

1 **Title**

2 **Genomic resources for a historical collection of**
3 **cultivated two-row European spring barley genotypes.**

4 **Authors**

5 Miriam Schreiber^{1,§}, Ronja Wonneberger^{2,§}, Allison M. Haaning^{3,§}, Max Coulter¹, Joanne
6 Russell⁴, Axel Himmelbach², Anne Fiebig², Gary J. Muehlbauer^{3,§}, Nils Stein^{2,§}, Robbie
7 Waugh^{1,4,§}

8
9 **Affiliations**

10 1. Division of Plant Sciences, University of Dundee at The James Hutton Institute,
11 Invergowrie, Dundee, Scotland DD2 5DA, UK
12
13 2. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland,
14 Germany
15
16 3. Department of Agronomy and Plant Genetics, The University of Minnesota, St. Paul, MN
17 55108
18
19 4. Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
20 DD2 5DA, UK.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
§ These authors contributed equally to the work.
\$ These authors have jointly supervised the work.

corresponding author(s): Robbie Waugh (Robbie.Waugh@hutton.ac.uk)

Abstract

Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive resource which allows for downstream analyses like genome wide association studies or expression associations.

Background & Summary

Barley is one of the most important crops worldwide (5th in 2020 on area harvested, FAOSTAT¹) and has a high value in the European agricultural sector underpinning the beer and whisky industries². New barley cultivars are introduced to the market every year, after being evaluated for multiple traits e.g., disease resistance, yield, and malting quality traits³. Barley breeding and the introduction of barley cultivars started at the beginning of the 19th century in the UK and by the end of the 19th century all over Europe⁴. Instead of seeds being grown by the farmer with some saved for subsequent sowing the following year, breeding institutes were established, with the mission to develop improved seed stocks. Early cultivars were developed through mass selection and later followed by line selection from landraces. Initial breeding efforts focused on increasing yield⁵. Due to the considerable success of these breeding efforts, seed stocks soon became distributed across the continent and each country started their own breeding program by incorporating local landraces in crosses with these

52 generally higher yielding genotypes. This cross-breeding technique of simple crosses
53 followed by selection quickly led to an increase in yield as shown for spring barley in
54 Germany with a doubling of yield from 1800 to 1900⁶. Breeding developed further by
55 intentionally mutating seeds with chemicals or radiation to induce higher genetic variation in
56 the offspring⁷. One of the most notable results from mutation breeding were the dwarfing
57 genes which were critical for the green revolution⁸. Shorter stature cultivars provided the
58 advantage of preventing lodging which was crucial for the development of high-yielding
59 cultivars with heavy spikes. Complementing traditional to cross- and mutation-breeding,
60 molecular technologies developed further and were quickly adopted. One of the most
61 successful advances was marker-assisted selection (MAS) which deploys molecular markers
62 to detect allelic variations within a genome. The most common markers used in breeding
63 nowadays are single nucleotide polymorphisms (SNPs)⁹. MAS is used for rapid and high-
64 throughput selection of new genotypes and has matured from single marker analysis to
65 genome-wide selection approaches. While SNPs are a key component of the genotyping
66 platforms used in plant breeding purposes, they can also be used for gene discovery.
67 Quantitative trait locus (QTL) mapping and genome wide association studies (GWAS) are
68 valuable to identify alleles for genes underpinning genetically complex traits¹⁰⁻¹³. High
69 throughput genetic markers are however only one of a number of genetic and genomic
70 resources that have effectively revolutionised genetics and breeding. Next generation
71 sequence data formed the basis of the first barley genome published in 2017 from the
72 cultivar Morex¹⁴ which has been followed quickly by additional genomes from other
73 cultivars¹⁵. The availability of “reference genome sequences” has both simplified the process
74 and allowed a more precise identification of the causative genes controlling phenotypic
75 traits.
76 Here we introduce new genetic and genomic datasets assembled from a European two-row
77 spring barley population that is representative of pan-European breeding progress across the
78 years from 1830 to 2014. A total of 209 50K SNP-array¹⁶ genotyped barley cultivars were
79 selected and grown in replicated field trials across three contrasting environments and for
80 two years to score agronomic traits. Six different tissues from each cultivar were harvested
81 and RNA was isolated for the collection of tissue and genotype specific transcript abundance
82 (RNA-seq) data. Using both this RNA-seq data and whole genome shotgun sequence data
83 from all individuals in the population, an exhaustive collection of high confidence SNP
84 markers was assembled. We describe these datasets and provide examples of how they can
85 be used.

86

87 **Methods**

88 Barley material and field trials

89 We assembled a collection of 209 European two-rowed spring barley cultivars (Supplemental
90 Table 1), which is a representative subset of previously described two-row spring European
91 barley populations^{10,11,17-19} that show a significant increase in yield over time. Pedigree data
92 was collected from publications^{17,20}, and the following two websites:
93 <https://grinczech.vurv.cz/gringlobal/search.aspx> and
94 https://www.lfl.bayern.de/mam/cms07/ipz/dateien/abst_gerste.pdf. Field experiments
95 were conducted at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in
96 Gatersleben, Germany, the James Hutton Institute (JHI) in Dundee, UK and the University of
97 Minnesota (UMN) in St. Paul, USA in 2019 and 2020. At IPK and UMN, 100 grains of each
98 genotype were sown in 1 m long double-rows in a completely random design with three
99 replications in both years. At JHI, a seed density estimated to produce 350 plants per m² for
100 plot sizes of 2m x 1.5 m was established. In 2019 a single replicate was grown and in 2020 a
101 completely random design with two replicates. In addition, a polytunnel trial was included at
102 JHI in 2019. Plant material was grown in 7 litre sized pots, 4 seeds per pot, in 3 replicate sets

103 in a completely random design. Each replicate set had 8 columns and 30 rows and contained
104 a replicate of each of the 209 genotypes.

105

106 Phenotyping

107 In total, 29 phenotypes were recorded on a per-plot basis in the field trials or on a per-pot
108 basis in the polytunnel experiment. Developmental traits, growth habit and plant height
109 measurements were recorded in the trials as described in Table 1. To measure spike and
110 grain traits, ten to 15 main tiller spikes were harvested at full maturity (Zadoks stage 92) per
111 plot, excluding the outermost plants of each row to avoid edge effects. After recording of all
112 spike traits, spikes were hand-threshed, and grains were subjected to size and weight
113 measurements on a Marvin SeedAnalyzer 6 (MARViTECH GmbH, Germany). Samples were
114 first weighted and then added on to the Marvin tray for optical measurements of the grain
115 size.

116

117 Table 1: A summary of the phenotypic traits and a description on how they were scored.

Trait	Method
Developmental traits	
Days to awn tipping	50% of the main tiller awns per plot have emerged up to 1 cm out of the flag leaf sheath. Recorded as days since sowing
Days to heading	50% of the main tiller spikes per plot have emerged halfway out of the flag leaf sheath. Recorded as days since sowing
Days to senescence	50% of the main tiller peduncles per plot are senescent (yellow). Recorded as days since sowing
Days from awn tipping to heading	Derived from days to awn tipping and days to heading
Days from awn tipping to senescence	Derived from days to awn tipping and days to senescence
Days from heading to senescence	Derived from days to heading and days to senescence
Growth habit (GH)	Visual evaluation using a scale of 1 (erect), 2 (intermediate) and 3 (prostrate). Recorded at the onset of stem elongation
Height and length traits	
Peduncle base height	Height of the base of the peduncle in cm
Flag leaf blade height	Height of the flag leaf sheath in cm
Culm height	Height of the base of the spike in cm
Plant height	Height of the top of the spike in cm
Awn tip height	Height of the tip of the awns in cm
Spike base to flag leaf	Calculated distance from base of spike to flag leaf sheath (auricle) in cm
Peduncle length	Calculated distance from base of spike to base of peduncle in cm
Awn length	Calculated distance from tip of awns to top of spike in cm
Spike culm ratio	Spike length divided by culm height
Spike traits (recorded on 10-15 main tiller traits per plot after harvest)	
Rachis node number	Number of rachis nodes
Spike length	Spike length in cm
Spike density	Rachis node number divided by spike length
Grain traits	
Grain traits (recorded on 10-15 main tiller traits per plot after harvest) using a Marvin Seed Analyzer 6	
Grain area	Area of all kernels per spike in mm ² . Recorded using the automatic grain area calculation function in the Marvin SeedAnalyzer 6 software

Kernel roundness	Roundness of all kernels per spike. Recorded using the automatic kernel roundness calculation function in the Marvin SeedAnalyzer 6 software
Thousand kernel weight	Calculated from the number and weight of the kernels using the Marvin SeedAnalyzer 6 software
Grain length	Length of all kernels per spike in cm
Grain width	Width of all kernels per spike in cm
Spike traits (recorded on 10-15 main tiller traits per plot after harvest)	
Infertile florets at top and bottom (=edges) of spike	Number of infertile florets at the top of spike down to first fertile floret + number of infertile florets at the base of spike up to first fertile floret
Infertile florets in the middle of the spike	Number of infertile florets in the centre of the spike
Number of fertile grain	Total number of fertile florets per spike
Percent of fertile florets	Total number of fertile florets per spike divided by rachis node number
Number infertile florets	Total number of infertile florets per spike

118

119 Tissue sampling for RNA-seq

120 Six different tissues were sampled for RNA-seq analysis: crown, root, inflorescence,
121 peduncle, spikelet and grain. At UMN, crown and root tissues were sampled from seven-day-
122 old seedlings (GRO:0007060, first leaf unfolded). Ten seeds per genotype were surface
123 sterilized and planted in moist vermiculite in individual Cone-tainers (6000 RLC3 size, Ray
124 Leach, Tangent, OR). The Cone-tainers were put into a dark cold room for four days to
125 achieve more consistent germination. Then they were moved into a growth chamber at 20°C
126 with 16 hours of light for seven days. Tissues were harvested within three hours, starting at
127 9:00 am USA Central Time Zone to reduce the circadian effect on gene expression. Roots
128 were sampled by cutting the longest root from each seedling adjacent to the germinated
129 seed, and crowns by removing the roots and keeping the 1 cm shoot tissue immediately
130 above. For each individual genotype five plants were combined and snap frozen in liquid
131 nitrogen.

132 At JHI, the barley plants grown in 2019 under polytunnel conditions were used for tissue
133 sampling. When plants reached the booting stage, which was 84-85 days after germination, 3
134 – 5 cm whole developing inflorescence tissue was taken, two from each replicate per
135 genotype per sample. Whole peduncles were taken at 2 – 5 cm in length, three from each
136 replicate per genotype per sample when plants were 88 – 90 days old. Samples were snap
137 frozen in liquid nitrogen and stored at -80°C.

138 At IPK, barley plants grown in the 2019 field trial were monitored daily by dissecting single
139 spikelets and recording the date of green anther stage and flowering stage on paper tags
140 attached to the spikes. Sampling was limited to a two-hour period between 10:00 and 12:00
141 am Central European Summer Time each day to reduce the circadian effect on gene
142 expression. Three spikes per plot of one repetition were selected at green anther stage and
143 two central spikelets from the centre of each spike were sampled. At 5 days post anthesis,
144 three spikes per plot of one repetition were selected and six developing grains per spike
145 were sampled from the central region of each spike. All samples were snap-frozen in liquid
146 nitrogen and stored at -80 °C until RNA extraction.

147

148 RNA extraction and RNA sequencing

149 RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and treated with DNaseI
150 following the manufacturer's instructions. Buffer RLC was used for seedling root extractions,
151 and Buffer RLT was used for all other tissue extractions. To ensure a high purity of spikelet
152 and grain samples, a more rigorous cleanup using 700µl RW1 and three wash steps with RPE

153 was performed. The integrity of samples was determined using an Agilent 2100 Bioanalyzer,
154 an Agilent 4200 TapeStation or a 1% agarose gel. All tested samples had a RIN factor of >=8
155 and were suitable for further processing. Paired-end libraries with a read length of 150 bp
156 were constructed from spikelet and grain samples (IPK Gatersleben) and seedling root and
157 crown samples (University of Minnesota Genomics Center, Minneapolis, MN, USA) using the
158 Illumina TruSeq Stranded Total RNA Library Prep Plant with Ribo-Zero Plant kit and
159 sequenced on the NovaSeq 6000 platform. For the inflorescence and peduncle samples (JHI)
160 Illumina RNA-seq library preparation and RNA-seq was carried out by Novogene (Company
161 Limited, Hong Kong). The libraries were prepared using NEBNext® Ultra™ Directional RNA
162 Library Prep Kit and sequenced using Illumina NovaSeq 6000 (PE 150).

163

164 **Bioinformatics**

165 **Read quantification**

166 We generated 77.95 billion raw reads from RNA-seq of the six different tissues
167 (Supplemental Table 2). Raw reads were trimmed with Trimmomatic 0.39²¹ to remove
168 adapters and reads shorter than 60 bp. Salmon 1.3.0²² was used for expression
169 quantification including the gcBias setting to align trimmed reads to the transcriptome. We
170 followed the approach of selective alignments by generating a decoy-aware transcriptome
171 from the barley reference transcript dataset V2 (BaRTv2)²³ and the reference genome of cv
172 Barke¹⁵. This approach is recommended²⁴ to reduce inaccurate transcript quantification
173 caused by unannotated genomic loci that have a high sequence similarity to annotated
174 transcripts.

175

176 **Expression analysis**

177 Tissue-specific genes were identified using different R packages²⁵. For each tissue the raw
178 counts were imported and combined to gene expression counts using tximport²⁶. Raw counts
179 were normalised (calcNormFactor), and log transformed to counts per million (cpm) using
180 edgeR²⁷. The tissue-specific expressed genes were identified by filtering for an average cpm
181 of above 1 across all samples in this tissue and an average cpm of below -1 for all the other
182 tissues. In addition, gene expression for two and more tissues were filtered with the same
183 parameters to build the intersection sets required to create an UpSet^{28,29} plot of expressed
184 genes in the different tissues. Gene ontology (GO) enrichment for the identified genes and
185 visualisation was done as previously described³⁰.

186

187 **Variant calling**

188 For variant calling, the trimmed RNA-seq reads were mapped to the reference genome of cv
189 Barke¹⁵ using the two-pass mode implemented in STAR v. 2.7.5³¹ allowing 6% mismatches
190 normalized to read length, intron lengths between 60 and 15000 bp, a maximum distance of
191 2000 bp between mates and a maximum number of 30,000 transcripts per window. Due to
192 the high number of reads in the grain and spikelet tissue the splice junction files were
193 filtered for at least one uniquely-mapped read in more than one sample, with non-canonical
194 splice sites removed and then used to generate a new genome index for the second mapping
195 run. For the other tissues, the splice junction files from the first pass were provided as part
196 of the input for the second mapping step. Duplicated reads were marked with Picard
197 2.18.29³² followed by filtering with bamtools 2.5.1³³ to remove reads with 2% mismatches
198 and a mapping quality <= 50. The legacy algorithm of Freebayes 1.3.2³⁴ was used to call
199 variants with a minimum fraction of alternate allele observations of 20%, a minimum
200 alternate allele count of 2, a minimum coverage of 4, and minimum base and mapping
201 qualities of 30.

202

203 **Whole genome shotgun (WGS) approach**

204 DNA was extracted from snap-frozen second leaves of greenhouse-grown (21°C/18°C
205 day/night temperature) two-week old seedlings using a guanidinium thiocyanate-NaCl-based
206 method as described³⁵. DNA quality and quantity was assessed by agarose gel
207 electrophoresis. The Nextera DNA kit (Illumina) was used for library preparation of 150 bp
208 paired-end reads. Libraries were multiplexed and sequenced on a NovaSeq 6000 platform at
209 IPK Gatersleben. 12.16 billion raw paired-end raw reads (Supplemental Table 2) were
210 trimmed with Cutadapt 1.15³⁶ to remove adapters and reads shorter than 30 bp. Trimmed
211 reads were mapped to the reference genome of cv Barke using Minimap2 2.11³⁷. The
212 resulting alignment files were sorted and duplicate-marked using Novosort 3.06.05³⁸ and
213 converted to cram files using samtools 1.8^{39,40}. Bcftools⁴⁰ call was used to call variants using
214 genotype likelihoods calculated from alignments with a minimum quality score of 20 with
215 bcftools mpileup. Variants were re-called based on read depth ratios using a custom awk
216 script similar to the one at https://bitbucket.org/ipk_dg_public/vcf_filtering/src/master/
217 with the following parameters modified: dphom = 1, dphet = 2, minhomn = 10, tol = 0.249,
218 minmaf = 0.1, minpresent = 0.01.

219

220 Genotype marker file

221 The final genotype file was generated by filtering and merging multiple files. First all RNA-seq
222 vcf files from the six tissues were filtered to remove insertions and deletions (Indels).
223 RNAseq SNPs from individual tissues were then merged, prioritizing homozygous calls by
224 retaining heterozygous calls only if no homozygous calls were present in any of the tissues.
225 The merged RNAseq SNPs were then merged with WGS and 50K array SNPs¹⁶, prioritizing
226 homozygous calls in the same manner. The resulting unfiltered dataset contained 209
227 cultivars and 32,484,981 bi-allelic SNPs. The merged SNP dataset was filtered using
228 TASSEL5⁴¹ to remove SNPs with more than 20% missing data, minor allele frequency (MAF) <
229 0.01, heterozygosity > 0.02, and only keeping bi-allelic SNPs. Missing data was imputed using
230 the FILLIN plugin⁴² in TASSEL5 by first identifying haplotypes. For haplotype identification
231 each chromosome was split into 500 blocks. The number of markers per haplotype block (-
232 hapSize) was the total number of markers per chromosome divided by 500 and rounded to
233 be divisible by 64 (TASSEL5 software requirement). Haplotypes were identified for each block
234 with a maximum number of haplotypes of 20 (-maxHap 20) and at least five different
235 genotypes per haplotype (-minTaxa 5). Haplotype information was used as input for the
236 imputation. Further filtering removed seven lines that had more than 30% missing data after
237 imputation (Aramir, Balder J, Dallas, KWS Irina, Power, Proctor and Spey), and one line was
238 removed that had more than 2% heterozygosity (Rika). In a last filtering step, we removed
239 SNPs which still had more than 20% missing data, MAF < 0.025 and heterozygosity > 0.02.
240 SNPs were LD pruned with PLINK (v1.9)⁴³ using a window size of 5000, a step size of 50 and
241 an r^2 threshold of 0.99. The final SNP dataset after pruning contained 201 cultivars and
242 1,509,447 SNPs.

243

244 Variant effect using SnpEff

245 To identify the effect of variants on the protein, we filtered the raw vcf files in a different
246 way to generate an input file for SnpEff⁴⁴. The aim for the genotype marker set explained
247 above was to reduce the number of SNPs with pruning to a size which can be used for
248 association analysis. For the variant effect, on the other hand, we need all the available SNP
249 information and more importantly do not want to lose any SNPs due to pruning in gene
250 space. For SNPs, the merged unfiltered vcf file containing RNA-seq, WGS and 50k data was
251 filtered by removing heterozygous calls, removing SNPs with missing data in more than 20%
252 of the samples and a minor allele frequency of < 0.025. In addition, a dataset containing
253 Indels was created by using the six vcf output files from the RNA-seq data after variant
254 calling with Freebayes. All were filtered to keep Indels only, remove heterozygous calls,
255 removing variants with missing data in more than 20% of the samples and a MAF of < 0.025.

256 The six Indel vcf files were combined into one. A SnpEff database was built based on BaRTv2
257 and the Barke reference genome.

258
259 Statistical analysis of phenotypic data, calculation of Best linear unbiased predictions (BLUPs)
260 and heritability

261 Statistical analysis was performed using R 3.6.1²⁵. The Pearson correlation coefficient
262 between experiments was calculated for each phenotypic trait and datasets showing an
263 insignificant correlation ($p>0.05$) with at least one other dataset of the same trait were
264 removed before calculating BLUPs. The datasets being used in each of the BLUP calculations
265 are listed in Supplemental Table 3. BLUPs were calculated across experiments using a
266 randomized complete block model in META-R with experiments set as a random factor
267 following formula 3 in Alvarado *et al.*⁴⁵.
268

269 Genome wide association studies (GWAS)

270 Association between phenotype and genotype was done using the Mixed Linear Model
271 (MLM)⁴⁶ with GAPIT (version 3)⁴⁷. As input, we used the genotype marker file of 201 cultivars
272 and 1,509,447 SNPs and the BLUP values of the Awn length phenotype were used to show an
273 example of the process. Three principal components (PCs) were calculated within GAPIT and
274 model selection set to TRUE to enable GAPIT to select the optimal number of PCs for the
275 individual phenotype based on a Bayesian information criterion (BIC).
276

277 **Data Records**

278 All raw data files for both raw RNA sequencing data and whole genome shotgun data have
279 been deposited at the European Nucleotide Archive (ENA) under the following project
280 number: PRJEB49069 for the RNA-sequencing reads and PRJEB48903 for the whole genome
281 shotgun sequencing reads.
282

283 Phenotypic data and the SNP marker file are available through Germinate⁴⁸:
284 <https://ics.hutton.ac.uk/germinate-barn/>

285 The database contains the raw data by year and by site plus the calculated BLUP dataset.
286

287 Derived datasets are available through e!Dal⁴⁹. The datasets consist of two sets of gene
288 expression files per tissue; one for the raw read counts and one for the TPM values mapped
289 against BaRTv2. Further two files containing the variant identification are available. The first
290 contains the SNPs and the second with the Indel information with SnpEff annotation.
291 Preview link: <https://doi.ipk-gatersleben.de/DOI/815787d8-4036-408b-999e-725f7645eacf/6e532074-b4d7-4393-9221-8fe643e100f2/2/1847940088>
292

293 **Technical Validation**

294 Population

295 The 209 two-row spring barley population was selected from previously established datasets
296 containing 647 genotypes^{10,11,17-19}. To include a wide range of genetically representative
297 individuals, we used available BOPA SNP data (as previously described)⁵⁰ and did a multi-
298 dimensional scaling plot (Figure 1 a). Dimension 1 showed the progression from the oldest
299 to the newest cultivars and explains 10.7% of the genetic variation. Genotypes were then
300 chosen to be spread across year of registration as a cultivar to the UK market. Except for the
301 first time-range which encompassed 130 years (1830-1959) of cultivar releases, all other
302 ranges were split into decades and each time-range is represented by a similar number of
303 genotypes (Figure 1 b). The final population was representative of breeding progress in
304 cultivated barley for improved yield over time.
305
306

307 Pedigree data showed that modern barley germplasm is highly connected with most current
308 genotypes' descendants of a small number of "founder" genotypes (Pedigree file:
309 Supplemental File 1, Pedigree attributes: Supplemental File 2). These supplemental pedigree
310 files can be used as input for the pedigree visualisation tool Helium
311 (<https://helium.hutton.ac.uk/>)⁵¹. Intermediate crosses were omitted from the file to be able
312 to display the pedigree and produce a tree which is both readable and navigable. Using the
313 pedigree data within Helium allows for further analyses. For example, eigenvector centrality
314 analysis can be used to measure the importance of a node in a network. The cultivar with
315 the highest influence on the pedigree tree was Kenia, followed by Maja and Gull. In total,
316 163 out of 209 (77.6%) of the cultivars used in our population can be traced back to those
317 three genotypes, confirming the importance of the founder genotypes for the overall
318 population.

319

320 Phenotyping

321 Field trials were done in 2019 and 2020 in three different locations: Minneapolis (Lat.
322 44.987, Long: -93.258; MN, USA), Dundee (Lat. 56.462, Long. -2.971; UK) and Gatersleben
323 (Lat. 51.823, Long. 11.287; Germany). In total 29 agronomic traits were scored associated
324 with development (earliness and growth habit traits), grain and height measurements. All
325 the phenotypic data can be viewed and studied in a Germinate database:
326 <https://ics.hutton.ac.uk/germinate-barn/>. Across years and sites, the results were consistent
327 except for a few traits. All earliness traits showed a faster development to awn tipping all the
328 way to peduncle senescence in Minnesota and slowest in Dundee, with for example the days
329 from sowing to senescence differing by more than 50 days. One obvious outlier in the
330 phenotypic scoring were the grain fertility measurements in Minnesota in 2019 where the
331 spikes got stuck in the flag leaf sheath due to high temperatures during the growing season
332 and did not emerge fully which led to a higher number of infertile florets. All phenotypic
333 information was combined into BLUPs except for 24 out of 165 phenotype datasets which
334 did not correlate with the rest (Supplemental Table 3 shows which phenotype values were
335 combined; Supplemental Figure 1 for distribution of BLUP values per phenotype). The
336 strongest positive correlation of the different phenotypes were the five different height
337 measurements to each other (Figure 3). Those were also strongly negative correlated with
338 year of registration. The earliness traits on the other hand showed a stronger positive
339 correlation with year of registration (awn tipping to heading; awn tipping to senescence). Of
340 the grain phenotypes, grain length and grain area were strongly correlated to each other and
341 to thousand kernel weight, but less so to grain width. Interestingly, grain length is positively
342 correlated with grain circularity, while grain width is negatively correlated with it.

343

344 Genotyping

345 To achieve the most extensive genotypic information for our population, variant calling from
346 RNA-seq data, whole genome shotgun data and previously established 50K SNP data was
347 combined (32,484,981 raw SNPs). For RNA-seq and WGS, the data was filtered to keep only
348 biallelic SNPs. We extracted the SNPs corresponding to the previous described BOPA markers
349 across all 1463 sequencing datasets (six tissue-specific RNA-seq datasets with 209 genotypes
350 each and one WGS dataset with 209 genotypes) for quality control. The Pearson correlation
351 coefficient for all genotypes between datasets was calculated. This identified mixed-up
352 samples where the genotype showed high correlation with a differently named sample and
353 therefore allowed for correction of the genotypic information. Samples with a high number
354 of heterogenous SNPs (above 10%) were removed as this pointed towards issues during
355 sample preparation. The filtering step reduced the number of genotypes per tissue. The final
356 numbers of genotypes per tissue varied between 191 to 199 (Supplemental Table 2 shows
357 which genotypes per tissue were retained). The merged SNP file was filtered to remove
358 highly heterozygous sites or those containing more than 20% missing data. The remaining

359 sites were imputed using haplotype imputation. SNPs were pruned by LD using Plink to
360 reduce the dataset size to the final 1,509,447 SNPs. SNP distribution along the 7
361 chromosomes showed overall low polymorphism in the centromeric region and higher
362 polymorphism towards the telomeric ends (Figure 2). For chromosome 1H, 2H and 7H almost
363 no polymorphism could be identified in the centromeric region, as previously observed by
364 Mascher *et al*¹⁴.

365

366 Gene expression

367 RNA-seq data for six different tissues (crown, grain, inflorescence, peduncle, root, spikelet)
368 was mapped against the BaRTv2 transcriptome using Salmon²². The expression of all 39,434
369 genes in transcript per million (TPM) for each tissue were used as input to generate a
370 multidimensional scaling plot (MDS). The MDS shows all 209 genotypes cluster together by
371 tissue type (Figure 4). The tissue furthest separated by the first dimension from the rest was
372 the root tissue. The two tissues sampled from the spikelet at green anther stages (spikelet)
373 and developing grain at five days post anthesis (grain) show the highest overlap.

374

375 Data use-case scenarios

376 In the following three examples we show how the above datasets can be used.

377

378 In the first example the expression data has been used to filter for tissue-specific gene
379 expression. Tissue-specific genes showed that the root tissue was the most distinct with 776
380 genes identified as root specific (Figure 5). 572 genes were specifically expressed in grain,
381 437 in spikelet, 198 in inflorescence, 86 in peduncle and 64 in crown. Inflorescence and
382 peduncle shared the highest overlap of expressed genes with 927 genes and 13,215 genes
383 were expressed in all six tissues. While the MDS plot shows a high overlap of samples
384 between spikelet and grain in the first two dimensions, the third dimension divides those
385 tissues which fits with these two tissues showing the second and third highest tissue-specific
386 gene expression. Gene ontology for the peduncle resulted in no significant terms. The Gene
387 ontology results for all remaining five tissues are shown in Figure 6. Most terms were
388 identified for the root tissue showing terms one might expect in roots. Nitrate transport and
389 general transmembrane transport were identified in the Biological Process category;
390 apoplast, cell wall and extracellular region for the Cellular Compartment category. Different
391 transferase activities are highly significant in the Molecular Function category as well as
392 heme binding. The associated terms compare to those previously identified in maize⁵².

393

394 In the second example, we studied the potential impact that genetic variation could have on
395 the gene activity or protein function by identifying premature stop codons or frameshift
396 mutations in a high confidence variant dataset. For the SNP dataset we started with 32
397 million SNPs, removed heterozygous SNPs and filtered for variants with less than 20%
398 missing data and a minor allele frequency of 2.5% which resulted in 4,012,229 SNPs⁵³. Those
399 were used as input into SnpEff which identified 9,219,271 effects (as described by SnpEff:
400 http://pcingola.github.io/SnpEff/se_inputoutput/#eff-field-vcf-output-files) caused by those
401 4 million SNPs. 4% (368,650) of the effects were in exons, with 53.78% synonymous variants,
402 corresponding to 199,545 effects in 17,446 genes. 45.57% (169,105 effects) of the exon
403 effects were non-synonymous variants in 19,057 genes and 0.65% classified as nonsense.
404 The 0.65% corresponded to 2,425 transcripts and 1,105 genes with a premature stop codon
405 in the sequence. For the Indel identification only the RNA-seq variant files were considered
406 as those provided higher read depth for the genetic regions. They were also filtered by
407 removing heterozygous variants, keeping those with less than 20% missing data and a minor
408 allele frequency of 2.5%. A total of 50,865 variants remained which SnpEff predicted to cause
409 558,991 effects. 50.31% (281,228 effects) were upstream or downstream of the gene and
410 41.81% (233,706 effects) in the intronic region. After filtering for disruptive frame shifts

411 caused by insertions or deletions resulting in changes to the protein sequence, 1,912 genes
412 remained which we designated as potentially non-functional in some of the cultivars⁵³. Such
413 structural variation can of course be explored in relation to gene expression. To illustrate,
414 within the tissue-specific gene expression data we highlighted two genes
415 (BaRT2v18chr5HG260690 and BaRT2v18chr2HG058650) with frameshift mutations in
416 comparison to the Barke reference allele. Figure 7 shows the expression of those two genes.
417 For BaRT2v18chr5HG260690 the deletion of four nucleotides is associated with lower gene
418 expression. For BaRT2v18chr2HG058650 an A insertion is associated with higher gene
419 expression. The consequence of such variation still needs to be explored.
420

421 As a final example, we show a genome wide association study (GWAS) using the 1,509,447
422 SNP markers and the awn length phenotype. We used the Mixed Linear Model (MLM) in
423 Gapit⁴⁷ to identify associations in the genome. Using a -log10(p) cut-off of 5 resulted in 6
424 significant peaks (Figure 8). The most significant SNP was found on chromosome 5H at
425 position 441Mb. This peak had a very rare MAF of 3% and was located within 1kb of a
426 previously identified gene involved in awn length, *HvDep1* (BaRT2v18chr5HG247460). The
427 here identified allele corresponded to the previously described ari-eGP allele on
428 chromosome 5H which is a one base pair “A” insertion in the *HvDep1* gene⁵⁴. The insertion
429 was confirmed for four cultivars in the population: Golden Promise, Tyne, Midas and Chad.
430 Gene expression of *HvDep1* (Figure 8b) showed potentially lower expression in crown and
431 inflorescence tissue but similar levels for the peduncle. This simple example highlights the
432 fact that variants causing a loss of function do not necessarily induce strong changes in gene
433 expression.
434
435

436 **Usage Notes**

437 To perform the analysis using the Snakemake⁵⁵ pipeline (see code availability) a high-
438 performance computing (HPC) cluster is needed. For example, the Salmon indexing step in
439 this setup needed 56Gb of memory using 16 cores, mapping of each individual sample
440 needed 31Gb of memory using 8 cores. Downstream analyses like the genome wide
441 association studies can be performed by downloading the BLUPs of the phenotypes and the
442 marker file from Germinate.

443 **Code Availability**

444 The code for analysing the RNA-sequencing data from mapping to genome and
445 transcriptome to variant calling was combined into a Snakemake⁵⁵ pipeline and is available
446 on GitHub: <https://github.com/SchreiberM/BARN>.
447

448 **Acknowledgements**

449 The authors would like to acknowledge Richard Keith and Chris Warden for maintaining the
450 JHI field trials, Nicola McCallum and Ruth Hamilton for the help with phenotypic scoring and
451 John Fuller for the RNA-seq library preparation. We thank Micha Bayer, Runxuan Zhang, John
452 Brown and Wenbin Guo for advice on the project design and bioinformatics. We would like
453 to acknowledge Shane Heinen, Yadong Huang, Ismaél Pfeifer, and Letícia Pasqualino for the
454 help in the lab and field work at the University of Minnesota. We acknowledge current and
455 former members of the Genomics of Genetic Resources research group at IPK Gatersleben:
456 Mary Ziems for planning and maintaining field trials, phenotypic scoring and tissue sampling;
457 Mark Timothy Rabanus-Wallace, Hélène Pidon, Sudharsan Padmarasu, Mingjiu Li,
458 Jayavardhan Reddy Kunam, Mohammed Rafaqat, Mohammad Awais, Jacqueline Pohl,
459 Susanne König, Ines Walde, Manuela Knauft, Manuela Kretschmann and Beate Kamm for

460 phenotypic scoring and tissue sampling. We thank Ines Walde and Susanne König at IPK for
461 preparing sequencing libraries and generating sequencing data.

462

463 Thanks are also given to the Research/Scientific Computing teams at The James Hutton
464 Institute and NIAB for providing computational resources and technical support for the "UK's
465 Crop Diversity Bioinformatics HPC" (BBSRC grant BB/S019669/1), use of which has
466 contributed to the results reported. The work was supported by funding from the Rural and
467 Environment Science and Analytical Services Division of the Scottish Government. The
468 authors acknowledge the Minnesota Supercomputing Institute at the University of
469 Minnesota.

470

471 The project received funding in frame of the ERA-CAPS Research Programme with funding (i)
472 of the German partners through German Research Foundation (DFG) to NS under the project
473 references MU 3589/1-1 | STE 1102/15-1 | WA 3336/4-1, (ii) the Scottish partner to RW
474 through BBSRC (award number BB/S004610/1), (iii) the US partner to GJM through NSF
475 (award number 1844331)

476

477 **Author contributions**

478 MS wrote the manuscript, conducted data collection and analysis. RWo conducted RNA-seq
479 and WGS, data collection and analysis. AHa conducted RNA-seq data collection and analysis.
480 MC did RNA-seq and data collection. JR provided seed material and did field trials. AHi
481 conducted RNA sequencing, whole genome shotgun sequencing and primary data analysis.
482 AF did data management. GJM, NS and RWa designed the experiment and supervised the
483 work.

484

485 **Competing interests**

486 There is no conflict of interest.

487

488 **Figure Legends**

489 Figure 1: Selection of a two-row spring population. a) Multidimensional scaling plot of 647
490 European two-row spring cultivars. Genotype information came from 2,336 previously
491 published BOPA markers. The 209 selected cultivars forming the population in this paper are
492 shown as triangles. The year range represents the year each individual cultivar was
493 registered. b) Distribution of the selected population of 209 cultivars (orange) as part of the
494 total 647 European two-row spring cultivars (green) by year of registration.

495

496 Figure 2: SNP distribution and density of the final 1,509,447 SNPs in the genotypic marker file
497 along the seven barley chromosomes in 1 Mb bins. The SNPs were identified from the 50k
498 SNP array, RNA-sequencing and whole genome shotgun sequencing datasets and filtered to
499 remove missing values and heterozygosity.

500

501 Figure 3: Pearson correlation coefficient between the 29 scored phenotypes and as 30th
502 variable the year of registration. Phenotypic values were provided as best linear unbiased
503 predictions for each phenotype for each of the 209 cultivars.

504

505 Figure 4: Gene expression of 209 cultivars across six tissues. Multidimensional scaling plot of
506 all genes expressed in any of the six studied tissues: root, crown, peduncle, inflorescence,
507 spikelet and grain.

508

509 Figure 5: An UpSet plot showing the overlap of the expressed genes for each of the tissues
510 and tissue combinations.

511

512 Figure 6: Gene ontology enrichment for the tissue-specific genes a) root, b) grain, c)
513 inflorescence, d) spikelet and e) crown. X-axis shows the percentage of genes associated
514 with the GO term out of all genes in BaRTv2 associated with this term. Y-axis shows the
515 significance as FDR adjusted -log(p-value) of the GO term. The area of the circle corresponds
516 to the number of genes associated with the GO term.

517

518 Figure 7: Gene expression in TPM (transcripts per million) for two genes identified with
519 changes in the protein sequence. a) BaRT2v18chr5HG260690 and b)
520 BaRT2v18chr2HG058650 split by haplotype on the x-axis. The first haplotype always
521 represents the reference allele from the genotype Barke, and the second allele represents
522 the alternative.

523

524 Figure 8: Genome wide association of awn length. a) GWAS result of awn length showing a
525 high significant association on chromosome 5H. b) The gene expression in TPM of the
526 candidate gene *HvDep1* (BaRT2v18chr5HG247460). The first haplotype on the x-axis
527 represents the reference allele from the genotype Barke, and the second allele represents
528 the alternative.

529

530 Supplemental Figure 1: Violin and boxplots of BLUP values for the phenotypic variation in all
531 29 scored traits.

532

533 References

534

535 1 FAO.FAOstat. License: CC BY-NC-SA 3.0 IGO. Extracted from:
536 <https://www.fao.org/faostat/>. Data of Access: 16-12-2022, 2013).

537 2 O'Connor, A. Brewing and distilling in Scotland—economic facts and figures. *Scottish
538 Parliament Information Centre* (2018).

539 3 Dawson, I. K. et al. Barley: a translational model for adaptation to climate change.
540 *New Phytol* **206**, 913–931, doi:10.1111/nph.13266 (2015).

541 4 Fischbeck, G. in *Developments in Plant Genetics and Breeding* Vol. 7 (eds Roland von
542 Bothmer, Theo van Hintum, Helmut Knüpffer, & Kazuhiro Sato) 29–52 (Elsevier,
543 2003).

544 5 Ortiz, R., Nurminniemi, M., Madsen, S., Rognli, O. A. & Bjørnstad, Å. Genetic gains in
545 Nordic spring barley breeding over sixty years. *Euphytica* **126**, 283–289,
546 doi:10.1023/A:1016302626527 (2002).

547 6 Schuster, W. H. Welchen Beitrag leistet die Pflanzenzüchtung zur
548 Leistungssteigerung von Kulturpflanzenarten? *Pflanzenbauwissenschaften* **1**, 9–18
549 (1997).

550 7 Gustafsson, A., Hagberg, A., Persson, G. & Wiklund, K. Induced mutations and barley
551 improvement. *Theor Appl Genet* **41**, 239–248, doi:10.1007/BF00277792 (1971).

552 8 Dockter, C. et al. Induced Variations in Brassinosteroid Genes Define Barley Height
553 and Sturdiness, and Expand the Green Revolution Genetic Toolkit. *Plant Physiology*
554 **166**, 1912–1927, doi:10.1104/pp.114.250738 (2014).

555 9 Mammadov, J., Aggarwal, R., Buyyarapu, R. & Kumpatla, S. SNP Markers and Their
556 Impact on Plant Breeding. *International Journal of Plant Genomics* **2012**, 728398,
557 doi:10.1155/2012/728398 (2012).

558 10 Cockram, J. et al. Genome-wide association mapping to candidate polymorphism
559 resolution in the unsequenced barley genome. *Proceedings of the National Academy of
560 Sciences of the United States of America* **107**, 21611–21616 (2010).

561 11 Comadran, J. et al. Natural variation in a homolog of *Antirrhinum CENTRORADIALIS*
562 contributed to spring growth habit and environmental adaptation in cultivated
563 barley. *Nature Genetics* **44**, 1388–1392, doi:10.1038/ng.2447 (2012).

564 12 Matros, A. *et al.* Genome-wide association study reveals the genetic complexity of
565 fructan accumulation patterns in barley grain. *J Exp Bot* **72**, 2383-2402,
566 doi:10.1093/jxb/erab002 (2021).

567 13 Ramsay, L. *et al.* INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is
568 an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. *Nature
569 Genetics* **43**, 169, doi:10.1038/ng.745 (2011).

570 14 Mascher, M. *et al.* A chromosome conformation capture ordered sequence of the
571 barley genome. *Nature* **544**, 427-433, doi:10.1038/nature22043 (2017).

572 15 Jayakodi, M. *et al.* The barley pan-genome reveals the hidden legacy of mutation
573 breeding. *Nature* **588**, 284-289, doi:10.1038/s41586-020-2947-8 (2020).

574 16 Bayer, M. M. *et al.* Development and Evaluation of a Barley 50k iSelect SNP Array.
575 *Front Plant Sci* **8**, 1792, doi:10.3389/fpls.2017.01792 (2017).

576 17 Tondelli, A. *et al.* Structural and Temporal Variation in Genetic Diversity of European
577 Spring Two-Row Barley Cultivars and Association Mapping of Quantitative Traits. *The
578 Plant Genome* **6**, plantgenome2013.2003.0007,
579 doi:10.3835/plantgenome2013.03.0007 (2013).

580 18 Looseley, M. E. *et al.* Association mapping of malting quality traits in UK spring and
581 winter barley cultivar collections. *Theor Appl Genet* **133**, 2567-2582,
582 doi:10.1007/s00122-020-03618-9 (2020).

583 19 Thomas, W. *et al.* HGCA Project Report 528: Association genetics of UK elite barley
584 (AGOUEB). (2014).

585 20 Russell, J. R. *et al.* A retrospective analysis of spring barley germplasm development
586 from 'foundation genotypes' to currently successful cultivars. *Molecular Breeding* **6**,
587 553-568, doi:10.1023/A:1011372312962 (2000).

588 21 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
589 sequence data. *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170
590 (2014).

591 22 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast
592 and bias-aware quantification of transcript expression. *Nature methods* **14**, 417-419,
593 doi:10.1038/nmeth.4197 (2017).

594 23 Coulter, M. *et al.* BaRTv2: a highly resolved barley reference transcriptome for
595 accurate transcript-specific RNA-seq quantification. *Plant J*, doi:10.1111/tpj.15871
596 (2022).

597 24 Srivastava, A. *et al.* Alignment and mapping methodology influence transcript
598 abundance estimation. *Genome Biol* **21**, 239, doi:10.1186/s13059-020-02151-8
599 (2020).

600 25 R Core Team. (R Foundation for Statistical Computing, 2021).

601 26 Soneson, C., Love, M. & Robinson, M. Differential analyses for RNA-seq: transcript-
602 level estimates improve gene-level inferences [version 2; referees: 2 approved].
603 *F1000Research* **4**, doi:10.12688/f1000research.7563.2 (2016).

604 27 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
605 differential expression analysis of digital gene expression data. *Bioinformatics* **26**,
606 139-140, doi:10.1093/bioinformatics/btp616 (2010).

607 28 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of
608 intersecting sets and their properties. *Bioinformatics* **33**, 2938-2940,
609 doi:10.1093/bioinformatics/btx364 (2017).

610 29 Gu, Z. Complex heatmap visualization. *iMeta* **1**, e43,
611 doi:<https://doi.org/10.1002/imt2.43> (2022).

612 30 Schreiber, M., Orr, J., Barakate, A. & Waugh, R. Barley (*Hordeum Vulgare*) Anther and
613 Meioocyte RNA Sequencing: Mapping Sequencing Reads and Downstream Data
614 Analyses. *Methods Mol Biol* **2484**, 291-311, doi:10.1007/978-1-0716-2253-7_20
615 (2022).

616 31 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
617 doi:10.1093/bioinformatics/bts635 (2013).

618 32 Broad Institute. Picard tools. *Broad Institute, GitHub repository Version 2.18.4*,
619 <http://broadinstitute.github.io/picard/> (2018).

620 33 Barnett, D. W., Garrison, E. K., Quinlan, A. R., Stromberg, M. P. & Marth, G. T.
621 BamTools: a C++ API and toolkit for analyzing and managing BAM files.
622 *Bioinformatics* **27**, 1691-1692, doi:10.1093/bioinformatics/btr174 (2011).

623 34 Garrison, E. M. G. Haplotype-based variant detection from short-read sequencing.
624 *ArXiv e-prints*, 9 (2012).

625 35 Milner, S. G. *et al.* Genebank genomics highlights the diversity of a global barley
626 collection. *Nat Genet* **51**, 319-326, doi:10.1038/s41588-018-0266-x (2019).

627 36 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
628 reads. *2011* **17**, 3, doi:10.14806/ej.17.1.200 (2011).

629 37 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
630 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).

631 38 Novocraft Technologies Sdn Bhd. Novosort. Version 3.06.05,
632 <https://www.novocraft.com/products/novosort/>.

633 39 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
634 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

635 40 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**,
636 doi:10.1093/gigascience/giab008 (2021).

637 41 Bradbury, P. J. *et al.* TASSEL: software for association mapping of complex traits in
638 diverse samples. *Bioinformatics* **23**, 2633-2635, doi:DOI
639 10.1093/bioinformatics/btm308 (2007).

640 42 Swarts, K. *et al.* Novel Methods to Optimize Genotypic Imputation for Low-Coverage,
641 Next-Generation Sequence Data in Crop Plants. *The Plant Genome* **7**,
642 plantgenome2014.2005.0023, doi:10.3835/plantgenome2014.05.0023 (2014).

643 43 Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-
644 based linkage analyses. *Am J Hum Genet* **81**, 559-575, doi:10.1086/519795 (2007).

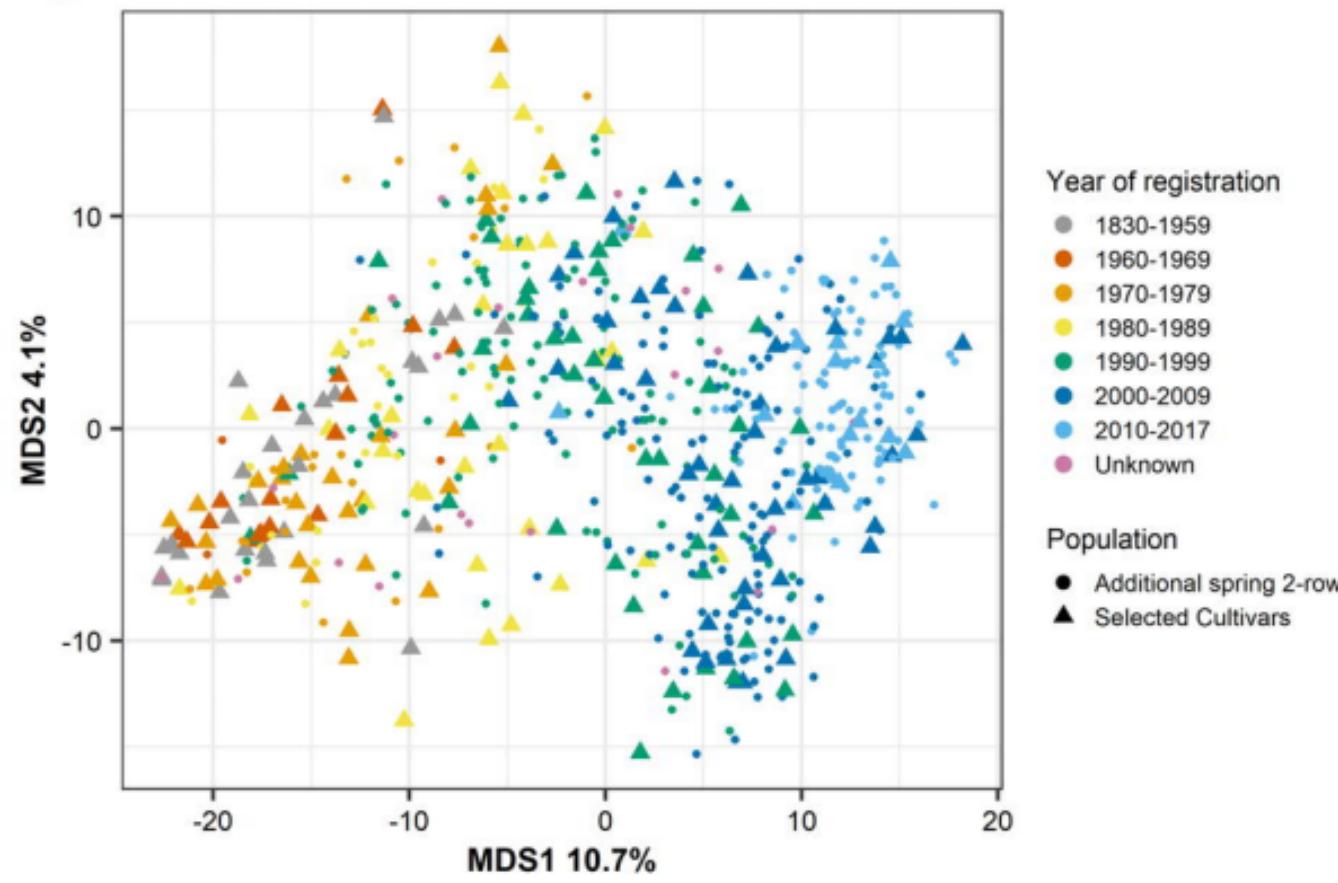
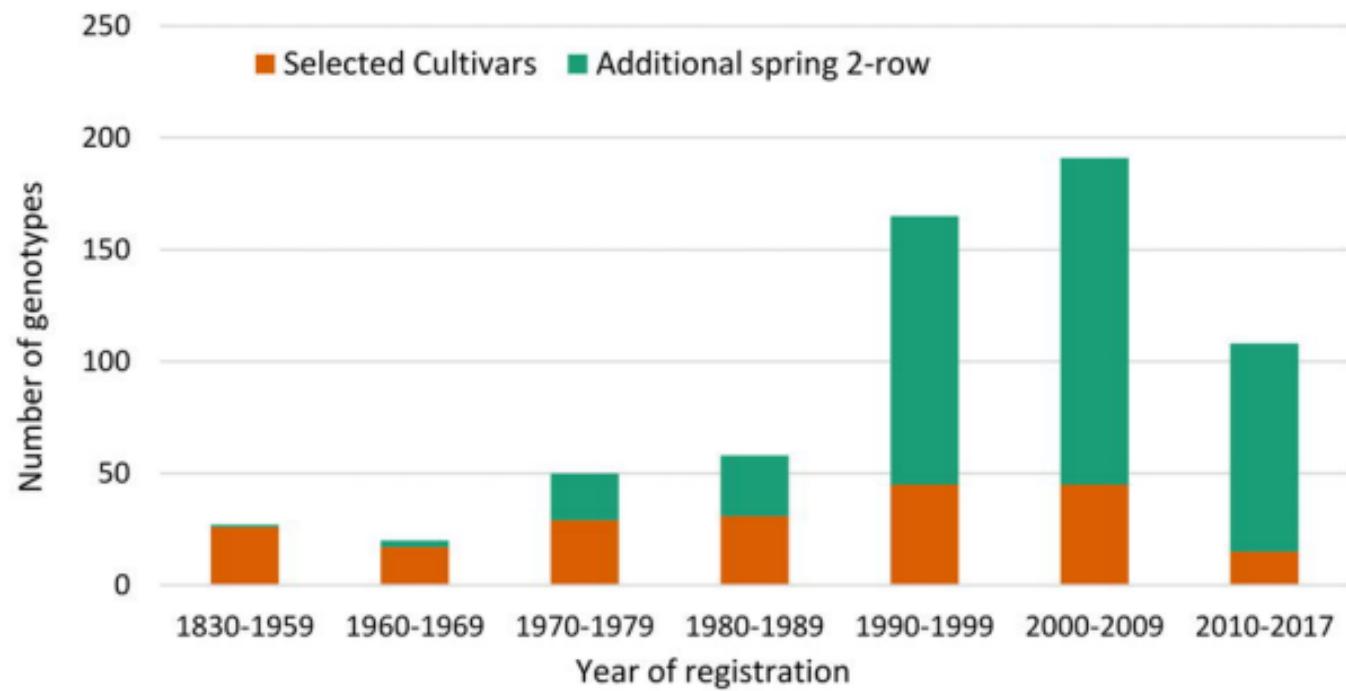
645 44 Cingolani, P. *et al.* A program for annotating and predicting the effects of single
646 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
647 strain w1118; iso-2; iso-3. *Fly* **6**, 80-92, doi:10.4161/fly.19695 (2012).

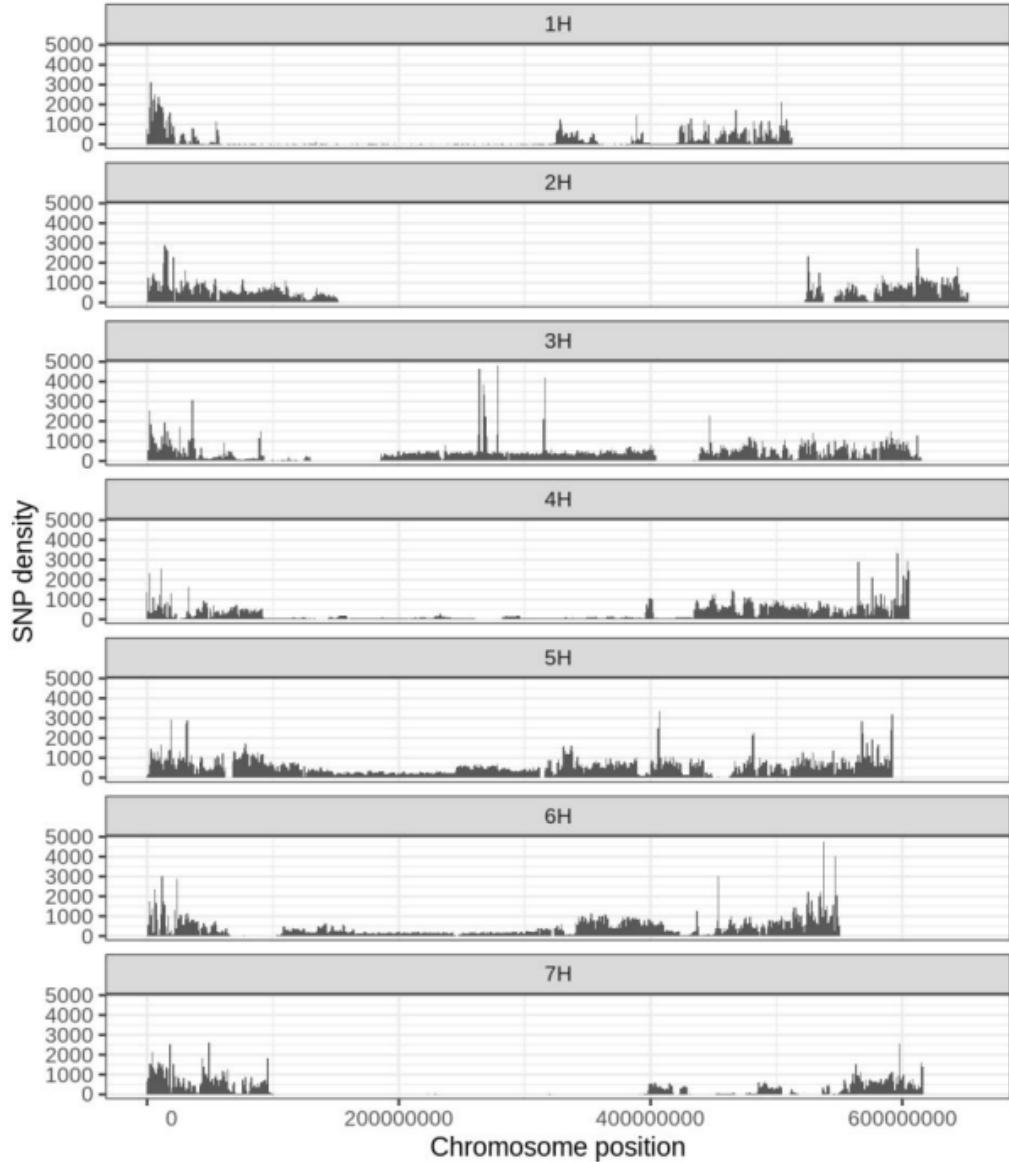
648 45 Alvarado, G. *et al.* META-R: A software to analyze data from multi-environment plant
649 breeding trials. *The Crop Journal* **8**, 745-756, doi:10.1016/j.cj.2020.03.010 (2020).

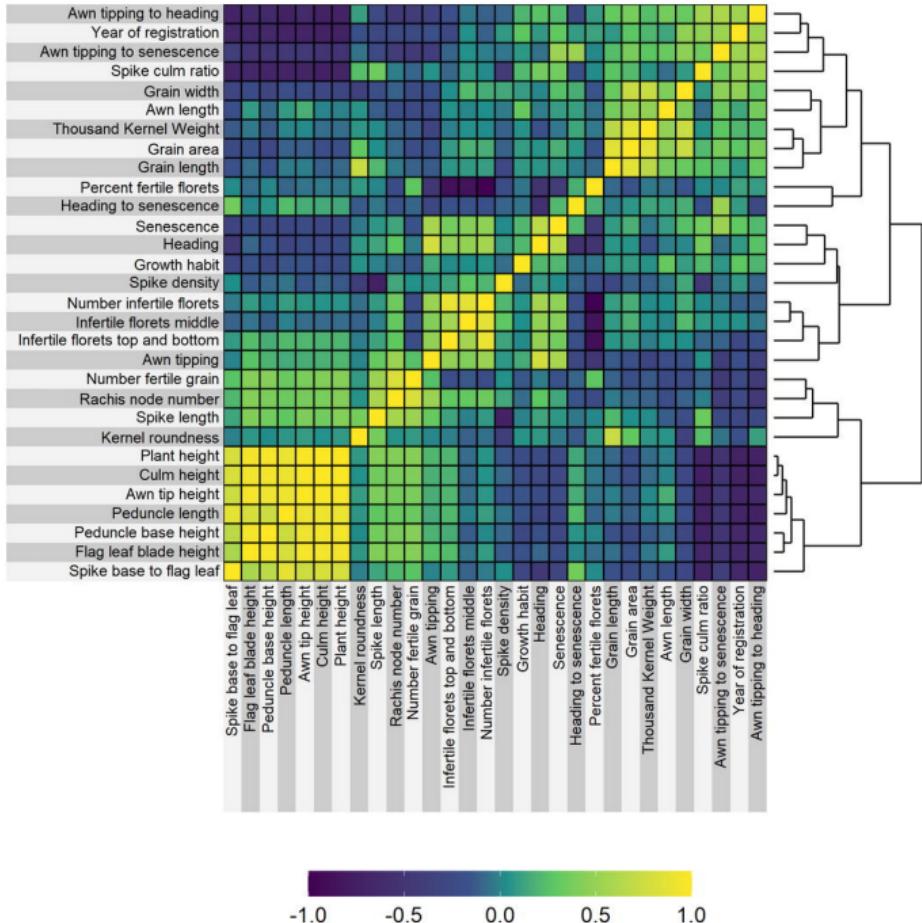
650 46 Yu, J. *et al.* A unified mixed-model method for association mapping that accounts for
651 multiple levels of relatedness. *Nature Genetics* **38**, 203-208, doi:10.1038/ng1702
652 (2006).

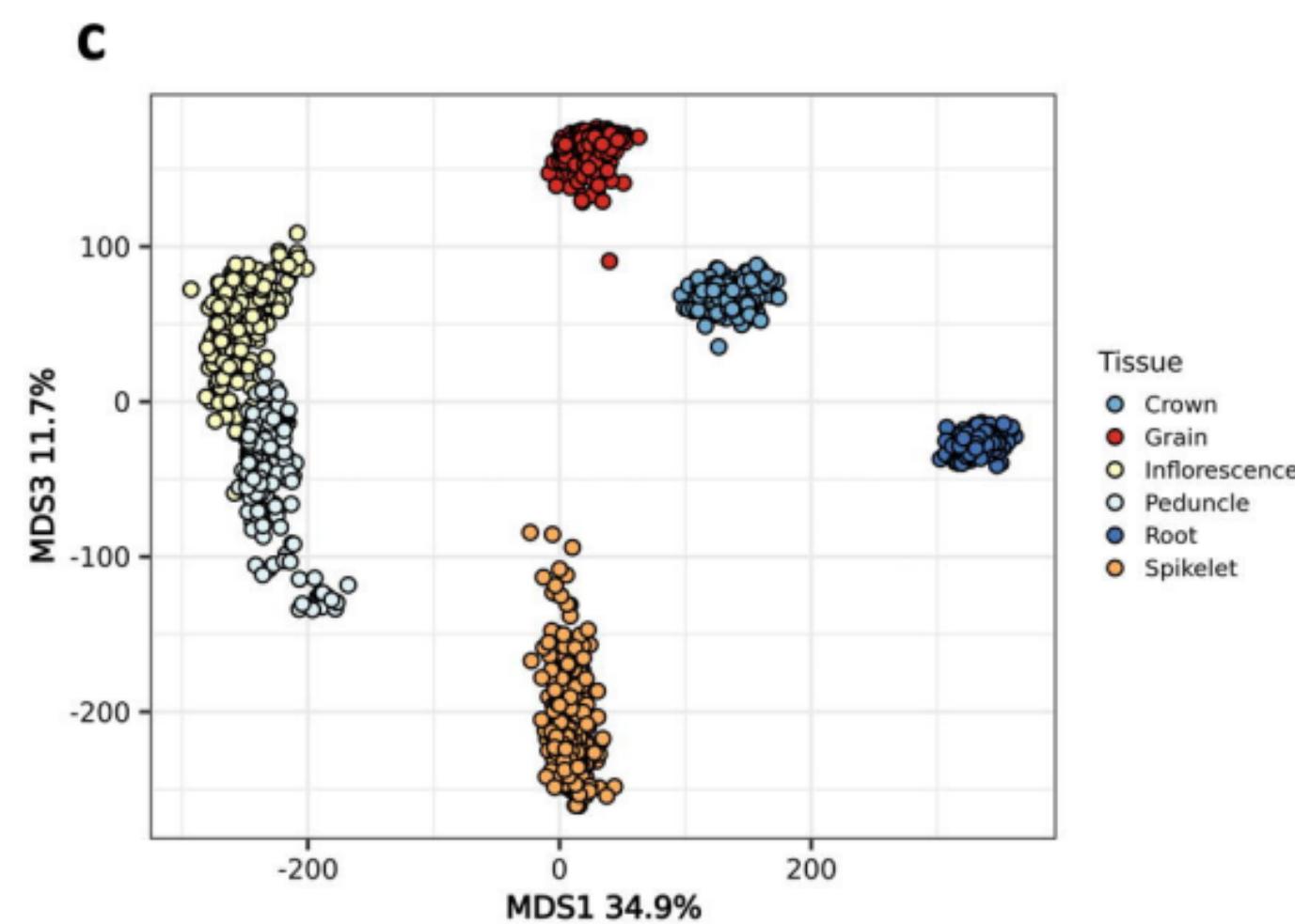
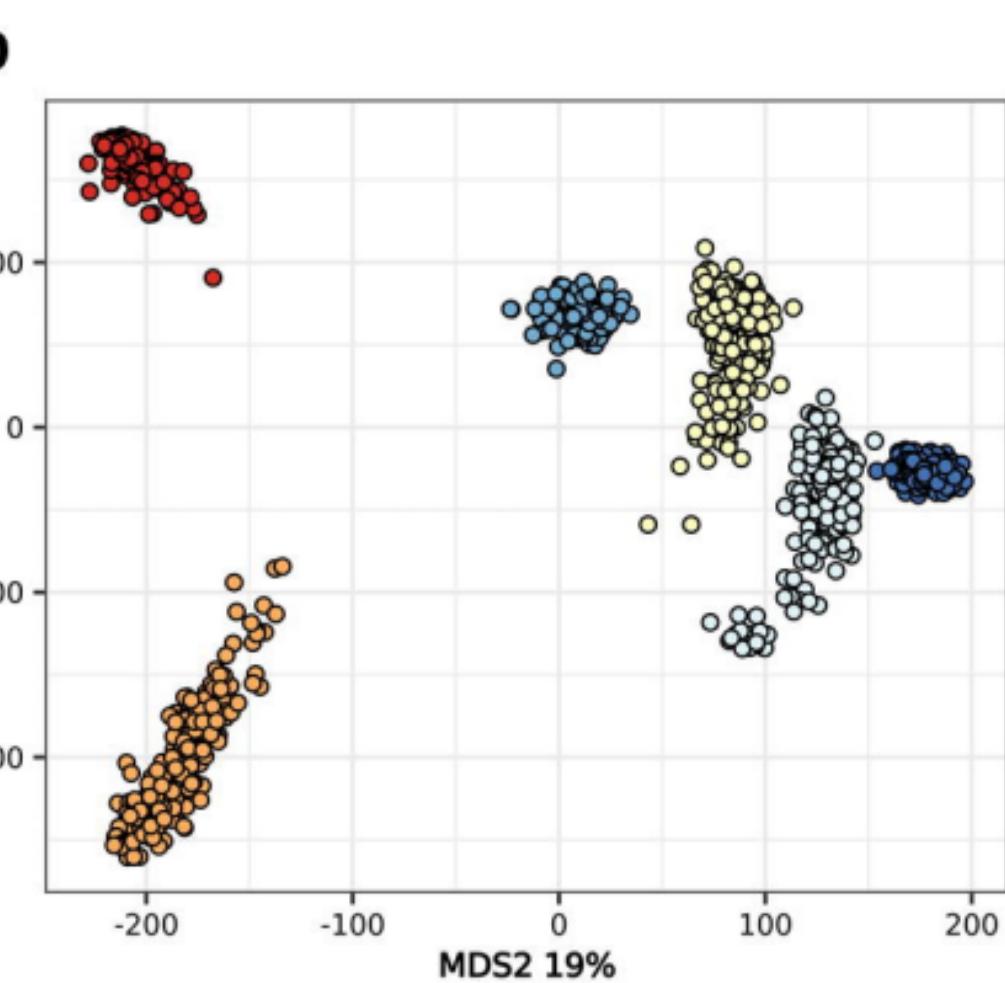
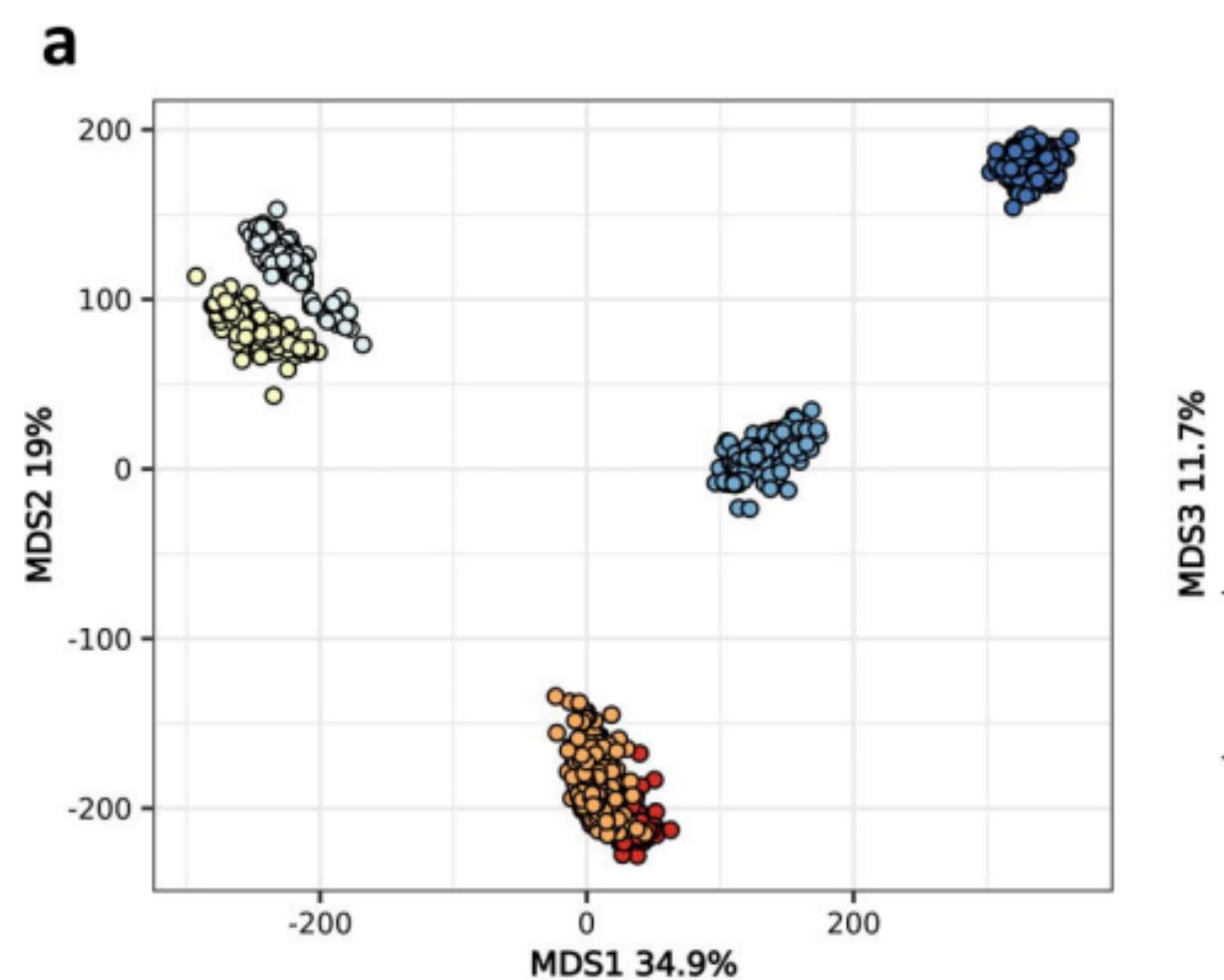
653 47 Lipka, A. E. *et al.* GAPIT: genome association and prediction integrated tool.
654 *Bioinformatics* **28**, 2397-2399, doi:10.1093/bioinformatics/bts444 (2012).

655 48 Raubach, S. *et al.* From bits to bites: Advancement of the Germinate platform to
656 support prebreeding informatics for crop wild relatives. *Crop Science* **61**, 1538-1566,
657 doi:<https://doi.org/10.1002/csc2.20248> (2021).



658 49 Arend, D. *et al.* e!DAL--a framework to store, share and publish research data. *BMC
659 Bioinformatics* **15**, 214, doi:10.1186/1471-2105-15-214 (2014).

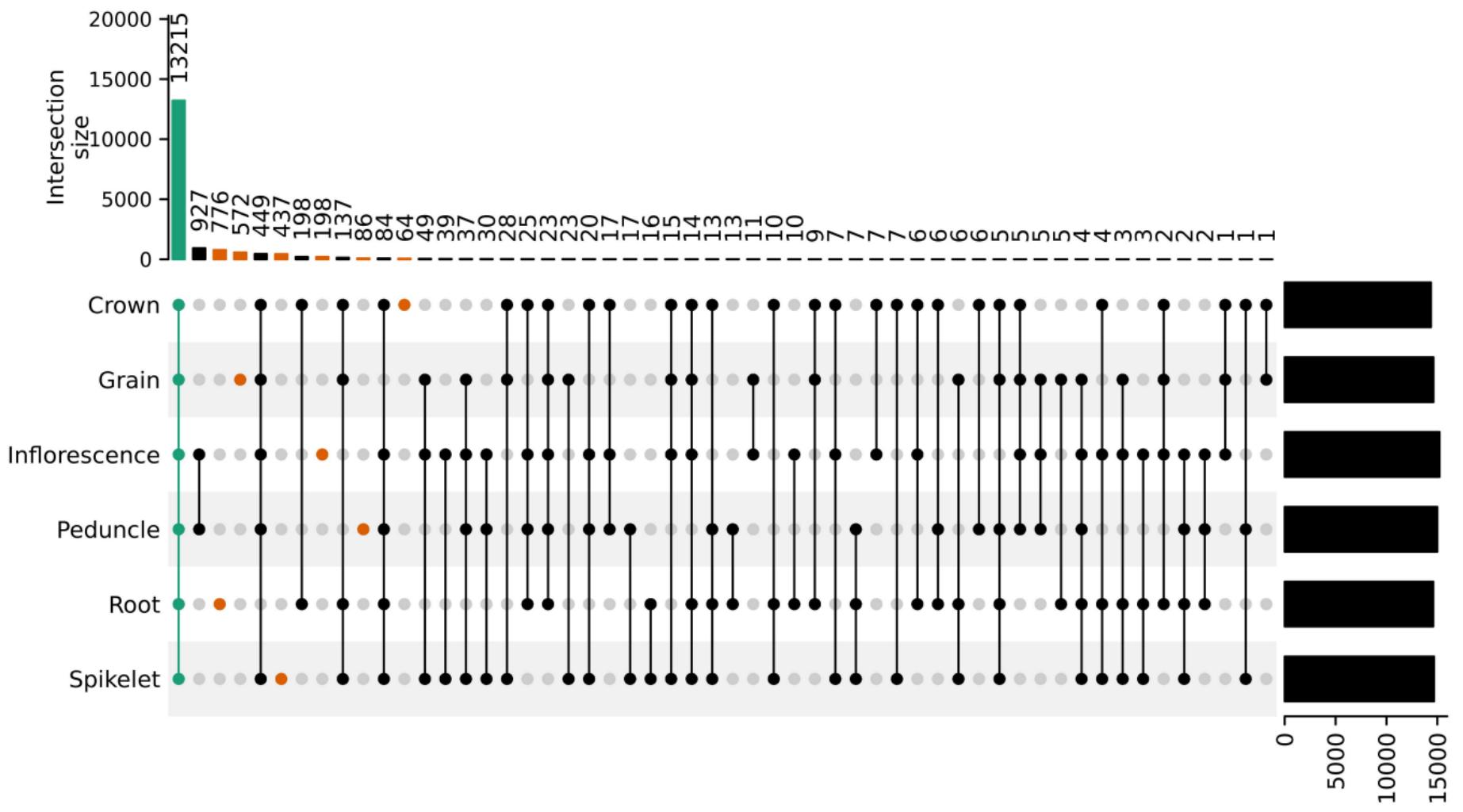

660 50 Close, T. J. *et al.* Development and implementation of high-throughput SNP
661 genotyping in barley. *BMC Genomics* **10**, 582, doi:10.1186/1471-2164-10-582 (2009).

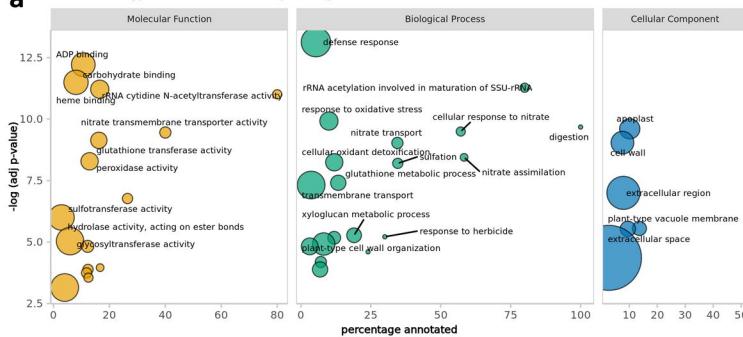
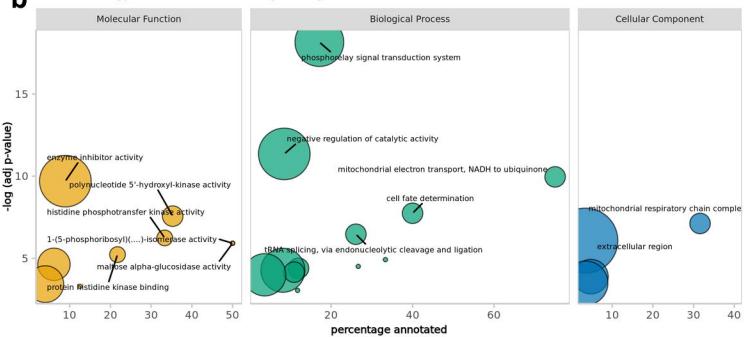
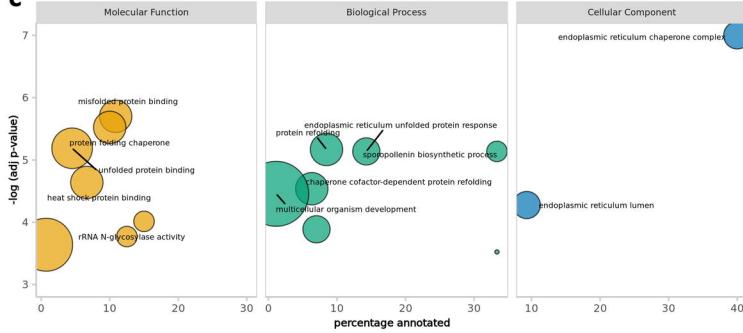
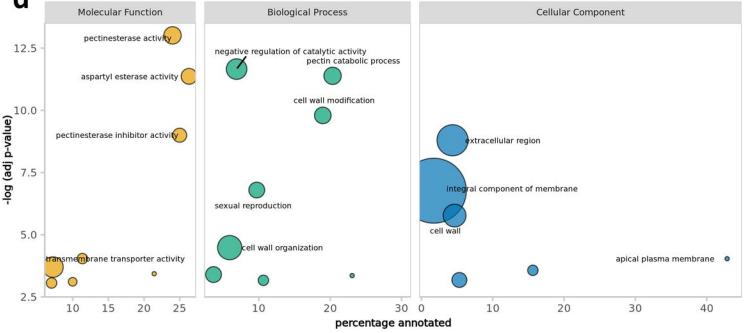
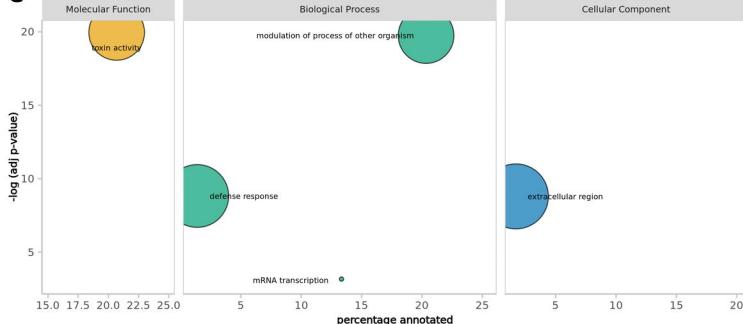

662 51 Shaw, P. D., Graham, M., Kennedy, J., Milne, I. & Marshall, D. F. Helium: visualization
663 of large scale plant pedigrees. *BMC Bioinformatics* **15**, 259, doi:10.1186/1471-2105-
664 15-259 (2014).

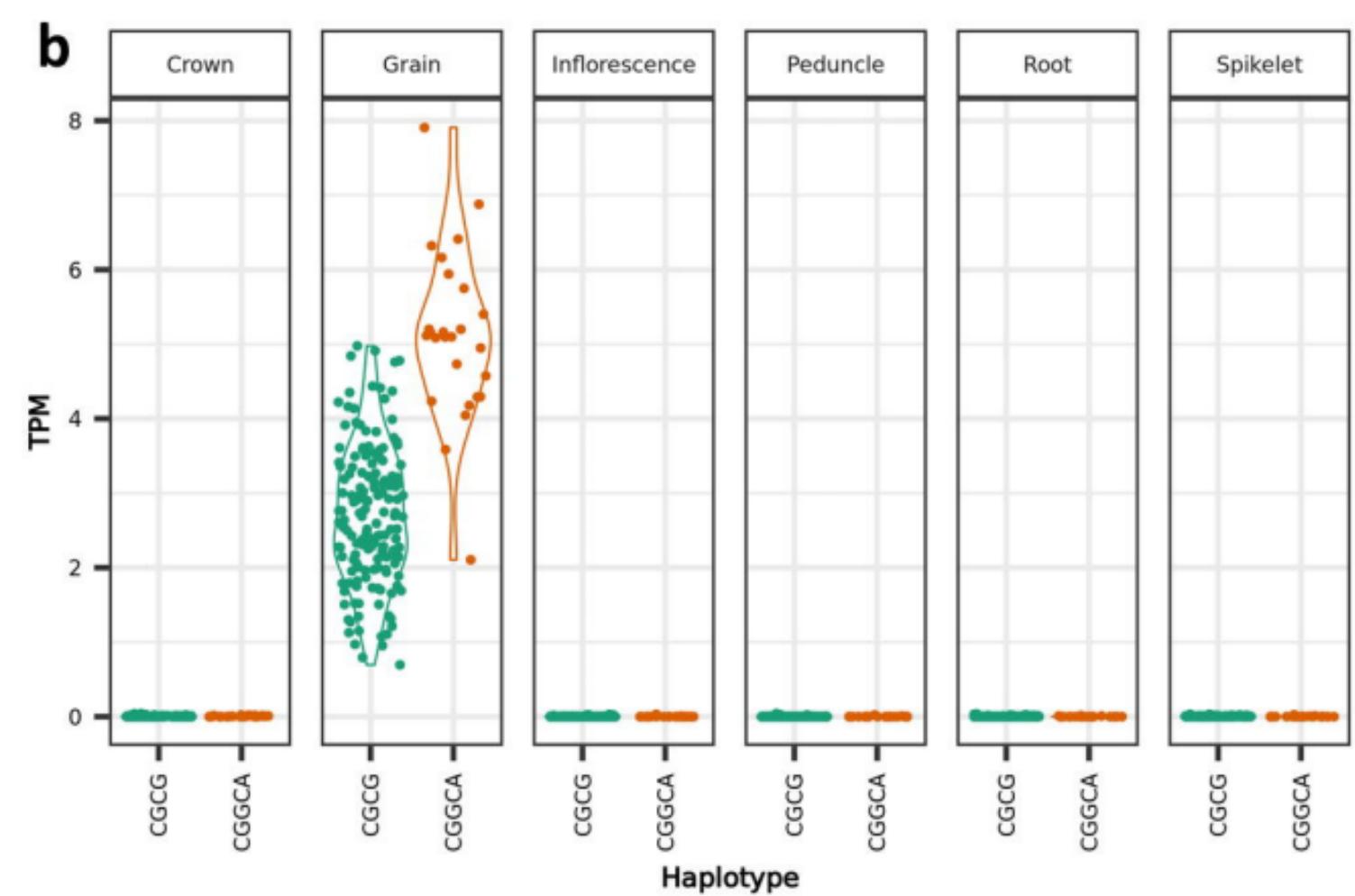
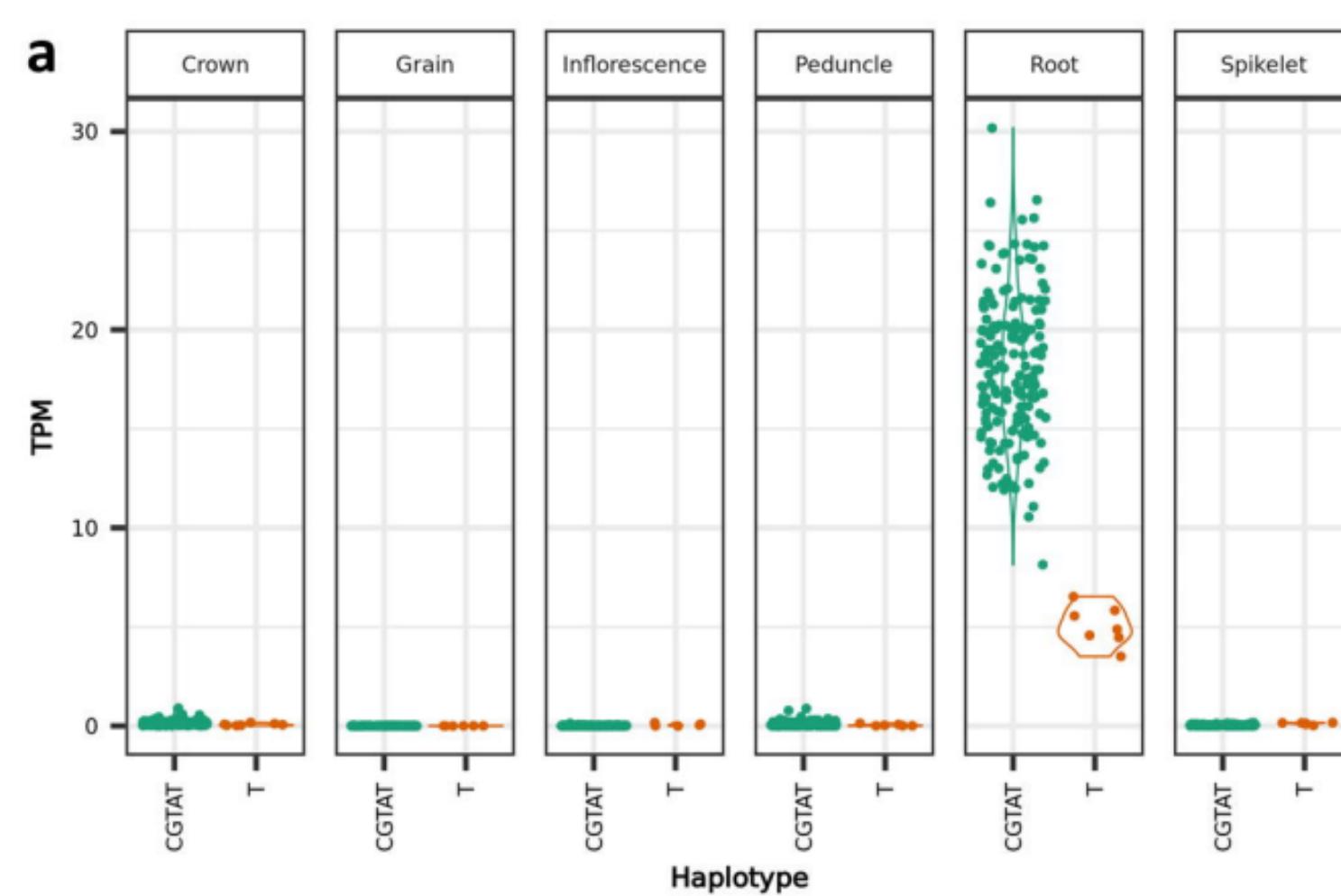



665 52 Li, Y. *et al.* Genome-scale mining of root-preferential genes from maize and
666 characterization of their promoter activity. *BMC Plant Biol* **19**, 584,
667 doi:10.1186/s12870-019-2198-8 (2019).

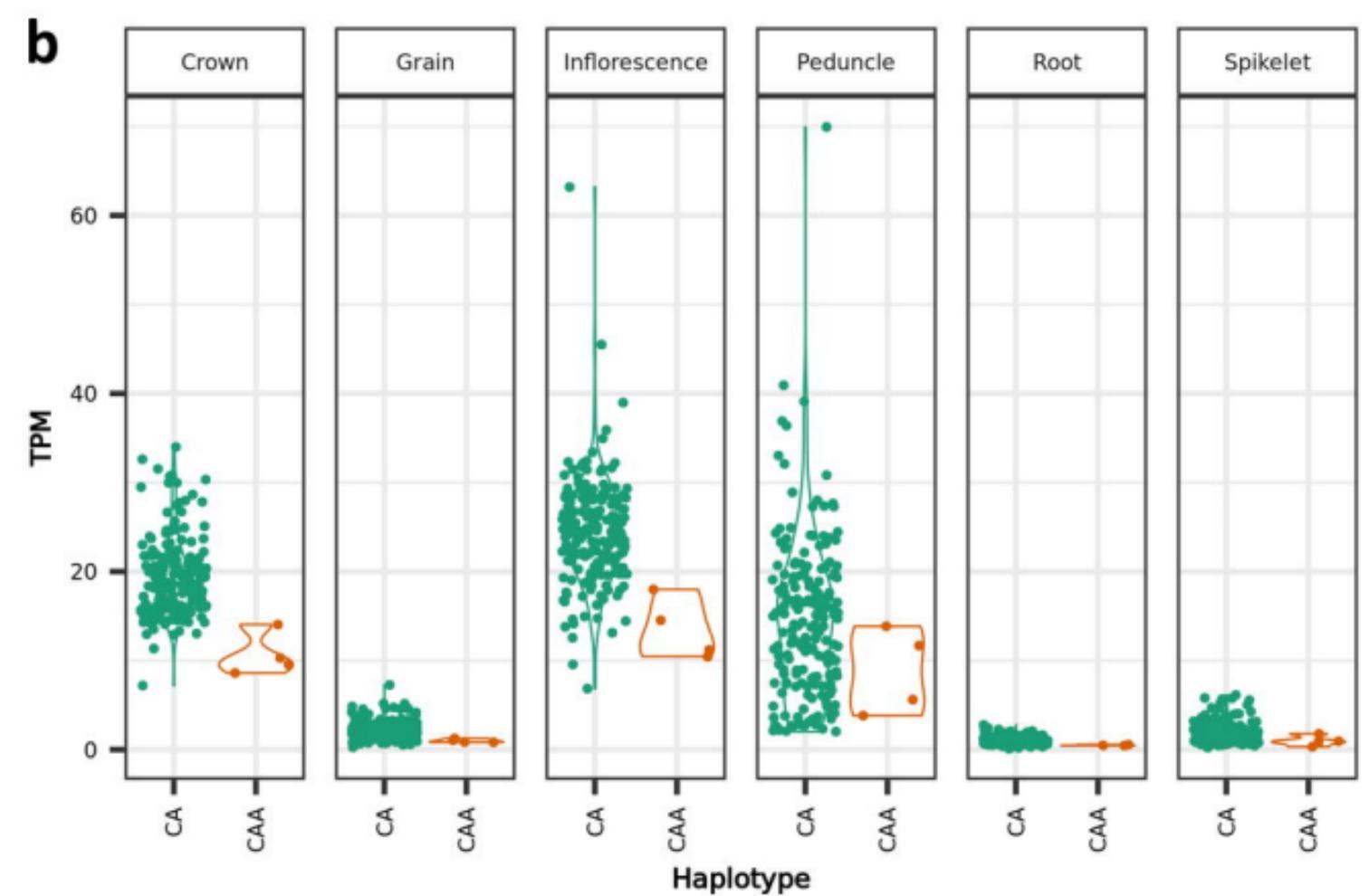
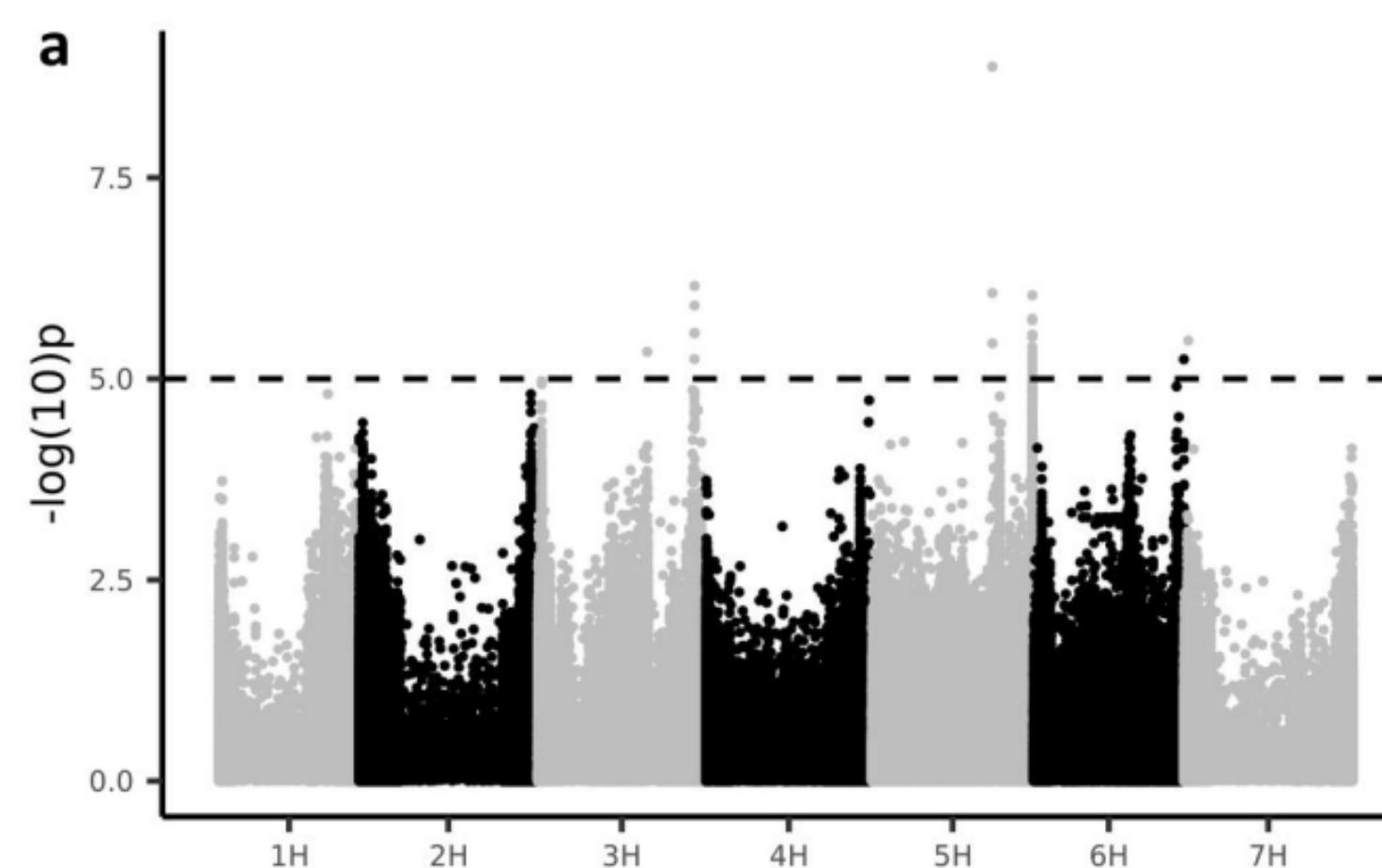
668 53 Schreiber, M. *et al.* Data record for the genomic resources of cultivated European
669 two-rowed spring barley genotypes. doi:<https://doi.ipk-gatersleben.de/DOI/815787d8-4036-408b-999e-725f7645eacf/6e532074-b4d7-4393-9221-8fe643e100f2/2/1847940088> (2023).
670
671
672 54 Wendt, T. *et al.* HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in
673 Barley and Impacts Yield in an Environment-Dependent Manner. *PLoS One* **11**,
674 e0168924, doi:10.1371/journal.pone.0168924 (2016).
675 55 Molder, F. *et al.* Sustainable data analysis with Snakemake. *F1000Res* **10**, 33,
676 doi:10.12688/f1000research.29032.2 (2021).
677

a**b**





Tissue

- Crown
- Grain
- Inflorescence
- Peduncle
- Root
- Spikelet

a Gene Ontology enrichment of Root specific genes**b Gene Ontology enrichment of Grain specific genes****c Gene Ontology enrichment of Inflorescence specific genes****d Gene Ontology enrichment of Spikelet specific genes****e Gene Ontology enrichment of Crown specific genes**

