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Abstract

The combined expression of a handful of pluripotency transcription factors (PluriTFs) in
somatic cells can generate induced pluripotent stem cells (iPSCs). Here, we report the
structural characterization of disordered regions contained in four important PluriTFs, namely
Oct4, Sox2, Nanog and Esrrb. Moreover, many post-translational modifications (PTMs) have
been detected on PluriTFs, whose roles are not yet characterized. To help in their study, we
also present a method 1) to produce well-characterized phosphorylation states of PluriTFs,
using NMR analysis, and ii) to use them for pull-downs in stem cell extracts analyzed by

quantitative proteomics to identify of Sox2 binders.

1. Introduction
The possibility of reprogramming somatic cells to an induced pluripotency state was revealed
in the 2000s, carrying great expectations in the fields of Biology and Medicine [1-3]. Induced
pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are characterized by the

active state of a pluripotency network, whose core comprises the pluripotency transcription
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factors (PluriTFs) Oct4, Sox2, Nanog and Esrrb (OSNE). These bind to enhancer sequences,
and thus activate or repress, or even “bookmark” during mitosis, a wealth of genes related to
pluripotency or cell differentiation [4-9]. Consistently, their misregulation correlates with
cancer malignancy and stemness [10-14].

Comprehensive structural descriptions of OSNE are missing to our knowledge. The folded
DNA-binding domains (DBDs) of OSNE have been structurally characterized, in complex
with their DNA target sequences [15—-19], together with the ligand-binding domain (LBD) of
Esrrb [20]. Recent studies depicted even the splendid structures of Oct4 and Sox2 DBDs
binding to nucleosomes, hence deciphering their “pioneer factor” abilities [21-29]. Another
structure of Sox2 bound to the importin Impa3 has also been published, showing how its two
Nuclear Localization Sequences (NLSs) flanking the DBD are involved in Sox2 nuclear
import [30]. The other segments of OSNE have been predicted to be intrinsically disordered
regions of proteins (IDRs) [31], i.e. they should have no stable tertiary fold when isolated
[32-36].

These IDRs appear to have important roles in binding partners involved in epigenetic
reprogramming, chromatin reorganization and in recruiting transcription or repression
machineries [5,37-41]. These functions are poorly understood, and, to the best of our
knowledge, no experimental characterization of the structural behavior of these regions in N-
and C-terminal of DBDs has been released yet. Recent studies have shown that C-terminal
regions of Oct4 and Sox2 are important for their reprogramming capacities [42,43], notably
by contributing to the engagement in molecular phase-separated condensates with the
Mediator complex [44]. More generally, the activating or repressive activities of IDRs of
transcription factors (TFs) have been scarcely studied at the structural level: these segments
are thought to contain hydrophobic patches flanked by acidic amino acids, which favors

DNA-binding specificity, phase separation and low-specificity interactions, notably with the
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Mediator subunit Med15 [44—53]; more specific interactions have been described in some
cases [45,54,55].

Post-translational modifications (PTMs) add a layer of complexity, by being often responsible
of the regulation of IDRs’ interactions [32,33,56,57], and notably of TFs activity [58-61].
Post-translational modifications (PTMs) are classical carriers of cell signaling by regulating
the stability and the interactions of proteins. An increasing number of PTMs have been
described on OSNE IDRs in the recent years [5,37,38,62—72] [73—77], notably
phosphorylation by Cyclin-dependent kinases (CDKs) [66,78—87] or by Mitogen-activated
protein kinases (MAPKs) [83,88,89], or their complementary Ser/Thr O-GlcNAcylation by
OGT [65,90-96]. In order to prompt future studies on this topic, we thought to establish and
test an experimental strategy 1) for producing well-characterized samples of post-
translationally modified IDRs of PluriTFs and ii) to use these as baits in pull-down assays for
identifying PTMs’ related binding partners.

Hence, we characterized some of the phosphorylation reactions of Esrrb and Sox2 by p38a./f3,
Erk2 and Cdk1/2. Then, we showed that biotinylated chimera of Sox2 and Esrrb coupled to an
AviTag peptide could be attached to streptavidin-coated beads. Finally, we loaded truncated
segments of the C-terminal IDR of Sox2 (phosphorylated or not) on these beads, and exposed
them to extracts of mouse Embryonic Stem Cells (mESCs) in pull-down assays, which we
analyzed using quantitative mass spectrometry-based proteomics. Among the quantified
(phospho)-Sox2 binders, we verified the phospho-dependent interaction between the proline

cis-trans isomerase Pinl and Sox2 using NMR spectroscopy.

2. Material and methods

2.1. Production of recombinant fragments of Oct4, Sox2, Nanog and Esrrb
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We used human protein sequences, unless specified. Codon-optimized (for expressing in
Escherichia coli) genes coding for human Oct4(aal-145) and Oct4(aa286-380) were
synthesized in the context of larger genes coding for Tev-Oct4(aal-145)-Tev-GB1 and Tev-
Oct4(aa286-380)-Tev-GB1 by Genscript and cloned into pET-41a(+) vector between Sacll
and HindlIII restriction sites, hence permitting the expression of GST-His6-Tev1-Oct4(aal-
145)-Tev2-GB1 and GST-His6-Tev1-Oct4(aa286-380)-Tev2-GB1; Tevl and Tev2 are the
heptapeptide ENLYFQG cleavage site of the TEV protease, Tev2 is separated by GAGGAGG
from GB1 (T2Q variant of the immunoglobulin binding domain B1 of the protein G from
group G Streptococcus [97,98]). The C-terminal GB1 tag was added to avoid any C-terminal
proteolysis of the IDR of interest during the expression and the first purification steps; we did
not test constructs without this supplementary folded domain, whose necessity for the stability
of the IDR is thus not proven.

The same rationale (cDNA synthesis, cloning, vectors, chimera constructs) was used for
producing Nanog(aal54-305), Nanog(aal54-215), Nanog(aal54-272), Nanog(aal54-305
CI85A-C227A-C243A-C251A), Nanog(aal54-272 C185A-C227A-C243A-C251A), and a
very similar rationale (chimera constructs missing the C-terminal Tev2-GB1) for Sox2(aal-
42), Sox2(aal15-317 C265A), Sox2(aal15-187), Sox2(aal15-236), Sox2(aall5-

282 C265A), Esrrb(aal-102_C12A-C72A-C91A), Esrrb(aal-102_ C12A-C91A), Nanog(aal-
85) (this latter was cloned in the Mfel/HindlII restriction sites from pET-41a(+)).

The recombinant production and the purification of the protein constructs followed the
procedures described previously [99], using the soluble fraction of bacterial lysates, except for
the constructs containing the Sox2 C-terminal fragments. These latter constructs were
recovered from the insoluble fractions of the lysates, and resolubilized in 8 M urea; these
were submitted to a His-Trap purification in urea, and the last size-exclusion chromatography

(SEC) had to be carried out in 2 M urea, which avoided clogging of the column and permitted
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to obtain regular elution peak widths (these were otherwise extremely broad, up to 100 mL for
the longest Sox2(aal15-317 C265A) construct). The samples were concentrated and stored at
-20 °C, and thawed just before the NMR experiments. The Sox2 samples containing 2 M urea
were submitted to 2-3 cycles of concentration/dilution in Hepes at 20 mM, NaCl at 75 mM to
generate samples in urea at 0.25 or 0.125 M.

All purification steps were carefully carried out at 4 °C; protein eluates from every
purification step were immediately supplemented with protease inhibitors (EDTA-free
cOmplete, Roche) (together with DTT at 10 mM for cysteine-containing protein constructs),
before being submitted to a concentration preparing the next purification step.

Chimera constructs of Sox2 and Esrrb IDR fragments containing a 15-mer peptide AviTag
GLNDIFEAQKIEWHE were produced using procedures similar to those described earlier for
OSNE constructs. The construct Sox2(aa234-317)-AviTag-His6 was soluble, and did not
require to be purified in urea.

More details about the production of OSNE peptides are given in the Supplementary Material.

2.2. Production of the biotin ligase BirA and specific biotinylation of the AviTag-peptide
chimera

The biotin ligase BirA was produced using recombinant production in E. coli BL21(DE3)Star
transformed with a pET21-a(+) plasmid containing a gene coding for BirA cloned at EcoRI
and HindIII restriction sites. pET21a-BirA was a gift from Alice Ting (Addgene plasmid #
20857)[100]. The expression was carried out over night at 20 °C in a Luria-Bertani culture
medium. The construct was containing a His6 tag in C-terminal and was purified using a two-
step purification procedure including a His-trap followed by a SEC. Details about the

production of BirA are given in the Supplementary Material.
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The biotinylation was executed using a rationale inspired from a published protocol [101], at
room temperature during 90 minutes, in samples containing the AviTag-chimera of interest at
100 uM and BirA at 0.7 uM in a buffer containing ATP at 2 mM, biotin at 600 uM, MgCl; at
5mM, DTT at 1 mM, HEPES at 50 mM, NaCl at 150 mM, protease inhibitors (EDTA-free
cOmplete, Roche), at pH 7.0. To remove some eventual proteolyzed peptides and BirA, the
biotinylated constructs were purified using a SEC in a column (Superdex 16/60 75 pg, Cytiva)
preequilibrated with a buffer containing phosphate at 20 mM, NaCl at 150 mM at pH=7.4
(buffer called thereafter Phosphate Buffer Saline, PBS). The eluted fractions of interest were

concentrated and stored at -20 °C.

2.3. Assignment of NMR signals from OSNE fragments, and structural propensities
The assignment strategy was the same than in previous reports from our laboratory [99]. The
5N relaxation data were recorded and analyzed according to the methods described in
previous reports [102]. Details are given in the Supplementary Material.
Disorder prediction were calculated using the ODINPred website (https://st-

protein.chem.au.dk/odinpred) [103]. Experimental secondary structure propensities of

unmodified OSNE peptides were obtained using the neighbor-corrected structural propensity

calculator ncSCP [104,105] (http://www.protein-nmr.org/, https://st-

protein02.chem.au.dk/ncSPC/) from the experimentally determined, DSS referenced Co. and

CP chemical shifts as input, with a correction for Gly-Pro motifs (-0.77 ppm instead of -2.0
ppm) [106]. Some signals were too weak in 3D-spectra from Sox2(aal15-317 C265A)
recorded at 950 MHz, and their chemical shifts were not defined. In these cases, chemical
shifts from 3D-spectra of Sox2(115-236) or His6-AviTag-Sox2(234-317_C265A) were used
to complete the lists of chemical shifts used to calculate the chemical shift propensities shown

in Figure 2.
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2.4. NMR monitoring of phosphorylation reactions and production of phosphorylated
peptides

We performed the phosphorylation kinetics presented in Figure 4a using commercial
recombinant kinases GST-p38f at 10 pg/mL (Sigma-Aldrich, ref. B4437), GST-Erk2 at 20
pg/mL (Sigma-Aldrich, ref. E1283), GST-Cdk1/CyclinA2 at 20 pg/mL (Sigma-Aldrich, stock
ref. C0244) and GST-Cdk2/CyclinA2 at 20 pg/mL (Sigma-Aldrich, ref. C0495). Then, we
used kinases produced in house in E. coli, using plasmids containing optimized genes coding
for p38a(aal-360, full-length) and Erk2(aa8-360); these were produced, activated and
purified in house as described previously [99]; in-house p38a was used at 40 pg/mL for the
experiments shown in Figure 4.
Phosphorylation reactions were carried out using '’N-labeled IDRs at 50 uM, in Hepes 20
mM, NaCl 50 mM, DTT or TCEP at 4 mM, ATP 1.5 mM, MgCl at 5 mM, protease
inhibitors (Roche), 7.5% D>0, pH6.8 at 25°C in 100 pL using 3 mm diameter Shigemi tubes.
We monitored the phosphorylation kinetics by recording time series of 'H-'>N SOFAST-
HMQC spectra at 600 or 700 MHz, and quantifying the NMR signal intensities of the
disappearing unphospho- and the appearing phospho-residues. We applied the methods that
we described progressively in earlier publications [107-110]. More details are given in the

Supplementary Material.

2.5. Pull-down assays
The extracts from mouse Embryonic Stem Cells (mESCs) were obtained from mESCs
cultured in the conditions previously described [111]. Homogeneous extracts were obtained
using DNA shearing by sonication in presence of benzonase, as described by Gingras and

colleagues [112].
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The pull-down assays were executed using 25 pL of streptavidin-coated magnetic beads
(Magbeads streptavidine, Genscript) loaded with 1 nmol of the biotinylated bait-peptides of
interest. These were incubated during one hour at room temperature with mESCs extracts,
washed in PBS and eluted using a 2x Laemmli buffer. Details are given in the Supplementary

Material.

2.6. Mass spectrometry-based proteomics analysis of pull-down assays
The pull-down samples were treated on-beads by trypsin/LysC (Promega). The resulting
peptides were loaded and separated on a C18 columns for online liquid chromatography
performed with an RSLCnano system (Ultimate 3000, Thermo Scientific) coupled to an
Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific). Maximum allowed mass
deviation was set to 10 ppm for monoisotopic precursor ions and 0.6 Da for MS/MS peaks.
The resulting files were further processed using myProMS v3.9.3 (https://github.com/bioinfo-
pf-curie/myproms; Poullet et al., 2007 [2]). False-discovery rate (FDR) was calculated using
Percolator [3] and was set to 1% at the peptide level for the whole study. Label-free
quantification was performed using peptide extracted ion chromatograms (XICs), computed

with MassChroQ [4] v.2.2.1. The complete details are given in the Supplementary Material.

2.7. Recombinant production of Pinl and NMR analysis of its interaction with Sox2 or
phospho-Sox2
The plasmid containing the gene coding for the Pin1-WW domain was a kind gift from
Isabelle Landrieu. The production was executed according to the previously published
protocol [113]. The NMR analysis of binding with phosphoSox2(aal15-240) were performed
at 283K and pH 7.0 with the GST-Pin1-WW construct and *N-labeled Sox2(aal15-240)

mixed in stoichiometric proportions, either at 50 or 10 uM for non-phospho and


https://doi.org/10.1101/2023.03.05.531149
http://creativecommons.org/licenses/by-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.05.531149; this version posted March 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-ND 4.0 International license.

phosphoSox2, respectively. The details on the NMR acquisition, processing and analysis are

given in the Supplementary Information.

3. Results

3.1. Structural characterization of the N- and C-terminal regions of Oct4
We produced and purified protein constructs containing the fragments of human Oct4(aal-
145) and Oct4(aa286-360), which were both predicted to be mostly disordered (Supp. Mat
3.2.3.). The 2D 'H-">’N HSQC NMR spectra showed crosspeaks in the spectra region where
random coil peptides resonances are usually found (Figure 1). We assigned the backbone
NMR signals of 'Hy, °N, 13Ca, 3CB, 13CO for both segments, which permitted to calculate
experimentally derived secondary structure propensities from the *Co and 3C chemical
shifts. We did not find any sign of a stable secondary structure, the highest o-helical
propensities reaching about 25 % in short stretches of about 5 consecutive amino acids.
Hence, we verified experimentally that these N- and C-terminal fragments of human Oct4 are
IDRs.
We can notice that Oct4 IDRs contain a high density of Prolines, which are not directly
detectable in the present 'Hn-detected experiments, even though most of the *Ca., 3CB and
resonances were characterized via HNCAB and HNCO experiments. We have shown
previously that the 3C-detected experiments *Ca!*CO permitted to observe all these Pro

residues in Oct4(aal-145) [99], whose chemical shifts were those of random coil peptides.

3.2. Structural characterization of the N- and C-terminal regions of Sox2
We produced and purified peptide fragments of human Sox2, namely Sox2(aal-42),
Sox2(aal15-187), Sox2(aal15-236), Sox2(aal15-282), Sox2(aa234-317 C265A), and

Sox2(aall5-317 C265A). We also produced and purified chimera peptides His6-AviTag-
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Sox2(aal15-240) and His6-AviTag-Sox2(aa234-317 _C265A). These were all predicted to be
disordered (Supp. Mat 3.3.3.).

We had solubility issues with all of them but Sox2(aal-42), Sox2(aa234-317 C265A) and
His6-AviTag-Sox2(aa234-317 C265A). We had to recover these troublesome peptides from
the insoluble fraction of the bacterial extract, after overexpression at 37 °C. We had even to
carry out our final size-exclusion chromatography (SEC) purification step in a buffer
containing urea at 2 M (at 4 °C) for Sox2(aal15-236), Sox2(aal15-282), His6-AviTag-
Sox2(aal15-240), and Sox2(aal15-317-C265A). The assignments of these latter constructs
were achieved in 0.25-0.5 M urea, after executing 2 to 3 concentration-dilution steps.
Aggregates were forming during the acquisition, which made the assignment rather painful.
This behavior correlated with liquid-liquid phase separation (LLPS) propensities, which we
observed a few months before such a behavior was reported by Young and collaborators [44].
The assignment of Sox2(aal15-317-C265A) was possible only at 950 MHz with the help of
the previously assigned smaller fragments Sox2(aal15-236) and His6-AviTag-Sox2(aa234-
317 _C265A). Some stretches of amino acids were particularly difficult to observe in 3D
spectra, e.g. the region aal60-185, because of an apparent fast T2 relaxation. We may
investigate these phenomena in later reports.

We observed crosspeaks in the 2D 'H-!"N HSQC NMR spectra that were all resonating in the
spectral region of random coil peptides resonances (Figure 2). The spectra of the short
fragments of the C-terminal region of Sox2 were exactly overlapping with those of
Sox2(aal15-317 _C265A) (Supp. Fig. 1). This shows that all these fragments have very
similar local conformational behaviors, a phenomenon regularly observed with IDRs. We
assigned the backbone NMR signals of 'Hy, °N, 3Ca., *CB, 3CO for Sox2(aal-42),
Sox2(aal15-236), His6-AviTag-Sox2(aa234-317 C265A) and partially for Sox2(aall5-

317 _C265A). We aggregated the lists of chemical shifts of the C-terminal fragments, and

10
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used them to calculate the experimental secondary structure propensities from the 1*Co and
13CB chemical shifts. This confirmed the absence of any stable secondary structure elements
in Sox2 N- and C-terminal region. The C-terminal region is poorly soluble below 0.25 M
urea; this should not affect a stable fold, so we can affirm that these regions of Sox2 are

experimentally proven IDRs.

3.3. Structural characterization of the N-terminal region of Nanog
We produced and purified the N-terminal peptide fragment of human Nanog(aal-85). All our
attempts to purify C-terminal regions of Nanog failed, even after alanine-mutation of
cysteines in Nanog(aal54-305), Nanog(aal54-272) and Nanog(aal54-215). We managed to
resolubilize our construct GST-His6-Tev-Nanog(aal54-305) from the insoluble fraction of the
bacterial extract, to partially purify it and cleave it using the TEV protease. However, the
resulting Nanog(aal54-305) peptide was barely soluble in a detergent (NP-40 at 2% v/v), and
not in high salt buffers, or not even in presence of urea at 4 M. The 10 Tryptophane residues
are probably playing a role in this behavior, in the context of a primary structure containing
not enough hydrophobic amino acids favoring stable folds.
The crosspeaks of Nanog(aal-85) in the 2D 'H-'"N HSQC NMR spectrum were all in the
spectral region of random coil peptides resonances (Figure 3). The assignment of the
backbone NMR signals of 'Hy, 1°N, 1*Ca., 3CP, 3CO permitted to calculate experimental
secondary structure propensities, which were low through the whole peptide. This Nanog N-

terminal is thus confirmed to be an IDR.

3.4. Structural characterization of the N-terminal region of Esrrb
We produced and purified the N-terminal fragment of human Esrrb(aal-102), which was

predicted to be disordered (Supp Mat. 3.5.3.), in the alanine-mutated versions Esrrb(aal-

11
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102_C12A-C72A-C92A), Esrrb(aal-102_C12A-C92A). This was a strategic choice to
attenuate the formation of disulfide bonds; the wild-type N-terminal fragments might however
be workable too. Mutating cysteines permitted to work in more comfortable conditions and to
maintain our construct monomeric for longer periods of time in the next phosphorylation and
biotinylation experiments. Cysteines are indeed highly solvent-accessible in IDRs and they
are consequently difficult to keep in their thiol, non-disulfide forms, even in presence of fresh
DTT or TCEP at neutral pH. We also produced chimera constructs Esrrb(aal-102 CI12A-
C72A-C92A)-AviTag-His6 and Esrrb(aal-102_C12A-C72A)-AviTag-His6.

All the 2D 'H-'>N HSQC NMR spectra revealed crosspeaks in the spectral region of random
coil peptides (Figure 3). These spectra are overlapping to a large extent, confirming the weak
influence of the mutations of cysteines: the mutation Cys72Ala has almost no consequences
on the chemical shifts, below 0.05 ppm even for the neighboring amino acids (Supp. Fig
2a,b); the mutation Cys91Ala has more impact, with chemical shifts perturbations of about
0.1 ppm for the next 5 amino acids (Supp. Fig. 2c,d), which is at least partially due to the fact
that the Ala substitution favors an increase of local a-helicity (about 25 %, see Supp. Fig.
2e,f). This N-terminal fragment of human Esrrb is thus an IDR, according to the calculated

secondary structure propensities (Figure 3f, Supp. Fig. 2e,f).

3.5. Phosphorylation of Esrrb and Sox2 by p38a, Erk2, Cdkl/2 as monitored by NMR
Sspectroscopy
We reported recently the site-specific phosphorylation kinetics of Oct4 by p38a. using *C-
direct NMR detection [99]. Here, we used more standard 'H-detected/’N-filtered experiments
to rapidly characterize the site preferences of MAPKs and CDKSs on Esrrb and Sox2, which

we thought to use as baits for performing phospho-dependent pull-down assays (see below).
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To start with, we used commercial aliquots of MAPKs, namely p383 and Erk2, and CDKs,
namely Cdk1/CyclinA2 and Cdk2/CyclinA2, on Esrrb(aal-102). We observed the progressive
phosphorylation of its three Ser-Pro motifs, i.e. at Ser22, Ser34 and Ser58, in agreement with
the consensus motifs of these kinases [114,115]. Ser22 is the preferred target in all cases,
while Ser34 is the least processed by CDKs, if at all: the commercial CDKs are poorly active
in our hands, which we have verified with a number of other targets for years in the
laboratory; this makes it difficult to distinguish between sites that are only mildly disfavored
or those that are more stringently ignored by CDKs in NMR monitored assays.

The limited activities and high costs of commercial kinases motivated us to develop in-house
capacities in kinase production. p38a was the most accessible to produce among the MAPKs
and CDKs; we produced it and activated it using recombinant MKK6. We tested our home-
made p38a on His6-AviTag-Sox2(aal15-240) and His6-AviTag-Sox2(aa234-317). It
phosphorylated all the Ser/Thr-Pro motifs of these two peptides, and also T306 in a PGT306Al
context, which shows a favorable Proline in position -2 [116], and a less common S212 in a
MTS212SQ context.

Hence, we were able to generate AviTag-IDR chimera in well-defined phosphorylated states.
To produce phosphorylated “N-AviTag-IDR dedicated to pull-down assays, we executed the
same protocol, and monitored in parallel “identical”, but !°N-labeled samples by NMR.
Hence, we could no the exact phosphorylation status of the '*N-AviTag-IDR for the next

experiments.

3.6. Structural characterization of AviTag-peptide chimera and biotinylated versions
thereof
We aimed at identifying new partners of OSNE using pull-down assays. We thought to use

chimera containing GST at the N-terminus, which appeared as a convenient approach: vectors
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integrating a GST-coding DNA sequence for overexpression in E. coli are available and of
common use; glutathione-coated beads are also accessible and permit efficient and specific
binding of GST-containing chimera peptides. However, we were unsatisfied by the
performances of the method: GST binding to glutathione-coated beads is slow at low
temperature (necessary to avoid IDR proteolysis); moreover, it appeared that GST-IDRs
chimera are hampered by the IDR “molecular-cloud” and are even weaker and slower to bind
the beads. Our attempts to bind GST-IDRs to the beads were thus resulting in poor yields,
which were not very reproducible. In the context of our aims, i.e. to establish a method
allowing semi-quantitative detection of IDR binding partners, this unsatisfying lack of
reproducibility was only promising supplementary variable parameters.

Thus, we decided to switch to another strategy: the use of the specifically biotinylated 15-mer
peptide tag called AviTag [101]. This is efficiently and specifically biotinylated by the biotin
ligase BirA (Figure 5d), which permits the high-affinity binding to streptavidin-coated beads.
We designed AviTag-IDR chimera, with the AviTag in N-terminal position for Sox2-IDRs
constructs, and in C-terminal for Essrb-IDR constructs. We characterized the AviTag and its
impact on the IDRs of interest using NMR: the AviTag is unfolded and it does not affect the
Sox2 and Esrrb fragments, according to the observed negligible chemical shift perturbations
(Fig 5) — the GST-Tag provoked also only very weak chemical shift changes on Essrb(aal-
102) (Fig S3). The biotinylated AviTag peptide appears to be slightly less mobile than the
common IDPs on the ps-ns timescale, according to the heteronuclear 'H'*N-nOes (Figure 5b).
We observed that the biotinylation of the AviTag provokes weak, but distinguishable
chemical shift perturbations for the close neighbors of the biotinylated lysine, but had no
effect on the peptides of interest (Figure 5c). It generated also the appearance of a HN-ester
NMR signal, similar to that of acetylated lysine [107,117]. Hence, we could quantify and

monitor the reaction advancement using NMR, and determine the incubation time that was
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necessary and sufficient to obtain a complete biotinylation of our chimera AviTag-IDRs (see
2.2.). This was one among many optimization steps permitting the production of sufficient
quantities of intact IDRs for the pull-down assays.

Next, we tested the binding of the biotinylated AviTag-IDRs on streptavidin-coated beads.
This produced very satisfying results, i.e. stoichiometric, specific binding in one hour with no

leakage (Fig. S4). This approach was thus selected for the pull-down assays.

3.7. Identification of Sox2 binding partners in extracts from mouse Embryonic Stem Cells
We prepared the four peptides AviTag-Sox2(aal15-240) and AviTag-Sox2(aa234-317) in
their non-phosphorylated and phosphorylated versions, using p38a to execute the
phosphorylation reactions (Figure 6a). These peptides were also biotinylated, and later bound
to streptavidin-coated beads, which we used as baits for pull-down assays in extracts from
mESCs (Figure 6b). Importantly, size-exclusion chromatographies were carried out between
every step to discard proteolyzed peptides, the enzymes (kinases of BirA) and their
contaminants as much as possible. We performed the pull-down assays with the four samples
in parallel with the same cell extract, in duplicate, and then analyzed the bound fractions using
quantitative LC-MS/MS analysis (see Supp. Mat 1.6. for the full description). Hence, we
could identify and evaluate the relative quantities of proteins retained by the four AviTag-
peptides (Figure 6). On paper, this presents the important advantage of removing false-
positive binders, which can interact unspecifically with the streptavidin-coated beads.

We present here results that should be interpreted carefully: we produced only duplicates for
every condition, using one single cell extract. To deliver trustful information, the common
standards in the field recommend 3 to 5 replicates, and the use of independent samples. We
can still comment the results, which we consider to be interesting preliminary data. We

quantified proteins with at least 2 distinct peptides across the two replicates (Figure 6C).
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Among the relative quantifications with an adjusted p-value < 0.05, we observed a two-fold
change or more (FC>2) of a number of transcription factors in the proteins pulled out by
AviTag-Sox2(aal15-240), among which the PluriTFs Oct4 and KIf5 are significantly
enriched (>4 peptides, p-value<0.02). Most of these TFs appear to bind slightly less to the
phosphorylated pSox2(aal15-240). However, pSox2(aal15-240) kept apparently a capacity to
bind Oct4 and KIf5 to some extent, in comparison to pSox2(aa234-317). Also, we found out
that pSox2(aal15-240) was pulling out the three isoforms of CK1 (>3 peptides, p-values<10
%) and the proline isomerase Pinl (>2 peptides, p-values<2.10*#), while Sox2(aal15-240) and

pSox2(aa234-317) did not or much less.

3.8. NMR characterization of the interaction between Pinl and phospho-Sox2
We decided to test the interaction between pSox2(aal15-240) and Pinl. We recorded 'H-'°N
NMR spectra of '’N-labeled Sox2(aal15-240) or pSox2(aal15-240) alone or in presence of
the Pinl-WW domain (natural abundance peptide, i.e. 0.6% '°N, 99.4% !N, hence “NMR
invisible” in "N-filtered experiments). We observed localized losses in signal intensities for
the residues neighboring the three pSox2(aal15-240) phosphosites when mixed with Pinl
(Figure 7b); in contrast, no significant differences showed up in the spectra obtained with
non-phosphorylated Sox2(aal15-240) in absence or presence of Pin1-WW (Figure 7a).
Hence, these signal losses are the typical signs of a position-specific interaction between an
IDR and a folded protein in the intermediate or slow NMR time-scale, i.e. ps-s timescale,
which corresponds to submicromolar affinities for this type of molecules. This shows that our
pull-down assays were capable of isolating and identifying binding partners of an IDR of

Sox2 in this range of affinities.

4. Discussion
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The structural biochemistry analysis reported here can be applied to the broad field of
transcription factors (TFs). These are essential actors of cell signaling: they are key elements
for inducing or maintaining pluripotency or differentiation, for cell proliferation or cell-cycle
arrest, by activating or repressing gene transcription [61,118]. About 90% of the ~1,600 TFs
contain large disordered segments ( > 30 consecutive amino acids), which is particularly true
for PluriTFs [31,119], and this correlation between TFs and IDRs exist in all kingdoms of life
[45,120]. IDRs of TFs recruit transcription co-factors or the transcription machinery, which is
still not very well characterized in detail [44-55].

Indeed, the fine understanding of TFs interactions via their IDRs appears to be hampered by
the nature of these interactions: weak affinities, multivalency, possible redundancy between
TFs and coacervation; post-translational modifications (PTMs), which can switch on or off
IDRs’ interactions, are a supplementary source of confusion when searching for binding
partners. Among the difficulties, we should also mention the basic biochemistry issues: IDRs
are difficult produce and manipulate in vitro, because they are prone to degrade or aggregate.
Here, we have tried to demonstrate the feasibility and the interest of some biochemical and
spectroscopic approaches to better characterize IDRs of TFs, their phosphorylation and the
associated binding partners.

Like other TFs, pluripotency TFs Oct4, Sox2, Nanog and Esrrb are post-translationally
modified (see the introduction), notably by CDKs and MAPKSs [66,78—89]. These two classes
of kinases are fundamental actors in all aspects of eukaryotic cellular life, and understanding
their activity and regulation in pluripotency or differentiation is of high significance.
Interesting questions are still pending: what is the phosphorylation status of OSNEs’ IDRs in
pluripotent cells, what is the impact on their interaction networks, and how does it affect
pluripotency or differentiation? The inhibition of MAPK Erk signaling is necessary to

maintain pluripotency in the standard culture conditions of ESCs and iPSCs [66,82—84], while
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these cells show a high CDK activity [8,86,87]; these two kinases family have the same core
consensus sites, i.e. Ser/Thr-Pro motifs, which are abundant in OSNEs’ IDRs and whose
phosphorylation has apparently consequences for initiating differentiation [73,78,80,83,85].
We have shown that we could produce well-defined phosphorylation status of these peptides,
using recombinant kinases and NMR analysis, which makes it possible to study their
interactions in vitro. We have also demonstrated our capacity to use these peptides as baits in
pull-down assays for detecting new binding partners.

Using this approach, we have identified an interaction between phospho-Sox2(aal15-240)-
pS212-pS220-pT232 and the prolyl cis-trans isomerase Pinl. Interactions between Pinl and
Oct4 or Nanog have been published earlier [81,121]. This does not represent a major surprise,
because Pinl recognize the consensus motif pSer/pThr-Pro, which is very degenerate (about
one third of all the detected sites in phosphoproteomics) [122,123]; dozens of Pinl binding
partners have been reported, which leaves suspicions about the functionality of all these, and
about the capacity of the intracellular pool of Pinl molecuels to engage in so many
interactions. We also detected an affinity between phospho-Sox2(aal15-240)-pS212-pS220-
pT232 and three CK1 isoforms. This capacity of CK1 kinases to recognize prephosphorylated
in position -3 of a potential Ser/Thr is well-known (with a hydrophobic residue in +1), and a
recent structural characterization of CK 15 has shown that it was even capable of keeping
some affinity for a phosphorylated product after the phosphate transfer [124].

Hence, we feel that these results are at the same time satisfying, but do reveal degenerate
interactions, whose biological significance is questionable. This corresponds to one of the
major drawbacks in the field of IDRs’ studies: they generate interactions of weak affinities,
which can be easily released during the washes of our pull-down assays. In this regard, the

« proximity labeling » approaches (BiolD, APEX and their derivates) appeared recently to be

quite adapted to transient interactions: these methods, developed in the last ten years, use
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chimera constructs containing enzymes that transfer chemical groups to their intracellular
neighbors, which can be later identified by mass-spectrometry [125—-128]. IDRs are very
flexible, solvent-exposed and establish a lot of poorly specific transient interactions. This was
raising concerns about the possible production of many false-positive if one used proximity
labeling methods to detect IDRs’ binding partners. This has been partially confirmed by a
recent study, but this bias appears to be limited [129] . Interactomes of 109 TFs have actually
been described using Bio-ID and affinity-purification MS, showing the complementarity
between proximity-labeling and the pull-down approach proposed here [130]. Yeast double-
hybrid, which can detect ~20 uM affinity interactions, and novel phage display approaches
will also help in this task [131-134].

Another difficulty in studying IDRs of TFs is their propensity to coacervate [44—-53]. Here, we
have tried to use Sox2 as a bait in pull-down assays, a protein that has been later recognized to
favor liquid-liquid phase separation [44,135]. We met this difficulty during the production
steps, which forced us to purify most of the Sox2 constructs in urea at 2 M. We could
straightforwardly observe liquid-liquid phase separation of Sox2(aal15-317) at 4 uM using
DIC microscopy in presence of Ficoll-70 (data not shown), but also progressive aggregation
and low solubility thresholds while working with our purified samples. These are clear
limiting factors for sample production and NMR characterization, which will hamper a
number of other studies on IDRs of TFs. This might also affect the results of pull-down
assays: we noticed an enrichment in TFs in the samples obtained from pull-downs using
Sox2(aal15-240) as a bait, which has a much higher coacervation propensity than
Sox2(aa234-317). Is it possible to generate local surface liquid-liquid phase separation on the
surface of streptavidin-coated beads? This might be at the same time a bless and a curse for
future studies, by helping the formation of biologically significant assemblies, or by favoring

unspecific, non-native macromolecules interactions.
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A final bottleneck in the studies of these IDRs is the capacity to produce post-translationally
modified samples. The commercial enzymes are not very well adapted to our NMR studies,
because of the required quantities. Here, we have used in-house production of the kinase
p38a. Since we carried out the present work, we have developed our capacities in producing
activated Erk2, Cdk2/CyclinA1 and Cdk1/CyclinB1. These will be part of our future studies.
TFs are indeed quite adapted to NMR investigations: they are 300 to 500 residues long and
contain large IDRs (~100 amino acids) separating small folded domains (also ~100 amino
acids) [31,45]. Their structural characterization would permit to understand a number of cell
signaling mechanisms at the atomic scale, and possibly to identify new therapeutic targets,

even though this class of proteins is notoriously difficult to inhibit [60,136,137].

5. Conclusion
We have applied NMR techniques to carry out a primary analysis of the pluripotency
transcription factors Oct4, Sox2, Nanog and Esrrb, in particular of their intrinsically
disordered regions. We have shown experimentally that they did not adopt a stable fold when
isolated, and that we were able to conduct a residue-specific analysis. This relies on the
delicate production and purification of these peptides, which are prone to proteolysis and
aggregation; producing them in a well-defined post-translational modification status was an
even arduous challenge. We have demonstrated the feasibility of these tasks using
recombinant kinases and NMR analysis. We have also evaluated the usefulness of such
protein constructs as baits in pull-down assays to identify new binding partners of IDRs.
These characterizations and the associated methods provide firm basis for future

investigations on transcription factors.
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Figure 1 : a. d. 2D *H-">N HSQC spectra of the N- and C-terminal IDRs of human Oct4, the labels
indicating the assignments; the grey areas show the spectral regions where random coil amino acids
resonate usually; b. c. Primary structures of Oct4; dark and light colors indicate the folded and
disordered domains, respectively; blue and red sticks indicate the positions of Glycines and Prolines,
respectively; c. e. Secondary structure propensities calculated from the experimental chemical shifts
of the peptide backbone Ca and Cf3, using the ncSPC algorithm [104,105].
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Figure 2: a. d. 2D 'H->N HSQC spectra of the N- and C-terminal IDRs of human Sox2, the labels
indicating the assignments; the grey areas show the spectral regions where random coil amino acids
resonate usually; b. c. Primary structures of human Sox2; dark and light colors indicate the folded and
disordered domains, respectively; c. e. Secondary structure propensities calculated from the
experimental chemical shifts of the peptide backbone Ca and Cf3, using the ncSPC algorithm

[104,105].
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Figure 3: a. d. 2D 'H-**N HSQC spectra of the N-terminal IDRs of human Nanog and Esrrb, the labels
indicating the assignments; the grey areas show the spectral regions where random coil amino acids
resonate usually; b. c. Primary structures of human Nanog and Esrrb; dark and light colors indicate
the folded and disordered domains, respectively; orange and black sticks indicate the positions of
cysteines and tryptophanes, respectively; c. e. Secondary structure propensities calculated from the
experimental chemical shifts of the peptide backbone Ca and Cf3, using the ncSPC algorithm
[104,105].
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Figure 4: a. Overlay of 2D 'H->N HSQC spectra of Esrrb(aal-102_C12A-C72A-C91A) before (black)
and after (grey and phosphosites colored in red/purple/blue) phosphorylation by p38(;: b. Residue
specific time courses of the phosphorylation of Esrrb(aa1-102) executed by commercial kinases p38,
Erk2, Cdk2 or Cdk1, as measured in time series of 2D *H->N SOFAST-HMQC spectra recorded during
the reaction; c. Overlay of 2D *H->N HSQC spectra of AviTag-Sox2(aal15-240) before (black) and
after (red) phosphorylation by p38a; the inset at the top-right shows the residue specific
phosphorylation build-up curves, as measured in time series of 2D *H-*>N SOFAST-HMQC spectra; d.
Same as c. with AviTag-Sox2(aa234-317_C265A).
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Figure 5 : a. 2D 'H-°N HSQC spectrum of **N-His6-AviTag-Sox2(aa234-317_C265A), the blue labels
indicated the assigned signals from the AviTag residues ; b. Secondary structure propensities
calculated from the experimental chemical shifts of the peptide backbone Ca and Cf3, using the
ncSPC algorithm [104,105]; the residue specific *H->N-noes, °N-R1 (grey) and *>NR2 (black)
measured at 600 MHz are shown below (the profiles show values averaged over three consecutive
residues); ¢. Overlay of 2D *H-">N HSQC spectra of the Esrrb(aal-102_C12A-C72A-C91A)-AviTag-His6
before (black) et after (magenta) biotinylation by BirA ; the NMR signals from the residues
neighboring the biotinylation site are indicated, which permit the quantification of the biotinylated
population ; d. Scheme of the reaction of Avi-Tag biotinylation executed by the ATP-dependent BirA.
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Figure 6: Differential interactomics of Sox2 constructs upon p38c phosphorylation. a. We have
produced unmodified/phospho-Sox2 truncations carrying N-ter biotinylation on the AviTag, and later
attached on streptavidin-magnetic beads. b. We have generated mESCs nuclear extracts for pull-
down assays using our Sox2 constructs as baits. c. The volcano plots of the log2 ratios, showing a
quantitative analysis of the proteins present at the end of the pull-down assays; the dashed line
indicates the threshold of p-value<0.05; we highlighted interesting partners in: blue: transcription
factors associating with Sox2(aal115-240); magenta: phospho-dependent partners of Sox2(aa115-
240) and or Sox2(aa234-317). Pull-downs have been performed in duplicates, using 15 million cells
per sample (extract protein conc.: 5 mg/mL), and 1 nmol of bait protein. Experimental conditions may
be improved (higher number of replicates, cells, washing conditions, ...).

115-240 234-317

37


https://doi.org/10.1101/2023.03.05.531149
http://creativecommons.org/licenses/by-nd/4.0/

OO UL B WNE

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.05.531149; this version posted March 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a Int. ratio (Sox2 / Sox2+Pin1) b Int. ratio (pSox2 / pSox2+Pin1)
1 1
[ ~ [
5N (ppm) i SN (ppm) Y WA
] e S N °
0 i
150 200 150 200
1154 residue nb 115+ residue nb
. LR
120+ 000§ 120+ / disappearing peaks
i (interacting residues)
S°XZ115.240(50“M) pSonus_uO(lOuM) o
SOX2, .. 540tPinl (50pMm) i 4 | pSOX2 |, *Pinl (10uMm) - o )
m)— m) -
9.0 8.5 as 9.0 8.5 i

Figure 7: a. Overlay of 2D *H-"*N HSQC spectra of **N-Sox2(aa115-240) alone at 50 uM (black) or
mixed with Pin1 in isotopic natural abundance and in stoichiometric amounts (grey) ; inset up-right :
residue specific NMR signal intensity ratios as measured in the two HSQC spectra. b. Overlay of 2D *H-
3N HSQC spectra of >’ N-phosphoSox2(aal15-240) alone at 10 uM (red) or mixed with the Pin1-WW
domain in stoichiometric amounts (grey); insets, up-right : residue specific NMR signal intensity ratios
as measured in the two HSQC spectra (in absence/presence of Pin1-WW domain).
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