mutant, all lines 
under MeJa induction. We observed that the main 
labeled form of nicotine and anabasine in the fed control 
lines contained three deuterium atoms (D3 versions), 
demonstrating the loss of one deuterium atom during 
incorporation (Figure 6). By contrast, the quintuple 

mutant contained predominantly D4-nicotine and D4-
anabasine instead of the corresponding D3 versions. 
For anatabine, in which both rings derive from the 
pyridine branch, we detected the D7 version 
predominantly, whereas D7 and D8 versions 
accumulated equally in the quintuple mutant (Figure 6). 
Interestingly, while only about 30% of nicotine was 
found labeled in these experiments, the percentage 
increased to approximately 50% in the case of 
anabasine, and around 80% in the case of anatabine 
(Figure 6).  

Inactivation of NbBBL genes leads to 

accumulation of DMN 

Apart from displaying low nicotine levels, N. tabacum 
RNAi lines downregulated in BBL genes accumulate 
DMN in biosynthetic tissues (Kajikawa et al., 2011; 
Lewis et al., 2015). To examine whether a similar 
accumulation occurred in our gene-edited N. 

benthamiana plants, we harvested MeJa-induced roots 
from hydroponically grown quintuple mutants (line 102) 
and analyzed them via LC-MS. DMN was unequivocally 

detected in the mutant roots, while the compound was 
undetectable in the control lines (WT and Cas9) (Figure 
7, Figure S4).  

DISCUSSION 

In this study we report the production and analysis of 
low-nicotine N. benthamiana lines using CRISPR/Cas9 
to inactivate combinations of BBL genes, which are 
known to be involved in pyridine alkaloid biosynthesis. 
Our choice of BBL genes mirrors the choice taken by 
Lewis et al. when aiming at low-nicotine N. tabacum 
lines (Lewis et al., 2015). Briefly, aiming at genes in the 
pyrrolidine branch (e.g. PMT) is likely to result in lower 
nicotine levels at the expense of increased anatabine 
levels (Chintapakorn & Hamill, 2003; Wang et al., 2009). 
Conversely, aiming at genes involved only in the 
pyridine branch (e.g. QPT) may interfere with NAD 
metabolism (Lewis et al., 2015). A622 and BBL genes 
would seem to be suitable targets based on their 
involvement in the late pathways towards the three 
pyridine alkaloids. However, Kajikawa et al. reported a 
failure to obtain N. tabacum lines constitutively silenced 
in A622, possibly due to the accumulation of nicotinic 
acid (Kajikawa et al., 2009). It should also be noted that 
two transcription factors represented by the nic1 and 
nic2 loci are known to control nicotine biosynthesis in N. 

tabacum (Shoji et al., 2010; Shoji & Hashimoto, 2012; 
Qin et al., 2021). These loci are not commonly used in 
tobacco breeding due to lower yields (Legg et al., 1970; 
Chaplin & Weeks, 1976) likely caused by 
overaccumulation of polyamines (Nölke et al., 2018). 
Thus, BBL genes seemed to be the best targets for our 
purposes in N. benthamiana.  

 

 

Figure 6 (next page) Incorporation of D4-nicotinamide into pyridine alkaloids in the quintuple NbBBL mutant (line 

102) in comparison to control lines (WT and Cas9). Seedlings were grown under hydroponic conditions, induced with 

MeJa, and fed continuously for 5 days with either labeled (D4) or unlabeled (D0, control) nicotinamide via the roots. A. 

Relative levels of differently labeled nicotine, anabasine and anatabine in whole seedlings, as observed using LC-MS. For 

nicotine and anabasine, D0, D3, and D4 versions were observed and quantified. For anatabine, D0, D7, and D8 versions 

were observed and quantified. For each version, relative peak areas were obtained by dividing by the sum of peak areas 

of all labeled versions. Six biological replicates were analyzed (black diamonds). Bars represent mean values, and error 

bars represent the outlier range in plus direction with a coefficient of 1.5. Numbers above the arrows correspond to the 

fold-difference between D3 and D4 versions (for nicotine and anabasine) or between the D7 and D8 versions (for 

anatabine), plus/minus the standard deviation. Significant differences were determined using ANOVA and post hoc Tukey 

tests on log transformed (nicotine, anabasine) and untransformed (anatabine) data. ANOVA p-values can be found in 

Table S12. B. Representative traces (extracted ion chromatograms, [M+H]+) of the differently labeled pyridine alkaloids in 

quintuple NbBBL mutants (line 102) compared to WT plants. The colors of the depicted traces correspond to the colors of 

the corresponding bars in panel A. Chemical structures of each of the analyzed compounds are shown inside the gray 

boxes under each pair of graphs. The position of the lost deuterium atom was inferred from the comprehensive feeding 

studies carried out previously (Dawson et al., 1960; Leete & Liu, 1973; Leete, 1978).  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.06.531326doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531326
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

8 Time [min]

0.2

0.4

0.6

0.8

4x10

Intens.

8 Time [min]
0

1

2

4x10

Intens.

10 Time [min]
0

1

2

4x10

Intens.

10 Time [min]
0

1

2

4x10

Intens.

11 Time [min]

0

1

2

3

5x10

Intens.

11 Time [min]

0

1

2

3

5x10

Intens.

W
T

_
L

1
_

D
0

W
T

_
L

1
_

D
3

W
T

_
L

1
_

D
4

C
a

s
9

_
L

1
_

D
0

C
a

s
9

_
L

1
_

D
3

C
a

s
9

_
L

1
_

D
4

1
0

2
_

L
1

_
D

0

1
0

2
_

L
1

_
D

3

1
0

2
_

L
1

_
D

4

W
T

_
n

o
n

L
1

_
D

0

W
T

_
n

o
n

L
1

_
D

3

W
T

_
n

o
n

L
1

_
D

4

C
a

s
9

_
n

o
n

L
1

_
D

0

C
a

s
9

_
n

o
n

L
1

_
D

3

C
a

s
9

_
n

o
n

L
1

_
D

4

1
0

2
_

n
o

n
L

1
_

D
0

1
0

2
_

n
o

n
L

1
_

D
3

1
0

2
_

n
o

n
L

1
_

D
4

0.0

0.2

0.4

0.6

0.8

1.0

R
e

la
ti
v
e
 P

e
a

k
 A

re
a

W
T

_
L

_
D

0

W
T

_
L

_
D

3

W
T

_
L

_
D

4

C
a

s
9

_
L

_
D

0

C
a

s
9

_
L

_
D

3

C
a

s
9

_
L

_
D

4

1
0

2
_

L
_

D
0

1
0

2
_

L
_

D
3

1
0

2
_

L
_

D
4

W
T

_
n

o
n

L
_

D
0

W
T

_
n

o
n

L
_

D
3

W
T

_
n

o
n

L
_

D
4

C
a

s
9

_
n

o
n

L
_

D
0

C
a

s
9

_
n

o
n

L
_

D
3

C
a

s
9

_
n

o
n

L
_

D
4

1
0

2
_

n
o

n
L

_
D

0

1
0

2
_

n
o

n
L

_
D

3

1
0

2
_

n
o

n
L

_
D

4

0.0

0.2

0.4

0.6

0.8

1.0

R
e

la
ti
v
e
 P

e
a

k
 A

re
a

W
T

_
L

_
D

0

W
T

_
L

_
D

7

W
T

_
L

_
D

8

C
a

s
9

_
L

_
D

0

C
a

s
9

_
L

_
D

7

C
a

s
9

_
L

_
D

8

1
0

2
_

L
_

D
0

_
n

e
w

1
0

2
_

L
_

D
7

_
n

e
w

1
0

2
_

L
_

D
8

_
n

e
w

W
T

_
n

o
n

L
_

D
0

W
T

_
n

o
n

L
_

D
7

W
T

_
n

o
n

L
_

D
8

C
a

s
9

_
n

o
n

L
_

D
0

C
a

s
9

_
n

o
n

L
_

D
7

C
a

s
9

_
n

o
n

L
_

D
8

1
0

2
_

n
o

n
L

_
D

0

1
0

2
_

n
o

n
L

_
D

7

1
0

2
_

n
o

n
L

_
D

8

0.0

0.2

0.4

0.6

0.8

1.0

R
e

la
ti
v
e
 P

e
a

k
 A

re
a

D4D3D0D4D3D0D4D3D0D4D3D0D4D3D0D4D3D0

D4D3D0D4D3D0D4D3D0D4D3D0D4D3D0D4D3D0

D8D7D0D8D7D0D8D7D0D8D7D0D8D7D0D8D7D0

102Cas9WT102Cas9WT

fed with

D0-nicotinamide

fed with

D4-nicotinamide

D0-nicotine D3-nicotine D4-nicotine

D0-anabasine D3-anabasine D4-anabasine

D0-anatabine D7-anatabine D8-anatabine

b

7.96

±0.51

b

8.58

±0.44

a

0.32

±0.02

b

6.13

±0.40

c

6.84

±0.36

a

0.34

±0.02

b

6.88

±0.33

b

7.44

±0.61

a

1.11

±0.38

WT 102

8 9

time (min)

0

2

3

1i
n

te
n

s
. 

x
 1

0
4

8 9

time (min)

0.2

0.6

1.0

0.4

0.8

in
te

n
s
. 

x
 1

0
4

WT 102

10 11

time (min)

0

2

3

1in
te

n
s
. 

x
 1

04

10 11

time (min)

0

2

3

1in
te

n
s
. 

x
 1

04

WT 102

11 12

time (min)

0

2

3

1in
te

n
s
. 

x
 1

0
5

4

11 12

time (min)

0

2

3

1in
te

n
s
. 

x
 1

05

4

0.0

re
la

ti
v
e

 p
e

a
k
 a

re
a

0.2

0.4

0.6

0.8

1.0

0.0

re
la

ti
v
e

 p
e

a
k
 a

re
a

0.2

0.4

0.6

0.8

1.0

0.0

re
la

ti
v
e

 p
e

a
k
 a

re
a

0.2

0.4

0.6

0.8

1.0

n
ic
o
ti
n
e

a
n
a
b
a
s
in
e

a
n
a
ta
b
in
e

A B

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2023. ; https://doi.org/10.1101/2023.03.06.531326doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531326
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 7. DMN accumulation in roots of the quintuple NbBBL mutant (line 102) as analyzed by LC-MS. Seedlings 
were grown under hydroponic conditions, and roots were harvested 5 days after induction with MeJa. Traces are 
extracted ion chromatograms ([M+H]+) corresponding to nicotine (black) or DMN (blue). Results from mutant line 102 
are compared to results from two control lines (WT and Cas9). A total of five to six biological replicates per line were 
analyzed. While only one replicate is shown in this figure, all data is provided in Figure S4. Also shown are two traces 
corresponding to a (S)-nicotine standard and a DMN standard. In addition, MS2 spectra for DMN ([M+H]+) from line 
102 and from the DMN standard are shown to the right. The labels at the top of the MS spectra indicate the mass of 
the fragmented ion (parenthesis), the collision energy, and the retention time.

 

Our first task was the identification of all BBL gene 
copies in N. benthamiana. At the start of our work, there 
were two published N. benthamiana genome drafts, 
both of which had identified several examples of 

homeologous genes consistent with an allotetraploid 
origin (Bombarely et al., 2012; Naim et al., 2012). 
However, these genome drafts were constructed from 
reads generated using Illumina-chemistry and, due to 
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the complex nature of the genome, the assemblies 
consisted of more than 140,000 scaffolds. To obtain an 
improved draft, we generated a new N. benthamiana 

genome assembly using ChromiumTM linked-read 
sequencing (10x Genomics) as well as Nanopore 
sequencing (Oxford Nanopore). The completeness of 
the assembly is comparable to a recently reported draft 
assembled from Pacific BioScience Highly Accurate 
Long Read Sequencing reads (PacBio HiFi) (Kurotani 
et al., 2023), however, the HiFi+HiC assembly has 
higher contiguity (Table S5). This comparison provides 
insights into the limitations and advantages of different 
sequencing technologies, which will inform future efforts 
in genome assembly and analysis and highlights the 
benefits of chromosome-spanning connectivity 
information. The availability of multiple long-read 
datasets provides the opportunity for further 
improvements by the community. 

Out of the five NbBBL genes identified in the N. 

benthamiana genome, four were full-length (NbBBLa, b, 
c, and d), three were MeJa-responsive (NbBBLa, b, and 
c), and two were expressed at high levels (NbBBLa and 
b) (Figure 2A-B). We carried out gene editing of NbBBL 

genes using two different approaches. The first was a 
traditional approach targeting NbBBLa, b, and c, by 
integrating a T-DNA encoding a pair of sgRNAs to 
maximize the chances of inducing loss-of-function 
mutations (sgRNA19 and 35) (Figure 2A,C). We 
isolated a number of transgene-free lines with 
mutations at at least one of the two sgRNA sites, 
including a double NbBBLa/b knockout (line 198) and at 
least two triple NbBBLa/b/c knockouts (lines 159 and 
162) (Figure 3). For the second gene-editing approach, 
we used virus-delivered mobile guide RNAs 
(mbgRNAs) (Ellison et al., 2020) which, in one 
embodiment, targeted all BBL genes (mbgRNA5) 
(Figure 2A,C). With this strategy, we succeeded in 
obtaining a quintuple knockout (line 102).  

Metabolite analysis in leaves of the mutant lines 
revealed that simultaneous inactivation of NbBBLa and 
NbBBLb is sufficient to lower the levels of pyridine 
alkaloids, at least under induced conditions (Figure 4). 
Further inactivation of NbBBLc, NbBBLd and NbBBLd9 
did not result in significantly lower levels of pyridine 
alkaloids (Figure 4). Together with the above-
mentioned gene expression results (Figure 2B), this 
indicates that NbBBLa and NbBBLb are the main 
NbBBL genes involved in pyridine alkaloid biosynthesis 
in N. benthamiana. A major role of BBLa and BBLb was 
also observed in N. tabacum (Lewis et al., 2015, 2020; 

Kajikawa et al., 2017). Indeed, Kajikawa and co-
workers (2017) reported that NtBBLa and NtBBLb are 
by far the highest expressed NtBBLs in cultivar TN90. 
Consistent with this, Lewis et al. (2015) observed that 
double NtBBLa/b and triple NtBBLa/b/c knockouts 
(EMS-induced) in cultivar DH98-325-6 displayed 
comparably reduced levels of nicotine, nornicotine, and 
anatabine. A follow-up publication by Lewis et al. (2020) 
supported these findings by transferring the mutant 
alleles to different backgrounds (cultivars K326, TN 90 
and TN90 SRC). Similar to our results with the quintuple 
N. benthamiana knockout, Lewis et al. did not observe 
further pyridine alkaloid reductions by inactivating the 
remaining NtBBL genes (d1, d2 and e) on top of the 
triple NtBBLa/b/c mutant (TN90 SRC background). 

In the light of both our study and the one by Lewis et al. 
(2020), it is puzzling that the multiple NtBBL knockout 
reported in a brief communication by Schachtsiek & 
Stehle (2019) did not accumulate any detectable 
nicotine. We set out to investigate the origin of the 
residual nicotine in our NbBBL knockouts. Chiral 
analysis revealed that, while control lines accumulated 
(S)-nicotine almost exclusively, the residual nicotine in 
our quintuple NbBBL knockout was fully racemic (Figure 
5). Not only does this suggest that BBLs are fully 
responsible for the chirality of nicotine, it also suggests 
that the residual nicotine derives from a non-
stereoselective, spontaneous reaction. In addition, we 
carried out precursor feeding studies with deuterated 
(D4) nicotinamide. In control plants, we observed the 
loss of one deuterium atom, leading to preferential 
accumulation of D3 compared to D4 pyridine alkaloid 
versions (Figure 6). This preferential accumulation was 
lost in the quintuple NbBBL knockout (Figure 6), 
strongly supporting the hypothesis of a spontaneous 
reaction. It is well known that, in biological systems, 
spontaneous reactions are sometimes made faster 
and/or more specific via the action of enzymes. In 
particular, some of the scaffold-forming reactions in 
plant alkaloid biosynthesis are subject to enzymatic 
control despite their spontaneous nature, as discussed 
recently by Lichman (2021). One example is the 
coupling of tryptamine and secologanin in the 
biosynthesis of monoterpene indole alkaloids. In this 
case, the spontaneous reaction is slow and gives rise to 
two stereoisomers, whereas the enzymatic reaction is 
stereoselective, giving rise only to the S product 
(Stöckigt & Zenk, 1977). In a similar fashion, we 
postulate that BBLs not only accelerate an otherwise 
spontaneous reaction, they also ensure exclusive 
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accumulation of the S stereoisomer of nicotine, which is 
the more biologically active one (Yildiz, 2004). 

One outstanding question remains: what is the precise 
reaction catalyzed by BBL enzymes? As mentioned 
before, localized accumulation of DMN has been 
observed in N. tabacum roots upon down-regulation or 
inactivation of NtBBL genes (Kajikawa et al., 2011; 
Lewis et al., 2015). We observed a similar accumulation 
of DMN in our quintuple NbBBL mutant, confirming that 
the catalytic role of BBLs is conserved between N. 

tabacum and N. benthamiana. Given that DMN does not 
appear to be a substrate and that it likely derives from 
an intermediate downstream of the coupling step, 
Kajikawa et al. (2011) proposed that BBLs catalyze the 

oxidation of an already coupled intermediate. This 
proposal is fully consistent with our precursor feeding 
experiments, which showed a BBL-dependent loss of 
hydrogen from the pyridine ring. It is also consistent with 
several known BBL-catalyzed reactions involving 
hydride removal next to a nitrogen atom (Daniel et al., 
2017). However, the proposal seems to be at odds with 
the observed BBL-dependent creation of the S 

stereocenter in the pyrrolidine ring. The inconsistency 
stems from the fact that the stereocenter is likely 
established during the coupling. To bridge this gap, we 
propose a double function where BBLs catalyze the 
stereoselective coupling as well as the subsequent 
oxidation, as shown in Figure 8A. 

 

 

 

Figure 8. Mechanistic proposals for the BBL-catalyzed reaction(s). The proposals are based on our experimental 
results with the quintuple NbBBL knockout as well as previous results by Dawson and Leete (Dawson et al., 1960; 
Leete & Liu, 1973; Leete, 1978). A deuterium atom is shown at the C6 position in nicotinic acid (top molecule) to 
facilitate visualization of the fate of a hydrogen isotope at this position during biosynthesis. The stereochemistry of the 
initial reduction was established by Leete (Leete, 1978). In the BBL-catalyzed oxidations, the deuteride acceptor is 
likely to be FAD (not shown). [O], oxidation; spont., spontaneous; DMN, dihydrometanicotine. A. Scenario in which BBL 
enzymes catalyze both a stereoselective coupling and a subsequent oxidation. B. Alternative scenario in which the 
coupling is not stereoselective and is either spontaneous or catalyzed by an unknown enzyme. In this scenario, BBL 
enzymes are stereospecific for the S intermediate, thus giving rise only to (S)-nicotine. C. Proposal for the pyridine 
alkaloid pathway in the absence of functional BBL enzymes. 

 

Yet, stereochemical control of the coupling reaction is 
not the only way BBL enzymes can be envisioned to 
direct nicotine biosynthesis towards the S form. In case 
of a non-BBL-catalyzed, non-stereoselective coupling 

leading to both S and R intermediates, BBL enzymes 
would still produce only (S)-nicotine if they were specific 
for the S intermediate. We show this alternative 
proposal in Figure 8B. In this scenario, an R 
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intermediate would be produced, but it would be in fast 
equilibrium with the non-coupled forms, thus eventually 
converting to (S)-nicotine via decoupling.  

Both of these proposals are consistent with our results, 
especially in light of the coupling reaction having an 
important degree of spontaneous character and the 
coupled intermediates being unstable. Upon 
inactivation of BBL enzymes as in our quintuple NbBBL 

mutant, the coupling would still occur (either 
spontaneously or catalyzed by an unknown enzyme), 
leading to production of both S and R intermediates. 
Apart from decoupling (reverse reaction), each coupled 
intermediate would have two possible fates: either 
oxidize spontaneously to the corresponding nicotine 
form, or undergo ring-opening to give DMN (Figure 8C). 
In all of these cases, the loss of a hydrogen from 
position C6 would be non-specific, precluding the 
preferential accumulation of D3 forms in the case of 
feeding with D4-nicotinamide. Moreover, if hydrogen 
loss during oxidation was rate limiting, D3 forms of the 
pyrimidine alkaloids would predominate due to the 
kinetic isotope effect, and this is indeed what we 
observed for nicotine and anabasine (Figure 7).  

If the reaction(s) catalyzed by BBLs can indeed occur 
spontaneously, no further reduction in pyridine alkaloids 
can be expected by targeting this pathway step. A 
promising approach for further reduction could be the 
stacking of mutations in the Nic1/Nic2 loci as described 
in N. tabacum by Lewis 2020. Indeed, combining their 
NtBBLa/b/c alleles with the existing nic2 locus resulted 
in a line with lower nicotine levels, and these were 
further reduced when nic1 was stacked on top 
(NtBBLa/b/c/nic1/nic2 line) (Lewis et al., 2020). As 
mentioned before the nic1/nic2 loci are associated with 
reduced leaf quality in tobacco. This trait is associated 
with delayed senescence, which is problematic for the 
tobacco industry, but may be acceptable and even 
desirable in the case of N. benthamiana. However, the 
increased levels of polyamines observed in N. tabacum 

(Nölke et al., 2018) would be undesirable for high-value 
compound production in N. benthamiana.  

In summary, we present an improved N. benthamiana 

genome draft as well as low-nicotine lines edited in 
NbBBL genes. Further analysis of edited lines provided 
insights into the nature of the reaction catalyzed by 
BBLs and opened the possibility that BBLs are the 
sought-after coupling enzymes in pyridine alkaloid 
biosynthesis.  
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