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Abstract 

MerTK is a receptor tyrosine kinase that mediates the immunologically silent phagocytic 

uptake of diverse types of cellular debris. Highly expressed on the surface of microglial 

cell, MerTK is of importance in brain development, homeostasis, plasticity, and disease. 

Yet, involvement of this receptor in the clearance of protein aggregates that accumulate 

with aging and in neurodegenerative diseases has yet to be defined. The current study 

explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which 

play a causative role in the pathobiology of synucleinopathies.  

Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-

dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance 

of this pathway to synucleinopathies was assessed by analyzing MerTK expression in 

patient-derived cells and tissues.  

Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both 

caused a decreased rate of alpha-synuclein fibril internalization by human microglia. 

Consistent with the immunologically silent nature of MerTK-mediated phagocytosis, 

alpha-synuclein fibril internalization did not induce secretion of pro-inflammatory 

cytokines from microglia. In addition, burden analysis in two independent patient cohorts 

revealed a significant association between rare functionally deleterious MERTK variants 

and Parkinson9s disease in one of the cohorts (p = 0.002). Accordingly, MERTK expression 

was significantly upregulated in nigral microglia from Parkinson9s disease/Lewy body 

dementia patients compared to those from non-neurological control donors in a single-
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nuclei RNA-sequencing dataset (p = 5.08´10-21), and MerTK protein expression positively 

correlated with alpha-synuclein level in human cortex lysates (p = 0.0029).  

Taken together, our findings define a novel role for MerTK in mediating the uptake of 

alpha-synuclein aggregates by human microglia, with possible involvement in limiting 

alpha-synuclein spread in synucleinopathies such as Parkinson9s disease.  
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differentially expressed gene; DMEM = Dulbecco9s Modified Eagle Medium; EGF = 

epidermal growth factor; EGFR = epidermal growth factor receptor; FBS = fetal bovine 

serum; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; GAS6 = growth arrest-

specific 6; GPNMB = glycoprotein NMB; GST = glutathione-S-transferase; HLA-DR = 

human leukocyte antigen-DR; hMGL = human primary microglia; IFNg = interferon 

gamma; IgG-RBC = immunoglobulin G-opsonized red blood cells; iMGL = induced 

pluripotent stem cell-derived microglia; iPSC = induced pluripotent stem cell; LGALS3 = 

galectin-3; LRRK2 = leucine-rich repeat kinase 2; PFF = preformed fibril; PI = propidium 

iodide; PROS1 = protein S1; P/S = penicillin/streptomycin; qRT-PCR = quantitative 

reverse transcription-polymerase chain reaction; RNAseq = RNA-sequencing; SEM = 

standard error of the mean; SNCA = alpha-synuclein; snRNAseq = single-nuclei RNA-

sequencing; TGFBR1 = transforming growth factor beta receptor 1; TLR = toll-like 

receptor; UKBB = UK biobank; YWHAZ = tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein zeta 

 

Introduction 

Synucleinopathies are neurodegenerative disorders characterized by the intracellular 

accumulation of aggregated alpha-synuclein (a-syn) protein. Broadly, they are classified 

into multiple system atrophy and Lewy body diseases that include Parkinson9s disease and 

Lewy body dementia. The neuronal accumulation of a-syn in the form of Lewy bodies and 

its role in neurodegenerative processes have been extensively studied. Duplication or 

triplication of the genetic locus encoding a-syn (SNCA) have been identified to cause 

autosomal dominant Parkinson9s disease,1 implying that accumulation of excess a-syn is 

sufficient to trigger the disease process. Current evidence supports the notion that the 

initiation of a-syn aggregation, either in the central nervous system or in peripheral tissues, 

can then propagate in a prion-like manner into the brain, where it induces neuronal 

dysfunction and degeneration.2-7 Accordingly, injection of recombinant a-syn preformed 

fibrils (PFFs) into mice leads to the development of Lewy body-like pathologies, neuronal 
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loss and behavioral deficits.8 In vitro, seeding of neurons with a-syn PFFs also results in 

the formation of Lewy body-like inclusions and dysregulation of cellular processes.9,10 

Strategies to prevent cell-to-cell spread of a-syn have been proposed as potential 

therapies to prevent neurodegeneration in synucleinopathies.11 Mechanisms involved in a-

syn endocytosis are being actively explored, with differential internalization mechanisms 

observed across brain cell types. For instance, heparan sulfate proteoglycans have been 

identified as mediators of a-syn PFF internalization by neurons but not microglia.12 

Microglia as professional phagocytes residing in the brain can internalize and degrade a-

syn fibrils with higher rate than other cells,13-15 making them a particularly promising cell 

type that can be targeted in the development of novel therapeutics to promote a-syn 

clearance. The majority of microglia studies investigating a-syn internalization processes 

to date have been carried out using murine microglia or the murine microglia-like cell line 

BV2, and have contributed to the identification of a variety of cell surface proteins that 

interact with human a-syn, including toll-like receptors (TLRs) and cluster of 

differentiation 36.16-20 Since human and murine microglia are inherently different in their 

genome, transcriptome and aspects of their function,21-24 it is unclear whether the same 

receptors and mechanisms participate in the uptake of a-syn by human microglia. 

In a previous study comparing the impact of culture media formulation on microglia 

phagocytic activities, we observed a correlation between a-syn fibril and myelin debris 

uptake activities25 suggestive of a common mechanism of internalization for these 

substrates. Both a-syn fibril and myelin debris uptake activities also correlated with the 

expression level of Mer tyrosine kinase (MerTK), a microglial surface receptor kinase with 

known roles in myelin phagocytosis.26  

TYRO3, AXL and MerTK constitute a family of homologous receptor tyrosine kinases 

called <TAM= with pleiotropic functions. AXL and MerTK are particularly known for their 

role in the phagocytosis of apoptotic cells,27 myelin debris,26 synapses,28 and photoreceptor 

outer segments.29,30 Tethering of phagocytic targets to TAM receptors occurs through the 

binding of secreted bridging molecules 3 growth arrest-specific 6 (GAS6) and protein S1 

(PROS1) 3 with high affinity for phosphatidylserine moieties exposed on the membranes 

of dead cells.31 Binding of GAS6/PROS1 to TAM receptors triggers activation of the 
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cytoplasmic kinase domain, autophosphorylation and downstream signaling that induces 

cytoskeletal remodeling required for phagocytosis.31 This process is immunologically 

silent, and suppresses inflammatory activation of myeloid cells during homeostatic 

phagocytosis.31,32  

High expression of MerTK, as well as its activating ligands GAS6 and PROS1, is a 

characteristic feature of microglia that distinguishes them from other myeloid 

populations.33 The present study aimed to investigate the role of MerTK in a-syn fibril 

uptake by human primary (hMGL) and induced pluripotent stem cell-derived (iMGL) 

microglia. The relevance of this process in synucleinopathies was evaluated through rare 

variant burden analysis of MERTK in Parkinson9s disease and assessment of MerTK 

expression in patient-derived brain materials. Taken together, we show that a-syn fibril 

uptake by human microglia is largely MerTK-dependent. Increased MerTK expression 

accompanying a-syn accumulation in the human brain and genetic associations between 

rare MERTK variants and Parkinson9s disease suggest MerTK as a potential therapeutic 

target to enhance a-syn fibril clearance by microglia in synucleinopathies.   

 

Materials and Methods 

Ethical approval 

Use of all human materials was approved by the McGill University Health Centre 

Research Ethics Board, under project# 1989-178 for human brain tissues and 2019-5374 

for induced pluripotent stem cells (iPSCs).  

 

hMGL isolation and culture 

Human brain tissues from 2- to 71-year-old female and male epilepsy patients were 

obtained from the Montreal Neurological Institute, Montreal, Canada (adult donors) and 

the Montreal Children's Hospital, Montreal, Canada (pediatric donors), with written 

consent and under local ethic boards9 approval. Tissues were from sites distant from 

suspected primary epileptic foci. Second trimester fetal brain tissues were obtained from 
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Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada or from the Birth 

Defects Research Laboratory, University of Washington, Seattle, USA with maternal 

written consent and under local ethic boards9 approval. Isolation of glial cells was carried 

out as previously described34 through mechanical and chemical digestion, followed by 

Percoll® (Sigma-Aldrich) gradient centrifugation (postnatal tissue) or not (fetal tissue). 

hMGL were further purified by taking advantage of the differential adhesive properties of 

the glial cells. Cells of postnatal sources were maintained in microglia growth medium 

composed of Dulbecco's Modified Eagle Medium (DMEM)/F12 (Thermo Fisher 

Scientific), 1% GlutaMAXTM (Thermo Fisher Scientific), 1% non-essential amino acids 

(Thermo Fisher Scientific), 1% penicillin/streptomycin (P/S; Thermo Fisher Scientific), 

2X insulin-transferrin-selenium (Thermo Fisher Scientific), 2X B27 (Thermo Fisher 

Scientific), 0.5X N2 (Thermo Fisher Scientific), 400 µM monothioglycerol (Sigma 

Aldrich) and 5% fetal bovine serum (FBS; Wisent Bioproducts), which was previously 

shown to promote high phagocytic activity and MerTK expression.35 Fetal hMGL were 

cultured in DMEM (Sigma-Aldrich) supplemented with 1% GlutaMAXTM, 1% P/S and 5% 

FBS. When indicated, hMGL were 8M19-polarized by treating them with 20 ng/mL 

interferon gamma (IFNg; Peprotech) and 100 ng/mL Pam3CSK4 (Invivogen) for 48 hours 

or left unpolarized (8M09). Cells were maintained at 37 °C under a 5% CO2 atmosphere.  

 

Generation of iMGL 

A number of iPSC lines were used in our study to ensure reproducibility of our findings 

across a range of different genetic backgrounds: DYR0100 (American Type Cell 

Collection), GM25256 (Coriell Institute) and 3450 (generated in-house).36 Differentiation 

of iPSC into iMGL was carried out following a previously established protocol.37 Briefly, 

hematopoietic progenitor cells were generated from iPSC using STEMdiff Hematopoietic 

kit (STEMCELL Technologies) and cultured in microglia growth medium supplemented 

with 100 ng/mL interleukin-34, 50 ng/mL tumor growth factor-beta and 25 ng/mL 

macrophage colony-stimulating factor (Peprotech) for 25 days, following which 100 

ng/mL cluster of differentiation 200 (Abcam) and C-X3-C motif chemokine ligand 1 

(Peprotech) were also added to the culture. Cells were maintained at 37 °C under a 5% CO2 

atmosphere throughout the protocol.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2023. ; https://doi.org/10.1101/2023.03.04.531108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.04.531108
http://creativecommons.org/licenses/by-nc/4.0/


 7 

 

RNA-sequencing (RNAseq) 

RNAseq data were obtained from an earlier study.25 Quality control of the RNA 

samples, the library preparation and RNA-sequencing were performed by Genome Quebec, 

Montreal, Canada. The library was generated using a NEBNext® Single Cell/Low Input 

RNA Library Prep Kit (New England Biolabs). RNAseq was performed using an Illumina 

NovaSeq 6000. Canadian Center for Computational Genomics9 pipeline GenPipes38 was 

used to align the raw files and quantify the read counts.  

 

Western blotting 

Cells were lysed on ice in a lysis buffer composed of 150 mM NaCl, 50 mM Tris-HCl 

pH 7.4, 1% Nonidet P-40, 0.1% sodium dodecyl sulfate and 5 mM 

ethylenediaminetetraacetic acid with protease and phosphatase inhibitors (Thermo Fisher 

Scientific). Cell lysates were centrifuged at 500 g for 30 minutes at 4°C to remove cellular 

debris. Proteins (25 µg/lane) were separated on SDS-polyacrylamide gels and transferred 

to polyvinylidene difluoride membranes (Bio-Rad Laboratories). For the detection of a-

syn, membranes were fixed in 4% paraformaldehyde solution as previously described.39 

Membranes were immunoblotted for AXL (AF154 R&D Systems at 1:500), MerTK 

(ab52968, Abcam at 1:500), a-syn (ab138501, Abcam 1:5000) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; G8795, Sigma Aldrich at 1:5000) overnight at 4°C, 

and then with horse radish peroxidase-linked secondary antibodies (1:10000; Jackson 

Laboratory) for one hour. Bands were detected by enhanced chemiluminescence with 

Clarity Max ECL substrates (Bio-Rad Laboratories) using a ChemiDoc Imaging System 

(Bio-Rad Laboratories). Image analysis was performed using ImageLab 6.0.1 software 

(Bio-Rad Laboratories).  

 

Preparation of a-syn PFFs 

PFFs of a-syn were generated as previously described40,41 with slight modifications. 

Briefly, glutathione-S-transferase (GST) -tagged human recombinant a-syn were 

expressed and isolated from Escherichia coli. The GST tag was removed and purified a-
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syn monomers were subjected to endotoxin removal using PierceTM High-Capacity 

Endotoxin Removal Resin (Thermo Fisher Scientific) to achieve endotoxin levels < 0.3 

EU/mg. a-syn monomers were aggregated on a shaker for five days with constant shaking 

at 1000 rpm, at 37°C. Resulting PFFs were subjected to 40-80 cycles of sonication (30 

seconds ON/30 seconds OFF) using a Zetasizer Nano (Malvern Panalytical) to achieve 

~50-100 nm sizes. Sizes and morphology of PFFs were monitored by electron microscopy 

and dynamic light scattering. Thioflavin T assay was used to confirm presence of beta-

sheet structure. All data were validated using a-syn PFFs from at least two different batches.  

 

Uptake assay 

Human a-syn PFFs, myelin debris26 and immunoglobulin G-opsonized red blood 

cells42 (IgG-RBCs) were labelled with pHRodo GreenTM STP ester (Thermo Fisher 

Scientific) and were used at the following respective concentrations which were 

determined to be non-saturating: 1 µM, 15 µg/mL and 50 000 cells/mL respectively. Cells 

were incubated with the labelled substrates for two hours and then counterstained with 

Hoechst 33342 (5 µg/mL). Total green fluorescence intensity per cell was quantified using 

a CellInsight CX5 High Content Screening Platform (Thermo Fisher Scientific). All 

conditions were assessed in triplicate. Unchallenged cells were used to measure 

background/autofluorescence. Internalization of Alexa Fluor 488-conjugated human a-syn 

PFFs (1 µM) and epidermal growth factor (EGF; 4 µg/mL; Thermo Fisher Scientific) were 

assessed similarly, except cells were washed with 4% trypan blue solution to quench 

extracellular fluorescence. When indicated, cells were pretreated for one hour with non-

cytotoxic concentrations of UNC2025 (3 µM; Cayman Chemical) or cytochalasin D (1 µM; 

Sigma Aldrich). 

 

RNA interference 

Cells were transfected with siGENOME RISC-Free Control (siCON) or ON-

TARGETplus small interfering RNA (siRNA) pools against MERTK (siMERTK, at 20 

nM) and/or AXL (siAXL, at 10 nM) (Horizon Discovery) using LipofectamineTM 

RNAiMAX (Thermo Fisher Scientific). The manufacturers9 protocols were followed. 
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When necessary, siCON was used to equilibrate the total amount of siRNA received by 

cells across experimental conditions.  

 

Flow cytometry 

Cells were blocked with Human TrueStain FcX and TrueStain Monocyte Blocker 

(Biolegend) and stained with the following antibodies: anti-AXL clone #108724 and anti-

MERTK clone #125518 (R&D Systems). Appropriate forward and side scatter profiles 

were used to exclude debris and doublets from the analysis. Dead cells were excluded based 

on LIVE/DEADTM Fixable Aqua (Thermo Fisher Scientific) staining. Readings were done 

on an AttuneTM Nxt Flow Cytometer and analyzed/visualized using FlowJoTM software.  

 

Cell viability 

Cell viability was assessed by propidium iodide (PI; Thermo Fisher Scientific) staining 

unless otherwise specified. Cells were stained in phosphate buffered saline containing 1 

µg/mL PI and 5 µg/mL Hoechst 33342 (Thermo Fisher Scientific) and the average number 

of PI- live cells per condition was determined using a CellInsight CX5 High Content 

Screening Platform. All conditions were assessed in triplicate.  

 

Quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) 

A RNeasy mini kit (Qiagen) was used to extract RNA. Reverse transcription was 

performed using Moloney murine leukemia virus reverse transcriptase (Thermo Fisher 

Scientific) and real-time PCR was performed using TaqMan assays (Thermo Fisher 

Scientific) on a QuantStudioTM 5 real-time PCR system (Thermo Fisher Scientific). The 2-

DCt method was used to analyze the data using GAPDH and tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as 

controls. 

 

Measurement of cytokine secretion 
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Concentrations of interleukin-1beta (IL-1b), interleukin-6 (IL-6), interleukin-10 (IL-

10) and tumor necrosis factor (TNF) in cell supernatants were measured using the Human 

Inflammatory Cytokine Cytometric Bead Array Kit (BD Biosciences). Readings were done 

on an AttuneTM Nxt Flow Cytometer.  

 

Burden analysis of rare variants 

Rare variant analysis was performed in the UK Biobank (UKBB) cohort, composed of 

602 Parkinson9s disease patients and 15,000 randomly sampled controls, and the 

Accelerating Medicines Partnership 3 Parkinson Disease (AMP-PD) initiative cohort, 

composed of 2,341 Parkinson9s disease patients and 3,486 controls. All Parkinson9s disease 

patients were diagnosed according to either the UK Brain Bank criteria43 or the Movement 

Disorders Society criteria.44 Only individuals with European ancestry were included. For 

the UKBB cohort, whole-exome sequencing data was used. Quality control was performed 

both at the individual and variant levels using Genome Analysis Toolkit (GATK, v3.8) and 

plink, with a minimum depth of coverage 10 and GQ = 20 as described previously.45 For 

the AMP-PD cohort, we used all available whole-genome sequencing data for which the 

quality control processes at the individual and variant levels have been previously 

described (https://amp-pd.org/whole-genome-data). Associations between variants and 

Parkinson9s disease was tested using optimized sequence Kernel association test (SKAT-

O).46 Variants were categorized into a) rare (minor allele frequency <1%) nonsynonymous 

variants, b) functional variants (nonsynonymous, stop/frameshift and splicing) and c) 

variants with a combined annotation dependent depletion (CADD) score of g 20, 

representing the top 1% of potentially deleterious variants. A meta-analysis of the two 

cohorts was run using the metaSKAT package.47 

 

Analysis of single-nuclei RNA-sequencing (snRNAseq) data 

snRNAseq data of human substantia nigra were from Kamath et al., 2022,48 and were 

accessed through GEO:178265. Dataset included eight non-neurological control donors, 

seven Parkinson9s disease patients and three Lewy body dementia patients. All patients 

were pathologically confirmed to present moderate to prominent loss of pigmentation in 
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the substantia nigra.48 Microglia population was subtracted from the main object using 

metadata information provided by the authors at the Broad Institute Single Cell Portal 

https://singlecell.broadinstitute.org/single_cell/study/SCP1768/. The subtracted microglia 

population was subjected to the standard Seurat pipeline for dimensionality reduction, gene 

expression normalization, clustering, and differential expression analysis. Twenty clusters 

expressing microglia canonical markers were identified (Supplementary Fig. 1), among 

which clusters 8, 12, 16 and 17 showed enrichment in stress response genes typically 

associated with tissue dissociation procedures (Supplementary Table 1). Those clusters, 

along with cluster 11 with macrophage marker expression (Supplementary Table 1), were 

removed from further analysis. Differentially expressed genes (DEGs) between 

Parkinson9s disease/Lewy body dementia and control microglia were identified using 

çlog2(fold change)÷ > 0.25 and adjusted p-value < 0.05 as cutoffs.  

 

Preparation of human cortex lysates 

Human cortex tissues were from the Mayo Clinic Brain Bank, Jacksonville, USA. 

Tissues were derived from five Lewy body dementia patients and five control donors 

devoid of Lewy body disease. Tissues were dounce-homogenized in Tris-buffered saline 

with protease and phosphatase inhibitors. Samples were further diluted in lysis buffer with 

5% sodium dodecyl sulfate, protease and phosphatase inhibitors for protein extraction as 

described above. Clinicopathological information of the donors is presented in 

Supplementary Table 2.  

 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 9.0 software. A t-test was 

used to compare the mean of two groups of data. A one-way analysis of variance (ANOVA) 

was used to compare the mean of three or more groups of data. When the assumptions of 

a t-test or a one-way ANOVA were not met, a Mann-Whitney test or a Kruskal-Wallis test 

was used instead, respectively. P-values (8p9) were adjusted using appropriate post hoc tests 

following one-way ANOVA/Kruskal-Wallis tests. Mean and standard error of the mean 

(SEM) of biological replicates (8n9) are plotted in all graphs unless otherwise indicated. A 
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p < 0.05 was considered statistically significant. hMGL obtained from independent donors 

and iMGL generated at different points in time were considered biological replicates. 

 

Data availability 

RNAseq data of hMGL and iMGL are available in Dorion et al., 2023.25 snRNAseq 

data from Kamath et al., 202248 are available through Gene Expression Omnibus 

(GSE178265).  

 

Results 

hMGL and iMGL express MerTK and internalize a-syn PFFs 

We first aimed to assess the MerTK-dependence of a-syn PFF uptake by human 

microglia. Given the limited access to hMGL, the potential of iMGL as an alternative 

model to investigate the role of MerTK in a-syn PFF uptake was evaluated. RNAseq and 

Western blotting of TAM receptor expression revealed that both AXL and MerTK are 

expressed in hMGL and iMGL (Figure 1A-D). Interestingly, AXL expression was 

significantly higher in iMGL compared to hMGL, whereas MerTK expression was similar 

between both cell types (Figure 1A-D). As expected, TYRO3 expression was low in both 

models (Figure 1A-B). Given these results, subsequent experiments were carried out in 

iMGL, with validation of key findings in hMGL. 

pHrodoTM dyes are fluorogenic dyes that fluoresce when present in an acidic milieu 

such as phagosomes and lysosomes; and have been previously demonstrated to be useful 

tools for quantifying the rate of phagocytosis.26,49 After a two-hour incubation of iMGL 

with pHrodoTM Green-labelled a-syn PFFs, a dose-dependent increase in green 

fluorescence intensity per cell was quantified (Supplementary Fig. 2). A concentration of 

1 µM was non-saturating (Supplementary Fig. 2) and resulted in readily quantifiable 

fluorescence intensity in both hMGL (Figure 1E-G) and iMGL cultures (Figure 1E, H-I).  
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Pharmacological inhibition of MerTK results in decreased a-

syn PFF uptake by microglia 

The selective MerTK inhibitor UNC202550 was used to investigate the involvement of 

MerTK in a-syn fibril internalization by microglia. A one-hour pretreatment with 

UNC2025 reduced iMGL uptake of pHrodoTM Green-labelled a-syn PFFs by ~79% 

(Figure 2A-C). UNC2025 also decreased pHrodoTM Green-labelled myelin uptake as 

previously described,26 but had no effect on pHrodoTM Green-labelled IgG-RBC uptake, a 

process mediated by Fc gamma receptors and thus independent of MerTK27,51 (Figure 2A-

C). In contrast, the actin polymerization inhibitor cytochalasin D non-selectively inhibited 

the internalization of all three substrates (Figure 2A-C). UNC2025 also decreased hMGL 

uptake of pHrodoTM Green-labelled a-syn PFFs by ~72% (Figure 2D-E), providing 

validation that MerTK kinase activity is essential for the internalization of a-syn fibrils by 

hMGL.  

To ensure that results were not influenced by the use of a pH-sensitive dye, additional 

tests were performed with Alexa Fluor 488-labelled a-syn PFFs. Similar to findings with 

pHrodoTM Green-labelled a-syn PFFs, UNC2025 also decreased the internalization of 

Alexa Fluor 488-labelled a-syn PFFs by iMGL (by ~79%; Supplementary Fig. 3A-B), 

confirming that MerTK appears to mediate the internalization of a-syn PFFs regardless of 

the conjugated dyes. UNC2025 did not affect the internalization of Alexa Fluor 488-

labelled EGF which is known to be mediated by epidermal growth factor receptor52 (EGFR; 

Supplementary Fig. 3A-B). All subsequent uptake assays were performed using pHrodoTM 

Green-labelled a-syn PFFs. 

 

MERTK knockdown results in decreased a-syn PFF uptake by 

microglia 

siRNA-mediated knockdown experiments were next carried out to confirm that our 

earlier findings were a consequence of MerTK inhibition and not an off-target effect of 

UNC2025 on other tyrosine kinases. iMGL were transfected with siRNAs against AXL 
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and/or MERTK, and replated for the assessment of a-syn PFF uptake. siAXL and 

siMERTK significantly decreased the respective surface expression of AXL and MerTK 

on live iMGL after 48 hours (Figure 3A). Knockdown of AXL had no marked impact on 

a-syn PFF internalization by iMGL, unlike MERTK knockdown which resulted in a ~71% 

decrease in internalization (Figure 3B-C). Knockdown of both AXL and MERTK together 

did not further affect a-syn PFF uptake compared to MERTK knockdown alone (Figure 

3B-C). Similarly, in hMGL, AXL knockdown did not affect a-syn PFF uptake, whereas 

MERTK knockdown did (by ~56%; Figure 3D-F). Neither AXL nor MERTK knockdown 

affected hMGL viability (Figure 3G), ruling out the possibility that a viability effect is 

downregulating PFF internalization. Altogether, these findings imply that MerTK but not 

AXL is essential for a-syn fibril uptake by human microglia.  

Previously, it has been shown that combined stimulation of microglia with IFNg and a 

TLR agonist, the so-called <M1= polarization, results in a pro-inflammatory phenotype 

characterized by a decreased expression of MerTK and a lower internalization of myelin 

debris.26 Polarization of hMGL with IFNg and the TLR2/1 agonist Pam3CSK4 was 

confirmed to increase the M1 markers human leukocyte antigen-DR (HLA-DR), TNF and 

C-X-C motif chemokine ligand 10 (CXCL10) expression, and to decrease IL10 expression 

compared to the unpolarized M0 state (Supplementary Fig. 4A). Expression of genes 

encoding MerTK and its activating ligands GAS6 and PROS1 were decreased in M1 cells 

whereas AXL expression was unchanged (Supplementary Fig. 4A). This decreased 

expression of MERTK, GAS6 and PROS1 was associated with significantly lower uptake 

of a-syn PFFs (Supplementary Fig. 4B-C), further supporting the notion that MerTK alone, 

but not AXL mediates a-syn fibril uptake by human microglia.  

 

MerTK-mediated a-syn PFF internalization is immunologically 

silent 

Phagocytic processes involving MerTK are known to be immunologically silent.53 

With pharmacological and knockdown assays pointing towards MerTK being a central 

mediator of a-syn fibril uptake, the effects of a-syn PFFs on immune pathways was 
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investigated next. The widely used inflammatory stimulant and TLR agonist Pam3CSK4 

significantly increased the secretion of IL-6 and TNF by iMGL, confirming that these cells 

can be activated to secrete cytokines (Figure 4A). Consistent with the idea that MerTK-

mediated phagocytosis is immunologically silent, a 24-hour treatment with a-syn PFFs did 

not result in increased iMGL secretion of IL-6, TNF, IL-10 or IL-1b (Figure 4A). 

Interestingly, a modest but statistically significant decrease in the secretion of those 

cytokines was observed following a-syn PFF treatment (Figure 4B), indicative of an 

immunomodulatory effect. The a-syn PFF-induced decrease in IL-6, TNF and IL-1b was 

prevented by a one-hour pretreatment of iMGL with UNC2025 or cytochalasin D (Figure 

4B), suggesting that this immunomodulatory effect is dependent on MerTK-mediated a-

syn PFF internalization. The decrease in IL-10 was not prevented by UNC2025 or 

cytochalasin D pretreatment (Figure 4B), suggesting that this effect of a-syn PFFs is 

independent from their internalization. Treatment of hMGL with a-syn PFFs also did not 

elicit an increase in IL-6, TNF, IL-10 or IL-1b secretion (Figure 4C). IL-1b secretion was 

significantly inhibited by a-syn PFFs in the hMGL (Figure 4C).  

Expression of a wider range of cytokines was assessed in iMGL by qRT-PCR following 

three hours, one day, and seven days of a-syn exposure. In contrast to Pam3CSK4, neither 

the monomeric nor fibrillar forms of a-syn increased the transcriptional expression of 

cytokines (Supplementary Fig. 5). To summarize, a-syn did not induce an inflammatory 

response of human microglia similar to that triggered by TLR stimulation.  

 

Rare deleterious MERTK variants are associated with 

Parkinson9s disease 

To further examine the potential role of MerTK-mediated phagocytosis in 

synucleinopathies, genetic associations between rare MERTK variants and Parkinson9s 

disease were investigated by burden analysis in two independent patient cohorts: UKBB 

and AMP-PD. A significant association between MERTK variants with CADD score g 20 

(representing the top 1% of potentially deleterious variants) and Parkinson9s disease was 

found in the UKBB cohort (p = 0.002, Table 1). However, this association was not observed 
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in the AMP-PD cohort or following a meta-analysis of both cohorts (Table 1). No 

significant associations were found between AXL variants and Parkinson9s disease (Table 

1). These results suggest that some rare, functionally deleterious MERTK variants may be 

associated with Parkinson9s disease, however these findings require additional replications.  

 

MERTK expression is upregulated in nigral microglia of 

Parkinson9s disease patients 

Following the observation that rare genetic variants of MERTK are potentially 

associated with Parkinson9s disease, the possibility that the MerTK pathway is 

dysregulated in the Parkinson9s disease substantia nigra was investigated using a 

previously published postmortem snRNAseq dataset.48 DEG analysis of microglia from 

Parkinson9s disease (n = 7) or Lewy body dementia (n = 3) substantia nigra tissues 

compared to those of non-neurological controls (n = 8) revealed a decrease in expression 

of the homeostatic markers C-X3-C motif chemokine receptor 1 (CX3CR1) and 

transforming growth factor beta receptor 1 (TGFBR1), accompanied by an increase in the  

expression of specific neurodegeneration-associated genes that included glycoprotein 

NMB (GPNMB) and galectin-3 (LGALS3), in the diseased group (Figure 5A). Expression 

of SNCA and leucine-rich repeat kinase 2 (LRRK2) with known genetic association to 

Parkinson9s disease was also significantly elevated in microglia from Parkinson9s 

disease/Lewy body dementia patients (Figure 5A). Consistent with our in vitro data, genes 

encoding inflammatory cytokines did not figure among the DEGs (Supplementary Table 

3). Most importantly, evaluation of genes encoding TAM receptors and their activating 

ligands revealed MERTK expression to be significantly higher in microglia from diseased 

patients compared to controls (p = 5.08´10-21; Figure 5B).  

Upregulation of MerTK protein expression in the context of synuclein accumulation 

was ascertained by Western blotting using cortex tissues from five patients with 

clinicopathological diagnosis of Lewy body dementia and five control donors 

(Supplementary Table 2). Significantly higher amounts of a-syn were detected in the 

cortex lysates of Lewy body dementia patients (Figure 5C-D). Although overall MerTK 
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expression showed a non-significant increase in patient samples versus controls (Figure 

5C-D), MerTK strongly correlated with a-syn levels (p = 0.0029; Figure 5E). MerTK 

expression also positively correlated with a-syn phosphorylated at serine 129 (S129p), an 

indicator of a-syn aggregation (p = 0.0234; Figure 5E). Altogether, data suggest an 

upregulation of MerTK expression in contexts of a-syn accumulation and aggregation. 

 

Discussion 

In summary, our study identified MerTK as an essential receptor that mediates a-syn 

fibril uptake by human microglia. Using orthogonal assays, including pharmacological 

inhibition of MerTK kinase activity, MERTK downregulation induced by phenotypic 

polarization and MERTK knockdown by siRNA, we show that a-syn fibril internalization 

by human microglia is dependent on MerTK. MerTK-mediated internalization of a-syn 

PFFs was immunologically silent, failing to induce the expression and secretion of 

inflammatory cytokines. Moreover, MERTK mRNA expression was found to be increased 

in nigral microglia from Parkinson9s disease/Lewy body dementia patients compared to 

control donors, and MerTK protein expression in the human cortex positively correlated 

with a-syn level. Such findings support a role for MerTK-mediated phagocytosis in a 

setting of a-syn accumulation. Accordingly, burden analysis revealed a significant 

association between functionally deleterious, rare MERTK variants and Parkinson9s disease. 

This was true in the UKBB cohort of patients but not in the AMP-PD cohort, which could 

be a result of specific variants associated with Parkinson9s disease being underrepresented 

in the AMP-PD cohort. Replication of the burden analysis in future cohorts will be 

necessary to gain confidence that MerTK dysfunction is genetically associated with 

Parkinson9s disease.  

Phagocytosis of cellular debris is a complex process that involves multiple cell surface 

proteins, some mediating tethering of the target and some initiating engulfment through 

cytoskeletal remodeling. Pattern recognition receptors such as TLRs can come into contact 

with their agonistic motifs during this process and trigger an inflammatory response.54 a-

syn has been repeatedly observed to induce inflammatory cytokine release from murine 
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microglia,16-20 albeit with some contradictory findings.55 In regards to human iMGL, 

Trudler et al.56 previously observed inflammasome activation and IL-1b secretion 

following cell treatment with non-sonicated large size a-syn PFFs (>2000 nm), whereas 

Rostami et al.14 failed to observe IL-1b secretion from iMGL following sonicated, smaller 

a-syn PFFs. In regards to hMGL, non-sonicated a-syn PFFs were previously shown by 

Pike et al.57 to induce inflammasome activation and subsequent IL-1b release from hMGL. 

In our study, a-syn PFFs sonicated to ~50-100 nm in size were employed because of the 

demonstrated pathogenicity and propensity for propagation of smaller PFFs.58,59 These 

small PFFs were actively phagocytosed, but failed to induce IL-1b secretion from hMGL 

or iMGL. Notably, microglia in both Pike et al.9s. and Trudler et al.9s studies were cultured 

in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), which 

might have influenced microglia response to a-syn PFFs. Finally, Pike et al. used 

saturating concentrations of a-syn PFFs (5-20 µM), which might have resulted in stress-

induced non-specific activation of microglia.  

Although the TAM receptors AXL and MerTK were thought to have redundant roles 

in phagocytosis, MerTK but not AXL has been demonstrated to mediate homeostatic 

phagocytosis. Daily clearance of photoreceptor outer segments by retinal pigment 

epithelial cells in the retina and apoptotic germ cells by Sertoli cells in the testis are 

mediated by MerTK,60 without which accumulation of cellular debris leads to tissue 

degeneration.29,61-63 AXL and MerTK expression are also differentially regulated by 

tolerogenic and inflammatory stimuli: whereas MerTK expression is increased by 

treatment with glucocorticoids, AXL is upregulated and MerTK downmodulated following 

lipopolysaccharide or polyinosinic:polycytidylic treatment of macrophages.64,65 Here we 

observed that microglial uptake of a-syn fibrils is dependent on MerTK but not AXL 

despite both receptors being expressed by human microglia. Consistent with the in vitro 

observations, only MERTK expression was found to be significantly higher in nigral 

microglia from Parkinson9s disease/Lewy body dementia patients compared to controls, 

and MERTK but not AXL variants were genetically associated with Parkinson9s disease 

cases in the UKBB cohort.  
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In a study that quantified the presence of a-syn inclusions in different cell types of the 

olfactory bulb of Parkinson9s disease patients, ~8% of microglia have been shown to 

contain inclusions, a strikingly high percentage considering that ~9% of neurons were 

found to contain inclusions in the same study.66 The main source of microglia-internalized 

a-syn in the Parkinson9s disease brain remains unclear. a-syn has been detected in the 

cerebrospinal fluid and brain interstitial fluid, suggesting the protein is released by neurons 

into the extracellular space through secretion or cell death.67,68 The current study therefore 

focused on the role of MerTK in internalization of extracellular a-syn fibrils. However, 

MerTK could well be mediating a-syn internalization through phagocytosis of synapses69 

and apoptotic neurons,70 limiting neuronal spread of a-syn. 

MerTK has been receiving increasing attention as a potential therapeutic target in 

proteinopathies in the recent years. In the APP/PS1 mouse model of Alzheimer9s disease, 

Axl and MerTK have been shown to be important for microglia migration to amyloid 

plaques.71 Genetic ablation of Axl and/or Mertk led to accelerated death of the animals,72 

indicative of a protective role for these receptors against disease progression. Longitudinal 

studies revealed that higher circulating levels of cleaved, soluble TAM receptors and their 

ligand GAS6 in the cerebrospinal fluid are associated with better cognitive outcome in 

Alzheimer9s disease.73,74 To our knowledge, the current study represents the first in vitro 

demonstration of MerTK involvement in protein aggregate internalization. 

Pharmacological targeting of MerTK is difficult because of its wide expression and 

pleiotropic roles. Bispecific antibodies and hybrid proteins with affinities to both MerTK 

and amyloid beta have been designed to specifically target amyloid beta to MerTK-

mediated, immunologically silent phagocytosis in Alzheimer9s disease.75,76 Similar 

strategies could be adopted to enhance a-syn clearance in synucleinopathies.  

In conclusion, we report for the first time a role for MerTK in the uptake of a-syn fibrils 

by human microglia. This pathway could be leveraged to promote a-syn fibril clearance in 

synucleinopathies such as Parkinson9s disease without inducing inflammatory response of 

microglia.  
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Table 1. Burden analysis of rare variants in Parkinson9s disease 

 

Gene All nonsynonymous, p All functional, p CADD score ³ 20, p 

  UKBB AMP-PD 

Meta-

analysis UKBB AMP-PD 

Meta-

analysis UKBB AMP-PD 

Meta-

analysis 

AXL 0.84 0.27 0.48 0.83 0.27 0.48 0.45 0.85 0.54 

MERTK 0.2 0.92 0.81 0.21 1 0.78 0.002 0.67 0.28 
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Figures 

 

Figure 1. TAM receptors expression and a-syn PFF uptake by human microglia. (A-

B) RNAseq assessment of TYRO3, AXL and MERTK expression in hMGL and iMGL. A 
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one-way ANOVA with Sidak9s post hoc test was performed for pairwise comparisons 

between hMGL and iMGL in (A). TPM = transcripts per million. Mean +/- SEM of n = 4, 

***p < 0.001. (C) Western blot of MerTK, AXL and GAPDH. (D) Quantification of AXL 

and MerTK expression in iMGL relative to hMGL. GAPDH was used as a loading control. 

T-tests were performed. Mean +/- SEM of n = 3, **p < 0.01. (E-I) hMGL and iMGL were 

challenged with pHrodoTM Green-labelled a-syn PFFs for two hours. (E) Merged phase 

contrast and green fluorescence images. Scale bar = 50 µm. (F) Quantification of green 

fluorescence intensity per cell in hMGL culture. A Mann-Whitney test was performed. 

Mean +/- SEM of n = 4, *p < 0.05. (G) Representative fluorescence images of hMGL 

counterstained with Hoechst 33342 (blue). Scale bar = 500 µm. (H) Quantification of green 

fluorescence intensity per cell in iMGL culture. A Mann-Whitney test was performed. 

Mean +/- SEM of n = 4, *p < 0.05. (I) Representative fluorescence images of iMGL 

counterstained with Hoechst 33342 (blue). Scale bar = 300 µm. 
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Figure 2. Effect of UNC2025 on microglial uptake of a-syn PFFs. Microglia were 

pretreated with vehicle, UNC2025 (3 ��) or cytochalasin D (1 ��) for one hour, then 

challenged with pHrodoTM Green-labelled a-syn PFFs, myelin debris or IgG-RBCs for two 

hours. (A-B) Quantification of green fluorescence intensity per iMGL. Data were 
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normalized to the vehicle-treated conditions. A Mann-Whitney test was performed. Mean 

+/- SEM of n = 4, *p < 0.05. (C) Representative images of iMGL counterstained with 

Hoechst 33342 (blue). Scale bar = 150 �� . (D) Quantification of green fluorescence 

intensity per hMGL. Data were normalized to the vehicle-treated conditions. A Mann-

Whitney test was performed. Mean +/- SEM of n = 4, *p < 0.05. (E) Representative images 

of hMGL counterstained with Hoechst 33342 (blue). Scale bar = 200 ��. 
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Figure 3. Effect of AXL/MERTK knockdown on microglial uptake of a-syn PFFs. 

Microglia were transfected with siCON, siAXL and/or siMERTK. (A) Cell surface 

expression of AXL and MerTK assessed by flow cytometry on live iMGL 48 hours 

following transfection. Data were normalized to the siCON-transfected conditions. 
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Kruskal-Wallis tests were performed followed by Dunn9s post hoc test. Mean +/- SEM of 

n = 5, *p < 0.05, **p < 0.01. (B) Quantification of green fluorescence intensity per cell in 

iMGL culture challenged with pHrodoTM Green-labelled a-syn PFFs for two hours. Data 

were normalized to the siCON-transfected conditions. A Kruskal-Wallis test was 

performed followed by Dunn9s post hoc test. Mean +/- SEM of n = 5, *p < 0.05. (C) 

Representative images of iMGL challenged with pHrodoTM Green-labelled a-syn PFFs for 

two hours and counterstained with Hoechst 33342 (blue). Scale bar = 150 ��. (D) qRT-

PCR assessment of AXL and MERTK expression in hMGL 48 hours following transfection. 

Kruskal-Wallis tests were performed followed by Dunn9s post hoc test. Mean +/- SEM of 

n = 3, *p < 0.05. (E) Quantification of green fluorescence intensity per cell in hMGL culture 

challenged with pHrodoTM Green-labelled a-syn PFFs for two hours. Data were 

normalized to the siCON-transfected conditions. A Kruskal-Wallis test was performed 

followed by Dunn9s post hoc test. Mean +/- SEM of n = 5, *p < 0.05. (F) Representative 

fluorescence images of hMGL challenged with pHrodoTM Green-labelled a-syn PFFs for 

two hours and counterstained with Hoechst 33342 (blue). Scale bar = 200 ��. (G) Viability 

of hMGL 48 hours following transfection. Kruskal-Wallis tests were performed followed 

by Dunn9s post hoc test. Mean +/- SEM of n = 3, *p < 0.05. 
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Figure 4. Inflammatory response of human microglia to a-syn PFFs. Microglia were 

treated for 24 hours with vehicle, a-syn PFFs (1 ��) or Pam3CSK4 (100 ng/mL). (A) 

Cytokine secretion from iMGL. Kruskal-Wallis tests were performed followed by Dunn9s 

post hoc test. Mean +/- SEM of n = 6, *p < 0.05. (B) Cytokine secretion from iMGL 

pretreated or not with UNC2025 (3 ��) or cytochalasin D (cyt D; 1 ��) for one hour prior 

to vehicle/a-syn PFF treatment. Kruskal-Wallis tests were performed followed by Dunn9s 

post hoc test. Mean +/- SEM of n = 4, **p < 0.01, ***p < 0.001. (C) Cytokine secretion 

from hMGL. Kruskal-Wallis tests were performed followed by Dunn9s post hoc test. Mean 

+/- SEM of n = 6, *p < 0.05. 
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Figure 5. MerTK expression in Parkinson9s disease and Lewy body dementia. (A-B) 

snRNAseq data from Kamath et al., 2022 were used to compare microglia from substantia 
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nigra of seven Parkinson9s disease patients (PD) and three Lew body dementia patients 

(LBD) versus eight control donors (CTL). (A) Dotplot depicting examples of identified 

DEGs between PD/LBD and CTL. (B) Heatmap showing the average expression of genes 

encoding TAM receptors and their activating ligands. *p < 0.05 in DEG analysis. (C-E) 

Western blotting of MerTK, a-syn, phosphorylated a-syn (S129p) and GAPDH in human 

cortex of LBD and CTL donors. (C) Representative blots. Proteins were extracted in the 

presence of 5% SDS to solubilize a-syn aggregates. (D) Quantification of a-syn, 

phosphorylated a-syn (S129p) and MerTK expression. Mann-Whitney tests were 

performed. Mean +/- SEM of n = 5, *p < 0.05. (E) Correlation analysis of a-syn and 

MerTK expression across CTL and LBD samples (n = 10). 8r9 denotes Spearman9s 

correlation coefficient.  
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