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25 Abstract
26  Barley genomic resources are increasing rapidly, with the publication of a barley pangenome
27  as one of the latest developments. Two-row spring barley cultivars are intensely studied as
28  they are the source of high-quality grain for malting and distilling. Here we provide data from
29  a European two-row spring barley population containing 209 different genotypes registered
30 for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data
31 from six different tissues across a range of barley developmental stages, phenotypic datasets
32  from two consecutive years of field-grown trials in the United Kingdom, Germany and the
33 USA; and whole genome shotgun sequencing from all cultivars, which was used to
34  complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP
35 marker file, a phenotypic database and a large gene expression dataset providing a
36  comprehensive resource which allows for downstream analyses like genome wide
37 association studies or expression associations.
38
39 Background & Summary
40  Barley is one of the most important crops worldwide (5" in 2020 on area harvested,
41 FAOSTAT') and has a high value in the European agricultural sector underpinning the beer
42 and whisky industries®. New barley cultivars are introduced to the market every year, after
43 being evaluated for multiple traits e.g., disease resistance, yield, and malting quality traits®.
44 Barley breeding and the introduction of barley cultivars started at the beginning of the 19'"
45  century in the UK and by the end of the 19" century all over Europe®. Instead of seeds being
46  grown by the farmer with some saved for subsequent sowing the following year, breeding
47  institutes were established, with the mission to develop improved seed stocks. Early cultivars
48  were developed through mass selection and later followed by line selection from landraces.
49 Initial breeding efforts focused on increasing yield®. Due to the considerable success of these
50 breeding efforts, seed stocks soon became distributed across the continent and each country
51  started their own breeding program by incorporating local landraces in crosses with these
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52  generally higher vyielding genotypes. This cross-breeding technique of simple crosses
53  followed by selection quickly led to an increase in yield as shown for spring barley in
54  Germany with a doubling of yield from 1800 to 1900°. Breeding developed further by
55 intentionally mutating seeds with chemicals or radiation to induce higher genetic variation in
56  the offspring’. One of the most notable results from mutation breeding were the dwarfing
57  genes which were critical for the green revolution®. Shorter stature cultivars provided the
58  advantage of preventing lodging which was crucial for the development of high-yielding
59 cultivars with heavy spikes. Complementing traditional to cross- and mutation-breeding,
60  molecular technologies developed further and were quickly adopted. One of the most
61  successful advances was marker-assisted selection (MAS) which deploys molecular markers
62  to detect allelic variations within a genome. The most common markers used in breeding
63  nowadays are single nucleotide polymorphisms (SNPs)’. MAS is used for rapid and high-
64  throughput selection of new genotypes and has matured from single marker analysis to
65  genome-wide selection approaches. While SNPs are a key component of the genotyping
66  platforms used in plant breeding purposes, they can also be used for gene discovery.
67  Quantitative trait locus (QTL) mapping and genome wide association studies (GWAS) are
68  valuable to identify alleles for genes underpinning genetically complex traits'®*®. High
69  throughput genetic markers are however only one of a number of genetic and genomic
70  resources that have effectively revolutionised genetics and breeding. Next generation
71  sequence data formed the basis of the first barley genome published in 2017 from the
72 cultivar Morex™ which has been followed quickly by additional genomes from other
73 cultivars®. The availability of “reference genome sequences” has both simplified the process
74  and allowed a more precise identification of the causative genes controlling phenotypic
75 traits.

76 Here we introduce new genetic and genomic datasets assembled from a European two-row
77  spring barley population that is representative of pan-European breeding progress across the
78  vyears from 1830 to 2014. A total of 209 50K SNP-array™® genotyped barley cultivars were
79  selected and grown in replicated field trials across three contrasting environments and for
80  two years to score agronomic traits. Six different tissues from each cultivar were harvested
81  and RNA was isolated for the collection of tissue and genotype specific transcript abundance
82  (RNA-seq) data. Using both this RNA-seq data and whole genome shotgun sequence data
83  from all individuals in the population, an exhaustive collection of high confidence SNP
84  markers was assembled. We describe these datasets and provide examples of how they can

85 be used.
86
87 Methods

88 Barley material and field trials
89  We assembled a collection of 209 European two-rowed spring barley cultivars (Supplemental
90 Table 1), which is a representative subset of previously described two-row spring European
91  barley populations'®***° that show a significant increase in yield over time. Pedigree data
92 was collected from publications’’®, and the following two  websites:
93 https://grinczech.vurv.cz/gringlobal/search.aspx and
94 https://www.Ifl.bayern.de/mam/cms07/ipz/dateien/abst_gerste.pdf.  Field experiments
95  were conducted at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in
96 Gatersleben, Germany, the James Hutton Institute (JHI) in Dundee, UK and the University of
97 Minnesota (UMN) in St. Paul, USA in 2019 and 2020. At IPK and UMN, 100 grains of each
98  genotype were sown in 1 m long double-rows in a completely random design with three
99 replications in both years. At JHI, a seed density estimated to produce 350 plants per m? for
100  plot sizes of 2m x 1.5 m was established. In 2019 a single replicate was grown and in 2020 a
101  completely random design with two replicates. In addition, a polytunnel trial was included at
102  JHIin 2019. Plant material was grown in 7 litre sized pots, 4 seeds per pot, in 3 replicate sets
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103  in a completely random design. Each replicate set had 8 columns and 30 rows and contained
104  areplicate of each of the 209 genotypes.

105

106 Phenotyping

107 In total, 29 phenotypes were recorded on a per-plot basis in the field trials or on a per-pot
108 basis in the polytunnel experiment. Developmental traits, growth habit and plant height
109 measurements were recorded in the trials as described in Table 1. To measure spike and
110  grain traits, ten to 15 main tiller spikes were harvested at full maturity (Zadoks stage 92) per
111 plot, excluding the outermost plants of each row to avoid edge effects. After recording of all
112  spike traits, spikes were hand-threshed, and grains were subjected to size and weight
113 measurements on a Marvin SeedAnalyzer 6 (MARVIiTECH GmbH, Germany). Samples were
114  first weighted and then added on to the Marvin tray for optical measurements of the grain

115 size.
116
117  Table 1: A summary of the phenotypic traits and a description on how they were scored.
Trait \ Method
Developmental traits
Days to awn tipping 50% of the main tiller awns per plot have emerged up to 1 cm out of
the flag leaf sheath. Recorded as days since sowing
Days to heading 50% of the main tiller spikes per plot have emerged halfway out of the
flag leaf sheath. Recorded as days since sowing
Days to senescence 50% of the main tiller peduncles per plot are senescent (yellow).

Recorded as days since sowing
Days from awn tipping to = Derived from days to awn tipping and days to heading

heading

Days from awn tipping to | Derived from days to awn tipping and days to senescence

senescence

Days from heading to | Derived from days to heading and days to senescence

senescence

Growth habit (GH) Visual evaluation using a scale of 1 (erect), 2 (intermediate) and 3

(prostrate). Recorded at the onset of stem elongation

Height and length traits

Peduncle base height Height of the base of the peduncle in cm

Flag leaf blade height Height of the flag leaf sheath in cm

Culm height Height of the base of the spike in cm

Plant height Height of the top of the spike in cm

Awn tip height Height of the tip of the awnsin cm

Spike base to flag leaf Calculated distance from base of spike to flag leaf sheath (auricle) in
cm

Peduncle length Calculated distance from base of spike to base of peduncle in cm

Awn length Calculated distance from tip of awns to top of spike in cm

Spike culm ratio Spike length divided by culm height

Spike traits (recorded on 10-15 main tiller traits per plot after harvest)

Rachis node number Number of rachis nodes

Spike length Spike length in cm

Spike density Rachis node number divided by spike length

Grain traits

Grain traits (recorded on 10-15 main tiller traits per plot after harvest) using a Marvin Seed

Analyzer 6

Grain area Area of all kernels per spike in mm? Recorded using the automatic

grain area calculation function in the Marvin SeedAnalyzer 6 software
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Kernel roundness Roundness of all kernels per spike. Recorded using the automatic
kernel roundness calculation function in the Marvin SeedAnalyzer 6
software

Thousand kernel weight Calculated from the number and weight of the kernels using the
Marvin SeedAnalyzer 6 software

Grain length Length of all kernels per spike in cm

Grain width Width of all kernels per spike in cm

Spike traits (recorded on 10-15 main tiller traits per plot after harvest)

Infertile florets at top and | Number of infertile florets at the top of spike down to first fertile
bottom (=edges) of spike | floret + number of infertile florets at the base of spike up to first
fertile floret

Infertile florets in the | Number of infertile florets in the centre of the spike

middle of the spike

Number of fertile grain Total number of fertile florets per spike
Percent of fertile florets Total number of fertile florets per spike divided by rachis node
number

Number infertile florets Total number of infertile florets per spike

118

119 Tissue sampling for RNA-seq

120  Six different tissues were sampled for RNA-seq analysis: crown, root, inflorescence,
121 peduncle, spikelet and grain. At UMN, crown and root tissues were sampled from seven-day-
122 old seedlings (GRO:0007060, first leaf unfolded). Ten seeds per genotype were surface
123 sterilized and planted in moist vermiculite in individual Cone-tainers (6000 RLC3 size, Ray
124  Leach, Tangent, OR). The Cone-tainers were put into a dark cold room for four days to
125  achieve more consistent germination. Then they were moved into a growth chamber at 20°C
126  with 16 hours of light for seven days. Tissues were harvested within three hours, starting at
127  9:00 am USA Central Time Zone to reduce the circadian effect on gene expression. Roots
128  were sampled by cutting the longest root from each seedling adjacent to the germinated
129  seed, and crowns by removing the roots and keeping the 1 cm shoot tissue immediately
130  above. For each individual genotype five plants were combined and snap frozen in liquid
131 nitrogen.

132 At JHI, the barley plants grown in 2019 under polytunnel conditions were used for tissue
133  sampling. When plants reached the booting stage, which was 84-85 days after germination, 3
134 - 5 cm whole developing inflorescence tissue was taken, two from each replicate per
135 genotype per sample. Whole peduncles were taken at 2 — 5 cm in length, three from each
136  replicate per genotype per sample when plants were 88 — 90 days old. Samples were snap
137  frozenin liquid nitrogen and stored at -80°C.

138 At IPK, barley plants grown in the 2019 field trial were monitored daily by dissecting single
139  spikelets and recording the date of green anther stage and flowering stage on paper tags
140  attached to the spikes. Sampling was limited to a two-hour period between 10:00 and 12:00
141  am Central European Summer Time each day to reduce the circadian effect on gene
142  expression. Three spikes per plot of one repetition were selected at green anther stage and
143 two central spikelets from the centre of each spike were sampled. At 5 days post anthesis,
144  three spikes per plot of one repetition were selected and six developing grains per spike
145  were sampled from the central region of each spike. All samples were snap-frozen in liquid
146 nitrogen and stored at -80 °C until RNA extraction.

147

148 RNA extraction and RNA sequencing

149 RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and treated with DNasel
150 following the manufacturer’s instructions. Buffer RLC was used for seedling root extractions,
151  and Buffer RLT was used for all other tissue extractions. To ensure a high purity of spikelet
152  and grain samples, a more rigorous cleanup using 700ul RW1 and three wash steps with RPE
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153  was performed. The integrity of samples was determined using an Agilent 2100 Bioanalyzer,
154  an Agilent 4200 TapeStation or a 1% agarose gel. All tested samples had a RIN factor of >=8
155  and were suitable for further processing. Paired-end libraries with a read length of 150 bp
156  were constructed from spikelet and grain samples (IPK Gatersleben) and seedling root and
157 crown samples (University of Minnesota Genomics Center, Minneapolis, MN, USA) using the
158 llumina TruSeq Stranded Total RNA Library Prep Plant with Ribo-Zero Plant kit and
159  sequenced on the NovaSeq 6000 platform. For the inflorescence and peduncle samples (JHI)
160 llumina RNA-seq library preparation and RNA-seq was carried out by Novogene (Company
161  Limited, Hong Kong). The libraries were prepared using NEBNext® Ultra™ Directional RNA
162  Library Prep Kit and sequenced using lllumina NovaSeq 6000 (PE 150).

163

164  Bioinformatics

165  Read quantification

166  We generated 77.95 billion raw reads from RNA-seq of the six different tissues
167  (Supplemental Table 2). Raw reads were trimmed with Trimmomatic 0.39* to remove
168  adapters and reads shorter than 60 bp. Salmon 1.3.0° was used for expression
169 quantification including the gcBias setting to align trimmed reads to the transcriptome. We
170  followed the approach of selective alignments by generating a decoy-aware transcriptome
171  from the barley reference transcript dataset V2 (BaRTv2)® and the reference genome of cv
172 Barke™. This approach is recommended® to reduce inaccurate transcript quantification
173 caused by unannotated genomic loci that have a high sequence similarity to annotated
174  transcripts.

175

176  Expression analysis

177  Tissue-specific genes were identified using different R packages™. For each tissue the raw
178  counts were imported and combined to gene expression counts using tximport®®. Raw counts
179  were normalised (calcNormFactor), and log transformed to counts per million (cpm) using
180  edgeR?. The tissue-specific expressed genes were identified by filtering for an average cpm
181  of above 1 across all samples in this tissue and an average cpm of below -1 for all the other
182  tissues. In addition, gene expression for two and more tissues were filtered with the same
183  parameters to build the intersection sets required to create an UpSet*®? plot of expressed
184  genes in the different tissues. Gene ontology (GO) enrichment for the identified genes and
185  visualisation was done as previously described™.

186

187  Variant calling

188 For variant calling, the trimmed RNA-seq reads were mapped to the reference genome of cv
189  Barke® using the two-pass mode implemented in STAR v. 2.7.5°" allowing 6% mismatches
190 normalized to read length, intron lengths between 60 and 15000 bp, a maximum distance of
191 2000 bp between mates and a maximum number of 30,000 transcripts per window. Due to
192  the high number of reads in the grain and spikelet tissue the splice junction files were
193 filtered for at least one uniquely-mapped read in more than one sample, with non-canonical
194  splice sites removed and then used to generate a new genome index for the second mapping
195  run. For the other tissues, the splice junction files from the first pass were provided as part
196  of the input for the second mapping step. Duplicated reads were marked with Picard
197  2.18.29* followed by filtering with bamtools 2.5.1% to remove reads with 2% mismatches
198  and a mapping quality <= 50 .The legacy algorithm of Freebayes 1.3.2* was used to call
199  variants with a minimum fraction of alternate allele observations of 20%, a minimum
200  alternate allele count of 2, @ minimum coverage of 4, and minimum base and mapping
201  qualities of 30.

202

203  Whole genome shotgun (WGS) approach
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204  DNA was extracted from snap-frozen second leaves of greenhouse-grown (21°C/18°C
205 day/night temperature) two-week old seedlings using a guanidinium thiocyanate-NaCl-based
206 method as described®. DNA quality and quantity was assessed by agarose gel
207  electrophoresis. The Nextera DNA kit (lllumina) was used for library preparation of 150 bp
208  paired-end reads. Libraries were multiplexed and sequenced on a NovaSeq 6000 platform at
209 IPK Gatersleben. 12.16 billion raw paired-end raw reads (Supplemental Table 2) were
210  trimmed with Cutadapt 1.15% to remove adapters and reads shorter than 30 bp. Trimmed
211  reads were mapped to the reference genome of cv Barke using Minimap2 2.11¥. The
212 resulting alignment files were sorted and duplicate-marked using Novosort 3.06.05* and
213 converted to cram files using samtools 1.8***. Bcftools™ call was used to call variants using
214 genotype likelihoods calculated from alignments with a minimum quality score of 20 with
215  bcftools mpileup. Variants were re-called based on read depth ratios using a custom awk
216  script similar to the one at https://bitbucket.org/ipk dg_public/vcf filtering/src/master/
217  with the following parameters modified: dphom = 1, dphet = 2, minhomn = 10, tol = 0.249,
218  minmaf = 0.1, minpresent = 0.01.

219

220  Genotype marker file

221  The final genotype file was generated by filtering and merging multiple files. First all RNA-seq
222 vcf files from the six tissues were filtered to remove insertions and deletions (Indels).
223 RNAseq SNPs from individual tissues were then merged, prioritizing homozygous calls by
224  retaining heterozygous calls only if no homozygous calls were present in any of the tissues.
225  The merged RNAseq SNPs were then merged with WGS and 50K array SNPs'®, prioritizing
226  homozygous calls in the same manner. The resulting unfiltered dataset contained 209
227  cultivars and 32,484,981 bi-allelic SNPs. The merged SNP dataset was filtered using
228  TASSEL5* to remove SNPs with more than 20% missing data, minor allele frequency (MAF) <
229  0.01, heterozygosity > 0.02, and only keeping bi-allelic SNPs. Missing data was imputed using
230  the FILLIN plugin® in TASSELS by first identifying haplotypes. For haplotype identification
231  each chromosome was split into 500 blocks. The number of markers per haplotype block (-
232  hapSize) was the total number of markers per chromosome divided by 500 and rounded to
233 be divisible by 64 (TASSELS software requirement). Haplotypes were identified for each block
234  with a maximum number of haplotypes of 20 (-maxHap 20) and at least five different
235  genotypes per haplotype (-minTaxa 5). Haplotype information was used as input for the
236  imputation. Further filtering removed seven lines that had more than 30% missing data after
237 imputation (Aramir, Balder J, Dallas, KWS lIrina, Power, Proctor and Spey), and one line was
238  removed that had more than 2% heterozygosity (Rika). In a last filtering step, we removed
239  SNPs which still had more than 20% missing data, MAF < 0.025 and heterozygosity > 0.02.
240  SNPs were LD pruned with PLINK (v1.9)*® using a window size of 5000, a step size of 50 and
241  an r? threshold of 0.99. The final SNP dataset after pruning contained 201 cultivars and
242 1,509,447 SNPs.

243

244 Variant effect using SnpEff

245  To identify the effect of variants on the protein, we filtered the raw vcf files in a different
246 way to generate an input file for SnpEff*. The aim for the genotype marker set explained
247  above was to reduce the number of SNPs with pruning to a size which can be used for
248 association analysis. For the variant effect, on the other hand, we need all the available SNP
249  information and more importantly do not want to lose any SNPs due to pruning in gene
250  space. For SNPs, the merged unfiltered vcf file containing RNA-seq, WGS and 50k data was
251  filtered by removing heterozygous calls, removing SNPs with missing data in more than 20%
252 of the samples and a minor allele frequency of < 0.025. In addition, a dataset containing
253  Indels was created by using the six vcf output files from the RNA-seq data after variant
254  calling with Freebayes. All were filtered to keep Indels only, remove heterozygous calls,
255  removing variants with missing data in more than 20% of the samples and a MAF of < 0.025.
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256  The six Indel vcf files were combined into one. A SnpEff database was built based on BaRTv2
257 and the Barke reference genome.

258

259  Statistical analysis of phenotypic data, calculation of Best linear unbiased predictions (BLUPs)
260  and heritability

261  Statistical analysis was performed using R 3.6.1°. The Pearson correlation coefficient
262  between experiments was calculated for each phenotypic trait and datasets showing an
263 insignificant correlation (p>0.05) with at least one other dataset of the same trait were
264  removed before calculating BLUPs. The datasets being used in each of the BLUP calculations
265  are listed in Supplemental Table 3. BLUPs were calculated across experiments using a
266  randomized complete block model in META-R with experiments set as a random factor
267  following formula 3 in Alvarado et al.*.

268

269  Genome wide association studies (GWAS)

270  Association between phenotype and genotype was done using the Mixed Linear Model
271  (MLM)*® with GAPIT (version 3)*. As input, we used the genotype marker file of 201 cultivars
272 and 1,509,447 SNPs and the BLUP values of the Awn length phenotype were used to show an
273  example of the process. Three principal components (PCs) were calculated within GAPIT and
274 model selection set to TRUE to enable GAPIT to select the optimal number of PCs for the
275  individual phenotype based on a Bayesian information criterion (BIC).

276

277 Data Records

278

279  All raw data files for both raw RNA sequencing data and whole genome shotgun data have
280  been deposited at the European Nucleotide Archive (ENA) under the following project
281  number: PRIEB49069 for the RNA-sequencing reads and PRIEB48903 for the whole genome
282  shotgun sequencing reads.

283

284  Phenotypic data and the SNP marker file are available through Germinate®™:
285 https://ics.hutton.ac.uk/germinate-barn/

286  The database contains the raw data by year and by site plus the calculated BLUP dataset.

287

288 Derived datasets are available through elDal®. The datasets consist of two sets of gene
289 expression files per tissue; one for the raw read counts and one for the TPM values mapped
290  against BaRTv2. Further two files containing the variant identification are available. The first
291  contains the SNPs and the second with the Indel information with SnpEff annotation.

292 Preview link: https://doi.ipk-gatersleben.de/DOI/815787d8-4036-408b-999%e-
293  725f7645eacf/6€532074-b4d7-4393-9221-8fe643e100f2/2/1847940088
294

295 Technical Validation

296  Population

297  The 209 two-row spring barley population was selected from previously established datasets
298  containing 647 genotypes' ™. To include a wide range of genetically representative
299  individuals, we used available BOPA SNP data (as previously described)® and did a multi-
300 dimensional scaling plot (Figure 1 a). Dimension 1 showed the progression from the oldest
301  to the newest cultivars and explains 10.7% of the genetic variation. Genotypes were then
302 chosen to be spread across year of registration as a cultivar to the UK market. Except for the
303 first time-range which encompassed 130 years (1830-1959) of cultivar releases, all other
304 ranges were split into decades and each time-range is represented by a similar number of
305 genotypes (Figure 1 b). The final population was representative of breeding progress in
306  cultivated barley for improved yield over time.
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307 Pedigree data showed that modern barley germplasm is highly connected with most current
308 genotypes’ descendants of a small number of “founder” genotypes (Pedigree file:
309  Supplemental File 1, Pedigree attributes: Supplemental File 2). These supplemental pedigree
310 files can be wused as input for the pedigree Vvisualisation tool Helium
311 (https://helium.hutton.ac.uk/)*’. Intermediate crosses were omitted from the file to be able
312  to display the pedigree and produce a tree which is both readable and navigable. Using the
313  pedigree data within Helium allows for further analyses. For example, eigenvector centrality
314  analysis can be used to measure the importance of a node in a network. The cultivar with
315 the highest influence on the pedigree tree was Kenia, followed by Maja and Gull. In total,
316 163 out of 209 (77.6%) of the cultivars used in our population can be traced back to those
317  three genotypes, confirming the importance of the founder genotypes for the overall
318  population.

319

320  Phenotyping

321  Field trials were done in 2019 and 2020 in three different locations: Minneapolis (Lat.
322 44.987, Long: -93.258; MN, USA), Dundee (Lat. 56.462, Long. -2.971; UK) and Gatersleben
323 (Lat. 51.823, Long. 11.287; Germany). In total 29 agronomic traits were scored associated
324  with development (earliness and growth habit traits), grain and height measurements. All
325 the phenotypic data can be viewed and studied in a Germinate database:
326  https://ics.hutton.ac.uk/germinate-barn/. Across years and sites, the results were consistent
327  except for a few traits. All earliness traits showed a faster development to awn tipping all the
328  way to peduncle senescence in Minnesota and slowest in Dundee, with for example the days
329 from sowing to senescence differing by more than 50 days. One obvious outlier in the
330 phenotypic scoring were the grain fertility measurements in Minnesota in 2019 where the
331  spikes got stuck in the flag leaf sheath due to high temperatures during the growing season
332  and did not emerge fully which led to a higher number of infertile florets. All phenotypic
333  information was combined into BLUPs except for 24 out of 165 phenotype datasets which
334  did not correlate with the rest (Supplemental Table 3 shows which phenotype values were
335 combined; Supplemental Figure 1 for distribution of BLUP values per phenotype). The
336  strongest positive correlation of the different phenotypes were the five different height
337  measurements to each other (Figure 3). Those were also strongly negative correlated with
338  year of registration. The earliness traits on the other hand showed a stronger positive
339  correlation with year of registration (awn tipping to heading; awn tipping to senescence). Of
340 the grain phenotypes, grain length and grain area were strongly correlated to each other and
341  to thousand kernel weight, but less so to grain width. Interestingly, grain length is positively
342 correlated with grain circularity, while grain width is negatively correlated with it.

343

344 Genotyping

345  To achieve the most extensive genotypic information for our population, variant calling from
346 RNA-seq data, whole genome shotgun data and previously established 50K SNP data was
347 combined (32,484,981 raw SNPs). For RNA-seq and WGS, the data was filtered to keep only
348  biallelic SNPs. We extracted the SNPs corresponding to the previous described BOPA markers
349  across all 1463 sequencing datasets (six tissue-specific RNA-seq datasets with 209 genotypes
350 each and one WGS dataset with 209 genotypes) for quality control. The Pearson correlation
351  coefficient for all genotypes between datasets was calculated. This identified mixed-up
352  samples where the genotype showed high correlation with a differently named sample and
353 therefore allowed for correction of the genotypic information. Samples with a high number
354  of heterogenous SNPs (above 10%) were removed as this pointed towards issues during
355  sample preparation. The filtering step reduced the number of genotypes per tissue. The final
356  numbers of genotypes per tissue varied between 191 to 199 (Supplemental Table 2 shows
357  which genotypes per tissue where retained). The merged SNP file was filtered to remove
358  highly heterozygous sites or those containing more than 20% missing data. The remaining
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359  sites were imputed using haplotype imputation. SNPs were pruned by LD using Plink to
360 reduce the dataset size to the final 1,509,447 SNPs. SNP distribution along the 7
361 chromosomes showed overall low polymorphism in the centromeric region and higher
362 polymorphism towards the telomeric ends (Figure 2). For chromosome 1H, 2H and 7H almost
363  no polymorphism could be identified in the centromeric region, as previously observed by
364  Mascheretal **.

365

366 Gene expression

367 RNA-seq data for six different tissues (crown, grain, inflorescence, peduncle, root, spikelet)
368  was mapped against the BaRTv2 transcriptome using Salmon®. The expression of all 39,434
369 genes in transcript per million (TPM) for each tissue were used as input to generate a
370  multidimensional scaling plot (MDS). The MDS shows all 209 genotypes cluster together by
371  tissue type (Figure 4). The tissue furthest separated by the first dimension from the rest was
372 the root tissue. The two tissues sampled from the spikelet at green anther stages (spikelet)
373  and developing grain at five days post anthesis (grain) show the highest overlap.

374

375 Data use-case scenarios

376  Inthe following three examples we show how the above datasets can be used.

377

378  In the first example the expression data has been used to filter for tissue-specific gene
379 expression. Tissue-specific genes showed that the root tissue was the most distinct with 776
380 genes identified as root specific (Figure 5). 572 genes were specifically expressed in grain,
381 437 in spikelet, 198 in inflorescence, 86 in peduncle and 64 in crown. Inflorescence and
382  peduncle shared the highest overlap of expressed genes with 927 genes and 13,215 genes
383  were expressed in all six tissues. While the MDS plot shows a high overlap of samples
384  between spikelet and grain in the first two dimensions, the third dimension divides those
385 tissues which fits with these two tissues showing the second and third highest tissue-specific
386  gene expression. Gene ontology for the peduncle resulted in no significant terms. The Gene
387  ontology results for all remaining five tissues are shown in Figure 6. Most terms were
388 identified for the root tissue showing terms one might expect in roots. Nitrate transport and
389 general transmembrane transport were identified in the Biological Process category;
390 apoplast, cell wall and extracellular region for the Cellular Compartment category. Different
391 transferase activities are highly significant in the Molecular Function category as well as
392 heme binding. The associated terms compare to those previously identified in maize®.

393

394 In the second example, we studied the potential impact that genetic variation could have on
395 the gene activity or protein function by identifying premature stop codons or frameshift
396 mutations in a high confidence variant dataset. For the SNP dataset we started with 32
397  million SNPs, removed heterozygous SNPs and filtered for variants with less than 20%
398 missing data and a minor allele frequency of 2.5% which resulted in 4,012,229 SNPs*®. Those
399  were used as input into SnpEff which identified 9,219,271 effects (as described by SnpEff:
400  http://pcingola.github.io/SnpEff/se_inputoutput/#eff-field-vcf-output-files) caused by those
401 4 million SNPs. 4% (368,650) of the effects were in exons, with 53.78% synonymous variants,
402  corresponding to 199,545 effects in 17,446 genes. 45.57% (169,105 effects) of the exon
403 effects were non-synonymous variants in 19,057 genes and 0.65% classified as nonsense.
404  The 0.65% corresponded to 2,425 transcripts and 1,105 genes with a premature stop codon
405 in the sequence. For the Indel identification only the RNA-seq variant files were considered
406  as those provided higher read depth for the genetic regions. They were also filtered by
407 removing heterozygous variants, keeping those with less than 20% missing data and a minor
408  allele frequency of 2.5%. A total of 50,865 variants remained which SnpEff predicted to cause
409 558,991 effects. 50.31% (281,228 effects) were upstream or downstream of the gene and
410 41.81% (233,706 effects) in the intronic region. After filtering for disruptive frame shifts
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411  caused by insertions or deletions resulting in changes to the protein sequence, 1,912 genes
412 remained which we designated as potentially non-functional in some of the cultivars>. Such
413  structural variation can of course be explored in relation to gene expression. To illustrate,
414  within the tissue-specific gene expression data we highlighted two genes
415  (BaRT2v18chr5HG260690 and BaRT2v18chr2HG058650) with frameshift mutations in
416  comparison to the Barke reference allele. Figure 7 shows the expression of those two genes.
417 For BaRT2v18chr5HG260690 the deletion of four nucleotides is associated with lower gene
418 expression. For BaRT2v18chr2HG058650 an A insertion is sociated with higher gene
419  expression. The consequence of such variation still needs to be explored.

420

421  As a final example, we show a genome wide association study (GWAS) using the 1,509,447
422  SNP markers and the awn length phenotype. We used the Mixed Linear Model (MLM) in
423  Gapit” to identify associations in the genome. Using a -log10(p) cut-off of 5 resulted in 6
424  significant peaks (Figure 8). The most significant SNP was found on chromosome 5H at
425  position 441Mb. This peak had a very rare MAF of 3% and was located within 1kb of a
426  previously identified gene involved in awn length, HvDepl (BaRT2v18chr5HG247460). The
427 here identified allele corresponded to the previously described ari-eGP allele on
428  chromosome 5H which is a one base pair “A” insertion in the HvDep1 gene™. The insertion
429  was confirmed for four cultivars in the population: Golden Promise, Tyne, Midas and Chad.
430  Gene expression of HvDepl (Figure 8b) showed potentially lower expression in crown and
431 inflorescence tissue but similar levels for the peduncle. This simple example highlights the
432  fact that variants causing a loss of function do not necessarily induce strong changes in gene
433 expression.

434

435

436 Usage Notes

437  To perform the analysis using the Snakemake™ pipeline (see code availability) a high-
438  performance computing (HPC) cluster is needed. For example, the Salmon indexing step in
439  this setup needed 56Gb of memory using 16 cores, mapping of each individual sample
440 needed 31Gb of memory using 8 cores. Downstream analyses like the genome wide
441  association studies can be performed by downloading the BLUPs of the phenotypes and the
442 marker file from Germinate.

443  Code Availability

444  The code for analysing the RNA-sequencing data from mapping to genome and
445  transcriptome to variant calling was combined into a Snakemake™ pipeline and is available
446 on GitHub: https://github.com/SchreiberM/BARN.

447
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488 Figure Legends

489 Figure 1: Selection of a two-row spring population. a) Multidimensional scaling plot of 647
490  European two-row spring cultivars. Genotype information came from 2,336 previously
491 published BOPA markers. The 209 selected cultivars forming the population in this paper are
492  shown as triangles. The year range represents the year each individual cultivar was
493  registered. b) Distribution of the selected population of 209 cultivars (orange) as part of the
494  total 647 European two-row spring cultivars (green) by year of registration.

495

496  Figure 2: SNP distribution and density of the final 1,509,447 SNPs in the genotypic marker file
497  along the seven barley chromosomes in 1 Mb bins. The SNPs were identified from the 50k
498  SNP array, RNA-sequencing and whole genome shotgun sequencing datasets and filtered to
499  remove missing values and heterozygosity.

500

501  Figure 3: Pearson correlation coefficient between the 29 scored phenotypes and as 30th
502  variable the year of registration. Phenotypic values were provided as best linear unbiased
503  predictions for each phenotype for each of the 209 cultivars.

504

505 Figure 4: Gene expression of 209 cultivars across six tissues. Multidimensional scaling plot of
506 all genes expressed in any of the six studied tissues: root, crown, peduncle, inflorescence,
507  spikelet and grain.

508

509 Figure 5: An UpSet plot showing the overlap of the expressed genes for each of the tissues
510 and tissue combinations.

511
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512  Figure 6: Gene ontology enrichment for the tissue-specific genes a) root, b) grain, c)
513 inflorescence, d) spikelet and e) crown. X-axis shows the percentage of genes associated
514  with the GO term out of all genes in BaRTv2 associated with this term. Y-axis shows the
515  significance as FDR adjusted -log(p-value) of the GO term. The area of the circle corresponds
516  tothe number of genes associated with the GO term.

517

518 Figure 7: Gene expression in TPM (transcripts per million) for two genes identified with
519 changes in the protein sequence. a) BaRT2v18chr5HG260690 and b)
520  BaRT2v18chr2HG058650 split by haplotype on the x-axis. The first haplotype always
521 represents the reference allele from the genotype Barke, and the second allele represents
522  the alternative.

523

524  Figure 8: Genome wide association of awn length. a) GWAS result of awn length showing a
525  high significant association on chromosome 5H. b) The gene expression in TPM of the
526  candidate gene HvDepl (BaRT2v18chr5HG247460). The first haplotype on the x-axis
527  represents the reference allele from the genotype Barke, and the second allele represents
528  the alternative.

529

530  Supplemental Figure 1: Violin and boxplots of BLUP values for the phenotypic variation in all
531 29 scored traits.

532
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