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Abstract 25 
Barley genomic resources are increasing rapidly, with the publication of a barley pangenome 26 
as one of the latest developments. Two-row spring barley cultivars are intensely studied as 27 
they are the source of high-quality grain for malting and distilling. Here we provide data from 28 
a European two-row spring barley population containing 209 different genotypes registered 29 
for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data 30 
from six different tissues across a range of barley developmental stages, phenotypic datasets 31 
from two consecutive years of field-grown trials in the United Kingdom, Germany and the 32 
USA; and whole genome shotgun sequencing from all cultivars, which was used to 33 
complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP 34 
marker file, a phenotypic database and a large gene expression dataset providing a 35 
comprehensive resource which allows for downstream analyses like genome wide 36 
association studies or expression associations. 37 
 38 

Background & Summary 39 
Barley is one of the most important crops worldwide (5th in 2020 on area harvested, 40 
FAOSTAT1) and has a high value in the European agricultural sector underpinning the beer 41 
and whisky industries2.  New barley cultivars are introduced to the market every year, after 42 
being evaluated for multiple traits e.g., disease resistance, yield, and malting quality traits3.  43 
Barley breeding and the introduction of barley cultivars started at the beginning of the 19th 44 
century in the UK and by the end of the 19th century all over Europe4.  Instead of seeds being 45 
grown by the farmer with some saved for subsequent sowing the following year, breeding 46 
institutes were established, with the mission to develop improved seed stocks. Early cultivars 47 
were developed through mass selection and later followed by line selection from landraces. 48 
Initial breeding efforts focused on increasing yield5. Due to the considerable success of these 49 
breeding efforts, seed stocks soon became distributed across the continent and each country 50 
started their own breeding program by incorporating local landraces in crosses with these 51 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.06.531259doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531259
http://creativecommons.org/licenses/by/4.0/


2 
 

generally higher yielding genotypes. This cross-breeding technique of simple crosses 52 
followed by selection quickly led to an increase in yield as shown for spring barley in 53 
Germany with a doubling of yield from 1800 to 19006.  Breeding developed further by 54 
intentionally mutating seeds with chemicals or radiation to induce higher genetic variation in 55 
the offspring7. One of the most notable results from mutation breeding were the dwarfing 56 
genes which were critical for the green revolution8. Shorter stature cultivars provided the 57 
advantage of preventing lodging which was crucial for the development of high-yielding 58 
cultivars with heavy spikes. Complementing traditional to cross- and mutation-breeding, 59 
molecular technologies developed further and were quickly adopted. One of the most 60 
successful advances was marker-assisted selection (MAS) which deploys molecular markers 61 
to detect allelic variations within a genome. The most common markers used in breeding 62 
nowadays are single nucleotide polymorphisms (SNPs)9. MAS is used for rapid and high-63 
throughput selection of new genotypes and has matured from single marker analysis to 64 
genome-wide selection approaches. While SNPs are a key component of the genotyping 65 
platforms used in plant breeding purposes, they can also be used for gene discovery. 66 
Quantitative trait locus (QTL) mapping and genome wide association studies (GWAS) are 67 
valuable to identify alleles for genes underpinning genetically complex traits10-13. High 68 
throughput genetic markers are however only one of a number of genetic and genomic 69 
resources that have effectively revolutionised genetics and breeding. Next generation 70 
sequence data formed the basis of the first barley genome published in 2017 from the 71 
cultivar Morex14 which has been followed quickly by additional genomes from other 72 
cultivars15. The availability of <reference genome sequences= has both simplified the process 73 
and allowed a more precise identification of the causative genes controlling phenotypic 74 
traits. 75 
Here we introduce new genetic and genomic datasets assembled from a European two-row 76 
spring barley population that is representative of pan-European breeding progress across the 77 
years from 1830 to 2014. A total of 209 50K SNP-array16 genotyped barley cultivars were 78 
selected and grown in replicated field trials across three contrasting environments and for 79 
two years to score agronomic traits. Six different tissues from each cultivar were harvested 80 
and RNA was isolated for the collection of tissue and genotype specific transcript abundance 81 
(RNA-seq) data. Using both this RNA-seq data and whole genome shotgun sequence data 82 
from all individuals in the population, an exhaustive collection of high confidence SNP 83 
markers was assembled. We describe these datasets and provide examples of how they can 84 
be used. 85 
 86 

Methods 87 
Barley material and field trials 88 
We assembled a collection of 209 European two-rowed spring barley cultivars (Supplemental 89 
Table 1), which is a representative subset of previously described two-row spring European 90 
barley populations10,11,17-19 that show a significant increase in yield over time.  Pedigree data 91 
was collected from publications17,20, and the following two websites: 92 
https://grinczech.vurv.cz/gringlobal/search.aspx and 93 
https://www.lfl.bayern.de/mam/cms07/ipz/dateien/abst_gerste.pdf. Field experiments 94 
were conducted at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in 95 
Gatersleben, Germany, the James Hutton Institute (JHI) in Dundee, UK and the University of 96 
Minnesota (UMN) in St. Paul, USA in 2019 and 2020. At IPK and UMN, 100 grains of each 97 
genotype were sown in 1 m long double-rows in a completely random design with three 98 
replications in both years. At JHI, a seed density estimated to produce 350 plants per m2 for 99 
plot sizes of 2m x 1.5 m was established. In 2019 a single replicate was grown and in 2020 a 100 
completely random design with two replicates. In addition, a polytunnel trial was included at 101 
JHI in 2019. Plant material was grown in 7 litre sized pots, 4 seeds per pot, in 3 replicate sets 102 
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in a completely random design. Each replicate set had 8 columns and 30 rows and contained 103 
a replicate of each of the 209 genotypes.  104 
 105 
Phenotyping  106 
In total, 29 phenotypes were recorded on a per-plot basis in the field trials or on a per-pot 107 
basis in the polytunnel experiment. Developmental traits, growth habit and plant height 108 
measurements were recorded in the trials as described in Table 1. To measure spike and 109 
grain traits, ten to 15 main tiller spikes were harvested at full maturity (Zadoks stage 92) per 110 
plot, excluding the outermost plants of each row to avoid edge effects.  After recording of all 111 
spike traits, spikes were hand-threshed, and grains were subjected to size and weight 112 
measurements on a Marvin SeedAnalyzer 6 (MARViTECH GmbH, Germany). Samples were 113 
first weighted and then added on to the Marvin tray for optical measurements of the grain 114 
size. 115 
 116 
Table 1: A summary of the phenotypic traits and a description on how they were scored. 117 
Trait Method 

Developmental traits 

Days to awn tipping 50% of the main tiller awns per plot have emerged up to 1 cm out of 
the flag leaf sheath. Recorded as days since sowing 

Days to heading 50% of the main tiller spikes per plot have emerged halfway out of the 
flag leaf sheath. Recorded as days since sowing 

Days to senescence 50% of the main tiller peduncles per plot are senescent (yellow). 
Recorded as days since sowing 

Days from awn tipping to 
heading  

Derived from days to awn tipping and days to heading 

Days from awn tipping to 
senescence 

Derived from days to awn tipping and days to senescence 

Days from heading to 
senescence 

Derived from days to heading and days to senescence 

Growth habit (GH) Visual evaluation using a scale of 1 (erect), 2 (intermediate) and 3 
(prostrate). Recorded at the onset of stem elongation 

Height and length traits 

Peduncle base height Height of the base of the peduncle in cm 
Flag leaf blade height Height of the flag leaf sheath in cm 
Culm height Height of the base of the spike in cm 
Plant height Height of the top of the spike in cm 
Awn tip height Height of the tip of the awns in cm 
Spike base to flag leaf Calculated distance from base of spike to flag leaf sheath (auricle) in 

cm 
Peduncle length Calculated distance from base of spike to base of peduncle in cm 
Awn length Calculated distance from tip of awns to top of spike in cm 
Spike culm ratio Spike length divided by culm height 
Spike traits (recorded on 10-15 main tiller traits per plot after harvest) 

Rachis node number Number of rachis nodes 
Spike length Spike length in cm 
Spike density Rachis node number divided by spike length 
Grain traits 

Grain traits (recorded on 10-15 main tiller traits per plot after harvest) using a Marvin Seed 

Analyzer 6 

Grain area Area of all kernels per spike in mm2. Recorded using the automatic 
grain area calculation function in the Marvin SeedAnalyzer 6 software 
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Kernel roundness Roundness of all kernels per spike. Recorded using the automatic 
kernel roundness calculation function in the Marvin SeedAnalyzer 6 
software 

Thousand kernel weight Calculated from the number and weight of the kernels using the 
Marvin SeedAnalyzer 6 software 

Grain length Length of all kernels per spike in cm 
Grain width Width of all kernels per spike in cm 
Spike traits (recorded on 10-15 main tiller traits per plot after harvest) 

Infertile florets at top and 
bottom (=edges) of spike 

Number of infertile florets at the top of spike down to first fertile 
floret + number of infertile florets at the base of spike up to first 
fertile floret 

Infertile florets in the 
middle of the spike 

Number of infertile florets in the centre of the spike 

Number of fertile grain Total number of fertile florets per spike 
Percent of fertile florets Total number of fertile florets per spike divided by rachis node 

number 
Number infertile florets Total number of infertile florets per spike 
 118 
Tissue sampling for RNA-seq 119 
Six different tissues were sampled for RNA-seq analysis: crown, root, inflorescence, 120 
peduncle, spikelet and grain. At UMN, crown and root tissues were sampled from seven-day-121 
old seedlings (GRO:0007060, first leaf unfolded). Ten seeds per genotype were surface 122 
sterilized and planted in moist vermiculite in individual Cone-tainers (6000 RLC3 size, Ray 123 
Leach, Tangent, OR). The Cone-tainers were put into a dark cold room for four days to 124 
achieve more consistent germination. Then they were moved into a growth chamber at 20°C 125 
with 16 hours of light for seven days. Tissues were harvested within three hours, starting at 126 
9:00 am USA Central Time Zone to reduce the circadian effect on gene expression. Roots 127 
were sampled by cutting the longest root from each seedling adjacent to the germinated 128 
seed, and crowns by removing the roots and keeping the 1 cm shoot tissue immediately 129 
above. For each individual genotype five plants were combined and snap frozen in liquid 130 
nitrogen. 131 
At JHI, the barley plants grown in 2019 under polytunnel conditions were used for tissue 132 
sampling. When plants reached the booting stage, which was 84-85 days after germination, 3 133 
– 5 cm whole developing inflorescence tissue was taken, two from each replicate per 134 
genotype per sample. Whole peduncles were taken at 2 – 5 cm in length, three from each 135 
replicate per genotype per sample when plants were 88 – 90 days old. Samples were snap 136 
frozen in liquid nitrogen and stored at -80°C. 137 
At IPK, barley plants grown in the 2019 field trial were monitored daily by dissecting single 138 
spikelets and recording the date of green anther stage and flowering stage on paper tags 139 
attached to the spikes. Sampling was limited to a two-hour period between 10:00 and 12:00 140 
am Central European Summer Time each day to reduce the circadian effect on gene 141 
expression. Three spikes per plot of one repetition were selected at green anther stage and 142 
two central spikelets from the centre of each spike were sampled.  At 5 days post anthesis, 143 
three spikes per plot of one repetition were selected and six developing grains per spike 144 
were sampled from the central region of each spike. All samples were snap-frozen in liquid 145 
nitrogen and stored at -80 °C until RNA extraction.  146 
 147 
RNA extraction and RNA sequencing 148 
RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and treated with DNaseI 149 
following the manufacturer’s instructions. Buffer RLC was used for seedling root extractions, 150 
and Buffer RLT was used for all other tissue extractions. To ensure a high purity of spikelet 151 
and grain samples, a more rigorous cleanup using 700µl RW1 and three wash steps with RPE 152 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.06.531259doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531259
http://creativecommons.org/licenses/by/4.0/


5 
 

was performed. The integrity of samples was determined using an Agilent 2100 Bioanalyzer, 153 
an Agilent 4200 TapeStation or a 1% agarose gel. All tested samples had a RIN factor of >=8 154 
and were suitable for further processing. Paired-end libraries with a read length of 150 bp 155 
were constructed from spikelet and grain samples (IPK Gatersleben) and seedling root and 156 
crown samples (University of Minnesota Genomics Center, Minneapolis, MN, USA) using the 157 
Illumina TruSeq Stranded Total RNA Library Prep Plant with Ribo-Zero Plant kit and 158 
sequenced on the NovaSeq 6000 platform. For the inflorescence and peduncle samples (JHI) 159 
Illumina RNA-seq library preparation and RNA-seq was carried out by Novogene (Company 160 
Limited, Hong Kong). The libraries were prepared using NEBNext® Ultra™ Directional RNA 161 
Library Prep Kit and sequenced using Illumina NovaSeq 6000 (PE 150). 162 
 163 
Bioinformatics 164 
Read quantification 165 
We generated 77.95 billion raw reads from RNA-seq of the six different tissues 166 
(Supplemental Table 2). Raw reads were trimmed with Trimmomatic 0.3921 to remove 167 
adapters and reads shorter than 60 bp. Salmon 1.3.022 was used for expression 168 
quantification including the gcBias setting to align trimmed reads to the transcriptome. We 169 
followed the approach of selective alignments by generating a decoy-aware transcriptome 170 
from the barley reference transcript dataset V2 (BaRTv2)23 and the reference genome of cv 171 
Barke15. This approach is recommended24 to reduce inaccurate transcript quantification 172 
caused by unannotated genomic loci that have a high sequence similarity to annotated 173 
transcripts.  174 
 175 
Expression analysis 176 
Tissue-specific genes were identified using different R packages25. For each tissue the raw 177 
counts were imported and combined to gene expression counts using tximport26. Raw counts 178 
were normalised (calcNormFactor), and log transformed to counts per million (cpm) using 179 
edgeR27. The tissue-specific expressed genes were identified by filtering for an average cpm 180 
of above 1 across all samples in this tissue and an average cpm of below -1 for all the other 181 
tissues. In addition, gene expression for two and more tissues were filtered with the same 182 
parameters to build the intersection sets required to create an UpSet28,29 plot of expressed 183 
genes in the different tissues. Gene ontology (GO) enrichment for the identified genes and 184 
visualisation was done as previously described30. 185 
 186 
Variant calling 187 
For variant calling, the trimmed RNA-seq reads were mapped to the reference genome of cv 188 
Barke15 using the two-pass mode implemented in STAR v. 2.7.531 allowing 6% mismatches 189 
normalized to read length, intron lengths between 60 and 15000 bp, a maximum distance of 190 
2000 bp between mates and a maximum number of 30,000 transcripts per window. Due to 191 
the high number of reads in the grain and spikelet tissue the splice junction files were 192 
filtered for at least one uniquely-mapped read in more than one sample, with non-canonical 193 
splice sites removed and then used to generate a new genome index for the second mapping 194 
run. For the other tissues, the splice junction files from the first pass were provided as part 195 
of the input for the second mapping step. Duplicated reads were marked with Picard 196 
2.18.2932 followed by filtering with bamtools 2.5.133 to remove reads with 2% mismatches 197 
and a mapping quality <= 50 .The legacy algorithm of Freebayes 1.3.234 was used to call 198 
variants with a minimum fraction of alternate allele observations of 20%, a minimum 199 
alternate allele count of 2, a minimum coverage of 4, and minimum base and mapping 200 
qualities of 30.  201 
 202 
Whole genome shotgun (WGS) approach 203 
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DNA was extracted from snap-frozen second leaves of greenhouse-grown (21°C/18°C 204 
day/night temperature) two-week old seedlings using a guanidinium thiocyanate-NaCl-based 205 
method as described35. DNA quality and quantity was assessed by agarose gel 206 
electrophoresis. The Nextera DNA kit (Illumina) was used for library preparation of 150 bp 207 
paired-end reads. Libraries were multiplexed and sequenced on a NovaSeq 6000 platform at 208 
IPK Gatersleben. 12.16 billion raw paired-end raw reads (Supplemental Table 2) were 209 
trimmed with Cutadapt 1.1536 to remove adapters and reads shorter than 30 bp. Trimmed 210 
reads were mapped to the reference genome of cv Barke using Minimap2 2.1137. The 211 
resulting alignment files were sorted and duplicate-marked using Novosort 3.06.0538 and 212 
converted to cram files using samtools 1.839,40. Bcftools40 call was used to call variants using 213 
genotype likelihoods calculated from alignments with a minimum quality score of 20 with 214 
bcftools mpileup. Variants were re-called based on read depth ratios using a custom awk 215 
script similar to the one at https://bitbucket.org/ipk_dg_public/vcf_filtering/src/master/ 216 
with the following parameters modified: dphom = 1, dphet = 2, minhomn = 10, tol = 0.249, 217 
minmaf = 0.1, minpresent = 0.01. 218 
 219 
Genotype marker file 220 
The final genotype file was generated by filtering and merging multiple files. First all RNA-seq 221 
vcf files from the six tissues were filtered to remove insertions and deletions (Indels). 222 
RNAseq SNPs from individual tissues were then merged, prioritizing homozygous calls by 223 
retaining heterozygous calls only if no homozygous calls were present in any of the tissues. 224 
The merged RNAseq SNPs were then merged with WGS and 50K array SNPs16, prioritizing 225 
homozygous calls in the same manner. The resulting unfiltered dataset contained 209 226 
cultivars and 32,484,981 bi-allelic SNPs.  The merged SNP dataset was filtered using 227 
TASSEL541 to remove SNPs with more than 20% missing data, minor allele frequency (MAF) < 228 
0.01, heterozygosity > 0.02, and only keeping bi-allelic SNPs. Missing data was imputed using 229 
the FILLIN plugin42 in TASSEL5 by first identifying haplotypes. For haplotype identification 230 
each chromosome was split into 500 blocks. The number of markers per haplotype block (-231 
hapSize) was the total number of markers per chromosome divided by 500 and rounded to 232 
be divisible by 64 (TASSEL5 software requirement). Haplotypes were identified for each block 233 
with a maximum number of haplotypes of 20 (-maxHap 20) and at least five different 234 
genotypes per haplotype (-minTaxa 5). Haplotype information was used as input for the 235 
imputation. Further filtering removed seven lines that had more than 30% missing data after 236 
imputation (Aramir, Balder J, Dallas, KWS Irina, Power, Proctor and Spey), and one line was 237 
removed that had more than 2% heterozygosity (Rika). In a last filtering step, we removed 238 
SNPs which still had more than 20% missing data, MAF < 0.025 and heterozygosity > 0.02. 239 
SNPs were LD pruned with PLINK (v1.9)43 using a window size of 5000, a step size of 50 and 240 
an r2 threshold of 0.99.  The final SNP dataset after pruning contained 201 cultivars and 241 
1,509,447 SNPs. 242 
 243 
Variant effect using SnpEff 244 
To identify the effect of variants on the protein, we filtered the raw vcf files in a different 245 
way to generate an input file for SnpEff44. The aim for the genotype marker set explained 246 
above was to reduce the number of SNPs with pruning to a size which can be used for 247 
association analysis. For the variant effect, on the other hand, we need all the available SNP 248 
information and more importantly do not want to lose any SNPs due to pruning in gene 249 
space. For SNPs, the merged unfiltered vcf file containing RNA-seq, WGS and 50k data was 250 
filtered by removing heterozygous calls, removing SNPs with missing data in more than 20% 251 
of the samples and a minor allele frequency of < 0.025. In addition, a dataset containing 252 
Indels was created by using the six vcf output files from the RNA-seq data after variant 253 
calling with Freebayes. All were filtered to keep Indels only, remove heterozygous calls, 254 
removing variants with missing data in more than 20% of the samples and a MAF of < 0.025. 255 
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The six Indel vcf files were combined into one. A SnpEff database was built based on BaRTv2 256 
and the Barke reference genome.  257 
 258 
Statistical analysis of phenotypic data, calculation of Best linear unbiased predictions (BLUPs) 259 
and heritability 260 
Statistical analysis was performed using R 3.6.125. The Pearson correlation coefficient 261 
between experiments was calculated for each phenotypic trait and datasets showing an 262 
insignificant correlation (p>0.05) with at least one other dataset of the same trait were 263 
removed before calculating BLUPs. The datasets being used in each of the BLUP calculations 264 
are listed in Supplemental Table 3. BLUPs were calculated across experiments using a 265 
randomized complete block model in META-R with experiments set as a random factor 266 
following formula 3 in Alvarado et al.

45.  267 
 268 
Genome wide association studies (GWAS) 269 
Association between phenotype and genotype was done using the Mixed Linear Model 270 
(MLM)46 with GAPIT (version 3)47. As input, we used the genotype marker file of 201 cultivars 271 
and 1,509,447 SNPs and the BLUP values of the Awn length phenotype were used to show an 272 
example of the process. Three principal components (PCs) were calculated within GAPIT and 273 
model selection set to TRUE to enable GAPIT to select the optimal number of PCs for the 274 
individual phenotype based on a Bayesian information criterion (BIC).   275 
 276 

Data Records 277 
 278 
All raw data files for both raw RNA sequencing data and whole genome shotgun data have 279 
been deposited at the European Nucleotide Archive (ENA) under the following project 280 
number: PRJEB49069 for the RNA-sequencing reads and PRJEB48903 for the whole genome 281 
shotgun sequencing reads. 282 
 283 
Phenotypic data and the SNP marker file are available through Germinate48: 284 
https://ics.hutton.ac.uk/germinate-barn/  285 
The database contains the raw data by year and by site plus the calculated BLUP dataset. 286 
 287 
Derived datasets are available through e!Dal49. The datasets consist of two sets of gene 288 
expression files per tissue; one for the raw read counts and one for the TPM values mapped 289 
against BaRTv2. Further two files containing the variant identification are available. The first 290 
contains the SNPs and the second with the Indel information with SnpEff annotation. 291 
Preview link: https://doi.ipk-gatersleben.de/DOI/815787d8-4036-408b-999e-292 
725f7645eacf/6e532074-b4d7-4393-9221-8fe643e100f2/2/1847940088 293 
 294 

Technical Validation 295 
Population 296 
The 209 two-row spring barley population was selected from previously established datasets 297 
containing 647 genotypes10,11,17-19.  To include a wide range of genetically representative 298 
individuals, we used available BOPA SNP data (as previously described)50 and did a multi-299 
dimensional scaling plot (Figure 1 a).  Dimension 1 showed the progression from the oldest 300 
to the newest cultivars and explains 10.7% of the genetic variation.  Genotypes were then 301 
chosen to be spread across year of registration as a cultivar to the UK market. Except for the 302 
first time-range which encompassed 130 years (1830-1959) of cultivar releases, all other 303 
ranges were split into decades and each time-range is represented by a similar number of 304 
genotypes (Figure 1 b). The final population was representative of breeding progress in 305 
cultivated barley for improved yield over time. 306 
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Pedigree data showed that modern barley germplasm is highly connected with most current 307 
genotypes’ descendants of a small number of <founder= genotypes (Pedigree file: 308 
Supplemental File 1, Pedigree attributes: Supplemental File 2). These supplemental pedigree 309 
files can be used as input for the pedigree visualisation tool Helium 310 
(https://helium.hutton.ac.uk/)51. Intermediate crosses were omitted from the file to be able 311 
to display the pedigree and produce a tree which is both readable and navigable. Using the 312 
pedigree data within Helium allows for further analyses. For example, eigenvector centrality 313 
analysis can be used to measure the importance of a node in a network.  The cultivar with 314 
the highest influence on the pedigree tree was Kenia, followed by Maja and Gull.  In total, 315 
163 out of 209 (77.6%) of the cultivars used in our population can be traced back to those 316 
three genotypes, confirming the importance of the founder genotypes for the overall 317 
population.  318 
 319 
Phenotyping 320 
Field trials were done in 2019 and 2020 in three different locations: Minneapolis (Lat. 321 
44.987, Long: -93.258; MN, USA), Dundee (Lat. 56.462, Long. -2.971; UK) and Gatersleben 322 
(Lat. 51.823, Long. 11.287; Germany). In total 29 agronomic traits were scored associated 323 
with development (earliness and growth habit traits), grain and height measurements. All 324 
the phenotypic data can be viewed and studied in a Germinate database: 325 
https://ics.hutton.ac.uk/germinate-barn/. Across years and sites, the results were consistent 326 
except for a few traits. All earliness traits showed a faster development to awn tipping all the 327 
way to peduncle senescence in Minnesota and slowest in Dundee, with for example the days 328 
from sowing to senescence differing by more than 50 days. One obvious outlier in the 329 
phenotypic scoring were the grain fertility measurements in Minnesota in 2019 where the 330 
spikes got stuck in the flag leaf sheath due to high temperatures during the growing season 331 
and did not emerge fully which led to a higher number of infertile florets.  All phenotypic 332 
information was combined into BLUPs except for 24 out of 165 phenotype datasets which 333 
did not correlate with the rest (Supplemental Table 3 shows which phenotype values were 334 
combined; Supplemental Figure 1 for distribution of BLUP values per phenotype). The 335 
strongest positive correlation of the different phenotypes were the five different height 336 
measurements to each other (Figure 3).  Those were also strongly negative correlated with 337 
year of registration. The earliness traits on the other hand showed a stronger positive 338 
correlation with year of registration (awn tipping to heading; awn tipping to senescence).  Of 339 
the grain phenotypes, grain length and grain area were strongly correlated to each other and 340 
to thousand kernel weight, but less so to grain width. Interestingly, grain length is positively 341 
correlated with grain circularity, while grain width is negatively correlated with it.  342 
 343 
Genotyping 344 
To achieve the most extensive genotypic information for our population, variant calling from 345 
RNA-seq data, whole genome shotgun data and previously established 50K SNP data was 346 
combined (32,484,981 raw SNPs). For RNA-seq and WGS, the data was filtered to keep only 347 
biallelic SNPs. We extracted the SNPs corresponding to the previous described BOPA markers 348 
across all 1463 sequencing datasets (six tissue-specific RNA-seq datasets with 209 genotypes 349 
each and one WGS dataset with 209 genotypes) for quality control. The Pearson correlation 350 
coefficient for all genotypes between datasets was calculated. This identified mixed-up 351 
samples where the genotype showed high correlation with a differently named sample and 352 
therefore allowed for correction of the genotypic information. Samples with a high number 353 
of heterogenous SNPs (above 10%) were removed as this pointed towards issues during 354 
sample preparation. The filtering step reduced the number of genotypes per tissue. The final 355 
numbers of genotypes per tissue varied between 191 to 199 (Supplemental Table 2 shows 356 
which genotypes per tissue where retained). The merged SNP file was filtered to remove 357 
highly heterozygous sites or those containing more than 20% missing data. The remaining 358 
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sites were imputed using haplotype imputation.  SNPs were pruned by LD using Plink to 359 
reduce the dataset size to the final 1,509,447 SNPs.  SNP distribution along the 7 360 
chromosomes showed overall low polymorphism in the centromeric region and higher 361 
polymorphism towards the telomeric ends (Figure 2). For chromosome 1H, 2H and 7H almost 362 
no polymorphism could be identified in the centromeric region, as previously observed by 363 
Mascher et al 14. 364 
 365 
Gene expression 366 
RNA-seq data for six different tissues (crown, grain, inflorescence, peduncle, root, spikelet) 367 
was mapped against the BaRTv2 transcriptome using Salmon22. The expression of all 39,434   368 
genes in transcript per million (TPM) for each tissue were used as input to generate a 369 
multidimensional scaling plot (MDS). The MDS shows all 209 genotypes cluster together by 370 
tissue type (Figure 4). The tissue furthest separated by the first dimension from the rest was 371 
the root tissue. The two tissues sampled from the spikelet at green anther stages (spikelet) 372 
and developing grain at five days post anthesis (grain) show the highest overlap.  373 
 374 
Data use-case scenarios 375 
In the following three examples we show how the above datasets can be used. 376 
 377 
In the first example the expression data has been used to filter for tissue-specific gene 378 
expression. Tissue-specific genes showed that the root tissue was the most distinct with 776 379 
genes identified as root specific (Figure 5). 572 genes were specifically expressed in grain, 380 
437 in spikelet, 198 in inflorescence, 86 in peduncle and 64 in crown. Inflorescence and 381 
peduncle shared the highest overlap of expressed genes with 927 genes and 13,215 genes 382 
were expressed in all six tissues. While the MDS plot shows a high overlap of samples 383 
between spikelet and grain in the first two dimensions, the third dimension divides those 384 
tissues which fits with these two tissues showing the second and third highest tissue-specific 385 
gene expression. Gene ontology for the peduncle resulted in no significant terms. The Gene 386 
ontology results for all remaining five tissues are shown in Figure 6. Most terms were 387 
identified for the root tissue showing terms one might expect in roots. Nitrate transport and 388 
general transmembrane transport were identified in the Biological Process category; 389 
apoplast, cell wall and extracellular region for the Cellular Compartment category. Different 390 
transferase activities are highly significant in the Molecular Function category as well as 391 
heme binding. The associated terms compare to those previously identified in maize52.  392 
 393 
In the second example, we studied the potential impact that genetic variation could have on 394 
the gene activity or protein function by identifying premature stop codons or frameshift 395 
mutations in a high confidence variant dataset.  For the SNP dataset we started with 32 396 
million SNPs, removed heterozygous SNPs and filtered for variants with less than 20% 397 
missing data and a minor allele frequency of 2.5% which resulted in 4,012,229 SNPs53. Those 398 
were used as input into SnpEff which identified 9,219,271 effects (as described by SnpEff: 399 
http://pcingola.github.io/SnpEff/se_inputoutput/#eff-field-vcf-output-files) caused by those 400 
4 million SNPs. 4% (368,650) of the effects were in exons, with 53.78% synonymous variants, 401 
corresponding to 199,545 effects in 17,446 genes. 45.57% (169,105 effects) of the exon 402 
effects were non-synonymous variants in 19,057 genes and 0.65% classified as nonsense.  403 
The 0.65% corresponded to 2,425 transcripts and 1,105 genes with a premature stop codon 404 
in the sequence.  For the Indel identification only the RNA-seq variant files were considered 405 
as those provided higher read depth for the genetic regions. They were also filtered by 406 
removing heterozygous variants, keeping those with less than 20% missing data and a minor 407 
allele frequency of 2.5%. A total of 50,865 variants remained which SnpEff predicted to cause 408 
558,991 effects. 50.31% (281,228 effects) were upstream or downstream of the gene and 409 
41.81% (233,706 effects) in the intronic region. After filtering for disruptive frame shifts 410 
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caused by insertions or deletions resulting in changes to the protein sequence, 1,912 genes 411 
remained which we designated as potentially non-functional in some of the cultivars53. Such 412 
structural variation can of course be explored in relation to gene expression. To illustrate, 413 
within the tissue-specific gene expression data we highlighted two genes 414 
(BaRT2v18chr5HG260690 and BaRT2v18chr2HG058650) with frameshift mutations in 415 
comparison to the Barke reference allele. Figure 7 shows the expression of those two genes. 416 
For BaRT2v18chr5HG260690 the deletion of four nucleotides is associated with lower gene 417 
expression. For BaRT2v18chr2HG058650 an A insertion is sociated with higher gene 418 
expression. The consequence of such variation still needs to be explored. 419 
 420 
As a final example, we show a genome wide association study (GWAS) using the 1,509,447 421 
SNP markers and the awn length phenotype. We used the Mixed Linear Model (MLM) in 422 
Gapit47 to identify associations in the genome. Using a -log10(p) cut-off of 5 resulted in 6 423 
significant peaks (Figure 8). The most significant SNP was found on chromosome 5H at 424 
position 441Mb. This peak had a very rare MAF of 3% and was located within 1kb of a 425 
previously identified gene involved in awn length, HvDep1 (BaRT2v18chr5HG247460). The 426 
here identified allele corresponded to the previously described ari-eGP allele on 427 
chromosome 5H which is a one base pair <A= insertion in the HvDep1 gene54. The insertion 428 
was confirmed for four cultivars in the population: Golden Promise, Tyne, Midas and Chad. 429 
Gene expression of HvDep1 (Figure 8b) showed potentially lower expression in crown and 430 
inflorescence tissue but similar levels for the peduncle. This simple example highlights the 431 
fact that variants causing a loss of function do not necessarily induce strong changes in gene 432 
expression.  433 
 434 
 435 

Usage Notes 436 

To perform the analysis using the Snakemake55 pipeline (see code availability) a high-437 
performance computing (HPC) cluster is needed. For example, the Salmon indexing step in 438 
this setup needed 56Gb of memory using 16 cores, mapping of each individual sample 439 
needed 31Gb of memory using 8 cores. Downstream analyses like the genome wide 440 
association studies can be performed by downloading the BLUPs of the phenotypes and the 441 
marker file from Germinate. 442 

Code Availability 443 

The code for analysing the RNA-sequencing data from mapping to genome and 444 
transcriptome to variant calling was combined into a Snakemake55 pipeline and is available 445 
on GitHub: https://github.com/SchreiberM/BARN.  446 
 447 
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Figure Legends 488 
Figure 1: Selection of a two-row spring population. a) Multidimensional scaling plot of 647 489 
European two-row spring cultivars. Genotype information came from 2,336 previously 490 
published BOPA markers. The 209 selected cultivars forming the population in this paper are 491 
shown as triangles. The year range represents the year each individual cultivar was 492 
registered. b) Distribution of the selected population of 209 cultivars (orange) as part of the 493 
total 647 European two-row spring cultivars (green) by year of registration.  494 
 495 
Figure 2: SNP distribution and density of the final 1,509,447 SNPs in the genotypic marker file 496 
along the seven barley chromosomes in 1 Mb bins. The SNPs were identified from the 50k 497 
SNP array, RNA-sequencing and whole genome shotgun sequencing datasets and filtered to 498 
remove missing values and heterozygosity. 499 
 500 
Figure 3: Pearson correlation coefficient between the 29 scored phenotypes and as 30th 501 
variable the year of registration. Phenotypic values were provided as best linear unbiased 502 
predictions for each phenotype for each of the 209 cultivars. 503 
 504 
Figure 4: Gene expression of 209 cultivars across six tissues. Multidimensional scaling plot of 505 
all genes expressed in any of the six studied tissues: root, crown, peduncle, inflorescence, 506 
spikelet and grain. 507 
 508 
Figure 5: An UpSet plot showing the overlap of the expressed genes for each of the tissues 509 
and tissue combinations. 510 
 511 
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Figure 6: Gene ontology enrichment for the tissue-specific genes a) root, b) grain, c) 512 
inflorescence, d) spikelet and e) crown. X-axis shows the percentage of genes associated 513 
with the GO term out of all genes in BaRTv2 associated with this term. Y-axis shows the 514 
significance as FDR adjusted -log(p-value) of the GO term. The area of the circle corresponds 515 
to the number of genes associated with the GO term. 516 
 517 
Figure 7: Gene expression in TPM (transcripts per million) for two genes identified with 518 
changes in the protein sequence. a) BaRT2v18chr5HG260690 and b) 519 
BaRT2v18chr2HG058650 split by haplotype on the x-axis. The first haplotype always 520 
represents the reference allele from the genotype Barke, and the second allele represents 521 
the alternative.  522 
 523 
Figure 8: Genome wide association of awn length. a) GWAS result of awn length showing a 524 
high significant association on chromosome 5H. b) The gene expression in TPM of the 525 
candidate gene HvDep1 (BaRT2v18chr5HG247460). The first haplotype on the x-axis 526 
represents the reference allele from the genotype Barke, and the second allele represents 527 
the alternative.  528 
 529 
Supplemental Figure 1: Violin and boxplots of BLUP values for the phenotypic variation in all 530 
29 scored traits. 531 
 532 
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