

1 **Title: Discovery and characterization of non-canonical E2 conjugating enzymes**

2

3 **Short Title: UBE2Qs are non-canonical E2 conjugating enzymes**

4

5 Syed Arif Abdul Rehman¹, Elena Di Nisio¹², Chiara Cazzaniga¹, Odetta Antico¹, Axel Knebel¹,
6 Clare Johnson¹, Frederic Lamoliatte¹, Rodolfo Negri²³, Miratul Muqit MK¹, Virginia De Cesare^{1*}

7

8 ¹ MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dow Street, School of Life Sciences,
9 University of Dundee, Dundee DD1 5EH, Scotland, UK.

10

11 ² Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi 70 00185 Rome,
12 Italy

13

14 ³Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Rome, Italy

15

16 *Corresponding author: V.DC (v.decesare@dundee.ac.uk)

17

18 **Abstract**

19

20 E2 conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the
21 attachment of ubiquitin to a substrate. This process, termed ubiquitylation is fundamental for
22 maintaining cellular homeostasis and impacts almost all cellular process. By interacting with
23 multiple E3 ligases, E2s direct the ubiquitylation landscape within the cell. Since its discovery,
24 ubiquitylation has been regarded as a post-translational modification that specifically targets lysine
25 side chains (canonical ubiquitylation). We used MALDI-TOF Mass Spectrometry to discover and
26 characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine.

27 We employed protein modelling and prediction tools to identify the catalytic determinants that these
28 E2s use to interact with ubiquitin as well as their substrates. Our results join a stream of recent
29 literature that challenges the definition of ubiquitylation as an exquisitely lysine-specific
30 modification and provide crucial insights into the missing E2 element responsible for non-canonical
31 ubiquitylation.

32

33

34 **Teaser**

35 E2 conjugating enzymes (E2s) play a fundamental role in the attachment of ubiquitin to its
36 substrate. Most E2s can form an isopeptide bond between the ubiquitin C- terminus and a lysine
37 present on the substrate. We identified a family of E2s, UBE2Q1 and UBE2Q2, able to target amino
38 acids other than lysine. Currently nothing is known about their mechanism of action and what
39 substrates they are targeting, even though genetic ablation of UBE2Q1 produce substantial
40 infertility in mice. Here we answer the question about what the key residues beneath their peculiar
41 activity are. We discovered that UBE2Q1 target the lysine-free cytoplasmic domain of the Golgi
42 resident protein Beta-1,4-galactosyltransferase 1, providing an interesting precedent for the role of
43 non-canonical ubiquitylation in eukaryotic cells.

44 **Introduction**

45 Attachment of one or more ubiquitin molecules to a substrate requires the sequential activity of an
46 E1 activating enzyme, an E2 conjugating enzyme and an E3 ligase. This process, named
47 ubiquitylation (or ubiquitination) plays a major role in various pathways during cell life and death,
48 including but not limited to cell division and differentiation, response to environmental stress,
49 immune response, DNA repair, and apoptosis ¹⁻⁶. The human genome encodes around 40 E2s ⁷ and
50 more than 700 E3 ligases ^{8,9}. E3 ligases are divided into subfamilies depending on the presence of
51 either a RING (Really Interesting New Gene) or HECT (Homologous to the E6AP Carboxyl
52 Terminus) domain ¹⁰. RING E3 ligases represent the vast majority of known E3s ⁸ and they
53 represent essential activators that facilitate the direct transfer of ubiquitin from the E2s to the
54 substrate by decreasing the K_m and increases K_{cat} for both their substrates: Ub-loaded E2 and the
55 protein to be modified. Besides the activating role of the RING E3 ligases. E2 conjugating enzymes
56 possess the catalytic determinants that direct the transfer of ubiquitin to the substrate and govern
57 both the type of ubiquitin linkage and the extent of ubiquitin modification ^{11,12}. E2s that functionally

58 interact with RING E3 ligases have intrinsic reactivity toward lysine, the canonical ubiquitylation
59 target. However, other non-canonical, hydroxyl-containing amino acid and biomolecules, such as
60 serine, threonine, sugars, and the bacterial liposaccharide (LPS), have been found to be also targeted
61 via E3-mediated ubiquitylation¹³⁻²³ and by the ubiquitin-like protein urn1²⁴. The isopeptide bond
62 formed between the ubiquitin C-terminus and the amine present in the lysine side chain is very
63 stable over a range of temperature and pH. On the other hand, the ester bond formed between the
64 ubiquitin C-terminus and the hydroxyl group present in non-canonical targets is hydrolysed in mild
65 basic conditions and relative low temperatures. Because of the intrinsically labile nature of the ester
66 bond and the lack of high-resolution dedicated analytical tools, the identification of ubiquitin
67 conjugating enzymes able to target residues other than lysine remains challenging. Here we develop
68 a MALDI-TOF Mass Spectrometry based assay to systematically interrogate ubiquitin conjugating
69 enzymes for their ability to ubiquitylate lysine and other non-canonical residues. We identify a new
70 family of E2s (UBE2Qs) that ubiquitylates non-canonical residues such as serine, threonine but
71 also other biomolecules, including variously complex sugars. The UBE2Q family set themselves
72 apart from canonical E2s in several aspects, they do not possess the canonical Histidine-Proline-
73 Asparagine (HPN) catalytic triad that characterizes canonical E2s and have an extended N-
74 terminus. We used Alpha Fold²⁵ and COOT²⁶ software to generate a structural model and predict
75 the catalytic determinants which were validated by mutational and biochemical analyses. Because
76 E2 acts upstream of E3 in the ubiquitylation cascade and can interact with multiple RING E3 ligases
77²⁷, E2s have a larger range of substrates compared to the more specific E3 ligases. We therefore
78 anticipate that the discovery of new E2s with non-canonical activity will have profound and wide-
79 ranging impacts on the ubiquitylation landscape and, consequently, on biological processes.

80

81

82

83 **Materials and Methods**

84 **E1 Activating enzyme and E2s conjugating enzymes expression and purification**

85 Human recombinant 6His-tagged UBE1 was expressed in and purified from Sf21 cells using
86 standard protocols. Human E2s were all expressed as 6His-tagged fusion proteins in BL21 cells
87 and purified via their tags using standard protocols as previously described²⁸. Briefly, BL21 DE3
88 codon plus cells were transformed with the appropriate constructs (see Table1), colonies were
89 picked for overnight cultures, which were used to inoculate 6 x 1L LB medium supplemented with
90 antibiotics. The cells were grown in Infors incubators, whirling at 200 rpm until the OD600 reached
91 0.5 – 0.6 and then cooled to 16°C – 20°C. Protein expression was induced with typically 250 µM
92 IPTG and the cells were left over night at the latter temperature. The cells were collected by
93 centrifugation at 4200 rpm for 25min at 4°C in a Beckman J6 centrifuge using a 6 x 1 L bucket
94 rotor (4.2). The cells were resuspended in ice cold lysis buffer (50 mM Tris-HCl pH 7.5, 250 mM
95 NaCl, 25 mM imidazole, 0.1 mM EGTA, 0.1 mM EDTA, 0.2 % Triton X-100, 10 µg/ml Leupeptin,
96 1 mM PefaBloc (Roche), 1mM DTT) and sonicated. Insoluble material was removed by
97 centrifugation at 18500 xg for 25 min at 4°C. The supernatant was incubated for 1 h with Ni-NTA-
98 agarose (Expedeon), then washed five times with 10 volumes of the lysis buffer and then twice in
99 50 mM HEPES pH 7.5, 150 mM NaCl, 0.015% Brij35, 1 mM DTT. Elution was achieved by
100 incubation with the latter buffer containing 0.4M imidazole or by incubation with Tobacco Etch
101 Virus (TEV) protease (purified in house). The proteins were buffer exchanged into 50 mM HEPES
102 pH 7.5, 150 mM NaCl, 10% glycerol and 1 mM DTT and stored at -80°C.

103

104 **Screening of E2 conjugating enzymes activity by MALDI-TOF MS**

105 23 recombinant E2 conjugating enzymes (see Table 1) were expressed and adjusted to a
106 final concentration of 2 µM final into a mixture containing UBE1 (200 nM.), 2 mM
107 ATP, 20 mM MgCl₂, 2 mM TCEP and 1X phosphate buffer (PBS, pH 7.5). 5 µL of

108 enzymatic mixture was then dispensed using an electronic 16 multichannel pipet into a
109 Lowbind 384 Eppendorf plate. Stock solution of Acetyl-Lysine (Ac-K), Acetyl-Serine
110 (Ac-S), Ac-Threonine (Ac-T), glycerol and glucose were prepared at the final
111 concentration of 500 mM and pH adjust to ~7.5. 2 μ L of Ac-K, c-S, Ac-T, glycerol or
112 glucose were independently added to the enzymatic mixture. The reaction was started
113 by adding 5 μ L of ubiquitin (2 μ M) in 1X PBS. The assay plates were covered with a
114 self-adhesive aluminium foil and incubated at 30°C for the indicated time point(s) in an
115 Eppendorf ThermoMixer C (Eppendorf) equipped with a ThermoTop 288 and a
116 SmartBlockTM PCR 384. The reactions were stopped by adding 6% TFA supplemented
117 with ¹⁵N Ubiquitin (2 μ M). Samples were spotted on 1536 AnchorChip MALDI plate
118 using Mosquito nanoliter pipetting system (TTP Labtech) as previously reported ²⁸⁻³¹.
119 Detection by MALDI-TOF/MS was also performed similarly to previously described ²⁹
120 . Briefly, all samples were acquired on a Rapiflex MALDI TOF mass spectrometer
121 (Bruker Daltonics, Bremen, Germany) high resolution MALDI-TOF MS instrument
122 with Compass for flexSeries 2.0 equipped with FlexControl Version 4.0, Build 48 and
123 FlexAnalysis version 4.0, Build 14. Sample spectra were collected in automatic mode
124 using AutoXecute, Bruker Daltonics, Fuzzy Control parameters were switched off,
125 initial Laser Power set on “from Laser Attenuator” and accumulation parameters set to
126 4000 satisfactory shots in 500 shot steps. Movement parameters have been set on “Walk
127 on Spot”. Spectra were processed using FlexAnalysis software and the sophisticated
128 numerical annotation procedure (‘SNAP’) peak detection algorithm, setting the signal-
129 to-noise threshold at 5. Internal calibration was performed using the ¹⁵N ubiquitin peak
130 ([M+H]⁺ average = 8669.5). Mass corresponding to ubiquitin (Ub initial =
131 [M+H]⁺ average 8565.7), ubiquitin-adducts (Ub-K = [M+H]⁺ average 8735.7; Ub-T =
132 [M+H]⁺ average 8709.6 m/z; Ub-S = [M+H]⁺ average 8695.8; Ub-glycerol =

133 [M+H]⁺ average 8640.5 and Ub-Glucose = [M+H]⁺ average 8729.9) were added to
134 the Mass Control List. Spectra were manually checked to ensure accuracy in calibration
135 and peak integration. Peak areas were exported as .csv file using FlexAnalysis software
136 and filtered using the previously described in-house GRID script ²⁹. The percentage of
137 discharge was calculated using the following equation:

$$138 \frac{\left(\frac{\text{Ub Adduct peak area}}{15N \text{ Ub peak area}} \right) * [15N]}{[Ub \text{ initial}]} * 100\%$$

139

140 Recombinant expression of UBE2Q1 Wild type and mutants

141 Recombinant GST-fusion proteins were expressed in E. coli strain BL21 (DE3) cells. The cultures
142 were grown in 2xTY or LB media containing 100 µg/ml ampicillin to an OD600 of 0.6-0.8 with
143 400 µM IPTG and were further allowed to shake overnight at 16°C. Cells were harvested in the
144 following morning and were frozen and stored at -80. Cells were re-suspended in 50 mM Tris-HCl
145 pH 7.5, 300 mM NaCl, 10% glycerol, 0.075% 2-mercaptoethanol, 1 mM AEBSF, and lysed by
146 sonication. Bacterial lysates were clarified by centrifugation at 30,000 x g for 45 min and thereafter
147 incubated with Glutathione Sepharose 4B resin for 45 minutes on low-speed rollers at 4 °C. The
148 recombinant protein enriched resin was washed extensively first with a 50 mM Tris pH 7.5,
149 500 mM NaCl, and 10 mM DTT solution and then with the buffer containing physiological amount
150 of salt (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10% glycerol, and 1 mM DTT). The GST tag was
151 cleaved overnight on column incubation with 3C protease at 4°C. The purified proteins were
152 dialysed into PBS buffer (pH 7.5 and 0.5 mM TCEP). Protein amount was determined using
153 nanodrop while protein purity was established by SDS-page analysis. Proteins were flash frozen in
154 liquid nitrogen and stored at -80 °C.

155

156

157

158 **Construction UBE2Q1~Ub complex model**

159 To construct a UBE2Q1~Ub complex model we used UBE2D3~Ub available crystal
160 structures as a template (2QGX). The missing c-terminal residues in the crystal structure
161 of UBE2Q1 minimal catalytic domain were traced using alphafold. The complex was
162 finally obtained after several rounds of manual building in COOT further the model was
163 refined using the webserver³² to optimize the protein-protein interface.

164

165 **In vitro UBE2Q1 wild type or mutant autoubiquitylation assay**

166 The autoubiquitylation assay included E2 (2.5 μM), UBE1 (0.5 μM), ATP (2 mM),
167 MgCl₂ (2 mM) and PBS pH 7.5. The reaction was started by adding the UBE2Q 1 full
168 length or minimal catalytic domain and or UBE2Q1 mutants and incubating the mixture
169 at 30°C for 30 minutes. The reaction was stopped using 4XLDS buffer at the indicated
170 time point and further visualised using the SDS-PAGE. The images were captured using
171 Chemidoc.

172

173 **In vitro B4GalT1 peptide ubiquitylation assay**

174 The in vitro B4GalT1 peptide ubiquitylation assay were performed as described above
175 for autoubiquitylation assay with the addition of B4GalT1 peptide. The reaction
176 mixtures were incubated at 30 degrees for 1 hour. The reaction was stopped using
177 4XLDS buffer at the indicated time point and further visualised using the SDS-PAGE.
178 The images were captured using Chemidoc.

179

180 **Sourcing and analysis of E2 conjugating enzymes expression profiling in human tissues**

181 Raw data from “A Quantitative Proteome Map of the Human Body”³³ were
182 downloaded from Proteome Xchange (PXD016999)^{34,35} and searched against Uniprot

183 SwissProt Human containing isoforms (downloaded on 05 October 2021) using
184 MaxQuant (v2.0.3.1)³⁶. MS1 intensities per channel were estimated by weighting the
185 MS1 intensity with the TMT intensities. Protein copy numbers were estimated using the
186 proteomics ruler plugin ³⁷in Perseus (v2.0.3.0)³⁸. Data were further analysed and plotted
187 using Python (v3.9.0) and the packages Pandas (v1.3.3), Numpy (v1.19.0) and Plotly
188 (v5.8.2).

189

190 **Animals and Tissue processing for immunoblotting analysis**

191 The C57BL/6J mice were obtained from Charles River Laboratories (Kent-UK) and housed in a
192 specific pathogen-free facility in temperature-controlled rooms at 21°C, with 45 to 65% relative
193 humidity and 12-hour light/12-hour dark cycles with free access to food and water and regularly
194 monitored by the School of Life Science Animal Unit Staff. All animal studies were approved by
195 the University of Dundee Ethical Review Committee and performed under a U.K. Home Officer
196 project license. Experiments were conducted in accordance with the Animal Scientific Procedures
197 Act (1986) and with the Directive 2010/63/EU of the European Parliament and of the Council on
198 the protection of animals used for scientific purposes (2010, no. 63).

199 6-month-old C57BL/6J mice were killed by cervical dislocation and peripheral tissues were rapidly
200 washed in ice-cold phosphate-buffered saline (PBS) and snap frozen in liquid nitrogen.

201 Whole brain was dissected out from the skull, rapidly washed in ice-cold PBS and placed on an ice-
202 cooling plate under a stereomicroscope for brain sub-regions microdissection. Brain sub-regions,
203 such as olfactory bulbs, cortex, hippocampus, striatum, hypothalamus, thalamus, midbrain,
204 cerebellum, brainstem and spinal cord were dissected and collected in a single 1.5 ml
205 microcentrifuge tube and snap-frozen in liquid nitrogen. Tissue samples were stored at -80°C until
206 ready for processing. All tissues were weighed and homogenised in 5X volume for mg of tissue of
207 ice-cold lysis buffer containing: 50 mM Tris/HCl pH 7.5, 1 mM EDTA pH 8.0, 1 mM EGTA pH

208 8.0, 1% Triton X-100, 0.25 M sucrose, 1 mM sodium orthovanadate, 50 mM NaF, 10 mM sodium
209 glycerol phosphate, 10 mM sodium pyrophosphate, 200 mM 2-chloroacetamide, phosphatase
210 inhibitor cocktail 3 (Sigma- Aldrich) and complete protease inhibitor cocktail (Roche). Tissue
211 homogenization was performed using a probe sonicator at 4°C (Branson Instruments), with 10%
212 amplitude and 2 cycles sonication (10 seconds on, 10 seconds off). Crude lysates were incubated at
213 4°C for 30 min on ice, before clarification by centrifugation at 20,800 x g in an Eppendorf 5417R
214 centrifuge for 30 min at 4°C. Supernatants were collected and protein concentration was determined
215 using the Bradford kit (Pierce).

216
217 **Results**

218
219 **Discovery of new non-canonical E2 conjugating enzymes**
220
221 Because of the recent discovery of the unexpected ability of E3 ligases to ubiquitylate non-
222 canonical residues, we asked whether other enzyme within the ubiquitin cascade, particularly E2
223 conjugating enzymes, could also be intrinsically reactive toward non-canonical residues. We
224 therefore developed a MALDI-TOF MS based assay to detect the formation of ubiquitin adducts
225 resulting from E2 conjugating discharge activity of ubiquitin on different nucleophiles (Fig. 1a).

226 The E2 Discharge MALDI-TOF assay relies on detection of the ubiquitin adduct formed in presence
227 of a nucleophile on which the E2s will discharge ubiquitin (Fig. 1a and b). The ubiquitin adducts
228 can be directly detected as a consequence of E2 activity over time and absolute and relative
229 quantification is assessed through the use of an internal standard (¹⁵N ubiquitin) (Fig. 1b). A panel
230 of 23 recombinantly-expressed E2 conjugating enzymes (2.5 μM final, see Table 1) was tested for
231 their ability to discharge ubiquitin onto Ac-lysine (Ac-K), Ac-threonine (Ac-T), Ac-serine (Ac-S),
232 glycerol and glucose. Reactions were conducted at 30°C and incubated for 1 h in presence of the
233 indicated nucleophiles (50 mM final). E2s known to work with RING-type E3s have E3-
234 independent reactivity towards lysine. The majority of E2 conjugating enzymes discharged
235 ubiquitin in presence of Ac-lysine while no corresponding Ub-adduct was observed in presence of

236 either Ac-serine, Ac-threonine, glycerol or glucose (Fig. 1c). Consistent with previous literature,
237 the HECT specific E2 conjugating enzyme, UBE2L3, did not discharge on lysine ³⁹. Also, Ube2W
238 exhibits no intrinsic activity towards free lysine as previously reported ^{40,41} since this particular E2
239 specifically attaches ubiquitin to the N-terminal α -amino group of proteins ⁴². The UBE2J2
240 conjugating enzyme has been previously reported to be intrinsically reactive toward lysine but,
241 unexpectedly, has also been found to be reactive toward serine ⁴³. In accordance with previous
242 studies ⁴³, our data show that UBE2J2 is able to ubiquitylate glycerol, glucose, serine and lysine
243 but – interestingly - not threonine, indicating that a hydroxyl group alone was not sufficient to
244 confer UBE2J2 reactivity toward its substrate. Strikingly, two E2s, UBE2Q1 and UBE2Q2, were
245 able to conjugate ubiquitin to serine, threonine, glycerol and glucose residues but showed relatively
246 low reactivity toward lysine residues (Fig. 1c). Interestingly, while both UBE2Q1 and UBE2J2
247 were able to ubiquitylate the more complex sugar maltoheptaose (See Sup. Fig.1a and b), UBE2Q1
248 did so more efficiently than UBE2J2 (See Sup. Fig.1c). To further confirm and characterize the
249 ability of UBE2D3, UBE2J2, UBE2Q1 and UBE2Q2 to ubiquitylate hydroxylated substrates, we
250 tested them for discharge activity over time (Fig. 1d). UBE2D3 showed lysine-specific discharge
251 throughout the time course experiment. UBE2Q1 showed discharge activity on all three
252 nucleophiles but with an higher activity rate toward Ac-T compared to Ac-S and Ac-K, while
253 UBE2Q2 showed similar reactivity toward Ac-S and Ac-T and reduced discharge on Ac-K.
254 UBE2J2 actively discharged on both lysine and serine residues with similar rates while it showed
255 no discharge on threonine throughout the time course experiment.

256

257 **UBE2Q1 auto ubiquitylates on non-lysine residues**

258

259 UBE2Q1 undergoes extensive auto ubiquitylation *in vitro* (Fig. 2a, lane 2). To test the chemical
260 nature of the bond that originated UBE2Q1 autoubiquitylation bands, the sample pH was either
261 reduced with Sodium Hydroxide (Fig. 2a, lane 3), treated with β -mercaptoethanol (β ME) to

262 specifically cleave thioester bond (Fig. 2a, lane 4) or with hydroxylamine to cleave both ester and
263 thioester bonds, (Fig. 2a, lane 5). The sensitivity of UBE2Q1 autoubiquitylation smear to mild
264 alkaline and hydroxylamine treatment but not thiol reduction with β -mercaptoethanol indicated that
265 such auto-modification results from the formation of ester rather than isopeptide or thioester bond.
266 Several UBE2Q1 autoubiquitylation bands also disappeared in presence of the deubiquitinating
267 enzyme (DUB) JOSD1, a member of the Machado-Josephin disease DUB family previously
268 reported to specifically cleave the ester bond linking ubiquitin to threonine substrate but unable to
269 hydrolyse the isopeptide bond linking ubiquitin to lysine⁴⁴ (Fig. 2a, lane 6). JOSD1 treatment was
270 coupled with β -mercaptoethanol reduction (Fig. 2a, lane 7): no difference was observed compared
271 to the JOSD1 treatment alone, further confirming that JOSD1 mediated cleavage is restricted to
272 ester-bond conjugated ubiquitin. USP2, a DUB able to cleave both ester and isopeptide bond,
273 removed all UBE2Q1 autoubiquitylation bands.

274
275 **UBE2Q1 directly ubiquitylates B4GALT1 cytoplasmic domain**
276

277 UBE2Q1 substrates are currently unknown, however UBE2Q1 was found to directly interact with
278 the cytoplasmic domain (CD) of the Golgi resident Beta-1,4-galactosyltransferase 1 (B4GALT1)
279⁴⁵. The B4GALT1 gene encodes two isoforms that differ for the length of the CD, a short segment
280 that encodes 24 amino acids at the protein N-termini. The full-length isoform includes the distal
281 component of the B4GALT1 CD domain (13 amino acids) while the short isoform encodes only its
282 proximal portion (11 amino acids). Strikingly, neither B4GALT1 shorter isoforms contain a lysine
283 residue, but both of them possess 3 serine and one cysteine. We hypothesized that UBE2Q1
284 ubiquitylates B4GALT1 CD on these non-canonical residues. Peptides belonging to the long
285 isoform (peptide 1), short isoform (peptide 2) and the full length B4GALT1 CD (peptide 3) were
286 synthesized and incubated with E1 activating enzyme, UBE2Q1 and ATP/MgCl₂. UBE2Q1
287 directly ubiquitylated both peptide 1 and 3 on a serine residue, demonstrated by the sensitivity to

288 hydroxylamine treatment but not to β - mercaptoethanol (Fig. 2c). The ubiquitylation of peptide 2
289 was instead mediated by thioester bond with the cysteine, as the sensitivity to β – mercaptoethanol
290 indicates.

291 UBE2Q1 and UBE2Q2 are characterized by an extended N-terminus, that includes a protein domain
292 (RWD) shared by RING finger-containing proteins, WD-repeat-containing proteins, and yeast
293 DEAD (DEXD)-like helicases ⁴⁶ (Fig. 2d). RWD domains have been suggested to be substrate
294 recognition domains for ubiquitin-conjugating enzymes ⁴⁷ but their specific function is currently
295 not completely understood. We speculated that the extended N-terminus of UBE2Q1 might play a
296 role in the interaction and the recognition of the B4GALT1 CD. We therefore tested a UBE2Q1
297 construct - containing only the UBC fold domain (UBE2Q1 UBC domain) - for its ability to directly
298 ubiquitylate the B4GALT1 CD. UBE2Q1 UBC domain was still efficiently ubiquitylating the
299 B4GALT1 CD on serine residues therefore suggesting that this domain is sufficient to recognize
300 the B4GALT1 CD sequence *in vitro* in absence of its N-terminus or a cognate E3 ligase (Fig. 2e).
301 Notably, UBE2Q1 UBC domain did not undergo extensive autoubiquitylation (Fig. 2e), suggesting
302 that the autoubiquitylation events produced by full length enzyme are confined within its extended
303 N-terminus.

304
305 **UBE2Q1 uses a non-canonical catalytic triad for substrate ubiquitylation**
306

307 Canonical E2s are characterized by a conserved Histidine Proline/Cysteine- Asparagine (HP/CN)
308 motif in the active site ⁴⁸. Notably, the UBE2Q family and UBE2J2 lack these conserved catalytic
309 residues that are fundamental for the reactivity toward lysine and the formation of the isopeptide
310 bonds ⁴⁹ (Sup. Fig. 2). We therefore asked which residues within UBE2Q1 active site played a role
311 for the activity of this class of enzymes.

312 To understand the underlying mechanism allowing UBE2Q1 to both interact with and discharge
313 ubiquitin onto the substrate, we constructed an UBE2Q1-Ub model using as a scaffold template the

314 available structure of UBE2D3 – a canonical E2 conjugating enzyme – loaded with ubiquitin
315 (UBE2D3~Ub) and used Alpha fold and the COOT for modelling the UBE2Q1-ubiquitin
316 interaction. The structural comparison with the UBE2D3~Ub complex highlighted a substantially
317 different mode of interaction between ubiquitin C-terminus and the respective E2s. In the
318 UBE2D3~Ub complex, the thioester bonded ubiquitin barely interacts with the residues in the
319 proximity of the catalytic cysteine, unlike in the UBE2Q1~Ub modelled complex where the C-
320 terminal of the ubiquitin is deeply buried within the UBE2Q1 active site (Fig 3 a). A closer view
321 of the UBE2Q1~Ub modelled complex revealed that the interactions between the UBE2Q1 and the
322 ubiquitin consist mainly of hydrogen bonds and hydrophobic interactions. Residues present at the
323 interface between ubiquitin and the UBE2Q1 UBC fold (Fig. 3a and Sup. Fig. 3) and C-terminus
324 were systematically mutated and tested for their ability to impact either the ubiquitin loading
325 (loading-defective mutants) or the ubiquitin discharge onto B4GALT1 (discharge-defective
326 mutants). All mutants (Fig. 3 b-d and Sup. Fig 3 a-c) were tested by MALDI-TOF discharge assay
327 and ubiquitylation of B4GALT1 peptide 1 (Fig. 3 c and d). Three residues, Y343, H409 and W414
328 were identified as critical for the ability of UBE2Q1 to discharge on both canonical and non-
329 canonical residues while leaving unaffected the ubiquitin loading step (Fig. 3d). Swapping histidine
330 409 with asparagine did not rescue UBE2Q1 enzymatic activity, therefore suggesting that histidine
331 mediates essential hydrophobic interaction and/or necessary hydrogen bonds with the substrate.
332 Similarly, mutating W414 with either phenylalanine or with glutamine did not rescue UBE2Q1
333 activity, thus highlighting the specific role that tryptophan 414 plays either in promoting the
334 catalysis of the ester bond and/or in the recognition and binding of the substrate. These results
335 indicate that UBE2Q1 uses an alternative catalytic triad, comprised of a non-sequential YHW motif
336 (See Sup. Fig. 2), to recognize non-canonical substrates and to drive the formation of ester bonds.

337
338 **UBE2Q1 prefers threonine over serine**
339

340 The initial MALDI-TOF E2 discharge assay time course dataset (Fig. 1d) was suggestive of an
341 underlying preference of UBE2Q1 toward threonine rather than serine or – even more markedly -
342 lysine. The B4GALT1 CD is highly evolutionary conserved in mammals. Serine 11 and 18 are
343 retained or conservatively mutated in all the analysed mammalian sequences, while serine 9 is
344 present only in primates (Fig. 4a). To test the preference of UBE2Q1 toward serine, threonine or
345 lysine, the two serines present within B4GALT1 peptide 1 were systematically mutated into
346 threonine, lysine or alanine. Substituting serine 9 in peptide 1 with alanine reduced the amount of
347 ubiquitylation of the peptide by around 50%, suggesting that the ubiquitylation event is distributed
348 among serine 9 and 11. Mutating serine 9 into alanine and serine 11 lysine completely (and vice
349 versa) abolished peptide ubiquitylation, further confirming an intrinsic preference of UBE2Q1
350 toward residues with a hydroxyl group (see Fig. 4b). Interestingly, UBE2Q1 showed a marked
351 increase in the ubiquitylation band when serine 11 and serine 18 were mutated into threonine but
352 not when the S>T modification was inserted in position 9 of peptide 1 (See Fig. 4 b and c).
353 Remarkably, the substitution of serine 18 into threonine in peptide 2 led to a β – mercaptoethanol
354 resistant ubiquitylation band, suggesting that UBE2Q1 has a strong preference for threonine even
355 in the presence of the thiol scavenging cysteine residues. The result indicated that UBE2Q1 prefers
356 threonine over cysteine, over serine as substrate.

357
358 **UBE2Q1 is highly expressed in the brain**
359

360 While the role of UBE2J2 in ERAD has been characterized, the biological role(s) of the UBE2Qs
361 family is unclear. To determine whether UBE2Qs are tissue-specific or tissue-enriched we
362 interrogated a publicly available high quality proteomic dataset in which 32 human tissues were
363 analysed using quantitative proteomics³³. Interestingly, of about 40 E2s encoded in the human
364 genome, only 21 were expressed in sufficient quantities to be detected in the dataset (Fig. 5a).
365 UBE2Q1 and UBE2J1 were identified in all analysed tissues, while UBE2Q2 and UBE2J2 were
366 not detected, therefore suggesting that these E2 might be either relatively low abundant or expressed

367 in other tissues or under specific biological conditions. Interestingly, UBE2Q1 was found to be
368 relatively more expressed in brain and in testis (see Fig.5) suggesting a specific role in these tissues.
369 We developed an in house UBE2Q1 antibody to specifically detect and verify the expression of
370 UBE2Q1 in different cell lines and tissues. Sections of mice brain and other tissue (liver, spleen,
371 kidney and heart) were collected from 4 different mice and tested for UBE2Q1 expression levels.
372 Indeed, UBE2Q1 was found to be highly expressed in all brain regions; a lower expression was
373 observed in the spleen, liver and kidney while it was detected in the heart (Fig. 5c).

374
375 **Preference of serine and cysteine ubiquitylation over lysine by UBE2J2 is independent of**
376 **ligase interactions.**

377
378 To date, the intrinsic ability of the Ube2J2~Ub conjugate to react with serine or threonine has not
379 been directly demonstrated, so neither the structural nor chemical determinants for hydroxyl
380 attachment of ubiquitin have been identified. Both UBE2J2 and B4GALT1 are localized within
381 secretory pathway and are membrane bound. We therefore speculated that also UBE2J2 might also
382 ubiquitylate B4GALT1 CD.

383 Indeed, UBE2J2 efficiently ubiquitylated B4GALT1 peptide 1 (Fig. 6a lane 3); however, mutating
384 serine on position 9 to alanine substantially reduced the discharge of the ubiquitin onto the peptide
385 (Fig 6a Lane 4). On the other hand, serine mutation on position 11 to alanine showed decreased
386 ubiquitylation compared to the wild type, but discharge did not cease (Fig 6a lane 7). This
387 differential effect on the pattern of the ubiquitylation highlights the specificity of the serine position
388 on the peptide. To test the preference of serine over lysine, we mutated both serines at position 9
389 and 11 to lysine within B4GALT1 peptide 1 and observed little or no ubiquitylation (Fig 6a lanes
390 5 and 8). Replacing both serines with threonine in either position did not rescue the pattern of
391 ubiquitylation, as observed in peptide 1 (Fig 6a lanes 6 and 9). Thus, showing that serine is preferred
392 not only over lysine but over threonine as well. Interestingly, peptide 2 – the cysteine containing

393 portion of B4GALT1 CD – was strongly ubiquitylated by UBE2J2 (Fig. 6a lanes 10-13). The nature
394 of peptide 2 ubiquitylation was thioester based as demonstrated by the sensitivity of these adducts
395 to β -mercaptoethanol treatment (Sup. Fig 4a lanes 10-13). Also, the appearance of UBE2J2
396 autoubiquitylation bands that are sensitive to β -mercaptoethanol (by comparing Fig. 6a with Sup.
397 Fig. 4a) indicates an intrinsic reactivity of UBE2J2 toward cysteine residues. Overall, these results
398 suggest that UBE2J2 strongly favors cysteine over serine, while no lysine ubiquitylation is detected
399 within the B4GALT1 CD.

400 Interestingly, since all these discharge assays were done in the absence of an E3 ligase, this further
401 established that the ability to discriminate between residue side chains is independent of any E3
402 ligase.

403 **Residues in the vicinity of catalytic cysteine are critical for ubiquitin discharge**
404

405 To characterise the molecular interactions that govern the assembly of the UBE2J2~ub complex in
406 the absence of any crystal structure, we built an UBE2J2~ub model using the alpha fold and COOT.
407 Unlike UBE2Q1~Ub, the UBE2J2~Ub model shows multiple conformations possible for ubiquitin
408 bound to the catalytic cysteine (Fig. 6b). This flexible ubiquitin may have the potential to interact
409 with the residues in the vicinity of the catalytic cysteine. Interestingly, sequential residues
410 interacting with ubiquitin are found to be disordered in the UBE2J2 apo crystal structure reported
411 (PDB ID: 2F4W). This stretch is highly mobile and might attain ordered conformation when an
412 incoming ubiquitin forms a thioester bond with the catalytic cysteine (Sup. Fig. 5). The complex
413 after energy minimisation to remove short contacts was assessed to identify the critical residues
414 that may play a role in the discharge onto the substrate. Some of the sequential residues found
415 interacting with the C-terminal of the ubiquitin bound to the catalytic cysteine are D99, Y100,
416 H101, P102 and D103 from various conformations. The UBE2J2 also interacts through L129 with
417 the bound ubiquitin (Fig. 6b inset). To functionally validate the model, we mutated the highlighted
418 residues to alanine and observed the pattern of ubiquitylation discharge onto peptide 1. None of the

419 mutants showed significant ubiquitin loading defects, however they could no longer discharge
420 ubiquitin onto peptide 1 (Fig. 6c), which showed accurate prediction in the identification of residues
421 relevant for stabilization of the ubiquitin C-terminus and substrate ubiquitylation. We further
422 assessed these mutations for their ability to impact the discharge onto nucleophiles by MALDI-
423 TOF MS (Fig. 6d). Mutating F100 and H100 into alanine nearly completely abolished discharge on
424 hydroxyl group containing molecules - serine, glycerol and glucose but only partially reduced the
425 discharge on lysine, therefore suggesting that these are residues relevant for the catalysis of ester
426 bond. P102A showed a mixed phenotype, with about 50% reduction of the lysine-mediated
427 discharge and 70% and 85% reduction in the reactivity toward glycerol and glucose respectively.
428 On the other hand, the D99A mutant showed a 50-70% reduction in the formation of Ubiquitin-K
429 adducts. Notably, the UBE2J2 D99 residue aligns with the D87 residue in the canonical UBE2D3
430 E2 conjugating enzyme (See Sup. Fig. 6): this residue was previously identified for having a general
431 role in lysine reactivity³⁹. Overall, these results define UBE2J2 as an hybrid E2 conjugating
432 enzyme: similarly to canonical E2s, UBE2J2 possesses a sequential histidine and proline residues
433 that are highly conserved and structurally necessary in canonical E2s although dispensable for
434 isopeptide bond formation⁵⁰. However, UBE2J2 lacks the asparagine residue, previously deemed
435 essential in the isopeptide bond catalysis⁵⁰ while retaining a critical aspartic acid (D99) in line with
436 other – lysine specific - E2s³⁹. Despite sharing many similarities with canonical E2s, UBE2J2
437 possesses an intrinsic and E3 independent reactivity toward serine and cysteine that relies on
438 multiple sequential residues within the active site.

439
440 **Discussion**
441
442 E2 conjugating enzymes play an upstream role within the ubiquitylation cascade: while E3 ligases
443 confer substrate specificity, E2s dictate the catalytic activity that leads to the attachment of ubiquitin
444 to the substrate. By interacting with multiple RING E3 ligases, E2s have the potential to tag a wide

445 range of substrates with ubiquitin. The majority of E2s have been reported to possess intrinsic
446 reactivity toward lysine, this being assessed through SDS-page based assays that rely on the
447 visualization of bands corresponding to the E2 enzyme loaded with ubiquitin and its disappearance
448 in presence of high concentration of a nucleophile. While extensively used, the SDS-page based
449 assay presents some limitations related to its intrinsic low resolution, including the impossibility to
450 resolve adducts formed with commonly used buffer reagents such as glycerol or sucrose – and the
451 impossibility to discriminate between bands that correspond to the E2 being loaded with ubiquitin
452 or autoubiquitylation events. In 2018, we develop a MALDI-TOF MS-based assay that allows the
453 direct quantification of E2 and E3 activities based on the disappearance of free ubiquitin in presence
454 of productive E2/E3 pairs ²⁸. The use of MALDI-TOF mass spectrometry allowed for the detection
455 of unexpected ubiquitin – glycerol adduct as results of the UBE2Q1 and UBE2Q2 non-canonical
456 activity. UBE2Q1 and UBE2Q2 were subsequently found to actively discharge onto several
457 hydroxyl containing molecules, which sets them apart from canonical E2s.

458

459 UBE2J1 and UBE2J2 were previously identified and named as Non-Canonical Ubiquitin-
460 Conjugating Enzyme – NCUBE1 and NCUB2 because of the lack of the sequential Histidine-
461 Proline-Asparagine (HPN) motif, that is highly conserved in mostly known and canonical E2s ^{48,49}.
462 The function of the HPN motif is thought to be both structural and functional: histidine and proline
463 are structurally important in forming the E2 active site⁵⁰, while the asparagine residue is important
464 for mediating the catalysis of an isopeptide bond between ubiquitin and a substrate lysine ⁵⁰. Besides
465 the HPN triad, two aspartic acid residues were also identified as relevant for their hydrogen-bond
466 based interaction with the conjugated ubiquitin ³⁹. Our structural motif scanning and functional
467 assay validation led to the identification of critical - non-sequential - residues in the UBE2Q1-Ub
468 model responsible for the stability of ubiquitin C-terminal tail and the catalysis of both ester and
469 isopeptide bonds.

470

471 Mutating UBE2Q1 Histidine 409 into alanine abolished the discharge activity onto all tested
472 nucleophiles, demonstrating that this residue is well conserved and necessary for catalysis of both
473 canonical and non-canonical substrates. We further identified two highly hydrophobic residues
474 within the UBE2Q1 catalytic site, tryptophan 414 and phenylalanine 343, that contribute to the
475 formation of a hydrophobic pocket essential for the interaction between the ubiquitin C-terminus
476 and the serine and threonine residues present in the substrate.

477 We also found that UBE2J2 possesses a rather peculiar catalytic triad, where histidine 101 is
478 essential for the formation of the ester bond while dispensable for the discharge on lysine and the
479 catalysis of isopeptide bond. Instead, UBE2J2 relies on an aspartic acid residue (D99), located
480 upstream of the Histidine-Proline sequence, to actively discharge on lysine residues. These results
481 indicate that UBE2J2 uses different catalytic residues to actively interact with different
482 nucleophiles. UBE2J2 catalytic site appears therefore to be an E2 “hybrid”, featuring residues
483 belonging to both canonical E2s - a Histidine and Proline sequential motif and a key catalytic
484 aspartic acid residue – and the ability to ubiquitylate lysine but also cysteine, serine and complex
485 sugars.

486 Besides their communality as non-canonical E2s, UBE2Qs and UBE2J2 have also several
487 dissimilarities. UBE2Q1 strongly prefers threonine vs serine, while UBE2J2 does not ubiquitylate
488 threonine at all. All E2s enzymes are intrinsically reactive toward thiols as requisite for accepting
489 the thioester-linked ubiquitin from the E1 activating enzyme. Nevertheless, UBE2J2 showed a
490 remarkable reactivity toward the cysteine-containing portion of B4GALT1 CD compared to
491 UBE2Q1. It might be argued that the *in vitro* scavenging activity of the cysteine residue within
492 peptide 2 does not translate into a genuine *in vivo* preference. However, UBE2J2 was also
493 previously reported as the E2 responsible for the ubiquitination of the MHC I intracytoplasmic tail
494 on a cysteine when paired to the viral RING E3 ligases MIR1 and MIR2^{20,22}. Moreover, UBE2J2

495 autoubiquitylation profile is supportive of an intrinsic preference of UBE2J2 toward cysteine, we
496 therefore propose that UBE2J2 is a cysteine and serine specific E2 conjugating enzyme.

497 Normally E2~Ub conjugates present themselves in a “open” conformation with low rates of
498 ubiquitin transfer in the absence of an E3 ligase to avoid cycles of conjugation and off-target
499 ubiquitylation. RING E3s bring the substrate and the E2~Ub conjugate together and stabilize the
500 E2~Ub conjugate in the active “closed” conformation required for lysine ubiquitylation⁵¹⁻⁵⁴. E2s
501 that abide by this model do not directly ubiquitylate a substrate in absence of their cognate E3. The
502 exception to this rule is represented by UBE2I/Ubc9, a sumo-specific E2 conjugating enzyme,
503 which, in the absence of E3, can directly sumoylate a target lysine embedded within a consensus
504 motif ψ KX(E/D) (ψ indicates a hydrophobic amino acid, whereas X indicates any amino acid)⁵⁵.
505 Similarly, both UBE2J2 and UBE2Q1 were found able to directly ubiquitylate the 24 amino acid
506 B4GALT1 cytoplasmic domain also in absence of a RING E3 ligase. In the case of UBE2Q1, the
507 E3-independent ubiquitylation was not mediated by the extended N-terminus, therefore suggesting
508 that some other interactions between the C-terminus ubiquitin and the UBE2Q1 catalytic domain
509 allow for the direct binding to the polypeptide. The reactivity of both UBE2Q1 and UBE2J2 toward
510 the B4GALT1 cytoplasmic domain suggest that these E2 adopt and intrinsically more reactive
511 conformation even in absence of a cognate E3 ligase or that their UBC domain is posed to recognize
512 a specific short sequence within their substrates.

513 Interestingly, ubiquitylation of a lysine-free, short cytoplasmic domain belonging to membrane
514 proteins is not uncommon. The cytoplasmic tail of T-cell receptor α , consisting of the residues
515 RLWSS, was previously found to be ubiquitylated by the combined action of UBE2J2 and HRD1²³. In this case, the exact position of the serines within the tail is not as important as is the nature of
516 the surrounding residues, where less hydrophobic residues enhance ubiquitylation on serine.
517 UBE2J2 was also found to ubiquitylate the cytoplasmic tail of the major histocompatibility complex
518 class I heavy chains by interacting with the γ -HV68 murine virus K3 ligase (mK3)⁴³. Similarly,

520 the viral protein VPU can ubiquitylate the cytoplasmic tail of CD4⁵⁶ and the cytoplasmic domain
521 of BST-2/Tetherin⁵⁷ on serine and threonine residues. All of these membrane proteins only have
522 few residues that are accessible for ubiquitylation. It might be speculated that non-canonical E2-
523 conjugating enzymes have evolved to target those short, lysineless sequences. UBE2Qs and
524 UBE2Js are not located on the same cellular compartment. UBE2J2 is bound to the membrane of
525 the endoplasmic reticulum, where it is required for ubiquitination of multiple ER-associated protein
526 degradation (ERAD) substrates⁴³. By contrast, UBE2Q1 is reported as located mainly in the
527 cytoplasm. The difference in cellular compartment location of these E2s might suggest that these
528 E2s affect different ubiquitylation substrates within different cellular compartments. The high
529 expression of UBE2Q1 in the brain correlates with its reported role in traumatic brain injury and
530 frontotemporal dementia^{58,59}. UBE2Q1 has also been found to have a pleiotropic effect on fertility
531 by playing a fundamental role during the implantation and development of embryos and subsequent
532 pregnancy viability⁶⁰. Indeed, UBE2Q1 -/- female mouse shows significantly reduced fertility
533 rates. We anticipate that the discovery of UBE2Q1 non-canonical activity will help to fully resolve
534 the molecular mechanisms that drive such dramatic phenotype.

535 Notably, a third member of the UB2Q family, UB2QL1, known to be important in the clearance of
536 damaged lysosomes⁶¹, was inactive in our *in vitro* assay. However, it is likely to possess the same
537 non-canonical activity of the other UB2Q1 family members. Similarly, UB2J1 was also found
538 inactive *in vitro*. This suggests that both enzymes might require the cellular environment, specific
539 co-factors or specific posttranslational modifications to function. In total, 5 out of about 39 E2
540 enzymes are likely to possess non-canonical activity. In summary, the growing number of ubiquitin
541 enzymes able to target amino acids other than lysine, particularly E2s, which act upstream of E3
542 ligases, suggest that there is a vast pool of potential substrates that might be subjected to non-
543 canonical ubiquitin regulation. Thus, non-canonical ubiquitylation might have more far-reaching
544 biological impacts than previously anticipated.

545

546 **References**

547

548 1 Damgaard, R. B. The ubiquitin system: from cell signalling to disease biology and new
549 therapeutic opportunities. *Cell Death Differ* **28**, 423-426, doi:10.1038/s41418-020-00703-
550 w (2021).

551 2 Alpi, A. F., Chaugule, V. & Walden, H. Mechanism and disease association of E2-
552 conjugating enzymes: lessons from UBE2T and UBE2L3. *Biochem J* **473**, 3401-3419,
553 doi:10.1042/BCJ20160028 (2016).

554 3 Dang, F., Nie, L. & Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. *Cell
555 Death Differ* **28**, 427-438, doi:10.1038/s41418-020-00648-0 (2021).

556 4 Hu, H. & Sun, S. C. Ubiquitin signaling in immune responses. *Cell Res* **26**, 457-483,
557 doi:10.1038/cr.2016.40 (2016).

558 5 Yu, J., Qin, B. & Lou, Z. Ubiquitin and ubiquitin-like molecules in DNA double strand break
559 repair. *Cell Biosci* **10**, 13, doi:10.1186/s13578-020-0380-1 (2020).

560 6 Roberts, J. Z., Crawford, N. & Longley, D. B. The role of Ubiquitination in Apoptosis and
561 Necroptosis. *Cell Death Differ* **29**, 272-284, doi:10.1038/s41418-021-00922-9 (2022).

562 7 Michelle, C., Vourc'h, P., Mignon, L. & Andres, C. R. What was the set of ubiquitin and
563 ubiquitin-like conjugating enzymes in the eukaryote common ancestor? *J Mol Evol* **68**,
564 616-628, doi:10.1007/s00239-009-9225-6 (2009).

565 8 Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. *Annu Rev Biochem* **78**,
566 399-434, doi:10.1146/annurev.biochem.78.101807.093809 (2009).

567 9 Metzger, M. B., Hristova, V. A. & Weissman, A. M. HECT and RING finger families of E3
568 ubiquitin ligases at a glance. *J Cell Sci* **125**, 531-537, doi:10.1242/jcs.091777 (2012).

569 10 Morreale, F. E. & Walden, H. Types of Ubiquitin Ligases. *Cell* **165**, 248-248 e241,
570 doi:10.1016/j.cell.2016.03.003 (2016).

571 11 Wenzel, D. M., Stoll, K. E. & Klevit, R. E. E2s: structurally economical and functionally
572 replete. *Biochem J* **433**, 31-42, doi:10.1042/BJ20100985 (2011).

573 12 Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. *Nat Rev Mol Cell Biol* **10**,
574 755-764, doi:10.1038/nrm2780 (2009).

575 13 Pao, K. C. *et al.* Activity-based E3 ligase profiling uncovers an E3 ligase with esterification
576 activity. *Nature* **556**, 381-385, doi:10.1038/s41586-018-0026-1 (2018).

577 14 Kelsall, I. R., Zhang, J., Knebel, A., Arthur, J. S. C. & Cohen, P. The E3 ligase HOIL-1
578 catalyses ester bond formation between ubiquitin and components of the Myddosome in
579 mammalian cells. *Proc Natl Acad Sci U S A* **116**, 13293-13298,
580 doi:10.1073/pnas.1905873116 (2019).

581 15 Pruneda, J. N. & Damgaard, R. B. Ester-linked ubiquitination by HOIL-1 controls immune
582 signalling by shaping the linear ubiquitin landscape. *FEBS J* **288**, 5903-5908,
583 doi:10.1111/febs.16118 (2021).

584 16 Petrova, T., Zhang, J., Nanda, S. K., Figueras-Vadillo, C. & Cohen, P. HOIL-1-catalysed,
585 ester-linked ubiquitylation restricts IL-18 signaling in cytotoxic T cells but promotes TLR
586 signalling in macrophages. *FEBS J* **288**, 5909-5924, doi:10.1111/febs.15896 (2021).

587 17 Kelsall, I. R. *et al.* HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides
588 and is required to prevent polyglucosan accumulation. *EMBO J* **41**, e109700,
589 doi:10.15252/embj.2021109700 (2022).

590 18 Otten, E. G. *et al.* Ubiquitylation of lipopolysaccharide by RNF213 during bacterial
591 infection. *Nature* **594**, 111-116, doi:10.1038/s41586-021-03566-4 (2021).

592 19 Zhu, K. *et al.* DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein
593 substrates. *Sci Adv* **8**, eadd4253, doi:10.1126/sciadv.add4253 (2022).

594 20 Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin
595 ligase. *Science* **309**, 127-130, doi:10.1126/science.1110340 (2005).

596 21 Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L. M. Ubiquitylation of an ERAD substrate
597 occurs on multiple types of amino acids. *Mol Cell* **40**, 917-926,
598 doi:10.1016/j.molcel.2010.11.033 (2010).

599 22 Cadwell, K. & Coscoy, L. The specificities of Kaposi's sarcoma-associated herpesvirus-
600 encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine
601 residues within the intracytoplasmic domains of their targets. *J Virol* **82**, 4184-4189,
602 doi:10.1128/JVI.02264-07 (2008).

603 23 Ishikura, S., Weissman, A. M. & Bonifacino, J. S. Serine residues in the cytosolic tail of the
604 T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-
605 associated degradation of the unassembled protein. *J Biol Chem* **285**, 23916-23924,
606 doi:10.1074/jbc.M110.127936 (2010).

607 24 Ravichandran, K. E. *et al.* E2/E3-independent ubiquitin-like protein conjugation by Urm1
608 is directly coupled to cysteine persulfidation. *EMBO J* **41**, e111318,
609 doi:10.1525/embj.2022111318 (2022).

610 25 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
611 583-589, doi:10.1038/s41586-021-03819-2 (2021).

612 26 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.
613 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).

614 27 Gundogdu, M. & Walden, H. Structural basis of generic versus specific E2-RING E3
615 interactions in protein ubiquitination. *Protein Sci* **28**, 1758-1770, doi:10.1002/pro.3690
616 (2019).

617 28 De Cesare, V. *et al.* The MALDI-TOF E2/E3 Ligase Assay as Universal Tool for Drug
618 Discovery in the Ubiquitin Pathway. *Cell Chem Biol* **25**, 1117-1127 e1114,
619 doi:10.1016/j.chembiol.2018.06.004 (2018).

620 29 De Cesare, V. *et al.* High-throughput matrix-assisted laser desorption/ionization time-of-
621 flight (MALDI-TOF) mass spectrometry-based deubiquitylating enzyme assay for drug
622 discovery. *Nat Protoc* **15**, 4034-4057, doi:10.1038/s41596-020-00405-0 (2020).

623 30 De Cesare, V. & Davies, P. High-Throughput MALDI-TOF Mass Spectrometry-Based
624 Deubiquitylating Enzyme Assay for Drug Discovery. *Methods Mol Biol* **2591**, 123-134,
625 doi:10.1007/978-1-0716-2803-4_8 (2023).

626 31 Traynor, R. *et al.* Elaboration of a MALDI-TOF Mass Spectrometry-based Assay of Parkin
627 Activity and High-Throughput screening platform for Parkin Activators. *bioRxiv*,
628 2022.2003.2004.482851, doi:10.1101/2022.03.04.482851 (2022).

629 32 Heo, L., Lee, H. & Seok, C. GalaxyRefineComplex: Refinement of protein-protein complex
630 model structures driven by interface repacking. *Sci Rep* **6**, 32153, doi:10.1038/srep32153
631 (2016).

632 33 Jiang, L. *et al.* A Quantitative Proteome Map of the Human Body. *Cell* **183**, 269-283 e219,
633 doi:10.1016/j.cell.2020.08.036 (2020).

634 34 Vizcaino, J. A. *et al.* ProteomeXchange provides globally coordinated proteomics data
635 submission and dissemination. *Nat Biotechnol* **32**, 223-226, doi:10.1038/nbt.2839 (2014).

636 35 Deutsch, E. W. *et al.* The ProteomeXchange consortium in 2020: enabling 'big data'
637 approaches in proteomics. *Nucleic Acids Res* **48**, D1145-D1152, doi:10.1093/nar/gkz984
638 (2020).

639 36 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
640 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol*
641 **26**, 1367-1372, doi:10.1038/nbt.1511 (2008).

642 37 Wisniewski, J. R. *et al.* Extensive quantitative remodeling of the proteome between
643 normal colon tissue and adenocarcinoma. *Mol Syst Biol* **8**, 611, doi:10.1038/msb.2012.44
644 (2012).

645 38 Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
646 (prote)omics data. *Nat Methods* **13**, 731-740, doi:10.1038/nmeth.3901 (2016).

647 39 Wenzel, D. M., Lissounov, A., Brzovic, P. S. & Klevit, R. E. UBCH7 reactivity profile reveals
648 parkin and HHARI to be RING/HECT hybrids. *Nature* **474**, 105-108,
649 doi:10.1038/nature09966 (2011).

650 40 Vittal, V. *et al.* Intrinsic disorder drives N-terminal ubiquitination by Ube2w. *Nat Chem
651 Biol* **11**, 83-89, doi:10.1038/nchembio.1700 (2015).

652 41 Scaglione, K. M. *et al.* The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N
653 terminus of substrates. *J Biol Chem* **288**, 18784-18788, doi:10.1074/jbc.C113.477596
654 (2013).

655 42 Tatham, M. H., Plechanova, A., Jaffray, E. G., Salmen, H. & Hay, R. T. Ube2W
656 conjugates ubiquitin to alpha-amino groups of protein N-termini. *Biochem J* **453**, 137-
657 145, doi:10.1042/BJ20130244 (2013).

658 43 Wang, X. *et al.* Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated
659 degradation substrates. *J Cell Biol* **187**, 655-668, doi:10.1083/jcb.200908036 (2009).

660 44 De Cesare, V. *et al.* Deubiquitinating enzyme amino acid profiling reveals a class of
661 ubiquitin esterases. *Proc Natl Acad Sci U S A* **118**, doi:10.1073/pnas.2006947118 (2021).

662 45 Wassler, M. J., Shur, B. D., Zhou, W. & Geng, Y. J. Characterization of a novel ubiquitin-
663 conjugating enzyme that regulates beta1,4-galactosyltransferase-1 in embryonic stem
664 cells. *Stem Cells* **26**, 2006-2018, doi:10.1634/stemcells.2007-1080 (2008).

665 46 Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. & Bork, P. Systematic identification of
666 novel protein domain families associated with nuclear functions. *Genome Res* **12**, 47-56,
667 doi:10.1101/gr.203201 (2002).

668 47 Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. *Nat Rev Mol Cell Biol* **6**,
669 610-621, doi:10.1038/nrm1701 (2005).

670 48 Cook, B. W. & Shaw, G. S. Architecture of the catalytic HPN motif is conserved in all E2
671 conjugating enzymes. *Biochem J* **445**, 167-174, doi:10.1042/bj20120504 (2012).

672 49 Lester, D., Farquharson, C., Russell, G. & Houston, B. Identification of a family of
673 noncanonical ubiquitin-conjugating enzymes structurally related to yeast UBC6. *Biochem
674 Biophys Res Commun* **269**, 474-480, doi:10.1006/bbrc.2000.2302 (2000).

675 50 Wu, P. Y. *et al.* A conserved catalytic residue in the ubiquitin-conjugating enzyme family.
676 *EMBO J* **22**, 5241-5250, doi:10.1093/emboj/cdg501 (2003).

677 51 Branigan, E., Carlos Penedo, J. & Hay, R. T. Ubiquitin transfer by a RING E3 ligase occurs
678 from a closed E2~ubiquitin conformation. *Nat Commun* **11**, 2846, doi:10.1038/s41467-
679 020-16666-y (2020).

680 52 Plechanova, A. *et al.* Mechanism of ubiquitylation by dimeric RING ligase RNF4. *Nat
681 Struct Mol Biol* **18**, 1052-1059, doi:10.1038/nsmb.2108 (2011).

682 53 Pruneda, J. N. *et al.* Structure of an E3:E2~Ub complex reveals an allosteric mechanism
683 shared among RING/U-box ligases. *Mol Cell* **47**, 933-942,
684 doi:10.1016/j.molcel.2012.07.001 (2012).

685 54 Plechanova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a
686 RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. *Nature* **489**, 115-120,
687 doi:10.1038/nature11376 (2012).

688 55 Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a
689 consensus modification motif and nuclear targeting. *J Biol Chem* **276**, 12654-12659,
690 doi:10.1074/jbc.M009476200 (2001).

691 56 Magadan, J. G. *et al.* Multilayered mechanism of CD4 downregulation by HIV-1 Vpu
692 involving distinct ER retention and ERAD targeting steps. *PLoS Pathog* **6**, e1000869,
693 doi:10.1371/journal.ppat.1000869 (2010).

694 57 Tokarev, A. A., Munguia, J. & Guatelli, J. C. Serine-threonine ubiquitination mediates
695 downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. *J*
696 *Virol* **85**, 51-63, doi:10.1128/JVI.01795-10 (2011).

697 58 Wan, C. *et al.* Downregulation of UBE2Q1 is associated with neuronal apoptosis in rat
698 brain cortex following traumatic brain injury. *J Neurosci Res* **92**, 1-12,
699 doi:10.1002/jnr.23305 (2014).

700 59 Serpente, M. *et al.* Profiling of ubiquitination pathway genes in peripheral cells from
701 patients with frontotemporal dementia due to C9ORF72 and GRN mutations. *Int J Mol Sci*
702 **16**, 1385-1394, doi:10.3390/ijms16011385 (2015).

703 60 Grzmil, P. *et al.* Embryo implantation failure and other reproductive defects in Ube2q1-
704 deficient female mice. *Reproduction* **145**, 45-56, doi:10.1530/REP-12-0054 (2013).

705 61 Koerver, L. *et al.* The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in
706 response to endolysosomal damage. *EMBO Rep* **20**, e48014,
707 doi:10.15252/embr.201948014 (2019).

709 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial Strains		
BL21(DE3) cells	New England Biolabs	Cat# C2527H
Chemicals, Peptides, and Recombinant Proteins		
Glutathione Sepharose 4B	Expedeon	Cat# AGSCUST
Ubiquitin	In house production	
Nucleophiles		
Deposited Data		
Software and Algorithms		
Prism	GraphPad	https://www.graphpad.com/scientific-software/prism/
COOT	Emsley et al., 2010	http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
PyMOL		https://pymol.org/2/
Adobe Illustrator		https://www.adobe.com/uk/products/illustrator.html

710

711 **cDNA constructs and proteins**

Protein	Expressed protein	Tag Cleaved	Vector type	Plasmid	DU number
UBE2Q1 ^{FL}	GST-	Yes	Bacterial	pGEX6P1	4213
UBE2Q1 ^{cat}	GST-UBE2Q1 220-422 (end) (WT)	Yes	Bacterial	pGEX6P1	23956
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 D220-G422 C351S	Yes	Bacterial	pGEX6P1	61423
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 Y343A D220-G422	Yes	Bacterial	pGEX6P1	73951
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 L345A D220-G422	Yes	Bacterial	pGEX6P1	73272
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 L405A D220-G422	Yes	Bacterial	pGEX6P1	73273
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 I408A D220-G422	Yes	Bacterial	pGEX6P1	73274
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 H409A D220-G422	Yes	Bacterial	pGEX6P1	73264
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 H409N D220-G422	Yes	Bacterial	pGEX6P1	73955
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 N412A D220-G422	Yes	Bacterial	pGEX6P1	73263
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 W414A D220-G422	Yes	Bacterial	pGEX6P1	73277
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 W414F D220-G422	Yes	Bacterial	pGEX6P1	73954
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 W414Q D220-G422	Yes	Bacterial	pGEX6P1	73975
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 Y415A D220-G422	Yes	Bacterial	pGEX6P1	73276
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 P417G D220-G422	Yes	Bacterial	pGEX6P1	73945
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 P417A D220-G422	Yes	Bacterial	pGEX6P1	73946
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 P418A D220-G422	Yes	Bacterial	pGEX6P1	73270
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 P418G D220-G422	Yes	Bacterial	pGEX6P1	73271
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 D421A D220-G422	Yes	Bacterial	pGEX6P1	73275
UBE2Q1 ^{cat}	GST-3C-UBE2Q1 D421L D220-G422	Yes	Bacterial	pGEX6P1	73952
UBE2J2	GST 3C UBE2J2 T11-T183	Yes	Bacterial	pGEX6P1	61848
UBE2J2	GST 3C UBE2J2 T11-T183 D99A	Yes	Bacterial	pGEX6P1	72870
UBE2J2	GST 3C UBE2J2 T11-T183 F100A	Yes	Bacterial	pGEX6P1	72894
UBE2J2	GST 3C UBE2J2 T11-T183 H101A	Yes	Bacterial	pGEX6P1	72871
UBE1	His-TEV-UBE1	Yes	Insect	pFastBac	32888
Ubiquitin 1-76	Ubiquitin (expressed tagless)	Tagless	Bacterial	pET24	20027

712

713 **RESOURCE AVAILABILITY**

714 **Lead contact**

715 Further information and requests for resources and reagents should be directed to and will be fulfilled by
716 the Lead Contact: Virginia De Cesare (v.decesare@dundee.ac.uk)

717 **Materials Availability**

718 Plasmids used in this study have been deposited with and will be distributed by MRC PPU reagents and
719 services (<https://mrcppureagents.dundee.ac.uk/>)

720 **Acknowledgments**

721 We thank Prof. Ron Hay, Prof. Satpal Virdee, Prof. Helen Walden and Prof. Dario Alessi for useful
722 discussions. We thank the Medical Research Council (MRC) Antibody Development team for their support
723 in raising anti-UBE2Q1 antibody. We thank the MRC PPU Reagents and Services Antibody Development
724 team (<https://mrcppureagents.dundee.ac.uk/>) for their support in raising anti-UBE2Q1 antibody. This work
725 was funded by UKRI (Grant Reference MR/V025759/1). We also acknowledge pharmaceutical companies
726 supporting the Division of Signal Transduction Therapy (Boehringer-Ingelheim, GlaxoSmithKline, and
727 Merck KGaA).

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

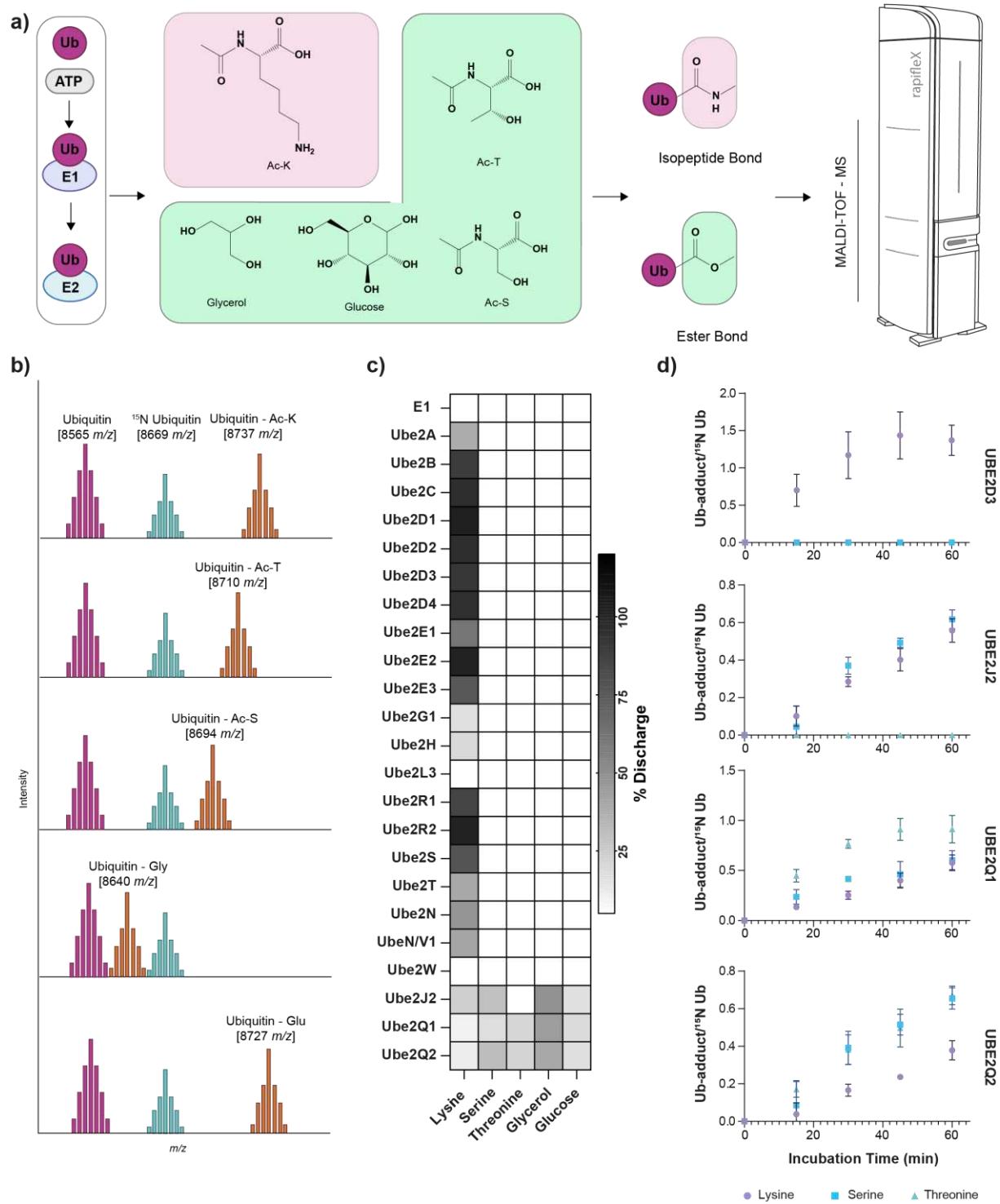
751

752

753

Tables and Figures

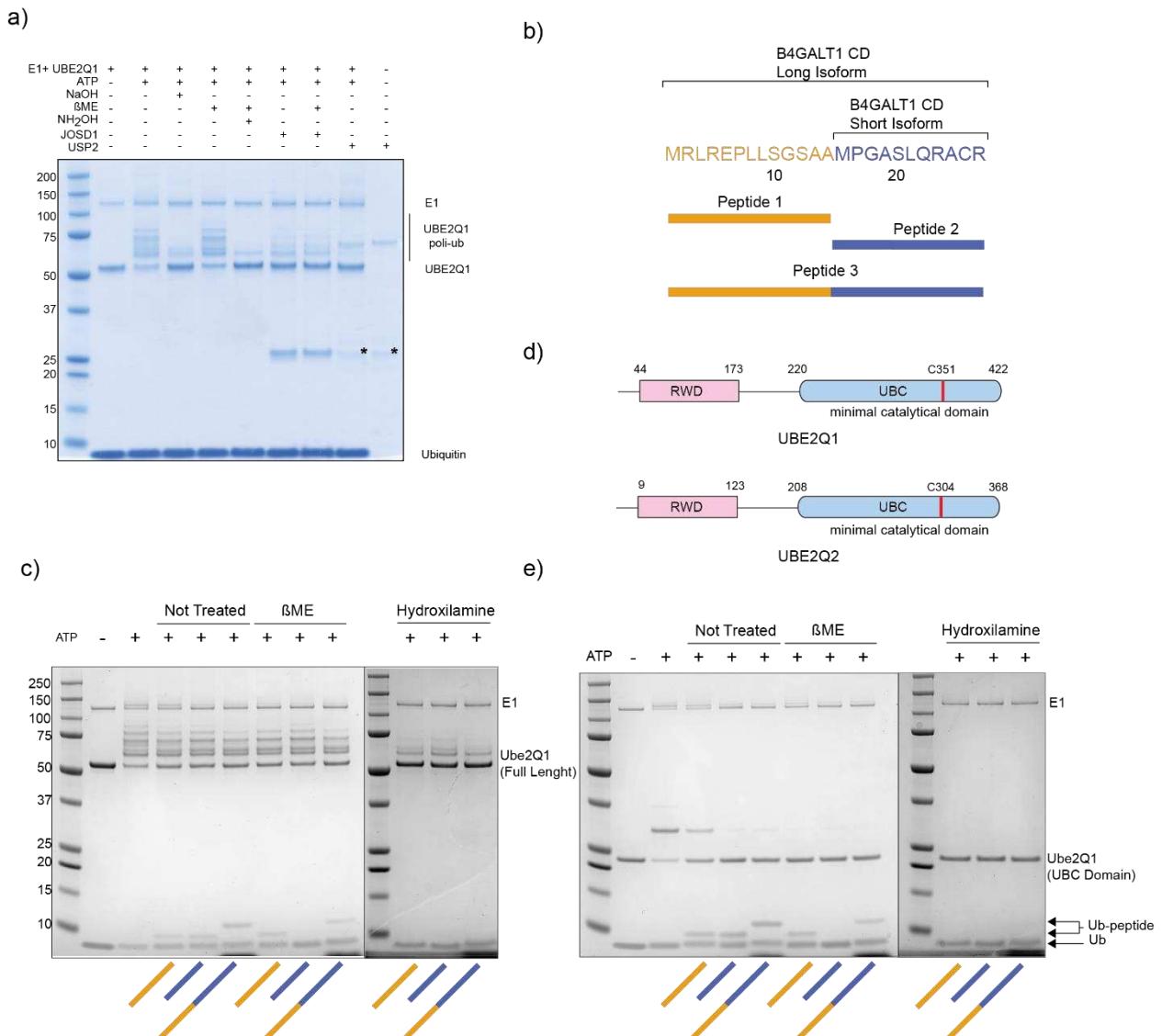
754


Table 1 E2 conjugating enzymes in use in this study.

755

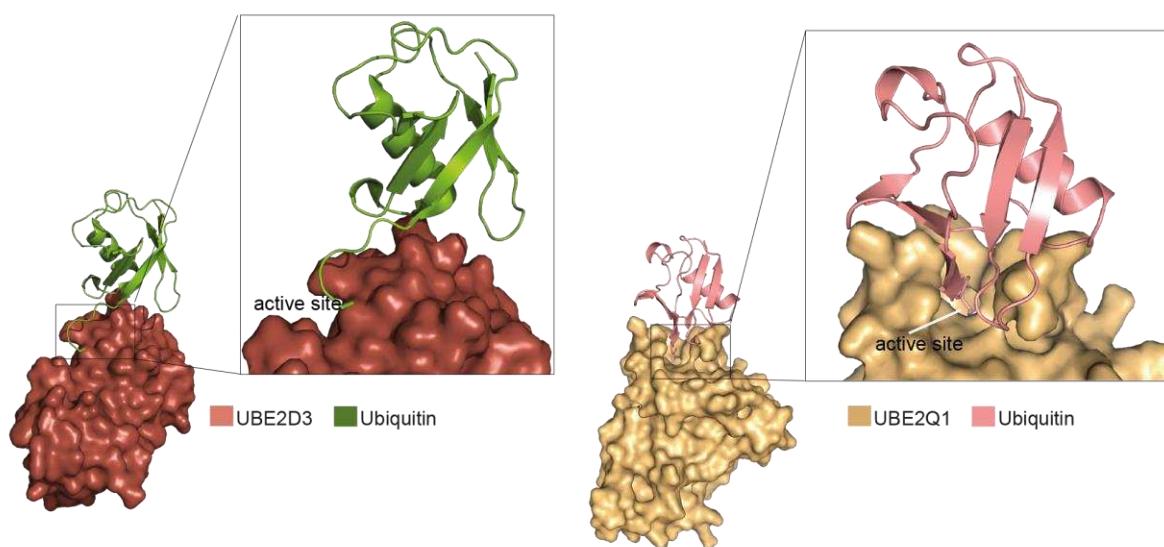
E2 Conjugating Enzyme	Name	Uniprot		Domain	Host/Source
		Accession Number	Tag		
1	UBE2A	P49459	His	2-152	bacteria
2	UBE2B	P63146	His	full length	bacteria
3	UBE2C	O00762	-	full length	bacteria
4	UBE2D1	P51668	-	full length	bacteria
5	UBE2D2	P62837	His	2-147	bacteria
6	UBE2D3	P61077	His	2-147	bacteria
7	UBE2D4	Q9Y2X8	-	full length	bacteria
8	UBE2E1	P51965	His	full length	bacteria
9	UBE2E2	Q96LR5	His	full length	bacteria
10	UBE2E3	Q969T4	His	full length	bacteria
11	UBE2G1	P62253	His	full length	bacteria
12	UBE2H	P62256	His	full length	bacteria
13	UBE2L3	P68036	-	full length	bacteria
14	UBE2R1	P49427	His	2 – 236	bacteria
15	UBE2R2	Q712K3	-	full length	bacteria
16	UBE2S	Q16763	His	full length	bacteria
17	UBE2T	Q9NPD8	His	full length	bacteria
18	UBE2N	P61088	His	full length	bacteria
19	UBE2V1	Q13404	His	full length	bacteria
20	UBE2W	Q96B02	His	full length	bacteria
21	UBE2Q1	Q7Z7E8	His	full length	bacteria
22	UBE2Q2	Q8WVN8	His	full length	bacteria
23	UBE2J2	Q8N2K1	-	full length	bacteria

756


Figure 1

757
758
759
760
761
762
763

Figure 1 | Schematic Representation of MALDI-TOF Discharge Assay. Ubiquitin enzymes (E1 and E2) are incubated with ATP/MgCl₂ solution and different nucleophiles. Samples are then analysed by MALDI-TOF MS. Relative quantification of E2 discharge activity is obtained by use of an internal standard (¹⁵N Ubiquitin) (panel b). 23 E2 conjugating enzymes were tested for their discharge ability (c). Canonical and Non-canonical discharge of UBE2D3, UBE2Q1, UBE2Q2 and UBE2J2 was further validated in a time course experiment (d)


Figure 2

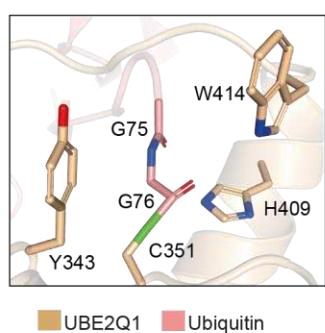
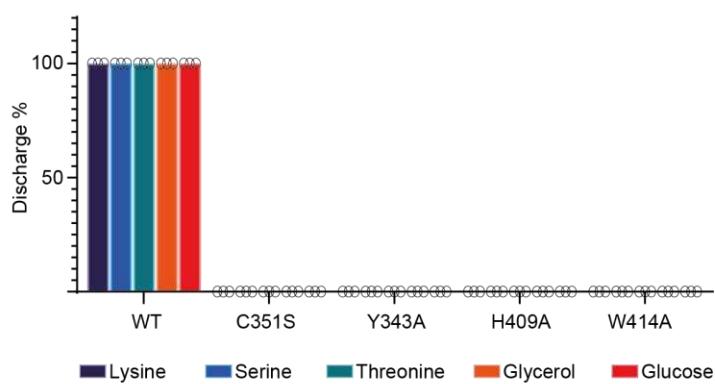
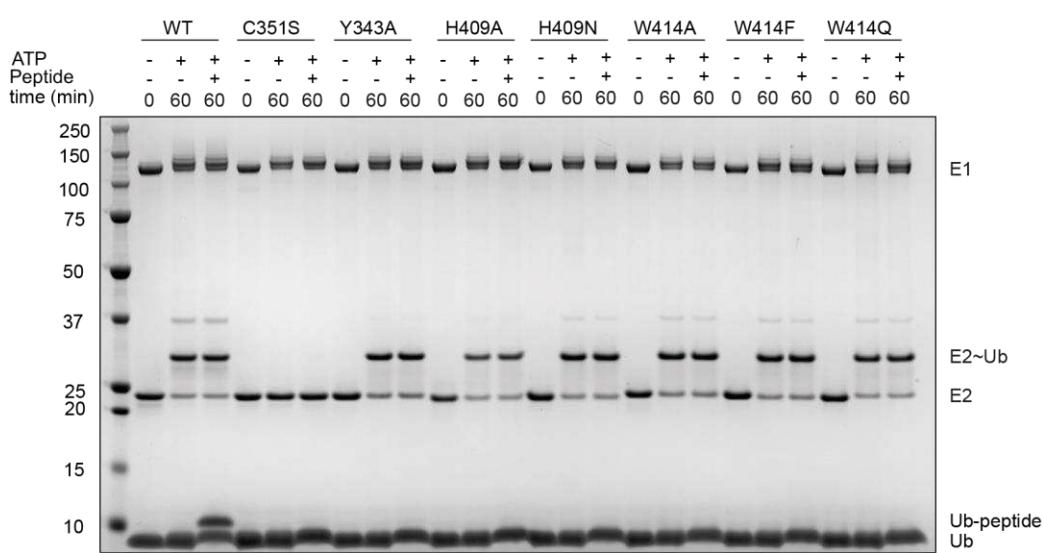

764
765
766 **Figure 2|** UBE2Q1 autoubiquitylation bands are sensitive to hydroxylamine and sodium Hydroxide
767 treatment (a). Schematic of B4GALT1 cytoplasmic domain and peptides synthesized in this study
768 (b). Full length UBE2Q1 directly ubiquitylates B4GALT1 on cysteine and serine residues (c).
769 UBE2Q1 and UBE2Q2 schematic representation (d). UBE2Q1 UBC-domain is sufficient to directly
770 ubiquitylate B4GALT1 domain.
771
772

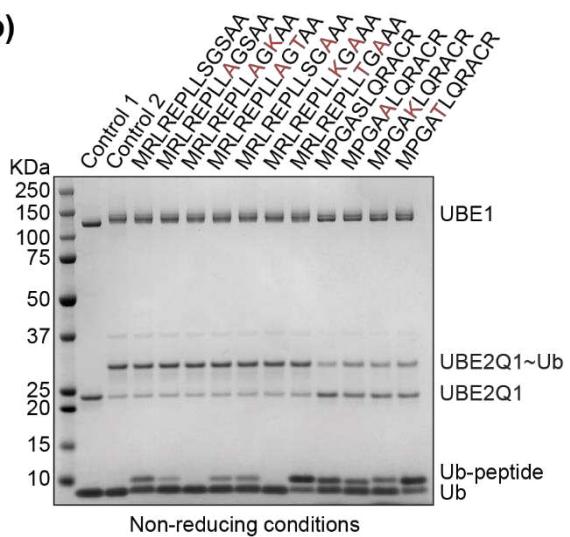
Figure 3


a)


b)

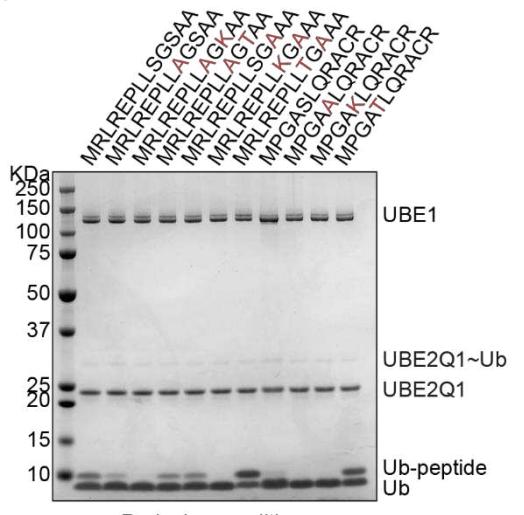
c)

d)


773
774 **Figure 3|** Identification of UBE2Q1 catalytic determinants. Alpha fold and COOT software were
775 used to model the interaction between UBE2Q1 and ubiquitin using the UBE2D3-Ub available
776 structure as reference (panel a). Model of Y343, W414 and H409 interacting with ubiquitin c-

777 terminus (b). Indicated UBE2Q1 mutants were tested for their ability to discharge on the indicated
 778 nucleophiles by MALDI-TOF MS (c) and for the ubiquitylation of B4GALT1 peptide 1 (d).
 Figure 4

a)

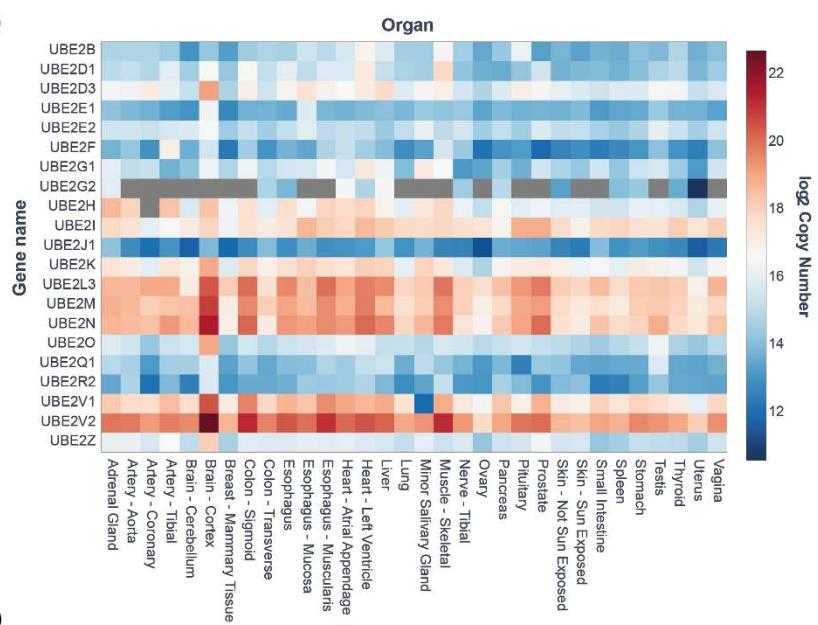

	★ ★	★
<i>H. sapiens</i>	1 MR LREP LL SGSAAMP GAS LQRACR 24	
<i>P. troglodytes</i>	1 MR LREP LL SGSAAMP GAS LQRACR 24	
<i>G. gorilla</i>	1 MR LREP LL SGSAAMP GAS LQRACR 24	
<i>P. pygmaeus</i>	1 MR LREP LL SGSAAMP GAS LQRACR 24	
<i>M. mulatta</i>	1 MR LREP LL SGSAAMP GAS LQRACR 24	
<i>L. africana</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>B. taurus</i>	1 MK FREP LL GGSAAMP GAS LQRACR 24	
<i>C. hircus</i>	1 MK FREP LL GGSAAMP GAS LQRACR 24	
<i>C. elaphus</i>	1 MKEREP LL GGSAAMP GAS LQRACR 24	
<i>E. caballus</i>	1 MKLRESLL GGSAAMP GAS LQRACR 24	
<i>P. tigris altaica</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>A. jubatus</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>H. hyaena</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>F. catus</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>A. melanoleuca</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>E. europaeus</i>	1 MR FREP LL GGSSAMP GAS LQRACR 24	
<i>B. musculus</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>D. delphis</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>A. forsteri</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>P. phocoena</i>	1 MR FREP LL GGSAAMP GAS LQRACR 24	
<i>R. rattus</i>	1 MR FREP FL GGSAAMP GAT LQRACR 24	
<i>M. musculus</i>	1 MR FREQ FL GGSAAMP GAT LQRACR 24	

b)

Non-reducing conditions

c)

Reducing conditions


779
 780 **Figure 4|** B4GALT1 Cytoplasmic Domain (CD) is highly conserved. Sequence alignment of
 781 B4GALT1 CD domain in mammals (a). Serine residues were systematically mutated into Alanine,

782
783

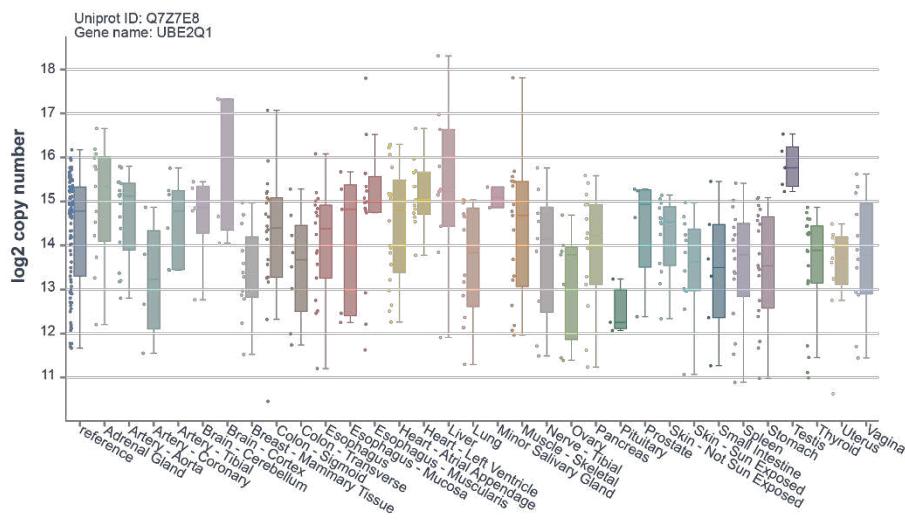
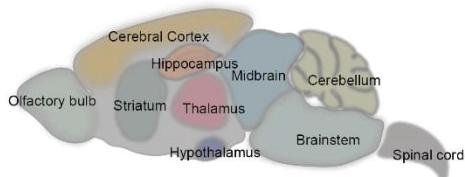
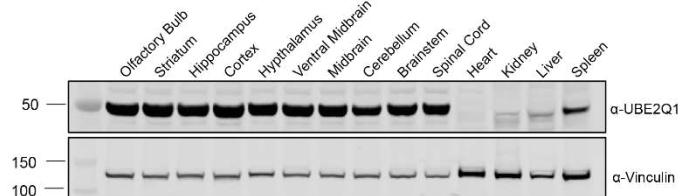
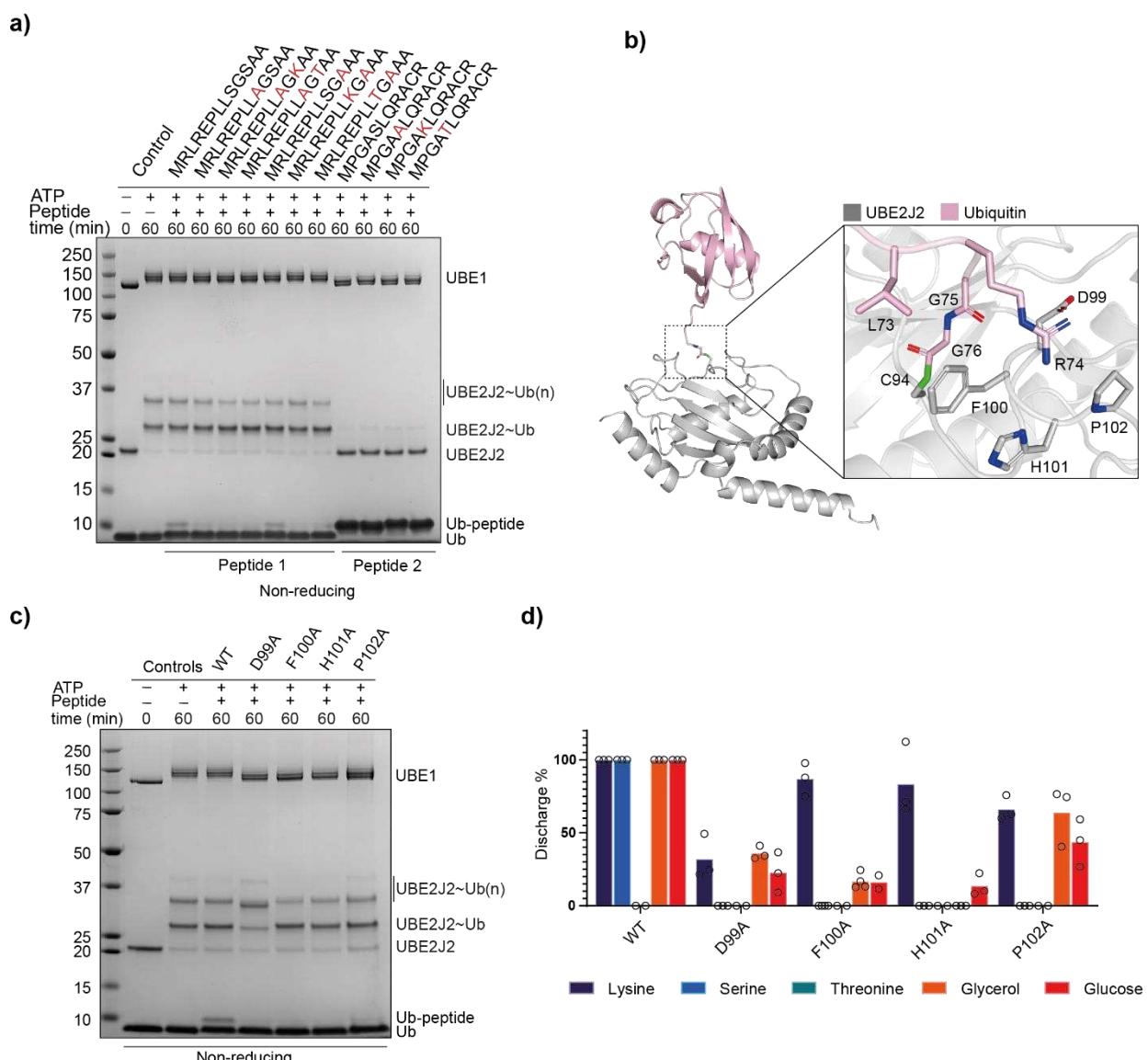

Lysine or Threonine and tested for UBE2Q1 mono-ubiquitylation in non-reducing (b) and reducing conditions (c).

Figure 5



a)

b)

c)

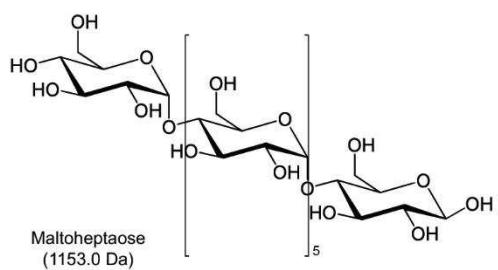


784
785
786

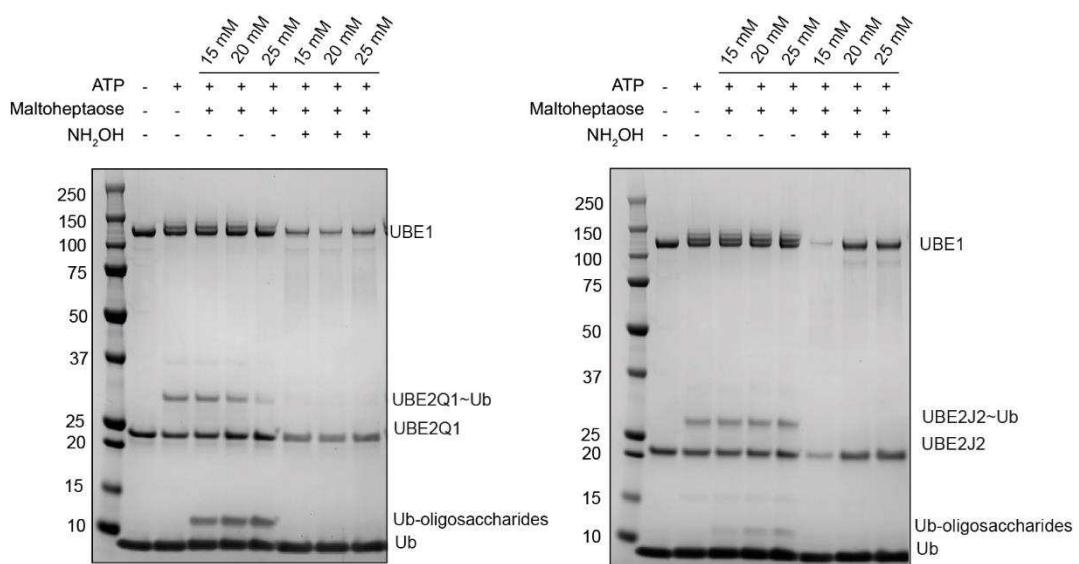
Figure 5 Relative expression of E2 conjugating enzymes in human and mouse tissues. E2 in vivo expression profiling obtained by data mining of publicly available quantitative proteomic dataset of

787 32 human tissues (a). Relative expression of UBE2Q1 in indicated human tissues (b). Western
 788 blot validation of UBE2Q1 expression in the indicated mouse tissues (c).
 789

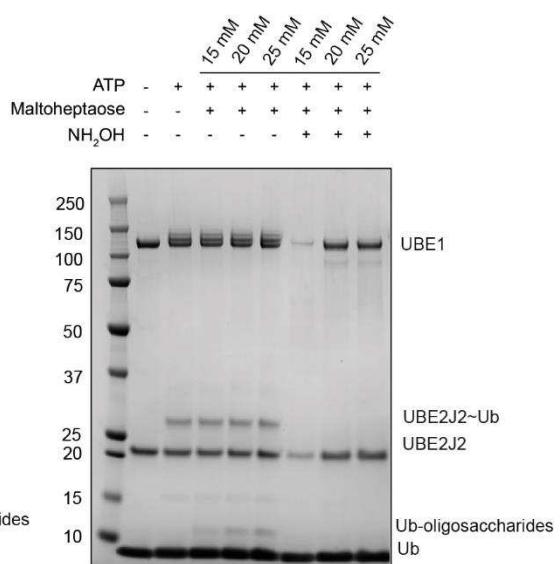
Figure 6


790
 791
Figure 6 Identification of UBE2J2 catalytic determinants. UBE2J2 ubiquitylates B4GALT1 CD on
 792 peptide 1 and peptide 2 (a). Predicted conformations of the interaction between UBE2J2 and
 793 ubiquitin (b). UBE2J2 active site and residues predicted to be relevant for enzymatic activity (c).
 794 UBE2J2 mutants tested for B4GALT1 CD peptide 1 ubiquitylation (d) and for discharge on the
 795 indicated nucleophiles by MALDI-TOF MS.
 796
 797
 798
 799

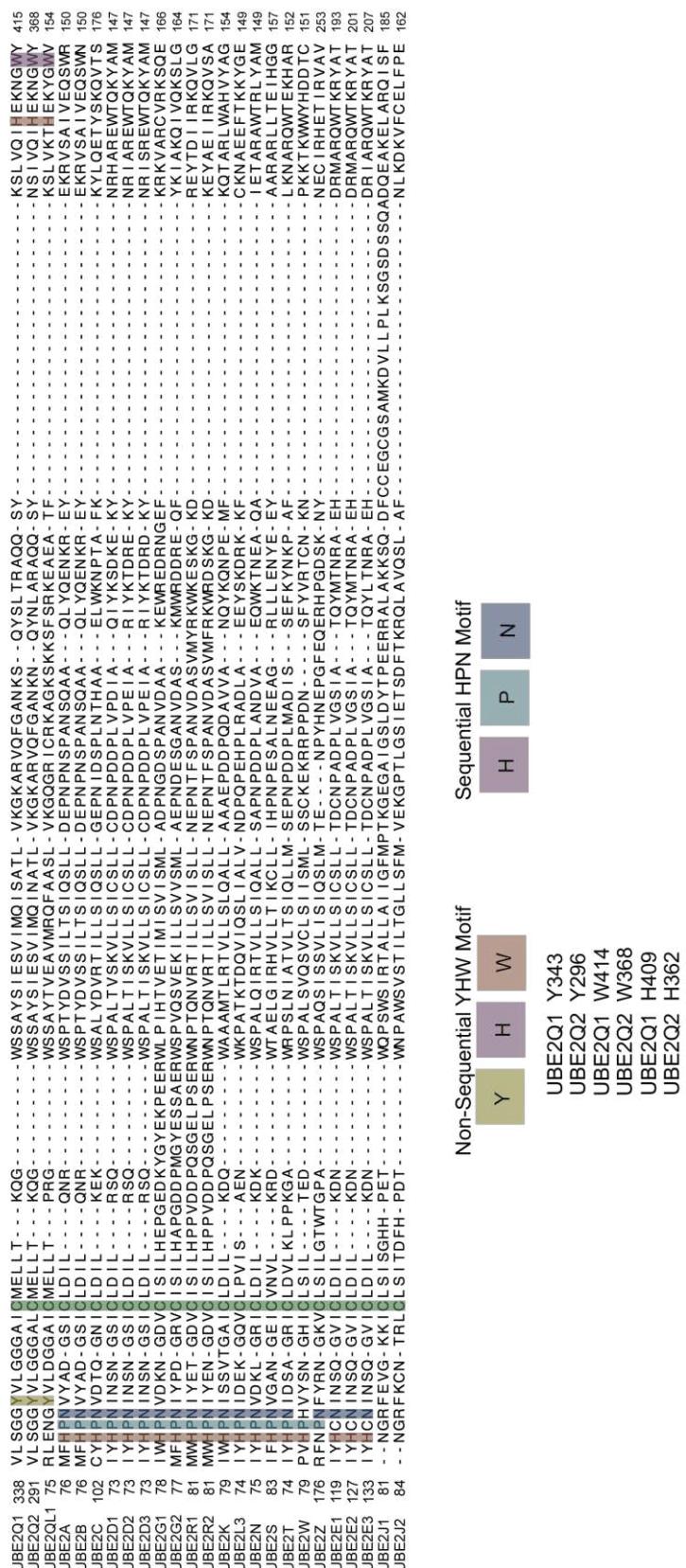
800
801
802
803
804


Supplementary Figures

Sup. Figure 1


a)

b)



c)

805
806
807 **Figure S1|** UBE2Q1 and UBE2J2 ubiquitylate maltoheptaose. Structure of maltoheptaose (a).
808 UBE2Q1 (b) or UBE2J2 (c) directly ubiquitylated maltoheptaose.

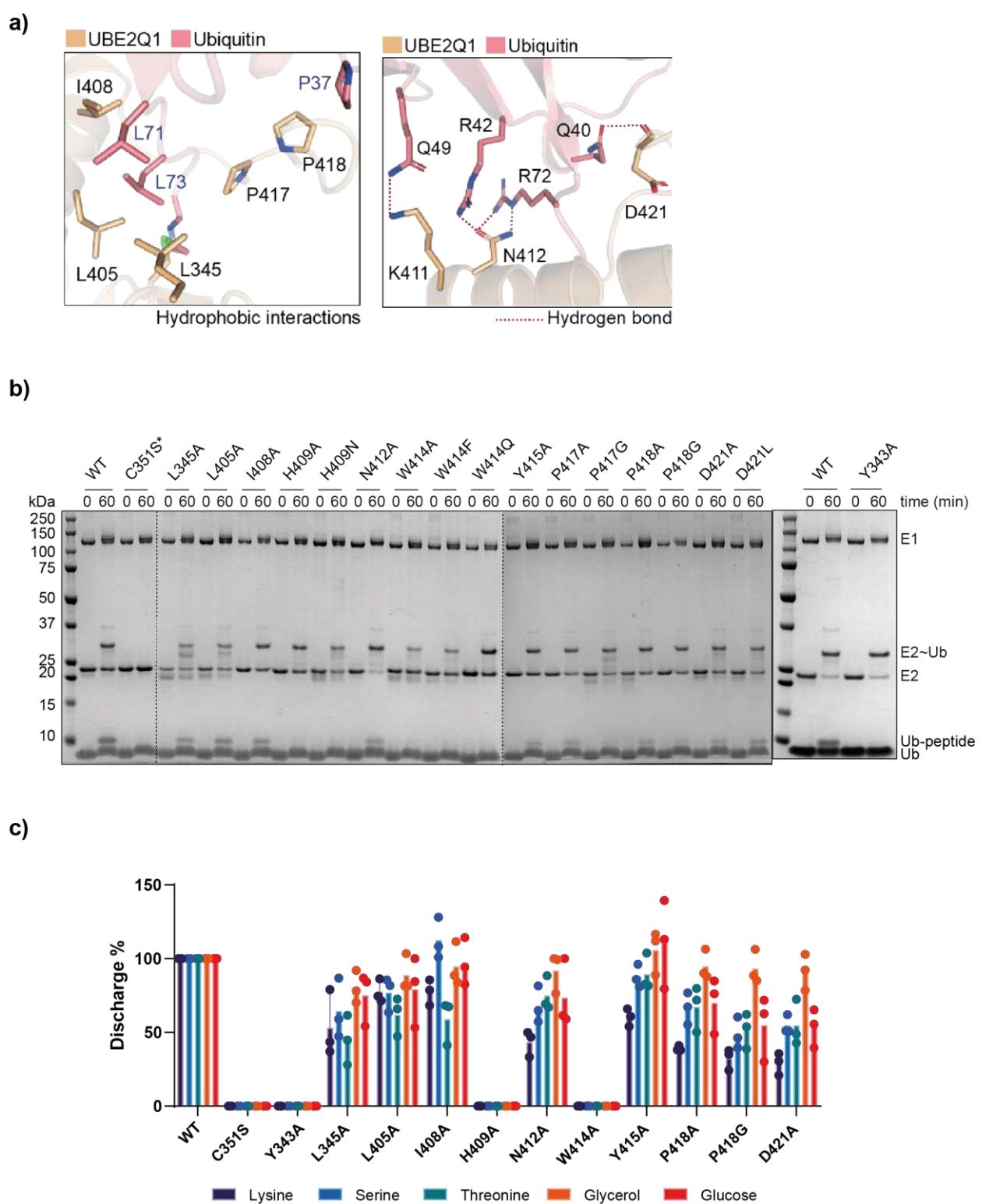
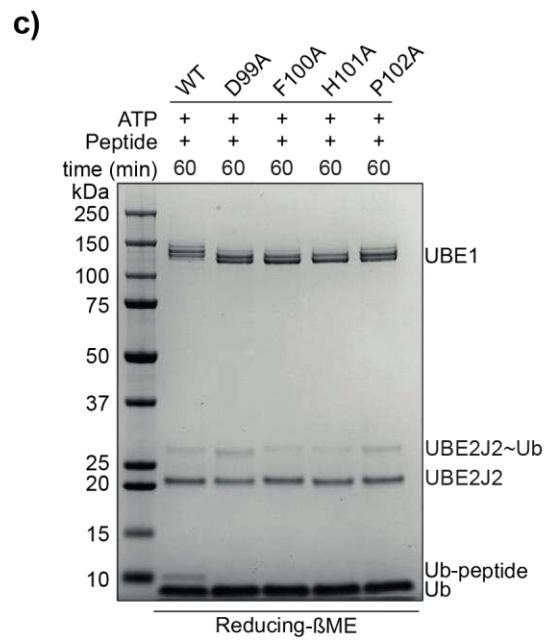
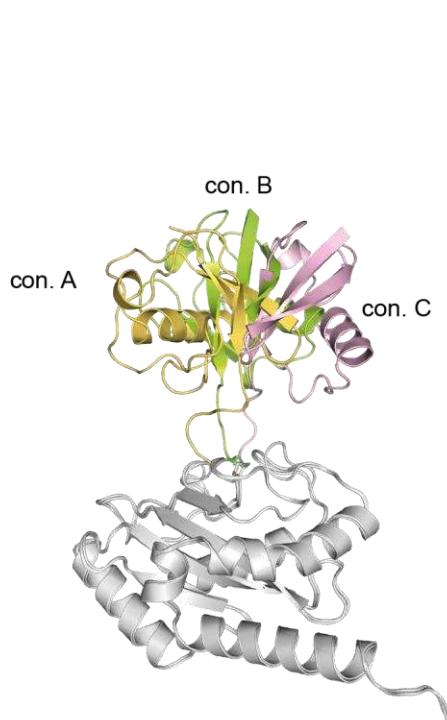
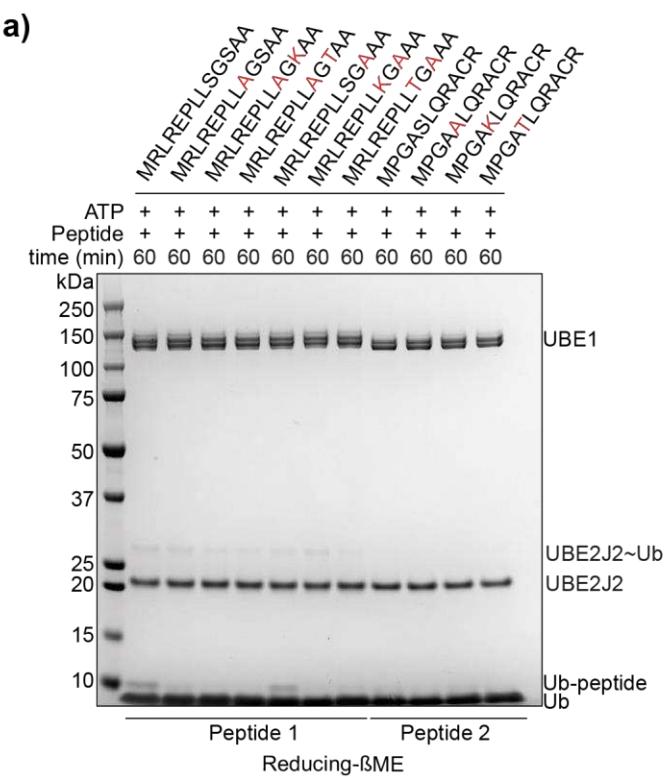

Sup. Figure 2

Figure S2| Alignment of the UBC domain of 28 ubiquitin E2 conjugating enzymes reveals absence of the canonical HPN motif in the UBE2Q and UBE2J families. Highlighted UBE2Q1, UBE2Q2 and

813 UBE2QL1 non-sequential activity determinants (YHW motif) and the canonical HPN triad. Catalytic
 814 cysteine marked in green.
 815

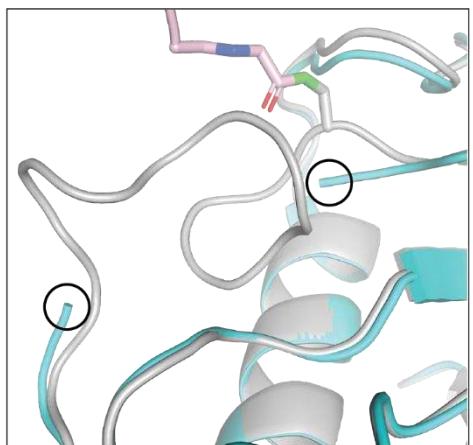



Sup. Figure 3

816
 817
 818
 819 **Figure S3** Structural model of the UBE2QL1~Ub interaction. Hydrophobic and Hydrogen bond-
 820 based interactions reported. Indicated UBE2QL1 mutants were tested for their ability to ubiquitylate
 821 B4GALT1 peptide 1 (b) and to discharge on the indicated nucleophiles by MALDI-TOF MS (c).

822

Sup. Figure 4

Figure S4| UBE2J2 ubiquitylates B4GALT1 CD on B4GALT1 peptide 1 and peptide 2 (a): reducing conditions completely abolish cysteine based ubiquitylation on peptide 2. UBE2J2 mutations that affect the discharge on B4GALT1 peptide 1, reducing conditions (b).


823

824

825

826

Sup. Figure 5

827

828

829 **Figure S5|** UBE2J2 apo crystal structure (reported in light blue) and predicted conformation of the
830 UBE2J2 highly mobile stretch of residues interacting with ubiquitin (reported in grey)

Sup. Figure 6

831
832
833
834
835

Figure S6| UBE2D3 and UBE2J2 alignment, catalytic cysteine indicated with green asterisk.
UBE2J2 D99 residue aligns with the D87 residue in the canonical UBE2D3 E2 conjugating enzyme (red asterisk).