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Santiago G. Medina-Muñoz1, Diego Ortega-Del Vecchyo2, Luis Pablo Cruz-Hervert3,3

Leticia Ferreyra-Reyes3, Lourdes Garcı́a-Garcı́a3, Andrés Moreno-Estrada1,*, and Aaron4

P. Ragsdale1,4,*
5

1National Laboratory of Genomics for Biodiversity (LANGEBIO), Advanced Genomics Unit (UGA), CINVESTAV,6

Irapuato, Guanajuato 36824, Mexico7

2Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de8

Mexico, Juriquilla, Querétaro 76230, Mexico9
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ABSTRACT13

Demographic models of Latin American populations often fail to fully capture their complex evolutionary history, which has

been shaped by both recent admixture and deeper-in-time demographic events. To address this gap, we used high-coverage

whole genome data from Indigenous American ancestries in present-day Mexico and existing genomes from across Latin

America to infer multiple demographic models that capture the impact of different timescales on genetic diversity. Our ap-

proach, which combines analyses of allele frequencies and ancestry tract length distributions, represents a significant im-

provement over current models in predicting patterns of genetic variation in admixed Latin American populations. We jointly

modeled the contribution of European, African, East Asian, and Indigenous American ancestries into present-day Latin Amer-

ican populations to capture the historical demographic events that have shaped genetic variation. Our inferred demographic

histories are consistent across different genomic regions and annotations, suggesting that our inferences are robust to the

potential effects of linked selection. In conjunction with published distributions of fitness effects for new nonsynonymous

mutations in humans, we show in large-scale simulations that our models recover important features of both neutral and

deleterious variation. By providing a more realistic framework for understanding the evolutionary history of Latin American

populations, our models can help address the historical under-representation of admixed groups in genomics research, and

can be a valuable resource for future studies of populations with complex admixture and demographic histories.

14

Introduction15

Genetic diversity among human populations has been shaped by recurrent periods of migration and admixture1. Relatively16

recent admixture across Latin America has resulted in a rich and complex history, shaped by the mixing of ancestries from17

multiple regions, including Indigenous American, European, and African populations. Each of these populations has its own18

unique demographic history, both prior to and following their arrival to the continent2–4. As a result, the genetic composition of19

Latin American populations depends on both the shared broad-scale history of global human expansion and distinct regional20

admixture events, leading to patterns of genetic diversity that can vary markedly among Latin American populations and21

between individuals. However, there is currently a lack of historical models that accurately capture the demographic history22

and genetic composition of Latin American populations.23

Accurate demographic models are essential for investigating a range of evolutionary, epidemiological, and ecological24

questions, as well as for simulating realistic genetic data5, 6. But despite the importance of understanding the demographic25

dynamics of Latin American populations, current models often fail to fully capture the heterogeneity of their genetic diversity.26

One limitation is that such models do not incorporate the diverse ancestries that have contributed to the genetic makeup of27

Latin American populations. For example, previous studies have used East Asian populations as a proxy for Indigenous28

American ancestries7, 8, despite the genetic divergence between present-day Indigenous American and East Asian individuals29

due to many thousands of years of isolation and serial founder effects during the peopling of the Americas9–12.30

Current models are also limited by simplistic admixture histories, which do not accurately reflect the complexity of ad-31

mixture in Latin American populations8, 13. Admixture histories in the Americas vary across geographical regions4, 14, and32

Latin American populations have experienced admixture events that involved additional populations beyond those typically33
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considered in demographic models. For example, admixture events in Mexico have also involved individuals who descended34

from East and Southeast Asian populations15. This highlights the need for more nuanced models to fully capture the diverse35

ancestral contributions to the genetic makeup of present-day populations.36

The demographic histories of Latin American populations comprise both recent and deeper-in-time processes that shape37

patterns of genetic diversity16–18. Inferring demographic models for these cohorts is challenging, as it requires considering38

multiple historical timescales. At the most recent timescale, admixture between source populations with different present-39

day genetic ancestries has resulted in a mosaic of genetic ancestry in Latin America. In turn, variation within contributed40

ancestries has been shaped by the demographic histories of each source population. This deeper-in-time history therefore also41

contributes to genetic diversity among Latin Americans19. To fully capture the intricate histories of these populations, it is42

therefore essential to consider both of these timescales jointly in demographic inference.43

In this study, we infer more comprehensive demographic models for multiple cohorts in Latin America that better capture44

the complex and multifaceted history of these populations. To do this, we employed high-coverage whole genome sequences45

from worldwide populations and from across Latin America, including Colombia, Mexico, Peru, and Puerto Rico. We also46

included 50 recently sequenced individuals of Indigenous ancestries from Mexico, which provide increased resolution to47

distinguish East Asian and Indigenous American ancestries3, 20. We integrated demographic inferences at different timescales48

using the distributions of allele frequencies within and between populations and the numbers and lengths of ancestry tracts49

within individuals. Using extensive genetic simulations, we show that the resulting models accurately reflect multiple features50

of genetic variation observed in Latin American cohorts.51

Our inferred demographic models can be coupled with models of selection or quantitative traits to explore the joint effects52

of demography and selection in shaping genomic variation. We demonstrate this application by recovering patterns of variation53

among missense and nonsense mutations in protein-coding genes. This approach can be extended to model the genetic basis54

of disease susceptibility and other traits in Latin American cohorts, and should serve as a valuable resource for researchers55

studying evolutionary and medical genomics in Latin American cohorts and other populations with a recent genetic mixture.56

Results57

Inferring the deep demographic history through allele frequencies58

We used the joint site-frequency spectrum (jSFS) to infer a demographic model for the broad-scale human expansions that59

resulted in populations representing sources of ancestry of recent admixture in Latin America. The jSFS is the distribution of60

allele frequencies across multiple populations and can be used to infer demographic parameters such as effective population61

sizes, divergence times, and migration rates7. Allele frequencies were computed in high-coverage whole genome data from62

two DNA sequencing projects: the 1000 Genomes Project (1KGP)21, 22 and the Mexican Biobank Project (MXB)3, 20. Specifi-63

cally, we used data from the Yoruba in Ibadan, Nigeria (YRI, as a proxy for African ancestries, AFR), the Iberian population64

in Spain, (IBS, as a proxy for European ancestries, EUR), the Han Chinese in Beijing, China (CHB, as a proxy for East Asian65

ancestries, EAS), and the Indigenous American population in Mexico (as a proxy for American ancestries, AME) (Figure 1).66

These or related populations contributed to the genetic makeup of present-day Latin Americans19 and by using the jSFS, we67

aimed to identify major demographic events that have influenced their genetic diversity.68

Our inferred four-population demographic model builds upon previously inferred models for the out-of-Africa expansion69

involving AFR, EUR, and EAS populations7, 17, 23. To include the Indigenous American population, we considered models in70

which their ancestors branched from those of EAS, introducing three additional parameters: the AME split time from EAS,71

the bottleneck size, and the population expansion rate (Figure 2A). We used moments23 to fit our parameterized models to72

the observed jSFS for three putative neutral mutation classes: intergenic, intronic, and synonymous variants, which were fit73

separately. Our inferred models for deep population history were consistent with the observed SFS for all three mutation74

classes (Figure 2B, C, and Figure S1, Table S1). The estimated 95% confidence intervals for the parameters overlapped across75

the three sets of SNPs (Figure 2C, Table S1). This consistency across annotations suggests that our inferred models are robust76

to differences in selective effects (either direct or linked) between mutation classes. We also evaluated alternative models of77

population size changes in the AME branch, but these models did not provide a better fit to the data (Figure S2). We found78

that the inferred AME split time was consistent across all tested models, with values ranging from 31,000–33,000 years ago.79

While previously reported models have either excluded the Indigenous American population8, 17 or one or more of the80

other populations (European, African, and East Asian)7, 12 due to methodological limitations, we reconstructed a broad-scale81

demographic model for global human dispersal that includes the peopling of the Americas. By including all four populations82

in our analysis, we were able to provide a model that better predicts allele frequencies in each of these groups.83

Inferring admixture dynamics in Latin American populations84

The recent history of Latin American populations involves multiple periods of immigration and extensive gene flow among85

different Indigenous American, European, and African populations4, 16, 18. Population genetic methods that rely on the jSFS86
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may not be appropriate for resolving such admixture dynamics, as they typically assume a straightforward admixture process87

involving only a few ancestral populations and lack the necessary resolution to accurately infer the timing of admixture events88

that occurred relatively recently. However, by analyzing the ancestry tract length distribution (i.e., the distribution of lengths of89

continuous ancestry segments from each source population in admixed genomes), we inferred admixture models that include90

up to four ancestral populations and complex migration events24.91

Using the distribution of ancestry tract lengths, we inferred admixture histories for four cohorts: Mexico (MXL), Puerto92

Rico (PUR), Colombia (CLM), and Peru (PEL). To calculate the ancestry tract length distribution, we constructed a reference93

panel of African, European, East Asian, and Indigenous American ancestries to perform local ancestry inference25 (Figure 3A94

and Methods). We treated each population independently, as admixture histories vary between regions in Latin America4, 14, 16,95

leading to diverse ancestry patterns (Figure 3B). In each population, we used tracts24 to test five admixture models including96

three source populations: AFR, EUR, and AME (Figure S3 and Methods). These models allowed us to explore a variety of97

admixture scenarios including single pulses of gene flow, multiple pulses, and continuous migration.98

We used a Bayesian Information Criterion approach (BIC) to compare the fit of these models and select the best-fit model99

(Figure 3C,D and Figure S4). For Colombia, the model selected based on the BIC did not correspond to known historical100

events, as the initial admixture event was too recent (∼ 10 generations ago). In this case, we used additional information about101

known historical events to refine the model selection and chose a model that had a good fit to the data and parameters that102

were more consistent with known history26, 27. The models we selected (times of admixture events and ancestry proportions)103

are consistent with previous studies where admixture histories in Latin America have been explored28–30.104

Previous work has identified genetic connections between Mexico and Asia that originated during the Manila galleon105

trade between the colonial Spanish Philippines and the Pacific port of Acapulco15. We identified ∼ 1% (0.5−1) EAS ancestry106

among individuals in the MXL cohort using both ADMIXTURE and local ancestry inference. To incorporate a fourth source107

ancestry, we added an East Asian component to our admixture model for Mexico. We adapted our best-fitting three-population108

model to include an additional migration pulse from East Asia, occurring at the same time as the African pulse. This choice109

was motivated by the historical timing of the Manila galleon trade, which coincided with the period of the African slave110

trade31, 32. Our estimates indicate that this pulse occurred 13 generations ago (Figure 3C,D), which is consistent with published111

estimates15. We did not explore four-source population models for the other cohorts (CLM, PEL, and PUR), as we observed112

lower levels of East Asian ancestry in these populations using ADMIXTURE and local ancestry inference (Figure 1).113

Integrating Allele Frequencies and Ancestry Tracts: A Joint Modeling Approach for Demographic Recon-114

struction in Latin America115

We combined our inferences from allele frequencies (Figure 2) and ancestry tracts (Figure 3) to provide a comprehensive116

model for the span of demographic history in Latin America (Figure 4A). Information from different inference engines (tracts117

and moments) was integrated using demes33, a standard format for demographic models in population genetics. In our com-118

bined model, we made several assumptions to simplify the analysis and produce a more tractable model. We assumed that the119

Latin American cohorts (MXL, CLM, PEL, and PUR) are independent of one another and have not experienced recent gene120

flow between them. We also fixed the effective population sizes (Ne) in admixed populations to a constant value of 20,000121

that roughly reflects the present-day Ne in Latin American populations8. We did not infer Ne in these populations because the122

ancestry tract distribution does not contain information about Ne, and the admixture histories in Latin America are very recent123

on an evolutionary time scale so that allele frequencies will not fluctuate significantly due to genetic drift.124

To validate the accuracy of our joint demographic model, we used simulations to generate artificial datasets and compare125

them to the observed data. We used the coalescent simulator msprime34, 35 to simulate samples for each population under the126

reconstructed demography (Methods). We compared a Principal Component Analysis (PCA)between the simulated data and127

observed genotypes on chromosome 22 (Figure 4B). The PCA of simulated individuals closely mirrors those in the observed128

data (Figure S5), indicating that our model accurately captures broad-scale patterns of genetic diversity in Latin American129

populations.130

To compare to existing models for admixed Latin American populations, we also simulated data under the Browning et131

al. (2018) model of American admixture6, 8. Using the same simulation and PCA approach, we compared a PCA between132

this model and real data, finding that our model (Figure 4B) more accurately recapitulates important axes of genetic diversity133

in Latin American populations. In particular, our model reproduces the variation in Indigenous American ancestries among134

individuals, as shown by the strong association between the principal component 3 (PC3) and Indigenous American ancestries.135

In contrast, the Browning et al. model has no association with Indigenous ancestries in PC3, as it uses East Asian ancestry as136

a proxy for American ancestry.137

Applying our demographic model to the simulation of functional variation under selection138

To evaluate the ability of our inferred demographic model to explain patterns of genetic variation under selection, we conducted139

forward-in-time simulations of non-coding (intergenic and intronic), synonymous, missense, and loss-of-function variants140

3/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.531060doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531060
http://creativecommons.org/licenses/by-nc-nd/4.0/


using the fwdpy11 simulation engine36, 37. We assessed the ability of our demographic model, when combined with inferred141

models of selection, to explain patterns of genetic variation in different functional categories of the genome.142

Missense and loss-of-function (nonsense) mutations are often subject to negative selection because they can have signifi-143

cant impacts on protein function. While non-coding and synonymous variants may be under direct selection due to changes in144

regulatory elements and codon usage bias38, respectively, here we assumed that they were neutral with respect to selection39, 40.145

To simulate selection on nonsynonymous mutations, we incorporated distributions of fitness effects (DFE) for the two classes146

of nonsynonymous mutations41 (Figure S6A and Methods). We simulated a total of 350Mb of genomic data using our inferred147

demographic model and spanning various regions of the human genome by sampling from existing recombination maps and148

genomic annotations (Methods). Due to the computational burden of running forward-in-time simulations, we limited the149

simulation to only one Latin American population (MXL) jointly with the other source populations (AFR, EUR, EAS, and150

AME).151

We evaluated how well our joint modeling approach matched data from selected mutation classes and assessed any biases152

within putatively neutral classes due to linked selection. We found that the SFS from simulated data accurately reproduced153

the SFS from the data for both neutral and selected genetic variation (Figure 5A and Figure S7). Specifically, the SFS fits well154

for non-coding, synonymous, and missense variants, for which many variants are observed. While there are fewer observed155

loss-of-function variants, leading to noisier estimates of the SFS, simulated data is largely unbiased across frequency bins156

(Figure S7). In addition to analyzing the SFS within single populations, we calculated pairwise FST between populations. We157

observed that the simulated FST values accurately reproduced those from the observed data (Figure 5B). Together, this model-158

ing approach was able to capture observed patterns of allele frequency variation within and between populations, supporting159

the utility of our model as a tool for studying complex evolutionary processes in these cohorts through genetic simulations.160

Discussion161

Our study provides comprehensive demographic models for populations in Latin America inferred from high-coverage whole162

genome data. These models allow us to examine population dynamics at different time scales, incorporating multiple epochs163

of demographic history. By inferring a four-populations Out-of-Africa model for the deeper demographic history (Figure 2),164

and using ancestry tract length distributions to infer the recent admixture history in four Latin American cohorts (Figure 3), we165

were able to create a single model (Figure 4) that jointly captures both allele frequencies and the distribution of ancestry tract166

lengths. Through extensive simulations, we demonstrated that this model accurately reflects the patterns of genetic diversity167

present in Latin American populations (Figure 5).168

Our inferred demographic models for populations in Latin America represents a significant advance in our ability to169

accurately account for their evolutionary history in genomic studies. By capturing different aspects of population dynamics,170

our model provides a powerful tool for studying Latin American populations and understanding the genetic basis of disease171

in these underrepresented groups42. Populations and individuals with recent genetic admixture are routinely excluded from172

genomic studies due to concerns over population structure43. This is due in part to the lack of methods and pipelines to173

effectively account for shared ancestries and complex demographic histories44–46, which our study takes steps to address. Past174

demographic history can also pose a significant challenge to detecting selection, as it can create patterns of genetic diversity175

that mimic the signatures of selection47–49. Detailed demographic models are important for controlling for such confounding,176

allowing for more robust inference of recent selection in Latin American populations. Our models therefore provide a resource177

for developing and testing methods and pipelines that are specifically tailored to studying admixed populations, improving the178

accuracy and validity of results obtained from such studies.179

Our results reveal a dynamic and multifaceted history. Of note, the inferred AME-EAS split time ranges from 31,000 to180

33,000 years ago and is consistent across all tested models. This suggests that population structure between the ancestors181

of Indigenous Americans and East Asians had formed by this time. This may support the idea of an early migration to the182

Americas, predating the commonly used time frame of ∼15,000 years ago, or reflect population structure in Siberia and183

Beringia prior to the expansion into the Americas50, 51. Additionally, our results show that the ancestry proportions in Latin184

American populations have changed over time, with evidence of continuous migration of European and Indigenous ancestries185

in Mexico, Peru, and Colombia. Similar patterns of changes in ancestry proportions over time have been observed in other186

admixed populations in the United States52. This suggests that there may have been ongoing migrations from Europe to the187

Americas, as well as migration within the Americas, such as the movement of people from rural to urban areas53, 54. This188

highlights the importance of considering the heterogeneity of population histories and the historical and cultural interactions189

of the Americas in understanding the demographic history of Latin American populations.190

Our models provide valuable insights into the larger-scale demographic history of Latin American populations, but they191

do not capture all aspects of population history. For example, the arrival of the Spanish in central Mexico led to a significant192

decline in population size55, which can have a significant impact on genetic diversity but is not fully captured by our model.193

With the increasing availability of larger datasets, it will be possible to study more detailed population structure and dynamics194

4/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.531060doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531060
http://creativecommons.org/licenses/by-nc-nd/4.0/


using the framework from this study. As we continue to increase the representation of Latin American genomic data, including195

more whole genomes, we can expect to gain a deeper understanding of the complexity of Latin American population history196

and to resolve historical processes at finer scales.197

Methods198

Whole genome data and quality control199

We used two high-coverage whole genome datasets to investigate the demographic dynamics of Latin American populations.200

The first dataset was the 1000 Genomes Project (1KGP)22, which provided 30x high-coverage genomic data from the NYGC201

that was mapped to the GRCh38 reference genome. We selected reference samples for Africa (AFR), Europe (EUR), and202

East Asia (EAS) from this data set, specifically we used 108 Yorubans in Ibadan Nigeria, 107 Iberians in Spain, and 103 Han203

Chinese in Beijing, respectively. In addition to these reference samples, we also used data from admixed cohorts within the204

1KGP, including 60 Mexicans in Los Angeles (MXL), 104 Puerto Ricans in Puerto Rico (PUR), 94 Colombians in Medellin205

(CLM), and 85 Peruvians in Lima (PEL), to infer admixture history. The second data set was from the MX Biobank (MXB)206

project3, 20 and included 50 high-coverage whole genomes from Indigenous American (AME) descendants in present day207

Mexico.208

To combine the data sets from the 1KGP MXB projects, we used the CrossMap56 tool to liftover the MXB genomes from209

the GRCh37 reference genome to the GRCh38 reference genome. Next, we applied two rounds of filters to remove variants210

that were likely affected by genotyping error or batch effects. The first filter, applied to each source population (AFR, EUR,211

EAS, and AME) separately, removed variants in Hardy-Weinberg diseqeuilibrium with a p-value of 1e-4. The second filter,212

with a more strict Hardy-Weinberg p-value of 0.05, was applied with the purpose of removing potential batch effects. In this213

case, we applied the second filter to the 50 MXB genomes combined with a set of 29 individuals from the 1KGP (2 MXL and214

27 PEL) with the highest proportion of Indigenous American ancestries. In addition to these filters, we also removed variants215

that were located in masked regions of the genome. After applying these filters, we obtained a combined data set that was216

used for all downstream analyses in the study.217

Admixture analysis218

We used the software package ADMIXTURE v1.357 to estimate individual ancestry proportions based on genome-wide single219

nucleotide polymorphism (SNP) data. We applied the following filters to the data: SNPs with a minor allele frequency below220

0.05 and SNPs with a Hardy-Weinberg equilibrium test p-value below 0.001 were excluded. In addition, we filtered SNPs in221

linkage disequilibrium with each other using a threshold of r2
= 0.1. We ran ADMIXTURE with default parameters, specifying222

the number of ancestral populations (K) to range from 2 to 6.223

Demographic inference from allele frequencies224

To accurately infer the demographic model, we excluded variants located in CpG sites, which have been shown to have highly225

variable mutation rates and could potentially bias the results58, 59. To infer the demographic model, we calculated the folded226

joint site frequency spectrum (jSFS) for intronic, intergenic, and synonymous variants. We classified the variants according227

to its functional effect with VEP version 10260. We down sampled to sample sizes of 40 individuals from each population,228

resulting in a jSFS with four dimensions: one for each of the four populations (AFR, EUR, EAS, and AME).229

To infer demographic parameters, we used moments as our inference engine due to its ability to handle inferences for230

more than three populations using a diffusion approximation23. We adopted a two-step approach to inferring the demographic231

parameters. In the first step, we inferred a 3-populations out-of-Africa model (AFR, EUR, and EAS)7, 23, which included 14232

parameters such as effective population sizes, split times, and migration rates. In the second step, we included the Indigenous233

American population as branching out from the ancestors of the East Asian population and inferred three additional parameters:234

the AME split time from EAS, the bottleneck size, and the population expansion rate (Figure 2A). We performed this same235

inference for each class of putatively neutral jSFSs (intronic, intergenic, and synonymous). To account for uncertainty in the236

parameters, we divided the genome into non-overlapping windows of 10Mb and calculated the jSFS and scaled mutation rates237

for each window. We generated bootstrap replicates from these windows (n = 288) by sampling with replacement and used a238

Godambe Information approach61 to estimate parameter uncertainties.239

Estimation of mutation rates240

To convert genetic to physical units (i.e., event times in generations, and effective instead of relative population sizes) we241

required estimates of total mutation rates in retained genomic regions. To estimate this scaled mutation rate, µL, for non-242

coding (intronic and intergenic) and coding (missense, synonymous, and loss of function) regions of the genome, we first243

subset the genomic coordinates for these regions. For intergenic and intronic regions, we counted the occurrence of each244

triplet context (excluding CpG contexts) and used the corresponding total mutation rates for each possible mutation for each245
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triplet context, obtained from the gnomAD mutation model58, to weight the counts. We then summed the weighted counts246

for all triplets to estimate the scaled mutation rate for non-coding regions. For coding regions, we generated a file with247

every possible mutation (biallelic SNPs) in the coding regions of the genome and used VEP version 102 tool to predict the248

consequence of each variant60. For each consequence (synonymous, missense, or nonsense), we counted the occurrence of249

each triplet and used the same approach as for non-coding regions to estimate the scaled mutation rate.250

Local ancestry inference251

To infer the ancestry of specific ancestry segments within the Latin American genomes, we utilized Gnomix25. In order to do252

so, we first constructed a reference panel consisting of individuals with known African, European, and Indigenous American253

ancestries. Particularly, we selected the Yoruba population (YRI=108) to represent African ancestries, the Iberian population254

in Spain (IBS=107) and the British in England and Scotland (GBR=91) for European ancestries, and a combination of MXB255

Indigenous American samples (n=50) with 30 1KGP individuals with high Indigenous American ancestries proportions from256

Peru (PEL=28) and Mexico (MXL=2) for Indigenous American ancestries. In addition, we also generated a reference panel257

including East-Asian ancestry, using the Han Chinese population (CHB=103) as a reference. We then trained two Gnomix258

models using these two reference panels, using the default settings which are optimal for whole genome data and setting the259

phase parameter to True, in order to re-phase the genomes using the predicted local ancestry. Finally, we used these models260

to predict the local ancestry in each of the Latin American genomes.261

Inference of admixture history262

To infer the admixture history, we used the ancestry tract length distribution obtained from the Gnomix output, which we263

collapsed into haploid ancestry tracts. We analyzed the admixture dynamics independently in each Latin American cohort264

(MXL, PEL, CLM, and PUR). We evaluated five different admixture models with tracts24: ppx_xxp, ppx_xxp_pxx, ccx_xxp,265

ppx_ccx_xxp, and ppc. The order of each letter in these models corresponds to the order of the source ancestries (AMR, EUR,266

and AFR), with an underscore indicating a distinct migration event. A "p" represents an ancestry pulse (e.g. xxp is a pulse267

from AFR ancestry), "c" indicates continuous migration, and "x" indicates no input. We selected these models for analysis268

because they cover a range of plausible admixture history scenarios and have been previously tested in similar cohorts28–30, 62.269

To account for the uncertainty in estimated parameters, we generated 100 bootstrap replicates of the ancestry tract distribu-270

tion by randomly sampling individuals with replacement. For each replicate, we calculated the Bayesian Information Criterion271

(BIC) to determine the best-fit model. The selected model for each population was based on the BIC as well as agreement272

with historical evidence. In the case of Mexico, we used the ppx_ccx_xxp model as the best fit and added a pulse of Asian273

ancestry occurring simultaneously with the African pulse. We optimized this model by exploring the parameter space to find274

the best fit parameters (modeled as ppxx_ccxx_xxpp).275

Combining tracts and moments inferences276

We integrated our demographic inferences from allele frequencies and tracts into a unified model. To do so, we utilized277

demes33 to combine the parameters. In order to account for variations in the generation time, we used a value of 29 years63.278

This enabled us to transform the parameters of the tracts (e.g. the timing of admixture events) from generations to years from279

present.280

Neutral simulations281

To ensure the accuracy of our demographic model, we conducted coalescent simulations of neutral genetic sequence data. We282

used msprime34, 35 to implement the classical coalescent with recombination model (Hudsons algorithm) for the majority of283

the simulation, and for the last 20 generations we employed the discrete-time Wright-Fisher model64, which better accounts284

for large sample sizes and genome lengths and provides more accurate patterns of identity-by-descent and ancestry tract285

variation in admixed populations. To further verify the correctness of our model, we utilized multiple simulation engines286

to compare to observed data, including msprime, fwdpy11, and moments. We utilized tskit for downstream analysis of the287

simulated genomes.288

PCA analysis289

We performed a principal component analysis (PCA) on three datasets using the scikit-allel software65. The three datasets290

were: (1) observed genotypes, (2) simulated genotypes generated by our model, and (3) simulated genotypes generated by the291

Browning et al. model8. For the PCA analysis, we excluded all singleton variants. We also performed linkage disequilibrium292

(LD) pruning by removing variants in high LD (r2
> 0.1). The PCA analysis was conducted separately for each dataset.293
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Forward-in-time simulations294

We performed forward simulations using the software fwdpy11 version 0.18.336, 37. Our simulations incorporated our inferred295

demographic model. To ensure the realism of our simulations, we divided the human genome (autosomes only) into windows296

of 1Mb and randomly selected 350 of these regions for simulation. We then analyzed the functional annotation of each of these297

regions, including intergenic, intronic, and coding sequences, and calculated the corresponding mutation rates. To accurately298

capture the effects of recombination on evolutionary dynamics, we incorporated a human recombination map for GRCh38299

obtained from https://github.com/odelaneau/shapeit4/tree/master/maps into our simulations66. We300

incorporated distributions of fitness effects (DFE) for missense and nonsense mutations, in which nonsense mutations were301

inferred to be more strongly selected against41. To do this, we employed a multiplicative model that allowed us to examine302

the influence of selective pressures on the genetic diversity of our simulated populations (Figure S4). In comparing between303

simulations and data, we aggregated data across the 1Mb regions of the genome that were simulated. The simulation was run304

for 152,471 generations, corresponding to the recent history of the five modeled populations. Finally, we sampled individuals305

from each of the five populations at the present time, with sample sizes matching those of our data.306

Data availability307

The 1KGP data21, 22 is publicly available and accessible without restriction. The 50 genomes from the MX-Biobank3, 20 project308

are deposited in the European Genome-phenoms Archive (EGA) repository, accession number EGAD00001008354.309

Demographic models310

The inferred demographic models are provided as supplementary material and in the GitHub repo: https://github.311

com/santiago1234/mxb-genomes.312

The model files are in the demes33 format.313

• Model 1 (m1-out-of-africa.yml). Four populations out of Africa.314

• Model 2 (m2-Mexico-admixture.yml). Admixture in Mexico.315

• Model 3 (m3-Colombia-admixture.yml). Admixture in Colombia.316

• Model 4 (m4-Peru-admixture.yml) Admixture in Peru.317

• Model 5 (m5-PuertoRico-admixture.yml). Admixture in Puerto Rico.318

• Model 6 (m6-All-admixture.yml). Admixture in Latin American populations, combined across models 2–6.319

Code availability320

Code for the software used in this paper is found at the following locations:321

moments (https://bitbucket.org/simongravel/moments),322

tracts (https://github.com/sgravel/tracts),323

demes (https://github.com/popsim-consortium/demes-python),324

msprime (https://github.com/tskit-dev/msprime),325

tskit (https://github.com/tskit-dev/tskit),326

fwdpy11 (https://molpopgen.github.io/fwdpy11/),327

and code used to process data, infer demographic models, run simulations, and generate visualizations is available at328

https://github.com/santiago1234/mxb-genomes.329
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Figure 1. Populations used for demographic reconstruction. (A) Map showing the approximate sampling locations and the
population names and codes. Numbers in parentheses denote the number of sampled genomes. Latin American populations
are marked with a purple cross. (B) We used ADMIXTURE (with K=4) to visualize ancestry proportions of source
populations and those from Latin America. The plot reveals substantial variation in ancestry proportions both across
populations and among individuals within populations.
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Figure 2. Inference of continental population history from allele frequencies. (A) Scheme of the inferred model. The width
of the tubes is proportional to the effective population size; fonts in italics show the name of the inferred parameters.
Abbreviations: Anatomically Modern Humans (AMH) and out-of-Africa (OOA). (B) Comparison between the folded
intronic SFS for the data (blue) and the model’s prediction (orange). Background lines (grey) show the model’s prediction in
the rest of the populations. (C) Comparison of estimated parameters with different sets of SNPs (synonymous, intergenic,
and intronic). The error bar denotes the bootstrap confidence intervals ( ±2 standard deviations). The 95% confidence
intervals overlap between annotations for the vast majority of inferred parameters.
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Figure 3. Inference of admixture history from the ancestry tract length distribution. (A) Karyogram with inferred local
ancestry tracts in a Mexican individual (MXL). (B) Ternary plot of ancestry fractions for African, European, and Indigenous
American ancestries inferred with ADMIXTURE. Points in purple correspond to the individuals from the population shown;
grey points, on the background, are the other populations. (C) Ancestry tract length distribution of data and best model’s
prediction. Plotted points show the aggregate tract length counts; lines show the maximum-likelihood best-fit tract length
distributions for the best model in each population; and shading shows one standard deviation confidence interval, assuming
a Poisson distribution of counts per bin. (D) Scheme of inferred admixture models. Top: pie charts sizes indicate an
approximate proportion of migrants in each generation, and the pie parts represent the fraction of migrants of each origin in a
given generation. Migrants are taken to have uniform continental ancestry. The dashed lines connecting the smaller circles
denote a continuous migration similar to the connecting circles. Bottom: the y-axis shows the expected fraction of ancestry
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Visualization of the inferred demographic model. We combined the inferences from allele frequencies and ancestry tracts
into a single demographic model. The parameters in red correspond to the parameters estimated from ancestry tracts and the
parameters in black were inferred from allele frequencies. The admixed population, in purple, represents the Mexican
population (MXL). (B) PCA decomposition of genetic data. Left: data chromosome 22; middle: simulation using our
inferred model (panel A); right: simulation using the Browning et al. model. For both models, we simulated a genome of
length 50Mb with msprime (Methods). In the data (bottom left) the Indigenous American similarity component is capture by
the PC3. This variation is capture in our inferred model (A), but is not present in the simulated genomes from the Browning
et al. model, which uses the East Asian population as a proxy for Indigenous American ancestry.
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Figure 5. Forward-in-time simulations of functional genetic variation. We simulated a total of 350 independent regions,
1Mb each, of the human genome by sampling coding annotations and inferred recombination rates (Methods). (A)
Comparison between the folded SFS for the data (blue) and the simulation (orange) in different functional categories,
summed across all regions. The SFS corresponds to the admixed Mexican population (MXL). Additional populations are
shown in Figure S7A. (B) Box-plot of pairwise FST values comparing data (n = 350) and simulation (n = 350). Missense and
loss-of-function mutations were combined into a single non-synonymous category.

15/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.531060doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531060
http://creativecommons.org/licenses/by-nc-nd/4.0/

