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ABSTRACT

Demographic models of Latin American populations often fail to fully capture their complex evolutionary history, which has
been shaped by both recent admixture and deeper-in-time demographic events. To address this gap, we used high-coverage
whole genome data from Indigenous American ancestries in present-day Mexico and existing genomes from across Latin
America to infer multiple demographic models that capture the impact of different timescales on genetic diversity. Our ap-
proach, which combines analyses of allele frequencies and ancestry tract length distributions, represents a significant im-
provement over current models in predicting patterns of genetic variation in admixed Latin American populations. We jointly
modeled the contribution of European, African, East Asian, and Indigenous American ancestries into present-day Latin Amer-
ican populations to capture the historical demographic events that have shaped genetic variation. Our inferred demographic
histories are consistent across different genomic regions and annotations, suggesting that our inferences are robust to the
potential effects of linked selection. In conjunction with published distributions of fithess effects for new nonsynonymous
mutations in humans, we show in large-scale simulations that our models recover important features of both neutral and
deleterious variation. By providing a more realistic framework for understanding the evolutionary history of Latin American
populations, our models can help address the historical under-representation of admixed groups in genomics research, and
can be a valuable resource for future studies of populations with complex admixture and demographic histories.

Introduction

Genetic diversity among human populations has been shaped by recurrent periods of migration and admixture'. Relatively
recent admixture across Latin America has resulted in a rich and complex history, shaped by the mixing of ancestries from
multiple regions, including Indigenous American, European, and African populations. Each of these populations has its own
unique demographic history, both prior to and following their arrival to the continent®>*. As a result, the genetic composition of
Latin American populations depends on both the shared broad-scale history of global human expansion and distinct regional
admixture events, leading to patterns of genetic diversity that can vary markedly among Latin American populations and
between individuals. However, there is currently a lack of historical models that accurately capture the demographic history
and genetic composition of Latin American populations.

Accurate demographic models are essential for investigating a range of evolutionary, epidemiological, and ecological
questions, as well as for simulating realistic genetic data>®. But despite the importance of understanding the demographic
dynamics of Latin American populations, current models often fail to fully capture the heterogeneity of their genetic diversity.
One limitation is that such models do not incorporate the diverse ancestries that have contributed to the genetic makeup of
Latin American populations. For example, previous studies have used East Asian populations as a proxy for Indigenous
American ancestries”®, despite the genetic divergence between present-day Indigenous American and East Asian individuals
due to many thousands of years of isolation and serial founder effects during the peopling of the Americas®'2.

Current models are also limited by simplistic admixture histories, which do not accurately reflect the complexity of ad-
mixture in Latin American populations®!3. Admixture histories in the Americas vary across geographical regions* !4, and
Latin American populations have experienced admixture events that involved additional populations beyond those typically
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considered in demographic models. For example, admixture events in Mexico have also involved individuals who descended
from East and Southeast Asian populations'>. This highlights the need for more nuanced models to fully capture the diverse
ancestral contributions to the genetic makeup of present-day populations.

The demographic histories of Latin American populations comprise both recent and deeper-in-time processes that shape
patterns of genetic diversity!®~!8. Inferring demographic models for these cohorts is challenging, as it requires considering
multiple historical timescales. At the most recent timescale, admixture between source populations with different present-
day genetic ancestries has resulted in a mosaic of genetic ancestry in Latin America. In turn, variation within contributed
ancestries has been shaped by the demographic histories of each source population. This deeper-in-time history therefore also
contributes to genetic diversity among Latin Americans'®. To fully capture the intricate histories of these populations, it is
therefore essential to consider both of these timescales jointly in demographic inference.

In this study, we infer more comprehensive demographic models for multiple cohorts in Latin America that better capture
the complex and multifaceted history of these populations. To do this, we employed high-coverage whole genome sequences
from worldwide populations and from across Latin America, including Colombia, Mexico, Peru, and Puerto Rico. We also
included 50 recently sequenced individuals of Indigenous ancestries from Mexico, which provide increased resolution to
distinguish East Asian and Indigenous American ancestries®>". We integrated demographic inferences at different timescales
using the distributions of allele frequencies within and between populations and the numbers and lengths of ancestry tracts
within individuals. Using extensive genetic simulations, we show that the resulting models accurately reflect multiple features
of genetic variation observed in Latin American cohorts.

Our inferred demographic models can be coupled with models of selection or quantitative traits to explore the joint effects
of demography and selection in shaping genomic variation. We demonstrate this application by recovering patterns of variation
among missense and nonsense mutations in protein-coding genes. This approach can be extended to model the genetic basis
of disease susceptibility and other traits in Latin American cohorts, and should serve as a valuable resource for researchers
studying evolutionary and medical genomics in Latin American cohorts and other populations with a recent genetic mixture.

Results

Inferring the deep demographic history through allele frequencies

We used the joint site-frequency spectrum (GSFS) to infer a demographic model for the broad-scale human expansions that
resulted in populations representing sources of ancestry of recent admixture in Latin America. The jSFS is the distribution of
allele frequencies across multiple populations and can be used to infer demographic parameters such as effective population
sizes, divergence times, and migration rates’. Allele frequencies were computed in high-coverage whole genome data from
two DNA sequencing projects: the 1000 Genomes Project (1KGP)?!'-?? and the Mexican Biobank Project (MXB)>2°. Specifi-
cally, we used data from the Yoruba in Ibadan, Nigeria (YRI, as a proxy for African ancestries, AFR), the Iberian population
in Spain, (IBS, as a proxy for European ancestries, EUR), the Han Chinese in Beijing, China (CHB, as a proxy for East Asian
ancestries, EAS), and the Indigenous American population in Mexico (as a proxy for American ancestries, AME) (Figure 1).
These or related populations contributed to the genetic makeup of present-day Latin Americans'® and by using the jSFS, we
aimed to identify major demographic events that have influenced their genetic diversity.

Our inferred four-population demographic model builds upon previously inferred models for the out-of-Africa expansion
involving AFR, EUR, and EAS populations’-!"-23. To include the Indigenous American population, we considered models in
which their ancestors branched from those of EAS, introducing three additional parameters: the AME split time from EAS,
the bottleneck size, and the population expansion rate (Figure 2A). We used moments>* to fit our parameterized models to
the observed jSFS for three putative neutral mutation classes: intergenic, intronic, and synonymous variants, which were fit
separately. Our inferred models for deep population history were consistent with the observed SFS for all three mutation
classes (Figure 2B, C, and Figure S1, Table S1). The estimated 95% confidence intervals for the parameters overlapped across
the three sets of SNPs (Figure 2C, Table S1). This consistency across annotations suggests that our inferred models are robust
to differences in selective effects (either direct or linked) between mutation classes. We also evaluated alternative models of
population size changes in the AME branch, but these models did not provide a better fit to the data (Figure S2). We found
that the inferred AME split time was consistent across all tested models, with values ranging from 31,000-33,000 years ago.

While previously reported models have either excluded the Indigenous American population®!” or one or more of the
other populations (European, African, and East Asian)’>!> due to methodological limitations, we reconstructed a broad-scale
demographic model for global human dispersal that includes the peopling of the Americas. By including all four populations
in our analysis, we were able to provide a model that better predicts allele frequencies in each of these groups.

Inferring admixture dynamics in Latin American populations

The recent history of Latin American populations involves multiple periods of immigration and extensive gene flow among
different Indigenous American, European, and African populations® '8, Population genetic methods that rely on the jSFS
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may not be appropriate for resolving such admixture dynamics, as they typically assume a straightforward admixture process
involving only a few ancestral populations and lack the necessary resolution to accurately infer the timing of admixture events
that occurred relatively recently. However, by analyzing the ancestry tract length distribution (i.e., the distribution of lengths of
continuous ancestry segments from each source population in admixed genomes), we inferred admixture models that include
up to four ancestral populations and complex migration events>*.

Using the distribution of ancestry tract lengths, we inferred admixture histories for four cohorts: Mexico (MXL), Puerto
Rico (PUR), Colombia (CLM), and Peru (PEL). To calculate the ancestry tract length distribution, we constructed a reference
panel of African, European, East Asian, and Indigenous American ancestries to perform local ancestry inference? (Figure 3A
and Methods). We treated each population independently, as admixture histories vary between regions in Latin America* 1416,
leading to diverse ancestry patterns (Figure 3B). In each population, we used tracts®* to test five admixture models including
three source populations: AFR, EUR, and AME (Figure S3 and Methods). These models allowed us to explore a variety of
admixture scenarios including single pulses of gene flow, multiple pulses, and continuous migration.

We used a Bayesian Information Criterion approach (BIC) to compare the fit of these models and select the best-fit model
(Figure 3C,D and Figure S4). For Colombia, the model selected based on the BIC did not correspond to known historical
events, as the initial admixture event was too recent (~ 10 generations ago). In this case, we used additional information about
known historical events to refine the model selection and chose a model that had a good fit to the data and parameters that
were more consistent with known history?®27. The models we selected (times of admixture events and ancestry proportions)
are consistent with previous studies where admixture histories in Latin America have been explored?®—".

Previous work has identified genetic connections between Mexico and Asia that originated during the Manila galleon
trade between the colonial Spanish Philippines and the Pacific port of Acapulco!®. We identified ~ 1% (0.5 — 1) EAS ancestry
among individuals in the MXL cohort using both ADMIXTURE and local ancestry inference. To incorporate a fourth source
ancestry, we added an East Asian component to our admixture model for Mexico. We adapted our best-fitting three-population
model to include an additional migration pulse from East Asia, occurring at the same time as the African pulse. This choice
was motivated by the historical timing of the Manila galleon trade, which coincided with the period of the African slave
trade®!-3%. Our estimates indicate that this pulse occurred 13 generations ago (Figure 3C,D), which is consistent with published
estimates!'>. We did not explore four-source population models for the other cohorts (CLM, PEL, and PUR), as we observed
lower levels of East Asian ancestry in these populations using ADMIXTURE and local ancestry inference (Figure 1).

Integrating Allele Frequencies and Ancestry Tracts: A Joint Modeling Approach for Demographic Recon-
struction in Latin America

We combined our inferences from allele frequencies (Figure 2) and ancestry tracts (Figure 3) to provide a comprehensive
model for the span of demographic history in Latin America (Figure 4A). Information from different inference engines (tracts
and moments) was integrated using demes>>, a standard format for demographic models in population genetics. In our com-
bined model, we made several assumptions to simplify the analysis and produce a more tractable model. We assumed that the
Latin American cohorts (MXL, CLM, PEL, and PUR) are independent of one another and have not experienced recent gene
flow between them. We also fixed the effective population sizes (V,) in admixed populations to a constant value of 20,000
that roughly reflects the present-day N, in Latin American populations®. We did not infer N, in these populations because the
ancestry tract distribution does not contain information about N,, and the admixture histories in Latin America are very recent
on an evolutionary time scale so that allele frequencies will not fluctuate significantly due to genetic drift.

To validate the accuracy of our joint demographic model, we used simulations to generate artificial datasets and compare
them to the observed data. We used the coalescent simulator msprime*3> to simulate samples for each population under the
reconstructed demography (Methods). We compared a Principal Component Analysis (PCA)between the simulated data and
observed genotypes on chromosome 22 (Figure 4B). The PCA of simulated individuals closely mirrors those in the observed
data (Figure S5), indicating that our model accurately captures broad-scale patterns of genetic diversity in Latin American
populations.

To compare to existing models for admixed Latin American populations, we also simulated data under the Browning et
al. (2018) model of American admixture® 8. Using the same simulation and PCA approach, we compared a PCA between
this model and real data, finding that our model (Figure 4B) more accurately recapitulates important axes of genetic diversity
in Latin American populations. In particular, our model reproduces the variation in Indigenous American ancestries among
individuals, as shown by the strong association between the principal component 3 (PC3) and Indigenous American ancestries.
In contrast, the Browning ef al. model has no association with Indigenous ancestries in PC3, as it uses East Asian ancestry as
a proxy for American ancestry.

Applying our demographic model to the simulation of functional variation under selection
To evaluate the ability of our inferred demographic model to explain patterns of genetic variation under selection, we conducted
forward-in-time simulations of non-coding (intergenic and intronic), synonymous, missense, and loss-of-function variants
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using the fivdpyl1 simulation engine’®3’. We assessed the ability of our demographic model, when combined with inferred
models of selection, to explain patterns of genetic variation in different functional categories of the genome.

Missense and loss-of-function (nonsense) mutations are often subject to negative selection because they can have signifi-
cant impacts on protein function. While non-coding and synonymous variants may be under direct selection due to changes in
regulatory elements and codon usage bias®®, respectively, here we assumed that they were neutral with respect to selection®-40,
To simulate selection on nonsynonymous mutations, we incorporated distributions of fitness effects (DFE) for the two classes
of nonsynonymous mutations*! (Figure S6A and Methods). We simulated a total of 350Mb of genomic data using our inferred
demographic model and spanning various regions of the human genome by sampling from existing recombination maps and
genomic annotations (Methods). Due to the computational burden of running forward-in-time simulations, we limited the
simulation to only one Latin American population (MXL) jointly with the other source populations (AFR, EUR, EAS, and
AME).

We evaluated how well our joint modeling approach matched data from selected mutation classes and assessed any biases
within putatively neutral classes due to linked selection. We found that the SFS from simulated data accurately reproduced
the SES from the data for both neutral and selected genetic variation (Figure SA and Figure S7). Specifically, the SFS fits well
for non-coding, synonymous, and missense variants, for which many variants are observed. While there are fewer observed
loss-of-function variants, leading to noisier estimates of the SFS, simulated data is largely unbiased across frequency bins
(Figure S7). In addition to analyzing the SFS within single populations, we calculated pairwise Fst between populations. We
observed that the simulated Fgt values accurately reproduced those from the observed data (Figure 5B). Together, this model-
ing approach was able to capture observed patterns of allele frequency variation within and between populations, supporting
the utility of our model as a tool for studying complex evolutionary processes in these cohorts through genetic simulations.

Discussion

Our study provides comprehensive demographic models for populations in Latin America inferred from high-coverage whole
genome data. These models allow us to examine population dynamics at different time scales, incorporating multiple epochs
of demographic history. By inferring a four-populations Out-of-Africa model for the deeper demographic history (Figure 2),
and using ancestry tract length distributions to infer the recent admixture history in four Latin American cohorts (Figure 3), we
were able to create a single model (Figure 4) that jointly captures both allele frequencies and the distribution of ancestry tract
lengths. Through extensive simulations, we demonstrated that this model accurately reflects the patterns of genetic diversity
present in Latin American populations (Figure 5).

Our inferred demographic models for populations in Latin America represents a significant advance in our ability to
accurately account for their evolutionary history in genomic studies. By capturing different aspects of population dynamics,
our model provides a powerful tool for studying Latin American populations and understanding the genetic basis of disease
in these underrepresented groups*>. Populations and individuals with recent genetic admixture are routinely excluded from
genomic studies due to concerns over population structure*®. This is due in part to the lack of methods and pipelines to
effectively account for shared ancestries and complex demographic histories**~4¢, which our study takes steps to address. Past
demographic history can also pose a significant challenge to detecting selection, as it can create patterns of genetic diversity
that mimic the signatures of selection*’*°. Detailed demographic models are important for controlling for such confounding,
allowing for more robust inference of recent selection in Latin American populations. Our models therefore provide a resource
for developing and testing methods and pipelines that are specifically tailored to studying admixed populations, improving the
accuracy and validity of results obtained from such studies.

Our results reveal a dynamic and multifaceted history. Of note, the inferred AME-EAS split time ranges from 31,000 to
33,000 years ago and is consistent across all tested models. This suggests that population structure between the ancestors
of Indigenous Americans and East Asians had formed by this time. This may support the idea of an early migration to the
Americas, predating the commonly used time frame of ~15,000 years ago, or reflect population structure in Siberia and
Beringia prior to the expansion into the Americas®”>!. Additionally, our results show that the ancestry proportions in Latin
American populations have changed over time, with evidence of continuous migration of European and Indigenous ancestries
in Mexico, Peru, and Colombia. Similar patterns of changes in ancestry proportions over time have been observed in other
admixed populations in the United States>>. This suggests that there may have been ongoing migrations from Europe to the
Americas, as well as migration within the Americas, such as the movement of people from rural to urban areas’>>*. This
highlights the importance of considering the heterogeneity of population histories and the historical and cultural interactions
of the Americas in understanding the demographic history of Latin American populations.

Our models provide valuable insights into the larger-scale demographic history of Latin American populations, but they
do not capture all aspects of population history. For example, the arrival of the Spanish in central Mexico led to a significant
decline in population size>, which can have a significant impact on genetic diversity but is not fully captured by our model.
With the increasing availability of larger datasets, it will be possible to study more detailed population structure and dynamics
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using the framework from this study. As we continue to increase the representation of Latin American genomic data, including
more whole genomes, we can expect to gain a deeper understanding of the complexity of Latin American population history
and to resolve historical processes at finer scales.

Methods

Whole genome data and quality control

We used two high-coverage whole genome datasets to investigate the demographic dynamics of Latin American populations.
The first dataset was the 1000 Genomes Project (1KGP)??, which provided 30x high-coverage genomic data from the NYGC
that was mapped to the GRCh38 reference genome. We selected reference samples for Africa (AFR), Europe (EUR), and
East Asia (EAS) from this data set, specifically we used 108 Yorubans in Ibadan Nigeria, 107 Iberians in Spain, and 103 Han
Chinese in Beijing, respectively. In addition to these reference samples, we also used data from admixed cohorts within the
1KGP, including 60 Mexicans in Los Angeles (MXL), 104 Puerto Ricans in Puerto Rico (PUR), 94 Colombians in Medellin
(CLM), and 85 Peruvians in Lima (PEL), to infer admixture history. The second data set was from the MX Biobank (MXB)
project>?? and included 50 high-coverage whole genomes from Indigenous American (AME) descendants in present day
Mexico.

To combine the data sets from the IKGP MXB projects, we used the CrossMap™° tool to liftover the MXB genomes from
the GRCh37 reference genome to the GRCh38 reference genome. Next, we applied two rounds of filters to remove variants
that were likely affected by genotyping error or batch effects. The first filter, applied to each source population (AFR, EUR,
EAS, and AME) separately, removed variants in Hardy-Weinberg diseqeuilibrium with a p-value of le-4. The second filter,
with a more strict Hardy-Weinberg p-value of 0.05, was applied with the purpose of removing potential batch effects. In this
case, we applied the second filter to the 50 MXB genomes combined with a set of 29 individuals from the 1KGP (2 MXL and
27 PEL) with the highest proportion of Indigenous American ancestries. In addition to these filters, we also removed variants
that were located in masked regions of the genome. After applying these filters, we obtained a combined data set that was
used for all downstream analyses in the study.

Admixture analysis

We used the software package ADMIXTURE v1.3°7 to estimate individual ancestry proportions based on genome-wide single
nucleotide polymorphism (SNP) data. We applied the following filters to the data: SNPs with a minor allele frequency below
0.05 and SNPs with a Hardy-Weinberg equilibrium test p-value below 0.001 were excluded. In addition, we filtered SNPs in
linkage disequilibrium with each other using a threshold of 7> = 0.1. We ran ADMIXTURE with default parameters, specifying
the number of ancestral populations (K) to range from 2 to 6.

Demographic inference from allele frequencies

To accurately infer the demographic model, we excluded variants located in CpG sites, which have been shown to have highly
variable mutation rates and could potentially bias the results®>°. To infer the demographic model, we calculated the folded
joint site frequency spectrum (jSFS) for intronic, intergenic, and synonymous variants. We classified the variants according
to its functional effect with VEP version 102%°. We down sampled to sample sizes of 40 individuals from each population,
resulting in a jSFS with four dimensions: one for each of the four populations (AFR, EUR, EAS, and AME).

To infer demographic parameters, we used moments as our inference engine due to its ability to handle inferences for
more than three populations using a diffusion approximation>>. We adopted a two-step approach to inferring the demographic
parameters. In the first step, we inferred a 3-populations out-of-Africa model (AFR, EUR, and EAS)”-?3, which included 14
parameters such as effective population sizes, split times, and migration rates. In the second step, we included the Indigenous
American population as branching out from the ancestors of the East Asian population and inferred three additional parameters:
the AME split time from EAS, the bottleneck size, and the population expansion rate (Figure 2A). We performed this same
inference for each class of putatively neutral jSFSs (intronic, intergenic, and synonymous). To account for uncertainty in the
parameters, we divided the genome into non-overlapping windows of 10Mb and calculated the jSFS and scaled mutation rates
for each window. We generated bootstrap replicates from these windows (n = 288) by sampling with replacement and used a
Godambe Information approach®! to estimate parameter uncertainties.

Estimation of mutation rates

To convert genetic to physical units (i.e., event times in generations, and effective instead of relative population sizes) we
required estimates of total mutation rates in retained genomic regions. To estimate this scaled mutation rate, pL, for non-
coding (intronic and intergenic) and coding (missense, synonymous, and loss of function) regions of the genome, we first
subset the genomic coordinates for these regions. For intergenic and intronic regions, we counted the occurrence of each
triplet context (excluding CpG contexts) and used the corresponding total mutation rates for each possible mutation for each
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triplet context, obtained from the gnomAD mutation model®®, to weight the counts. We then summed the weighted counts
for all triplets to estimate the scaled mutation rate for non-coding regions. For coding regions, we generated a file with
every possible mutation (biallelic SNPs) in the coding regions of the genome and used VEP version 102 tool to predict the
consequence of each variant®. For each consequence (synonymous, missense, or nonsense), we counted the occurrence of
each triplet and used the same approach as for non-coding regions to estimate the scaled mutation rate.

Local ancestry inference

To infer the ancestry of specific ancestry segments within the Latin American genomes, we utilized Gnomix?. In order to do
so, we first constructed a reference panel consisting of individuals with known African, European, and Indigenous American
ancestries. Particularly, we selected the Yoruba population (YRI=108) to represent African ancestries, the Iberian population
in Spain (IBS=107) and the British in England and Scotland (GBR=91) for European ancestries, and a combination of MXB
Indigenous American samples (n=50) with 30 1KGP individuals with high Indigenous American ancestries proportions from
Peru (PEL=28) and Mexico (MXL=2) for Indigenous American ancestries. In addition, we also generated a reference panel
including East-Asian ancestry, using the Han Chinese population (CHB=103) as a reference. We then trained two Gnomix
models using these two reference panels, using the default settings which are optimal for whole genome data and setting the
phase parameter to True, in order to re-phase the genomes using the predicted local ancestry. Finally, we used these models
to predict the local ancestry in each of the Latin American genomes.

Inference of admixture history
To infer the admixture history, we used the ancestry tract length distribution obtained from the Gnomix output, which we
collapsed into haploid ancestry tracts. We analyzed the admixture dynamics independently in each Latin American cohort
(MXL, PEL, CLM, and PUR). We evaluated five different admixture models with tracts®*: ppx_xxp, ppx_xxp_pxx, ccx_xxp,
ppx_ccx_xxp, and ppc. The order of each letter in these models corresponds to the order of the source ancestries (AMR, EUR,
and AFR), with an underscore indicating a distinct migration event. A "p" represents an ancestry pulse (e.g. xxp is a pulse
from AFR ancestry), "c" indicates continuous migration, and "x" indicates no input. We selected these models for analysis
because they cover a range of plausible admixture history scenarios and have been previously tested in similar cohorts?8-3%-62,
To account for the uncertainty in estimated parameters, we generated 100 bootstrap replicates of the ancestry tract distribu-
tion by randomly sampling individuals with replacement. For each replicate, we calculated the Bayesian Information Criterion
(BIC) to determine the best-fit model. The selected model for each population was based on the BIC as well as agreement
with historical evidence. In the case of Mexico, we used the ppx_ccx_xxp model as the best fit and added a pulse of Asian
ancestry occurring simultaneously with the African pulse. We optimized this model by exploring the parameter space to find
the best fit parameters (modeled as ppxx_ccxx_xxpp).

Combining tracts and moments inferences

We integrated our demographic inferences from allele frequencies and tracts into a unified model. To do so, we utilized
demes™® to combine the parameters. In order to account for variations in the generation time, we used a value of 29 years®3.
This enabled us to transform the parameters of the tracts (e.g. the timing of admixture events) from generations to years from

present.

Neutral simulations

To ensure the accuracy of our demographic model, we conducted coalescent simulations of neutral genetic sequence data. We
used msprime>*3 to implement the classical coalescent with recombination model (Hudsons algorithm) for the majority of
the simulation, and for the last 20 generations we employed the discrete-time Wright-Fisher model®*, which better accounts
for large sample sizes and genome lengths and provides more accurate patterns of identity-by-descent and ancestry tract
variation in admixed populations. To further verify the correctness of our model, we utilized multiple simulation engines
to compare to observed data, including msprime, fwdpyll, and moments. We utilized tskit for downstream analysis of the
simulated genomes.

PCA analysis

We performed a principal component analysis (PCA) on three datasets using the scikit-allel software®. The three datasets
were: (1) observed genotypes, (2) simulated genotypes generated by our model, and (3) simulated genotypes generated by the
Browning et al. model®. For the PCA analysis, we excluded all singleton variants. We also performed linkage disequilibrium
(LD) pruning by removing variants in high LD (2 > 0.1). The PCA analysis was conducted separately for each dataset.
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Forward-in-time simulations

We performed forward simulations using the software fiwdpylI version 0.18.3%%37. Our simulations incorporated our inferred
demographic model. To ensure the realism of our simulations, we divided the human genome (autosomes only) into windows
of 1Mb and randomly selected 350 of these regions for simulation. We then analyzed the functional annotation of each of these
regions, including intergenic, intronic, and coding sequences, and calculated the corresponding mutation rates. To accurately
capture the effects of recombination on evolutionary dynamics, we incorporated a human recombination map for GRCh38
obtained from https://github.com/odelaneau/shapeitd/tree/master/maps into our simulations®®. We
incorporated distributions of fitness effects (DFE) for missense and nonsense mutations, in which nonsense mutations were
inferred to be more strongly selected against*'. To do this, we employed a multiplicative model that allowed us to examine
the influence of selective pressures on the genetic diversity of our simulated populations (Figure S4). In comparing between
simulations and data, we aggregated data across the 1Mb regions of the genome that were simulated. The simulation was run
for 152,471 generations, corresponding to the recent history of the five modeled populations. Finally, we sampled individuals
from each of the five populations at the present time, with sample sizes matching those of our data.

Data availability

The 1KGP data®'-?? is publicly available and accessible without restriction. The 50 genomes from the MX-Biobank™ 2 project
are deposited in the European Genome-phenoms Archive (EGA) repository, accession number EGAD00001008354.

Demographic models

The inferred demographic models are provided as supplementary material and in the GitHub repo: https://github.
com/santiagol234/mxb-genomes.

The model files are in the demes>® format.

e Model 1 (m1-out-of-africa.yml). Four populations out of Africa.
* Model 2 (m2-Mexico-admixture.yml). Admixture in Mexico.

¢ Model 3 (m3-Colombia-admixture.yml). Admixture in Colombia.
* Model 4 (m4-Peru-admixture.yml) Admixture in Peru.

* Model 5 (m5-PuertoRico-admixture.yml). Admixture in Puerto Rico.

Model 6 (m6-All-admixture.yml). Admixture in Latin American populations, combined across models 2—6.

Code availability

Code for the software used in this paper is found at the following locations:

moments (https://bitbucket.org/simongravel /moments),

tracts (https://github.com/sgravel/tracts),

demes (https://github.com/popsim-consortium/demes—-python),

msprime (https://github.com/tskit-dev/msprime),

tskit (nttps://github.com/tskit—-dev/tskit),

fwdpyll (https://molpopgen.github.io/fwdpyll/),

and code used to process data, infer demographic models, run simulations, and generate visualizations is available at
https://github.com/santiagol234/mxb-genomes.
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Figure 1. Populations used for demographic reconstruction. (A) Map showing the approximate sampling locations and the
population names and codes. Numbers in parentheses denote the number of sampled genomes. Latin American populations
are marked with a purple cross. (B) We used ADMIXTURE (with K=4) to visualize ancestry proportions of source
populations and those from Latin America. The plot reveals substantial variation in ancestry proportions both across

populations and among individuals within populations.
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Figure 2. Inference of continental population history from allele frequencies. (A) Scheme of the inferred model. The width
of the tubes is proportional to the effective population size; fonts in italics show the name of the inferred parameters.
Abbreviations: Anatomically Modern Humans (AMH) and out-of-Africa (OOA). (B) Comparison between the folded
intronic SFS for the data (blue) and the model’s prediction (orange). Background lines (grey) show the model’s prediction in
the rest of the populations. (C) Comparison of estimated parameters with different sets of SNPs (synonymous, intergenic,
and intronic). The error bar denotes the bootstrap confidence intervals ( -2 standard deviations). The 95% confidence
intervals overlap between annotations for the vast majority of inferred parameters.

12/15


https://doi.org/10.1101/2023.03.06.531060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.06.531060; this version posted March 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NA19761 CLM MXL
S e oy oy
TS === ¥ N
Fmiim— i & e & \
T = £, £
Feer— T 0 "BURT o EURT
e — PEL PUR
R Oyl O,
- ncestr ‘A
=== AFR y %\ v %‘
EmE mEAS éb e QQT >
—r— EUR AN S A LS
S = AME o0 T e . T O
20 == 0 "EUR T O "EUR "1

CLM MXL PEL

-
o
>

-y
(@]
N

-—
e

Relative frequency O
(@]

A i\ - . A S A
0 100 200 0 100 200 O 100 200 O
Tract length (cM)

-
(]
o

D CLM MXL PEL PUR
PPX_CCX_XXp PPXX_CCXX_XXPP PPX_CCX_XXp ppc
’ 9ga ’ *13ga a 8ga o
ang—'——wbw.w—l—_t +?—L—+ Vv T Ty
= =1
0 T
D O
Qo a
c o0 —
< 5 14.1¢9a 0 15.9¢ga 014.6 ga 0 14.09a 0

Time (generations ago)

Figure 3. Inference of admixture history from the ancestry tract length distribution. (A) Karyogram with inferred local
ancestry tracts in a Mexican individual (MXL). (B) Ternary plot of ancestry fractions for African, European, and Indigenous
American ancestries inferred with ADMIXTURE. Points in purple correspond to the individuals from the population shown;
grey points, on the background, are the other populations. (C) Ancestry tract length distribution of data and best model’s
prediction. Plotted points show the aggregate tract length counts; lines show the maximum-likelihood best-fit tract length
distributions for the best model in each population; and shading shows one standard deviation confidence interval, assuming
a Poisson distribution of counts per bin. (D) Scheme of inferred admixture models. Top: pie charts sizes indicate an
approximate proportion of migrants in each generation, and the pie parts represent the fraction of migrants of each origin in a
given generation. Migrants are taken to have uniform continental ancestry. The dashed lines connecting the smaller circles
denote a continuous migration similar to the connecting circles. Bottom: the y-axis shows the expected fraction of ancestry
in the population at each point in time, and the x-axis represents generations ago, 15.9 ga corresponds to c: 1548, and 14 to c:
1604 (1 generation = 29 years).
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Figure 4. Model incorporating both time scales of population history, continental history and admixture dynamics. (A)
Visualization of the inferred demographic model. We combined the inferences from allele frequencies and ancestry tracts
into a single demographic model. The parameters in red correspond to the parameters estimated from ancestry tracts and the
parameters in black were inferred from allele frequencies. The admixed population, in purple, represents the Mexican
population (MXL). (B) PCA decomposition of genetic data. Left: data chromosome 22; middle: simulation using our
inferred model (panel A); right: simulation using the Browning ef al. model. For both models, we simulated a genome of
length 50Mb with msprime (Methods). In the data (bottom left) the Indigenous American similarity component is capture by
the PC3. This variation is capture in our inferred model (A), but is not present in the simulated genomes from the Browning
et al. model, which uses the East Asian population as a proxy for Indigenous American ancestry.
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Figure 5. Forward-in-time simulations of functional genetic variation. We simulated a total of 350 independent regions,
1Mb each, of the human genome by sampling coding annotations and inferred recombination rates (Methods). (A)

Comparison between the folded SFS for the data (blue) and the simulation (orange) in different functional categories,

summed across all regions. The SFS corresponds to the admixed Mexican population (MXL). Additional populations are
shown in Figure S7A. (B) Box-plot of pairwise Fgy values comparing data (n = 350) and simulation (n = 350). Missense and

loss-of-function mutations were combined into a single non-synonymous category.

15/15


https://doi.org/10.1101/2023.03.06.531060
http://creativecommons.org/licenses/by-nc-nd/4.0/

