

1 **Neuronal wiring receptors Dprs and DIPs are GPI anchored and this modification**
2 **contributes to their cell surface organization**

3

4 Meike Lobb-Rabe^{*,1,2,3}, Wioletta I. Nawrocka^{*,3,4,5}, Robert A. Carrillo^{1,2,3,+}, and Engin
5 Özkan^{3,4,5,+}

6

7 * Authors contributed equally; order was determined by coin flip

8 ¹ Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago,
9 Illinois 60637

10 ² Program in Cell and Molecular Biology, University of Chicago, Chicago, Illinois 60637

11 ³ Neuroscience Institute, University of Chicago, Chicago, Illinois 60637

12 ⁴ Department in Biochemistry and Molecular Biology, University of Chicago, Chicago,
13 Illinois 60637

14 ⁵ Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637

15 ⁺ Correspondence: robertcarrillo@uchicago.edu and eozenkan@uchicago.edu

16

17 **ORCID IDs**

18 Meike Lobb-Rabe ORCID ID: 0000-0001-6486-7752

19 Wioletta I. Nawrocka ORCID ID: 0000-0001-5019-7196

20 Robert A. Carrillo ORCID ID: 0000-0002-2067-9861

21 Engin Özkan ORCID ID: 0000-0002-0263-6729

22

23

24 **ABSTRACT**

25 The *Drosophila* Dpr and DIP proteins belong to the immunoglobulin superfamily
26 of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been
27 implicated in a variety of neuronal functions, including synaptic connectivity, cell
28 survival, and axon fasciculation. However, the signaling pathways underlying these
29 diverse functions are unknown. To gain insight into Dpr–DIP signaling, we sought to
30 examine how these CSPs are associated with the membrane. Specifically, we asked
31 whether Dprs and DIPs are integral membrane proteins or membrane anchored through
32 the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that Dprs
33 and DIPs are GPI anchored to the membrane of insect cells and validate these findings
34 for some family members in vivo using *Drosophila* larvae, where GPI anchor cleavage
35 results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates
36 aggregation of insect cells expressing cognate Dpr–DIP partners. To test if the GPI
37 anchor affects Dpr–DIP localization, we replaced it with a transmembrane domain and
38 observed perturbation of sub-cellular localization on motor neurons and muscles. These
39 data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is
40 required for localization and that Dpr–DIP intracellular signaling likely requires
41 transmembrane co-receptors.

42
43 **Keywords:** Glycosylphosphatidylinositol anchor; Cell surface receptor; Dpr; DIP;
44 Surface localization; Motor neuron; Muscle; *Drosophila melanogaster*

45

46 INTRODUCTION

47 Cell Surface Proteins (CSPs) allow a cell to interact with neighboring cells and
48 the extracellular matrix and interpret chemical cues from its environment. CSPs can be
49 attached to cells through hydrophobic transmembrane domains that traverse the lipid
50 bilayer or via post-translational modifications that anchor the protein in the plasma
51 membrane. One such modification is the addition of a glycosylphosphatidylinositol (GPI)
52 anchor, which is covalently linked to the C-terminus of the protein and embeds its
53 hydrophobic acyl chains into the outer leaflet of the cell membrane.¹⁻³ GPI anchors are
54 attached at the ω site, typically a small amino acid, flanked upstream by an unstructured
55 region and downstream by a stretch of hydrophobic residues.⁴ The GPI anchor is added
56 in the ER lumen during protein synthesis, and the mature protein is trafficked to the cell
57 membrane through the secretory pathway.⁵ GPI-anchored proteins cannot signal into
58 the cells directly, as the anchors do not physically reach into the cell interior. Thus, the
59 interaction of GPI linked proteins with intracellular signaling pathways likely requires
60 engagement of transmembrane co-receptors able to transduce the signal inside the cell.

61 The human genome is predicted to encode at least 129 GPI-anchored proteins.⁶
62 These include molecules implicated in a variety of functions in the nervous system
63 including axon guidance and synaptic adhesion (reviewed in Um and Ko, 2017)⁷.
64 Abrogation of GPI anchoring and defects in biosynthesis of GPI anchors have been
65 implicated in various diseases including central nervous system disorders.^{8,9}

66 Computational tools to predict GPI-anchored proteins have been unreliable due,
67 in part, to small training sets and similarity of features associated with GPI anchors and
68 transmembrane domains. Compounding issues with predictions, the membrane-

69 anchoring status of a particular protein cannot simply be deduced from its homology
70 with other proteins; protein families may include members that can be transmembrane,
71 GPI anchored and secreted. For example, the Semaphorin family of key axon guidance
72 cues includes members that are secreted (classes 2 and 3), transmembrane (classes 1,
73 4, 5, 6) and GPI anchored (class 7).¹⁰ Sema7A is GPI anchored and involved in axonal
74 outgrowth,¹¹ synaptic pruning,¹² and integrin-dependent stimulation of immune cells.¹³
75 Ephrins, the membrane-tethered ligands for the receptor tyrosine kinases, Ephs, are
76 divided into GPI anchored ephrin-A and single-pass transmembrane ephrin-B classes
77 and act by binding their cognate EphA and EphB receptors, respectively.^{14,15}
78 Interestingly, GPI-anchored Ephrin-A5 has been shown to transmit an intracellular
79 signal despite the lack of intracellular region; it partitions into caveolae-like
80 microdomains and engages Fyn protein tyrosine kinase signaling upon interaction with
81 an externally applied soluble form of EphA5 receptor.¹⁶

82 The IgLONs, a five-member family of conserved mammalian CSPs, are GPI
83 anchored and function in neurite outgrowth and synaptogenesis.^{17–20} IgLON-mediated
84 signaling remains poorly understood although one member, Negr1, is cleaved by an
85 ADAM-family protease and binds to an FGF receptor to stimulate dendritic arbor
86 growth.²¹ The *Drosophila melanogaster* orthologs of the IgLONs, the Dpr–DIP family of
87 CSPs,²² have been implicated in a variety of functions, including synapse specificity and
88 partner preference,^{23–28} axonal pathfinding and fasciculation,^{29–31} cell fate
89 determination,²⁵ cell survival,^{24,28,32}, and behavior.³³ Structurally, the ectodomains of
90 Dprs and DIPs consist of two and three immunoglobulin (Ig) domains, respectively,^{24,34}
91 similar to IgLONs which have three Ig domains and interact in a structurally similar

92 manner to Dprs and DIPs.^{22,35} However, how these proteins are linked to the cell
93 membrane has not been determined. Here, we tested whether members of the
94 *Drosophila* Dpr/DIP family are GPI anchored. We observed that all Dprs and DIPs have
95 a GPI anchor; this was not expected as only a few family members are predicted to
96 have GPI anchors. Treatment with GPI-specific phospholipase-C (PLC) causes
97 shedding of Dprs and DIPs from the surface of insect cells and live fly tissue; this
98 cleavage is GPI anchor-dependent, as it is lost when the GPI anchor site is replaced
99 with a transmembrane domain of a CD4 glycoprotein. Additionally, cleavage of GPI
100 anchors also abolishes Dpr–DIP-mediated cell aggregation. Finally, replacing the GPI
101 anchor with a transmembrane domain perturbs presynaptic and postsynaptic
102 localization of these CSPs. Together these findings suggest that GPI anchors of
103 Dpr/DIP contribute to their localization and function.

104

105 **RESULTS**

106 ***Some Dprs and DIPs are predicted to be GPI anchored***

107 The Dprs and DIPs bind selectively with one another via their ectodomains,
108 forming an elaborate network of homo- and heterophilic interactions (Figure 1A). Their
109 multifunctional roles in neural circuit development partially relies on their abilities to act
110 as cell adhesion molecules. However, whether and how Dprs and DIPs signal
111 intracellularly has not been examined. Determining if they are transmembrane (TM) or
112 GPI anchored proteins would shed light on their potential signaling mechanisms.

113 To gain insight into how Dprs and DIPs associate with the cell membrane we
114 used two transmembrane region prediction tools, Phobius³⁶ and DeepTMHMM³⁷. We

115 first removed N-terminal signal peptides recognized by SignalP-6.0³⁸ to avoid their
116 classification as TM domains, which is an inherent challenge for TM region prediction
117 tools due to the hydrophobic nature of both types of sequences. Phobius predicted 15 of
118 the Dprs and DIPs and Klingon to have C-terminal TM regions while DeepTMHMM
119 indicated only Dpr9 as a TM protein (Figure S1).

120 Next, we hypothesized that those Dprs and DIPs that were not classified as
121 transmembrane may be anchored to the membrane via GPI modification (Figure 1B).
122 We used two GPI signal prediction tools, PredGPI³⁹ and NetGPI⁴⁰. PredGPI predicts the
123 likelihood that a protein is GPI anchored and the position of the ω site—the residue to
124 which the lipid anchor is attached. PredGPI is based on Hidden Markov Model, trained
125 on experimentally validated GPI anchored proteins, and produces minimal false
126 positives while correctly identifying 89% of known GPI-containing proteins. NetGPI is a
127 more recently developed prediction software that uses neural networks to predict GPI
128 anchoring, the ω site, and the likelihood of the selected position being correct. NetGPI
129 was reported to slightly outperform PredGPI.⁴⁰

130 We examined all 32 members of the Dpr/DIP family and Klingon, an
131 immunoglobulin superfamily (IgSF) protein previously demonstrated to be GPI
132 anchored,⁴¹ with PredGPI and NetGPI and the majority of these CSPs were predicted to
133 lack GPI anchors (Figure 1C and Table S2). PredGPI indicated 8 Dprs and DIPs (25%)
134 as likely GPI linked (specificity above 99%) and Klingon as not GPI anchored as it fell
135 under the threshold for positivity with its specificity value of 98.5%. NetGPI predicted 11
136 Dprs and DIPs (34%) to be GPI anchored and correctly classified Klingon. Among the
137 proteins predicted to have a GPI modification by NetGPI, 67% were also predicted by

138 PredGPI. Surprisingly, Dpr3, Dpr5, and DIP- η were classified by NetGPI as likely GPI
139 anchored, but obtained very low specificity index values of 37.30%, 16.00%, and 1.00%,
140 respectively with PredGPI.

141 Overall, 12 Dprs and DIPs were predicted to be GPI anchored by either PredGPI
142 or NetGPI (Figure S2). 15 Dprs and DIPs were predicted to have TM helices, and five of
143 these CSPs were also predicted to have a GPI anchor (Dpr5, Dpr11, DIP- γ , DIP- ζ , and
144 DIP- η). Ten Dprs and DIPs were not predicted to be GPI linked nor to contain a TM
145 helix (Dpr4, Dpr6, Dpr10, Dpr13, Dpr15, Dpr16, Dpr17, DIP- θ , DIP- ι). Thus, using
146 prediction tools alone did not unequivocally classify how these CSPs are anchored to
147 the cell.

148

149 ***Dprs and DIPs are anchored to the membrane via glycoprophosphatidyl linkages***

150 To complement the prediction tools and examine the membrane anchoring
151 mechanism(s) of all Dprs and DIPs, we setup an S2 cell culture pipeline with V5-tagged,
152 full-length proteins (see Table 1 and the methods section for details). Duplicate S2
153 cultures were established for each CSP, and one culture was treated with the GPI
154 cleaving enzyme Phospholipase C (PLC). Supernatant and cell fractions were collected
155 and used for western blot analyses to determine if the CSP was cleaved by PLC. The
156 GPI-anchored protein Klingon was used as the positive control and the secreted cDIP
157 and transmembrane proteins Roughst (Rst) and Kirre served as negative controls.^{24,41–}
158 ⁴³ If the CSPs are GPI anchored, we expect an increase of protein in the supernatant
159 and a concomitant decrease in the cell fraction after PLC treatment (Figure 2A).
160 Remarkably, all Dprs and DIPs displayed these trends, suggesting that, like their

161 vertebrate orthologs, the IgLONs, Dprs and DIPs are GPI anchored (Figure 2B).

162 We next used flow cytometry as an orthogonal method to demonstrate the GPI
163 anchoring of Dprs and DIPs. We expressed the same, N-terminally V5-tagged
164 constructs of three Dprs and three DIPs in Sf9 cells using baculoviral infection. The
165 cultures expressing individual Dprs and DIPs, as well as the negative control, Rst, were
166 split into two samples: one was treated with PLC, and the other served as an untreated
167 control. Both samples were stained with fluorescent antibodies against V5 tag and the
168 relative levels of proteins on the surface of PLC-treated and untreated cells were
169 assessed using a flow cytometer. All DIPs tested, DIP- α , DIP- β , and DIP- γ , showed a
170 significant decrease in protein levels on the surface of Sf9 cells after PLC treatment
171 (Figure 3A-C). Similarly, all Dprs tested, Dpr10, Dpr11, and Dpr21, were mostly cleaved
172 off the cell surface by PLC (Figure 3D-F). In contrast, the level of Rst on the cell surface
173 remained unaffected by PLC cleavage (Figure 3G-H), as expected for a transmembrane
174 protein. The differential extent of cleavage between all tested Dprs and DIPs could be
175 explained by the potentially different accessibility of the GPI cleavage site for each of
176 the proteins. The results obtained using flow cytometry corroborate the observations
177 made using western blot analyses. Together, these findings demonstrate that Dprs and
178 DIPs are GPI anchored.

179

180 ***GPI anchor cleavage eliminates Dpr–DIP-mediated cell aggregation***

181 Dprs and DIPs are thought to mediate cell adhesive interactions to accomplish
182 many of their roles in the nervous system.³² A powerful in vitro approach to study cell
183 adhesion interactions is the cell aggregation assay.^{44–46} Here, we combined cell

184 aggregation and PLC assays to test whether cleavage of GPI anchors abrogates cell
185 adhesion mediated by Dprs and DIPs. We used Sf9 cells infected with baculoviruses
186 encoding mScarlet or EGFP followed by V5-tagged, full-length Dpr or DIP, respectively,
187 separated by a P2A peptide. We confirmed the expression of Dprs and DIPs using
188 western blots with an anti-V5 antibody (Figure S3). Cultures expressing individual Dprs
189 with mScarlet were mixed with cultures expressing cognate DIP partners and EGFP.
190 We predicted that, if Dprs and DIPs are GPI-anchored cell adhesion molecules, Dpr–
191 DIP interactions would lead to aggregation between the respective cells, and application
192 of PLC would break up the aggregates. Among the four pairs of cognate Dprs and DIPs
193 tested, DIP- α and Dpr6, DIP- β and Dpr10, and DIP- γ and Dpr11 induced robust
194 aggregation of Sf9 cells (Figure 4A-E). DIP- β and Dpr21-expressing cells aggregated
195 significantly less, which was surprising considering their relatively high affinity compared
196 to other Dpr–DIP pairs,⁴⁷ and that the expression levels of DIP- β and Dpr21 were
197 comparable to other proteins tested here. One reason for the reduced aggregation may
198 be weak homophilic Dpr21 interactions ($K_D \sim 50$ uM) on the same cell that may prevent
199 efficient heterophilic interactions with DIP- β between cells, as homophilic and
200 heterophilic complexes use the same interfaces and cannot co-exist.^{47,48} Nonetheless,
201 the addition of PLC significantly reduced cell aggregation for all four pairs of Dprs and
202 DIPs. These results demonstrate that Dpr–DIP interactions instruct cell adhesion and
203 suggest that Dprs and DIPs are anchored to the cell surface membrane via GPI
204 modifications.

205

206 ***Dpr and DIP proteins are GPI anchored in vivo***

207 Having demonstrated that Dprs and DIPs are GPI anchored in vitro, we wanted
208 to determine if the same modification occurs in fly tissue. We expressed tagged forms of
209 Dprs and DIPs in the neuromuscular circuit using the GAL4-UAS system. The larval
210 *Drosophila* neuromuscular junction (NMJ) is an excellent system to examine cell surface
211 proteins, as the circuit is well characterized and easily imaged. Moreover, Dprs and
212 DIPs are endogenously expressed at the larval NMJ,⁴⁹ and several Dprs and DIPs are
213 implicated in NMJ development. DIP- α and Dpr10 are known to function in motor axon
214 pathfinding and innervation,^{23,31} and DIP- γ and Dpr11 regulate synaptic growth through
215 the BMP pathway.²⁴

216 To achieve high protein levels in a cell type that would allow for easy
217 visualization of Dprs and DIPs on the cell surface, we expressed proteins in muscles
218 using *Mef2-GAL4* and omitted detergents in the initial steps of our staining protocol.
219 Muscles are highly stereotyped, multinucleated cells that are easily imaged. In third
220 instar larvae, V5-Dpr19 localized to the subsynaptic reticulum (SSR), a network of
221 postsynaptic membrane folds surrounding the innervating presynaptic boutons (Figure
222 5A-B). After incubation with PLC, nearly all surface V5 signal was lost, indicating that
223 Dpr19 is GPI anchored in vivo (Figure 5M). Similarly, V5-Dpr10 was localized to the
224 SSR and PLC treatment significantly decreased the V5 signal (Figure 5C-D,N).
225 However, unlike Dpr19, significant Dpr10 remained on the muscle surface in puncta
226 surrounding boutons (Figure 5D,D'), suggesting that a population of Dpr10 was
227 inaccessible to PLC or prevented from diffusing away by interacting with other CSPs at
228 these sites. To confirm that loss of the cell surface signal was due to cleavage of the
229 GPI anchor, we generated chimeric transmembrane tethered Dpr10 proteins by

230 replacing the second Ig domain and C-terminus of Dpr10 with the fourth Ig and
231 transmembrane domains of CD4 (a transmembrane protein not endogenously found in
232 flies). As expected, the cell surface abundance of this chimeric Dpr10-CD4 was
233 unaffected after PLC treatment, suggesting that Dpr10 is anchored at the NMJ via GPI
234 modification (Figure 5E-F',O). Conversely, when we replaced Ig1 of Dpr10 with the first
235 Ig domain of CD4 but retained the second Ig and C-terminus, this chimeric CD4-Dpr10
236 was efficiently released from the muscle surface by PLC (Figure 5G-H',P), indicating
237 that some PLC-released Dpr10 was likely retained on the cell surface through its
238 adhesion domain, Ig1, via interactions with endogenous Dprs and DIPs. These results
239 demonstrate that Dpr10 and Dpr19 are GPI anchored in their endogenous tissue.

240 Next, we examined two DIPs, DIP- α and DIP- ζ . Although neither is endogenously
241 expressed in muscles,⁴⁹ an ectopically expressed DIP- α variant localized to the SSR
242 (Figure 5I). Like Dpr10 and Dpr19, DIP- α was released from the muscle surface after
243 PLC treatment (Figure 5I-J',Q). However, cleavage was less efficient, and DIP- α puncta
244 formed on the muscle surface and around boutons after treatment. Similar to Dpr10,
245 replacing Ig2-Ig3 and the C-terminus of DIP- α with CD4 blocked the PLC-mediated
246 release from the muscle surface (Figure 5K-L',R). Strikingly, DIP- ζ did not localize to the
247 SSR, and PLC treatment resulted in increased DIP- ζ puncta across the muscle surface
248 (Figure S4A-C). Overall, these data show that PLC treatment affects Dpr10, DIP- α and -
249 ζ attachment and localization *in vivo* and support our model that Dprs and DIPs are GPI
250 anchored CSPs.

251

252 **GPI anchor alters localization in neurons and muscle cells**

253 GPI modifications have been shown to contribute to the subcellular localization of
254 CSPs.^{50,51} Thus, we examined localization of ectopically expressed wild type and
255 chimeric Dpr10 and DIP- α in their endogenous tissues. DIP- α is expressed in a subset
256 of motor neurons called the I δ type and localizes to the axon terminals.^{23,24,49} Using a I δ
257 motor neuron-specific driver, *A8-GAL4*,^{27,52} we confirmed that Myc-DIP- α localizes to
258 puncta in the motor axon terminal (Figure 6A-B'). However, when the GPI anchor was
259 replaced with a TM domain, DIP- α was redistributed and fewer puncta formed,
260 suggesting that clustered presynaptic localization is partially due to the GPI anchor
261 (Figure 6C-D'). These changes were confirmed by quantifying DIP- α puncta in the
262 terminal three boutons in each condition: In order to determine the nature of this
263 localization difference, samples were thresholded and collapsed to a binary
264 representation (Figure 6B,D), and then the number of particles in and around the three
265 terminal boutons of each arbor were quantified. Myc-DIP- α formed more and smaller
266 puncta compared to DIP- α -CD4 (Figure 6I-J), suggesting that the GPI anchor
267 contributes to the subcellular localization of DIP- α in vivo.

268 As described above, expressing Dpr10 in muscles results in Dpr10 localization at
269 the SSR, the membrane folds that form around in presynaptic boutons. However,
270 additional puncta are observable away from boutons on the muscle surface (Figure 6 E-
271 H') and these puncta were significantly reduced when compared to the localization of
272 the chimeric DIP- α containing a transmembrane helix (Figure 6 K-L). Taken together,
273 GPI anchors of DIP- α and Dpr10 contribute to both their pre- and postsynaptic
274 localization, respectively.

275

276 **DISCUSSION**

277 Dprs and DIPs have been implicated in many aspects of neural circuit
278 development. However, we lack a systematic analysis of how these CSPs are anchored
279 to the cell membrane to provide insights into their signaling mechanisms. Here, we
280 utilize several in vitro and in vivo approaches to demonstrate that all Dprs and DIPs are
281 attached to the cell membrane through GPI anchors. In tissue, we show that GPI
282 anchors contribute to subcellular clustering on the presynaptic neuronal membrane. Our
283 findings, that all Dpr and DIPs are GPI anchored, suggest that Dpr/DIP-mediated
284 functions must be achieved either by merely tethering two cells together and/or by
285 signaling through a co-receptor.

286

287 ***Predicting GPI anchors***

288 Predicting GPI anchors is intrinsically challenging for multiple reasons. First, the
289 features that predispose the protein to GPI anchor attachment are not very well defined.
290 Second, the ω site is flanked downstream by a stretch of hydrophobic amino acids that
291 can resemble a single-pass transmembrane domain. Third, it is estimated that the
292 animal genomes may each encode over 100 GPI anchored proteins, but only a fraction
293 of those have been experimentally validated, resulting in limited training datasets for
294 prediction tools. Consequently, both currently annotated GPI-anchored proteins and the
295 predictions of such proteins likely represent an underestimate of the actual number.
296 Indeed, a high number of false negatives was observed in this study, as only one-third
297 of Dprs and DIPs were predicted to be GPI anchored by the latest available algorithms
298 in PredGPI and NetGPI. Conversely, the TM prediction tool Phobius predicted 15 out of

299 32 Dprs and DIPs and Klingon as TM proteins, suggesting this software may not be
300 robust at discriminating between the two membrane targeting motifs. This is not
301 surprising, however, considering the similar chemical nature of TM helices and GPI
302 signals. The newest version of TMHMM, DeepTMHMM, a deep learning-based
303 algorithm, performed significantly better than Phobius, classifying only Dpr9 as a TM
304 protein. Unexpectedly, one-third of Dprs and DIPs were neither predicted to be GPI
305 anchored nor to have a TM helix. Together our findings demonstrate that currently
306 available GPI signal prediction tools can provide useful preliminary insights, especially
307 in combination with TM prediction software. However, experimental validation should be
308 the primary way of assessing GPI anchor presence, when possible, until better
309 prediction tools are developed.

310

311 ***Dpr and DIP clustering is aided by their GPI anchors***

312 CSP localization is often critical for their function. Here, we demonstrate that DIP-
313 α, Dpr10, and Dpr19 localized to the postsynaptic membrane when expressed in
314 muscles. Moreover, punctate Dpr10 localization on the muscle surface was diminished
315 when we replaced the GPI anchor with a TM helix suggesting that this modification
316 contributes to its localization. Similar results were observed for punctate DIP-α in
317 presynaptic Ls arbors. GPI-anchored proteins have been reported to localize to lipid
318 rafts—domains in the lipid bilayer that have increased levels of sterols and are therefore
319 slightly thicker and less mobile than the surrounding membrane.⁵³ Although still
320 somewhat controversial, these domains are thought to scaffold proteins by increasing
321 the local concentration of proteins that preferentially localize to lipid rafts such as GPI-

322 anchored proteins, possibly including Dprs and DIPs within these rafts.

323 The PLC cleavage of Dpr10 and DIP- α from muscles was incomplete, leaving
324 residual punctate signal around the boutons and on the muscle surface unlike Dpr19
325 that was almost completely lost. These differences in PLC cleavage efficiencies may be
326 due to different local interactions of Dprs and DIPs with various proteins or lipids in the
327 membrane. Alternatively, we provide evidence suggesting that cleavage is complete
328 and the observed signal is due to the cleaved CSPs binding nearby proteins and
329 preventing release from the tissue.

330

331 ***Dpr–DIP-mediated cell adhesion depends on their GPI anchors***

332 Trans- and cis-interactions between Dprs and DIPs drive their roles in the
333 nervous system. Dprs and DIPs may act similar to other cell adhesion molecules (e.g.,
334 integrins or cadherins) by clustering to generate avidity and strengthen cell-cell contacts
335 during axonal fasciculation or synapse formation. We examined four Dpr–DIP pairs and
336 all showed robust aggregation that was susceptible to PLC treatment, suggesting that
337 the GPI anchors in Dprs and DIPs are accessible by PLC at the cell-cell contact sites.
338 This phenomenon could have profound consequences in vivo for modulating cell
339 adhesion, provided that specific lipases and proteases are present under physiological
340 conditions at sufficient concentrations and exhibit high enough substrate turnover to
341 cause structural changes to cell-cell contacts.

342 Shedding of cell surface molecules by hydrolytic enzymes like proteases and
343 lipases has been implicated in various signaling mechanisms. Examples include
344 activation of fibroblast growth factor 2 (FGF-2) via the release of soluble syndecan-1,⁵⁴

345 potentiation of β -catenin signaling upon cleavage of neuronal cadherin (N-cadherin),⁵⁵
346 modulation of Nodal signaling via GPI cleavage of CRIPTO,⁵⁶ and bi-directional
347 regulation of the Notch pathway through proteolysis of Notch or its ligands.^{57–60} GPI-
348 anchored proteins are unable to directly signal intracellularly so acting as soluble factors
349 for other receptors, either in *cis* or *trans*, could be a conceivable mode of action. A
350 subset of Dprs⁶¹ and DIPs were identified in a secretome screen as soluble factors in
351 the hemolymph of larvae (Personal Communication, Norbert Perrimon and Justin
352 Bosch), but the roles of these soluble variants are unknown. In addition to potential
353 functions of soluble forms of these CSPs in the extracellular space, it would be
354 interesting to explore if their shedding *in vivo* could affect Dpr–DIP-mediated cell
355 adhesion, and have consequences for the structure and function of synapses or other
356 specialized sites of cell-cell contact, as shown for some CAMs.^{55,62–66}

357

358 ***GPI anchors in neural circuit assembly***

359 GPI-anchored proteins are critical for many physiological processes, including
360 neural circuit formation. These proteins can be cleaved by lipases or proteases as part
361 of their signaling mechanism. For example, the GPI-anchored protein RECK regulates
362 motor neuron differentiation in mammals by inhibiting Notch signaling; only when RECK
363 is cleaved and released from the membrane can the ADAM10 metalloprotease access
364 and cleave the Notch ligand thereby promoting differentiation.⁶⁷ In addition, IgLONs, the
365 vertebrate orthologs of Dprs and DIPs, are shed from neurons via ADAM10 to promote
366 neuronal growth of nearby neurons.^{19,21} The presence of GPI anchors in Dprs and DIPs
367 suggests that their biology and signaling may be conserved with IgLONs. Finally, if the

368 GPI-anchored protein is not cleaved, it can still signal through a co-receptor that
369 traverses the cell membrane. To our knowledge, no Dpr or DIP co-receptors have been
370 published and this provides an intriguing future avenue of research.

371

372 **Acknowledgments**

373 We would like to thank Szymon Kordon, Ruiling Zhang, Gabriel Carmona Rosas, Indya
374 Weathers, Stephanie Dunning, Veera Anand, and Yupu Wang as well as members of
375 the Carrillo and Özkan Labs for support and feedback. This work is supported by
376 NINDS R01 NS123439 and a UChicago Faculty Diversity Grant to R.A.C., NINDS R01
377 NS097161 to E.Ö., and NIGMS T32 GM007183 and NINDS FS31 NS120458 to M.L-R.

378

379 **METHODS**

380 **Sequence selection and molecular cloning**

381 cDNAs of most of the full-length Dprs and DIPs used in the study were obtained from
382 Drosophila Genomics Research Center (DGRC). The remaining full-length sequences
383 were generated through the extension of existing ectodomain constructs subcloned by
384 our groups.³⁴ Among the DGRC clones, the sequence of Dpr15 required modification to
385 remove the insertion within the Ig2 domain to preserve its structural integrity. The
386 source, isoform, and identification number of each used sequence can be found in
387 Table S1. Sequences of full-length Dprs and DIPs with an N-terminal V5 tag were
388 cloned into the pMT/BiP/V5-His A vector (Invitrogen) for expression in S2 *Drosophila*
389 cells for PLC cleavage assay or into the pAcGP67 baculovirus transfer vector (BD
390 Biosciences) for expression in Sf9 cells for cell flow cytometry and cell aggregation

391 experiments. For cell aggregation, the constructs additionally included EGFP or
392 mScarlet separated from V5-tagged Dprs or DIPs by the P2A sequence.

393

394 **Predictions of GPI anchors and transmembrane helices**

395 Predictions of GPI-linkage were carried out using PredGPI³⁹ and NetGPI⁴⁰ tools
396 available online. For predictions using PredGPI the general model was used.
397 Predictions of transmembrane regions were performed using Phobius³⁶ and
398 DeepTMHMM³⁷. Before analysis in Phobius and DeepTMHMM, the sequences of signal
399 peptides predicted with SignalP-6.0³⁸ were removed.

400

401 ***Drosophila* reagents, dissections, and immunohistochemistry**

402 All flies were kept at 25°C except when otherwise noted. Crosses were set at medium
403 density and crawling third instar larvae were dissected as before⁴⁹ in Phosphate
404 Buffered Saline (PBS, pH 7.4) on Sylgard dishes. Briefly, after fixing for 30 minutes in
405 4% paraformaldehyde, fillets were washed 3 times for 10 minutes in PBST (PBS +
406 0.05% Triton X-100, pH 7.4). Larval fillets were then blocked in 5% Normal Goat Serum
407 in PBST. Samples were incubated in primary antibodies diluted in block and overnight
408 at 4°C, extensively washed in PBST, and incubated with secondary antibodies for 2
409 hours at room temperature before the final washes in PBST. All washes and incubations
410 occurred on nutators. Samples were then mounted in Vectashield (Vector Laboratories)
411 and representative images were collected. HRP was used as a marker for neuronal
412 membranes and DLG was used as a marker for postsynaptic membranes.

413

414 The antibodies used for this study are:

Antibodies	Source	Concentration
Chicken anti-V5	Bethyl/A190-118A	1:200
Mouse anti-V5	Invitrogen R960-25	1:200
Rabbit anti-V5	Glotzer Lab	1:10,000
Rabbit anti-DLG	Budnik Lab	1:40,000
Mouse anti- α -Tubulin	Sigma DM1A	1:5,000
Goat anti-Mouse 488	Invitrogen A11029	1:500
Goat anti-Rabbit 488	Invitrogen A11008	1:500
Goat anti-Chicken 488	Invitrogen A11039	1:500
Goat anti-Rabbit 568	Invitrogen A11036	1:500
Goat anti-HRP 647	Jackson ImmunoResearch /123-605-021	1:100
Goat anti-Mouse 680	Jackson ImmunoResearch /115-625-146	1:5,000
Goat anti-Rabbit 790	Jackson ImmunoResearch /111-655-144	1:5,000

415

416 The fly lines used for this study are:

Genotype	Description	Source
W1118	White controls	BDSC
Mef2-GAL4	Muscle GAL4 driver	Ranganayakulu, et al., 1998 ⁶⁸
A8-GAL4	Is neuron GAL4 driver	Wang, et al., 2021 ⁵²
UAS-V5-Dpr19	V5 tagged Dpr19	This study
UAS-V5-Dpr10	V5 tagged Dpr10	Xu, et al., 2018 ⁶⁹
UAS-Dpr10-CD4	First Ig domain from Dpr10, Ig5 and the TM from CD4	This study
UAS-CD4-Dpr10	First Ig from CD4, remainder of protein from Dpr10	This study
UAS-EGFP-DIP- ζ	sfGFP tagged DIP- ζ	This study
UAS-Myc-DIP- α	Myc tagged DIP- α (N)	This study
UAS-DIP- α -Myc	Myc tagged DIP- α (C)	Ashley, et al., 2019 ²³
UAS-DIP- α -CD4	First Ig domain from DIP- α , Ig4+5 and the TM from CD4	This study

417

418 **PLC cleavage assay with S2 cells**

419 S2 cells were obtained from the Drosophila Genomics Research Center and maintained
420 in Schneider's Medium (Sigma S0146), supplemented with Insect Media Supplement
421 (Sigma I7267), and 90 U/ml Penicillin plus 90 µg/ml Streptomycin. Cells were
422 maintained at room temperature. For experiments, confluent cells were split 1:2 into 6-
423 well plates and transfected the following day. Complete Schneider's Media was mixed
424 2:1 with 250 µg/ml dimethyldioctadecyl-ammonium bromide (DDAB), allowed to mix,
425 and then 500 µl DNA was added for each well to be transfected. Approximately 24
426 hours after transfection, protein expression was induced by adding 1 mM copper sulfate
427 (CuSO₄). Three days later, 2 µl of 100 U/ml phosphatidylinositol-specific phospholipase
428 C (PI-PLC, Life Technologies P-6466) was added to the treatment well, and cells were
429 incubated for 4 hours.

430
431 To harvest cells, 2 ml from each well was collected and spun down at 500 x g for 5
432 minutes. The supernatant was collected and mixed with 6x Loading Buffer (375 mM
433 Tris-Cl, pH 6.8, 9% SDS, 50% glycerol, 0.03% bromophenol blue, 9% β-
434 mercaptoethanol) and boiled for 10 minutes. The cell pellet was washed in PBS and
435 spun down as before. Next, cells were lysed used using a buffer adapted from
436 Bumgarner et al., 2005,⁷⁰ consisting of 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1%
437 Triton X-100, 5 mM EDTA, and protease inhibitors (one tablet per 50 ml; Pierce
438 A32955). Tubes were incubated on a nutator at 4°C for 30 minutes and then at 37°C for
439 30 minutes. Tubes were centrifuged at 17,000 x g at room temperature for 15 minutes
440 and mixed with 6x Loading Buffer.

441

442 Samples were then run on 12% SDS-polyacrylamide gels using the TGX FastCast
443 system (BioRad 1610175). The samples were transferred overnight onto a nitrocellulose
444 membrane (BioRad 1620115) at a constant current of 40 mA and blocked for one hour
445 in 1% (w/v) Casein Block. Staining with primary and secondary antibodies was
446 performed for 2 hours at room temperature with slight agitation and included washes in
447 PBST after each incubation. Westerns were imaged on a LI-COR Odyssey imager.
448

449 **Flow cytometry**

450 Sf9 cell cultures at the density of 2×10^6 cells/ml were placed in 6-well plates, 3 ml per
451 well. The cells were infected with baculoviruses encoding full-length Dprs and DIPs with
452 an N-terminal V5 tag. Infected cultures were incubated for 48 hours on an orbital shaker
453 at 125 rpm (Thermo MaxQ 430), at 28°C. 0.6 ml of each culture was transferred to a 24-
454 well plate. 4 μ l of PI-PLC per well was used for GPI cleavage. 4 μ l of PI-PLC storage
455 buffer (20 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.01% sodium azide, 50% glycerol) was
456 added to control samples. Treatment was carried out for 3 hours on an orbital shaker at
457 125 rpm, at 28°C. Cultures were spun down for 1 minute at 500 x g. The cell pellets
458 were resuspended in 300 μ l of cold PBS, pH 7.4, with 1% BSA. 100 μ l of cell
459 suspensions were transferred to a U-shaped 96-well plate. 4 μ l of anti-V5-AF647
460 antibody (R&D Systems, FAB8926R) was used for staining cells for 20 minutes on a
461 shaker at 500 rpm (Thermo Microplate Shaker), at 4°C. Cultures were spun down for 1
462 minute at 500 x g, at 4°C and washed 3 times with 200 μ l of PBS, pH 7.4, with 1% (w/v)
463 BSA. Cells were analyzed using a BD Accuri C6 flow cytometer. 20,000 events were
464 recorded per sample. The results were analyzed using FlowJo Software v10.8.1 (BD

465 Life Sciences).

466

467 **Cell aggregation assay with Sf9 cells**

468 Sf9 cultures at the density of 2×10^6 cells/ml were placed in 6-well plates, 3 ml per well,
469 and infected with baculoviruses encoding (N- to C-terminal) mScarlet, P2A sequence
470 (ATNFSLLKQAGDVEENPGP) and V5-tagged Dpr, or EGFP, P2A sequence, and V5-
471 tagged DIP. This construct design was chosen to leave unmodified C-termini for Dprs
472 and DIPs, as that would be important for testing for a C-terminal GPI anchoring signal.

473 Infected cultures were incubated for 48 hours on an orbital shaker at 125 rpm, at 28°C.

474 Expression of V5-tagged Dprs and DIPs was confirmed using western blots with the
475 anti-V5-AF647 antibody. Cultures were diluted 1:15 in Sf9 complete media (Gibco Sf-
476 900 III SFM, with 10% FBS, 2 mM L-glutamine, and 20 µg/ml gentamicin). 200 µl of
477 cultures expressing Dprs were mixed with 200 µl of cultures expressing DIPs in 24-well
478 plates. The control samples included 200 µl of cultures expressing individual Dprs or
479 DIPs mixed with 200 µl of non-infected Sf9 cultures. Samples were prepared in
480 triplicates for each Dpr–DIP pair and each control culture expressing individual Dprs
481 and DIPs. Cultures were left to aggregate for 30 minutes on an orbital shaker at 125
482 rpm, at 28°C. 4 µl of PI-PLC per well was used for GPI cleavage. 4 µl of PI-PLC storage
483 buffer was added to control samples. Treatment was carried out for 1 hour on an orbital
484 shaker at 125 rpm, at 28°C. Cultures were imaged in 24-well plates at 5x magnification.
485 Three images were collected for every well. Cell aggregation was quantified using the
486 cell aggregation index, defined as the percentage of the total area occupied by cells that
487 is comprised of aggregates.⁷¹ The area occupied by cells and aggregates was

488 determined using the 'Analyze particles' function in Fiji. Aggregates were defined as
489 particles with areas of at least 2900 μm^2 .

490

491 **Tissue PLC experiment**

492 Larvae were filleted, rinsed in PBS, and incubated while shaking for one hour in 1 ml of
493 PBS with or without 1 μl of PI-PLC. Larvae were washed with PBS, fixed, and stained
494 as above with a slight alteration: detergent was only used after staining for Dpr/DIP
495 protein tags. After extensive washing in PBS, anti-DLG was diluted in PBST and
496 incubated with larvae for 2 hours at room temperature. The subsequent washing and
497 secondary antibody staining was as described above. The staining procedure for PLC-
498 treated and untreated preparations was carried out in the same tube so that conditions
499 were identical. Three muscle 4 lb arbors were imaged per animal.

500

501 For quantification, images were collected from each experiment using identical imaging
502 parameters. After measuring pixel sum of three terminal boutons per arbor, signal of the
503 Dpr/DIP was normalized to DLG signal to control for any differences in staining
504 conditions between replicates and because DLG should not be affected by PLC
505 treatment. These values are reported as 'Relative Pixel Sum' representing Tag/DLG
506 pixel sum.

507

508 **Tissue Localization experiment**

509 For localization experiments, crosses were maintained at 18°C in order to dampen
510 protein expression levels. Samples to be compared were pooled and stained as above,

511 omitting detergents in the first round of staining to label only proteins that were present
512 on the cell surface at the time of fixation.

513
514 Once images were collected, z-stacks were generated, and the relevant channel was
515 converted to 8-bit format before a threshold was set to convert image to binary
516 representation of the surface protein stain. The same threshold was used for all images.
517 This image was then used to count particles. For presynaptic localization, particles of
518 and surrounding three terminal boutons per arbor were measured. For postsynaptic
519 localization, particles of the entire image were counted. These manipulations were
520 performed using ImageJ FIJI.⁷²

521
522 **Statistical Analysis**
523 For tissue PLC experiments and tissue localization experiments, two-tailed Student's t-
524 test was used to determine statistical significance (Prism 8). Cell aggregation experiments
525 were evaluated using one-way ANOVA (Prism 9).

526
527 **Tissue and cell imaging protocol**
528 All *in vivo* images were obtained on a Zeiss LSM800 confocal microscope with a 40X
529 plan-neofluar 1.3NA objective or 63X plan-apo 1.4NA objective. All images of Sf9 cells
530 were obtained using a Leica THUNDER Imager 3D Cell Culture with Leica N Plan
531 5x/0.12 PH0 objective.

532

533 **REFERENCES**

- 534 1. Ferguson, M.A., and Williams, A.F. (1988). Cell-surface anchoring of proteins via glycosyl-
535 phosphatidylinositol structures. *Annu Rev Biochem* 57, 285–320.
536 10.1146/annurev.bi.57.070188.001441.
- 537 2. Low, M.G., and Finean, J.B. (1977). Non-lytic release of acetylcholinesterase from
538 erythrocytes by a phosphatidylinositol-specific phospholipase C. *FEBS Lett* 82, 143–146.
539 10.1016/0014-5793(77)80905-8.
- 540 3. Ikezawa, H., Yamanegi, M., Taguchi, R., Miyashita, T., and Ohyabu, T. (1976). Studies on
541 phosphatidylinositol phosphodiesterase (phospholipase C type) of *Bacillus cereus*. I.
542 purification, properties and phosphatase-releasing activity. *Biochim Biophys Acta* 450, 154–
543 164.
- 544 4. Eisenhaber, B., Bork, P., and Eisenhaber, F. (1999). Prediction of potential GPI-modification
545 sites in proprotein sequences. *J Mol Biol* 292, 741–758. 10.1006/jmbi.1999.3069.
- 546 5. Orlean, P., and Menon, A.K. (2007). Thematic review series: lipid posttranslational
547 modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to
548 stop worrying and love glycophospholipids. *J Lipid Res* 48, 993–1011. 10.1194/jlr.R700002-
549 JLR200.
- 550 6. UniProt Consortium (2015). UniProt: a hub for protein information. *Nucleic Acids Res* 43,
551 D204-212. 10.1093/nar/gku989.
- 552 7. Um, J.W., and Ko, J. (2017). Neural Glycosylphosphatidylinositol-Anchored Proteins in
553 Synaptic Specification. *Trends Cell Biol* 27, 931–945. 10.1016/j.tcb.2017.06.007.
- 554 8. Lukacs, M., Roberts, T., Chatuverdi, P., and Stottmann, R.W. (2019).
555 Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube
556 closure, heart development, and cranial neural crest cell survival. *eLife* 8, e45248.
557 10.7554/eLife.45248.
- 558 9. Wu, T., Yin, F., Guang, S., He, F., Yang, L., and Peng, J. (2020). The
559 Glycosylphosphatidylinositol biosynthesis pathway in human diseases. *Orphanet J Rare Dis*
560 15, 129. 10.1186/s13023-020-01401-z.
- 561 10. Kruger, R.P., Aurandt, J., and Guan, K.-L. (2005). Semaphorins command cells to move.
562 *Nat Rev Mol Cell Biol* 6, 789–800. 10.1038/nrm1740.
- 563 11. Pasterkamp, R.J., Peschon, J.J., Spriggs, M.K., and Kolodkin, A.L. (2003). Semaphorin 7A
564 promotes axon outgrowth through integrins and MAPKs. *Nature* 424, 398–405.
565 10.1038/nature01790.
- 566 12. Uesaka, N., Uchigashima, M., Mikuni, T., Nakazawa, T., Nakao, H., Hirai, H., Aiba, A.,
567 Watanabe, M., and Kano, M. (2014). Retrograde semaphorin signaling regulates synapse
568 elimination in the developing mouse brain. *Science* 344, 1020–1023.
569 10.1126/science.1252514.
- 570 13. Suzuki, K., Kumanogoh, A., and Kikutani, H. (2008). Semaphorins and their receptors in
571 immune cell interactions. *Nat Immunol* 9, 17–23. 10.1038/ni1553.

572 14. Eph Nomenclature Committee (1997). Unified nomenclature for Eph family receptors and
573 their ligands, the Ephrins. *Cell* 90, 403–404. 10.1016/s0092-8674(00)80500-0.

574 15. Gale, N.W., Holland, S.J., Valenzuela, D.M., Flenniken, A., Pan, L., Ryan, T.E.,
575 Henkemeyer, M., Strebhardt, K., Hirai, H., Wilkinson, D.G., et al. (1996). Eph receptors and
576 ligands comprise two major specificity subclasses and are reciprocally compartmentalized
577 during embryogenesis. *Neuron* 17, 9–19. 10.1016/s0896-6273(00)80276-7.

578 16. Davy, A., Gale, N.W., Murray, E.W., Klinghoffer, R.A., Soriano, P., Feuerstein, C., and
579 Robbins, S.M. (1999). Compartmentalized signaling by GPI-anchored ephrin-A5 requires
580 the Fyn tyrosine kinase to regulate cellular adhesion. *Genes Dev* 13, 3125–3135.
581 10.1101/gad.13.23.3125.

582 17. Hachisuka, A., Yamazaki, T., Sawada, J., and Terao, T. (1996). Characterization and tissue
583 distribution of opioid-binding cell adhesion molecule (OBCAM) using monoclonal antibodies.
584 *Neurochem Int* 28, 373–379. 10.1016/0197-0186(95)00108-5.

585 18. Itoh, S., Hachisuka, A., Kawasaki, N., Hashii, N., Teshima, R., Hayakawa, T., Kawanishi, T.,
586 and Yamaguchi, T. (2008). Glycosylation analysis of IgLON family proteins in rat brain by
587 liquid chromatography and multiple-stage mass spectrometry. *Biochemistry* 47, 10132–
588 10154. 10.1021/bi8009778.

589 19. Sanz, R., Ferraro, G.B., and Fournier, A.E. (2015). IgLON cell adhesion molecules are shed
590 from the cell surface of cortical neurons to promote neuronal growth. *J Biol Chem* 290,
591 4330–4342. 10.1074/jbc.M114.628438.

592 20. Struyk, A.F., Canoll, P.D., Wolfgang, M.J., Rosen, C.L., D'Eustachio, P., and Salzer, J.L.
593 (1995). Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell
594 adhesion molecules. *J Neurosci* 15, 2141–2156. 10.1523/JNEUROSCI.15-03-02141.1995.

595 21. Pischedda, F., and Piccoli, G. (2016). The IgLON Family Member Negr1 Promotes Neuronal
596 Arborization Acting as Soluble Factor via FGFR2. *Front Mol Neurosci* 8, 89.
597 10.3389/fnmol.2015.00089.

598 22. Cheng, S., Park, Y., Kurleto, J.D., Jeon, M., Zinn, K., Thornton, J.W., and Özkan, E. (2019).
599 Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and
600 structural evidence. *Proc Natl Acad Sci U S A* 116, 9837–9842. 10.1073/pnas.1818631116.

601 23. Ashley, J., Sorrentino, V., Lobb-Rabe, M., Nagarkar-Jaiswal, S., Tan, L., Xu, S., Xiao, Q.,
602 Zinn, K., and Carrillo, R.A. (2019). Transsynaptic interactions between IgSF proteins DIP- α
603 and Dpr10 are required for motor neuron targeting specificity. *eLife* 8, e42690.
604 10.7554/eLife.42690.

605 24. Carrillo, R.A., Özkan, E., Menon, K.P., Nagarkar-Jaiswal, S., Lee, P.-T., Jeon, M., Birnbaum,
606 M.E., Bellen, H.J., Garcia, K.C., and Zinn, K. (2015). Control of Synaptic Connectivity by a
607 Network of Drosophila IgSF Cell Surface Proteins. *Cell* 163, 1770–1782.
608 10.1016/j.cell.2015.11.022.

609 25. Courgeon, M., and Desplan, C. (2019). Coordination between stochastic and deterministic
610 specification in the Drosophila visual system. *Science* 366, eaay6727.
611 10.1126/science.aay6727.

612 26. Menon, K.P., Kulkarni, V., Takemura, S.-Y., Anaya, M., and Zinn, K. (2019). Interactions
613 between Dpr11 and DIP-γ control selection of amacrine neurons in *Drosophila* color vision
614 circuits. *eLife* 8, e48935. 10.7554/eLife.48935.

615 27. Venkatasubramanian, L., Guo, Z., Xu, S., Tan, L., Xiao, Q., Nagarkar-Jaiswal, S., and Mann,
616 R.S. (2019). Stereotyped terminal axon branching of leg motor neurons mediated by IgSF
617 proteins DIP-α and Dpr10. *eLife* 8, e42692. 10.7554/eLife.42692.

618 28. Xu, C., Theisen, E., Maloney, R., Peng, J., Santiago, I., Yapp, C., Werkhoven, Z., Rumbaut,
619 E., Shum, B., Tarnogorska, D., et al. (2019). Control of Synaptic Specificity by Establishing a
620 Relative Preference for Synaptic Partners. *Neuron* 103, 865-877.e7.
621 10.1016/j.neuron.2019.06.006.

622 29. Barish, S., Nuss, S., Strunilin, I., Bao, S., Mukherjee, S., Jones, C.D., and Volkan, P.C.
623 (2018). Combinations of DIPs and Dprs control organization of olfactory receptor neuron
624 terminals in *Drosophila*. *PLoS Genet* 14, e1007560. 10.1371/journal.pgen.1007560.

625 30. Bornstein, B., Meltzer, H., Adler, R., Alyagor, I., Berkun, V., Cummings, G., Reh, F., Keren-
626 Shaul, H., David, E., Riemensperger, T., et al. (2021). Transneuronal Dpr12/DIP-δ
627 interactions facilitate compartmentalized dopaminergic innervation of *Drosophila* mushroom
628 body axons. *EMBO J* 40, e105763. 10.15252/embj.2020105763.

629 31. Lobb-Rabe, M., DeLong, K., Salazar, R.J., Zhang, R., Wang, Y., and Carrillo, R.A. (2022).
630 Dpr10 and Nocte are required for *Drosophila* motor axon pathfinding. *Neural Dev* 17, 10.
631 10.1186/s13064-022-00165-5.

632 32. Xu, S., Sergeeva, A.P., Katsamba, P.S., Manneppalli, S., Bahna, F., Bimela, J., Zipursky,
633 S.L., Shapiro, L., Honig, B., and Zinn, K. (2022). Affinity requirements for control of synaptic
634 targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. *Cell Rep*
635 39, 110618. 10.1016/j.celrep.2022.110618.

636 33. Brovero, S.G., Fortier, J.C., Hu, H., Lovejoy, P.C., Newell, N.R., Palmateer, C.M., Tzeng, R.-
637 Y., Lee, P.-T., Zinn, K., and Arbeitman, M.N. (2021). Investigation of *Drosophila* fruitless
638 neurons that express Dpr/DIP cell adhesion molecules. *eLife* 10, e63101.
639 10.7554/eLife.63101.

640 34. Özkan, E., Carrillo, R.A., Eastman, C.L., Weiszmann, R., Waghray, D., Johnson, K.G., Zinn,
641 K., Celiker, S.E., and Garcia, K.C. (2013). An Extracellular Interactome of Immunoglobulin
642 and LRR Proteins Reveals Receptor-Ligand Networks. *Cell* 154, 228–239.
643 10.1016/j.cell.2013.06.006.

644 35. Ranaivoson, F.M., Turk, L.S., Ozgul, S., Kakehi, S., von Daake, S., Lopez, N., Trobiani, L.,
645 De Jaco, A., Denissova, N., Demeler, B., et al. (2019). A Proteomic Screen of Neuronal Cell-
646 Surface Molecules Reveals IgLONs as Structurally Conserved Interaction Modules at the
647 Synapse. *Structure* 27, 893-906.e9. 10.1016/j.str.2019.03.004.

648 36. Käll, L., Krogh, A., and Sonnhammer, E.L.L. (2004). A combined transmembrane topology
649 and signal peptide prediction method. *J Mol Biol* 338, 1027–1036.
650 10.1016/j.jmb.2004.03.016.

651 37. Hallgren, J., Tsirigos, K.D., Pedersen, M.D., Armenteros, J.J.A., Marcatili, P., Nielsen, H.,
652 Krogh, A., and Winther, O. (2022). DeepTMHMM predicts alpha and beta transmembrane
653 proteins using deep neural networks. 2022.04.08.487609. 10.1101/2022.04.08.487609.

654 38. Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gíslason, M.H., Pihl, S.I., Tsirigos,
655 K.D., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2022). SignalP 6.0 predicts
656 all five types of signal peptides using protein language models. *Nat Biotechnol* 40, 1023–
657 1025. 10.1038/s41587-021-01156-3.

658 39. Pierleoni, A., Martelli, P.L., and Casadio, R. (2008). PredGPI: a GPI-anchor predictor. *BMC*
659 *Bioinformatics* 9, 392. 10.1186/1471-2105-9-392.

660 40. Gíslason, M.H., Nielsen, H., Almagro Armenteros, J.J., and Johansen, A.R. (2021).
661 Prediction of GPI-anchored proteins with pointer neural networks. *Curr Res Biotechnol* 3, 6–
662 13. 10.1016/j.crbiot.2021.01.001.

663 41. Butler, S.J., Ray, S., and Hiromi, Y. (1997). klingon, a novel member of the *Drosophila*
664 immunoglobulin superfamily, is required for the development of the R7 photoreceptor
665 neuron. *Development* 124, 781–792. 10.1242/dev.124.4.781.

666 42. Ramos, R.G., Igloi, G.L., Lichte, B., Baumann, U., Maier, D., Schneider, T., Brandstätter,
667 J.H., Fröhlich, A., and Fischbach, K.F. (1993). The irregular chiasm C-roughest locus of
668 *Drosophila*, which affects axonal projections and programmed cell death, encodes a novel
669 immunoglobulin-like protein. *Genes Dev* 7, 2533–2547. 10.1101/gad.7.12b.2533.

670 43. Ruiz-Gómez, M., Coutts, N., Price, A., Taylor, M.V., and Bate, M. (2000). *Drosophila*
671 dumbfounded: a myoblast attractant essential for fusion. *Cell* 102, 189–198. 10.1016/s0092-
672 8674(00)00024-6.

673 44. Honig, B., and Shapiro, L. (2020). Adhesion Protein Structure, Molecular Affinities, and
674 Principles of Cell-Cell Recognition. *Cell* 181, 520–535. 10.1016/j.cell.2020.04.010.

675 45. Kumari, S.S., and Varadaraj, K. (2009). Intact AQP0 performs cell-to-cell adhesion. *Biochem*
676 *Biophys Res Commun* 390, 1034–1039. 10.1016/j.bbrc.2009.10.103.

677 46. Yoshida, C., and Takeichi, M. (1982). Teratocarcinoma cell adhesion: identification of a cell-
678 surface protein involved in calcium-dependent cell aggregation. *Cell* 28, 217–224.
679 10.1016/0092-8674(82)90339-7.

680 47. Cosmanescu, F., Katsamba, P.S., Sergeeva, A.P., Ahlsen, G., Patel, S.D., Brewer, J.J.,
681 Tan, L., Xu, S., Xiao, Q., Nagarkar-Jaiswal, S., et al. (2018). Neuron-Subtype-Specific
682 Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition
683 Proteins. *Neuron* 100, 1385–1400.e6. 10.1016/j.neuron.2018.10.046.

684 48. Cheng, S., Ashley, J., Kurleto, J.D., Lobb-Rabe, M., Park, Y.J., Carrillo, R.A., and Özkan, E.
685 (2019). Molecular basis of synaptic specificity by immunoglobulin superfamily receptors in
686 *Drosophila*. *eLife* 8, e41028. 10.7554/eLife.41028.

687 49. Wang, Y., Lobb-Rabe, M., Ashley, J., Chatterjee, P., Anand, V., Bellen, H.J., Kanca, O., and
688 Carrillo, R.A. (2022). Systematic expression profiling of Dpr and DIP genes reveals cell
689 surface codes in *Drosophila* larval motor and sensory neurons. *Development* 149,
690 dev200355. 10.1242/dev.200355.

691 50. Arumugam, S., Schmieder, S., Pezeshkian, W., Becken, U., Wunder, C., Chinnapen, D.,
692 Ipsen, J.H., Kenworthy, A.K., Lencer, W., Mayor, S., et al. (2021). Ceramide structure
693 dictates glycosphingolipid nanodomain assembly and function. *Nat Commun* 12, 3675.
694 10.1038/s41467-021-23961-9.

695 51. Sharma, P., Varma, R., Sarasij, R.C., Ira, Gousset, K., Krishnamoorthy, G., Rao, M., and
696 Mayor, S. (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell
697 membranes. *Cell* 116, 577–589. 10.1016/s0092-8674(04)00167-9.

698 52. Wang, Y., Lobb-Rabe, M., Ashley, J., Anand, V., and Carrillo, R.A. (2021). Structural and
699 Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the Drosophila
700 Neuromuscular Circuit. *J Neurosci* 41, 1401–1417. 10.1523/JNEUROSCI.1492-20.2020.

701 53. Levental, I., Levental, K.R., and Heberle, F.A. (2020). Lipid Rafts: Controversies Resolved,
702 Mysteries Remain. *Trends Cell Biol* 30, 341–353. 10.1016/j.tcb.2020.01.009.

703 54. Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M.L., Ledbetter, S., Ornitz, D.M., and
704 Bernfield, M. (1998). Physiological degradation converts the soluble syndecan-1 ectodomain
705 from an inhibitor to a potent activator of FGF-2. *Nat Med* 4, 691–697. 10.1038/nm0698-691.

706 55. Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., de Strooper, B., Hartmann, D., and Saftig,
707 P. (2005). ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-
708 catenin nuclear signalling. *EMBO J* 24, 742–752. 10.1038/sj.emboj.7600548.

709 56. Lee, G.-H., Fujita, M., Takaoka, K., Murakami, Y., Fujihara, Y., Kanzawa, N., Murakami, K.-
710 I., Kajikawa, E., Takada, Y., Saito, K., et al. (2016). A GPI processing phospholipase A2,
711 PGAP6, modulates Nodal signaling in embryos by shedding CRIPTO. *J Cell Biol* 215, 705–
712 718. 10.1083/jcb.201605121.

713 57. Dyczynska, E., Sun, D., Yi, H., Sehara-Fujisawa, A., Blobel, C.P., and Zolkiewska, A.
714 (2007). Proteolytic processing of delta-like 1 by ADAM proteases. *J Biol Chem* 282, 436–
715 444. 10.1074/jbc.M605451200.

716 58. Mishra-Gorur, K., Rand, M.D., Perez-Villamil, B., and Artavanis-Tsakonas, S. (2002). Down-
717 regulation of Delta by proteolytic processing. *J Cell Biol* 159, 313–324.
718 10.1083/jcb.200203117.

719 59. Boyer-Di Ponio, J., Wright-Crosnier, C., Groyer-Picard, M.-T., Driancourt, C., Beau, I.,
720 Hadchouel, M., and Meunier-Rotival, M. (2007). Biological function of mutant forms of
721 JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. *Hum Mol
722 Genet* 16, 2683–2692. 10.1093/hmg/ddm222.

723 60. Steinbuck, M.P., and Winandy, S. (2018). A Review of Notch Processing With New Insights
724 Into Ligand-Independent Notch Signaling in T-Cells. *Front Immunol* 9, 1230.
725 10.3389/fimmu.2018.01230.

726 61. Droujinine, I.A., Meyer, A.S., Wang, D., Udeshi, N.D., Hu, Y., Rocco, D., McMahon, J.A.,
727 Yang, R., Guo, J., Mu, L., et al. (2021). Proteomics of protein trafficking by in vivo tissue-
728 specific labeling. *Nat Commun* 12, 2382. 10.1038/s41467-021-22599-x.

729 62. Peixoto, R.T., Kunz, P.A., Kwon, H., Mabb, A.M., Sabatini, B.L., Philpot, B.D., and Ehlers,
730 M.D. (2012). Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. *Neuron*
731 76, 396–409. 10.1016/j.neuron.2012.07.006.

732 63. Rodríguez-Manzaneque, J.C., Carpizo, D., Plaza-Calenge, M. del C., Torres-Collado, A.X.,
733 Thai, S.N.-M., Simons, M., Horowitz, A., and Iruela-Arispe, M.L. (2009). Cleavage of
734 syndecan-4 by ADAMTS1 provokes defects in adhesion. *Int J Biochem Cell Biol* 41, 800–
735 810. 10.1016/j.biocel.2008.08.014.

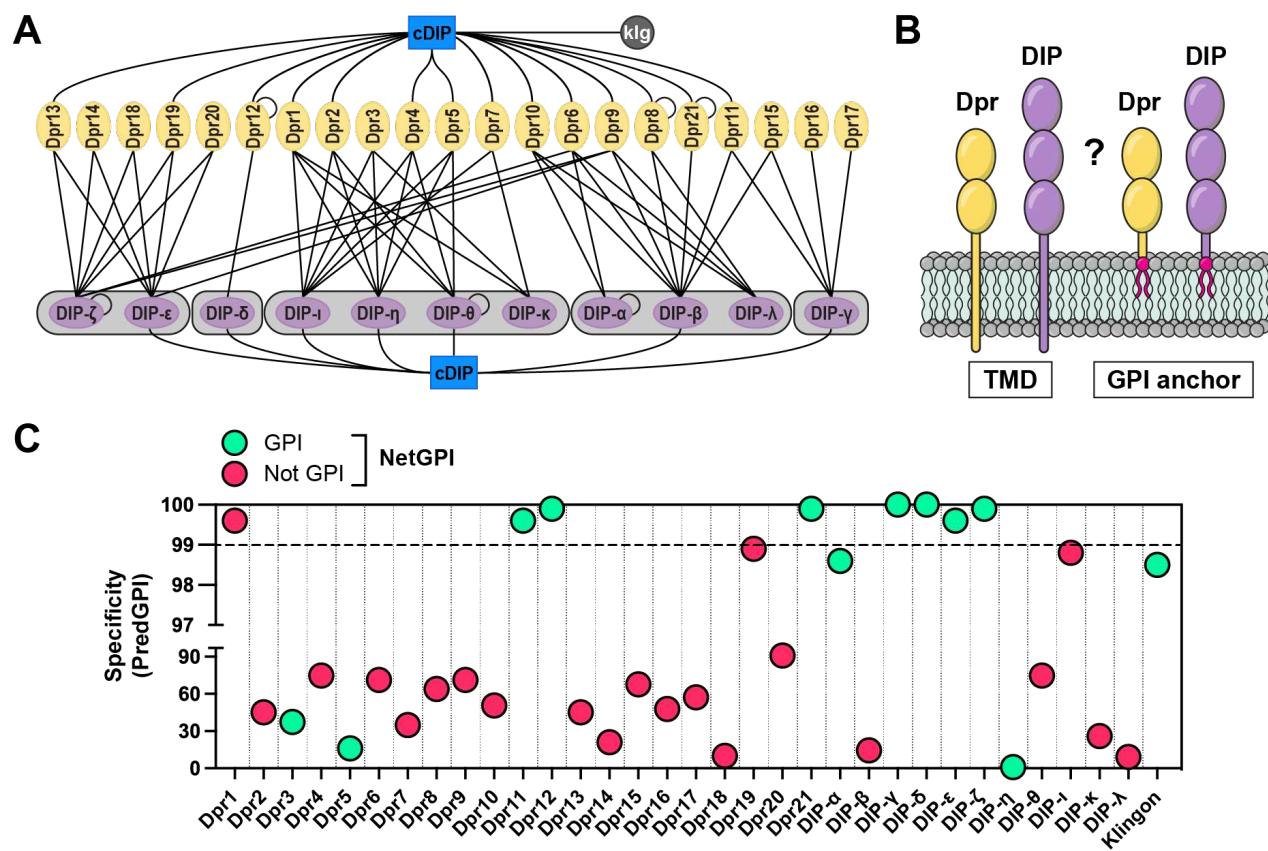
736 64. Stahl, R., Schilling, S., Soba, P., Rupp, C., Hartmann, T., Wagner, K., Merdes, G., Eggert,
737 S., and Kins, S. (2014). Shedding of APP limits its synaptogenic activity and cell adhesion
738 properties. *Front Cell Neurosci* 8, 410. 10.3389/fncel.2014.00410.

739 65. Suzuki, K., Hayashi, Y., Nakahara, S., Kumazaki, H., Prox, J., Horiuchi, K., Zeng, M.,
740 Tanimura, S., Nishiyama, Y., Osawa, S., et al. (2012). Activity-dependent proteolytic
741 cleavage of neuroligin-1. *Neuron* 76, 410–422. 10.1016/j.neuron.2012.10.003.

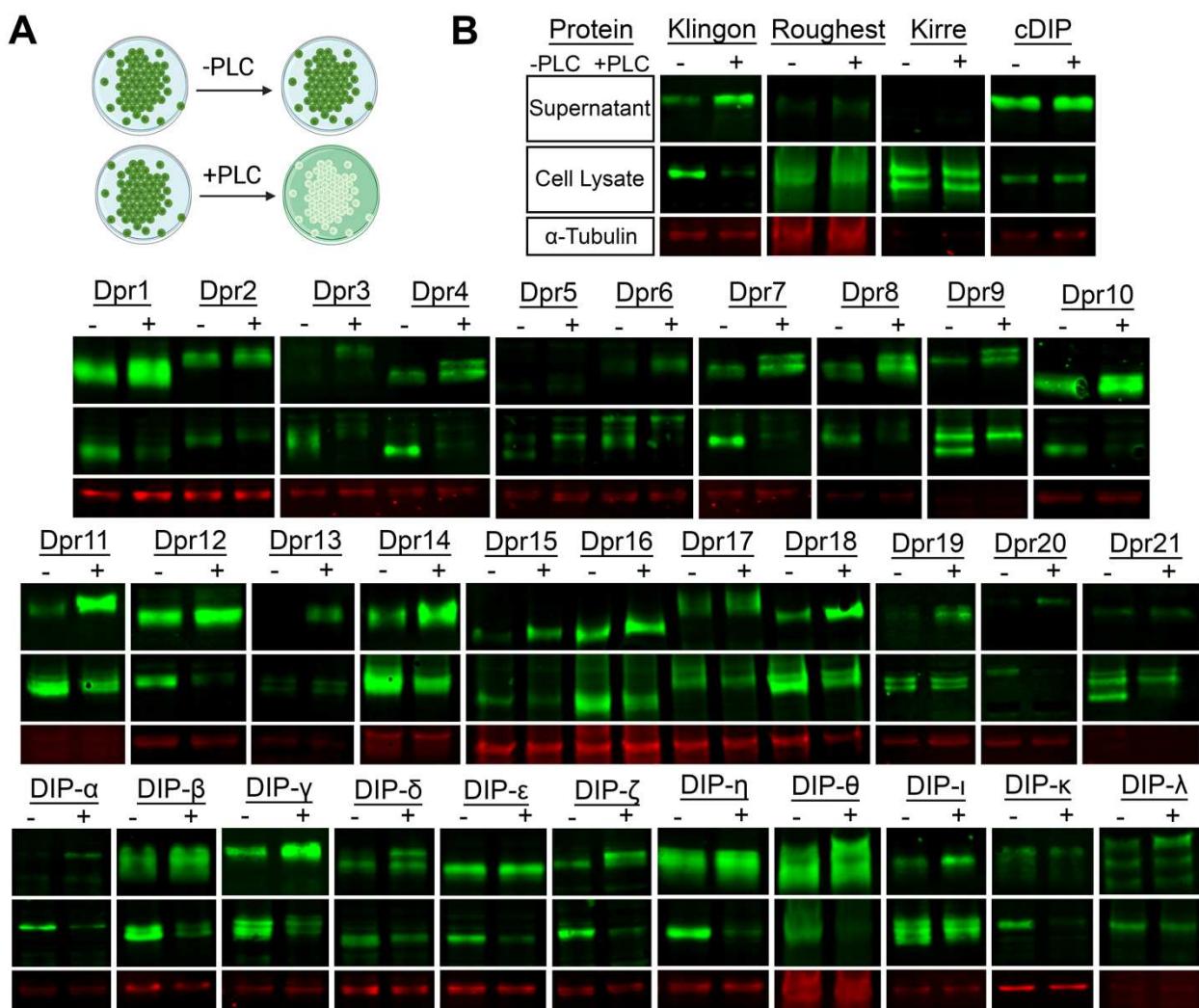
742 66. Toth, A.B., Terauchi, A., Zhang, L.Y., Johnson-Venkatesh, E.M., Larsen, D.J., Sutton, M.A.,
743 and Umemori, H. (2013). Synapse maturation by activity-dependent ectodomain shedding of
744 SIRP α . *Nat Neurosci* 16, 1417–1425. 10.1038/nn.3516.

745 67. Corda, D., Mosca, M.G., Ohshima, N., Grauso, L., Yanaka, N., and Mariggiò, S. (2014). The
746 emerging physiological roles of the glycerophosphodiesterase family. *FEBS J* 281, 998–
747 1016. 10.1111/febs.12699.

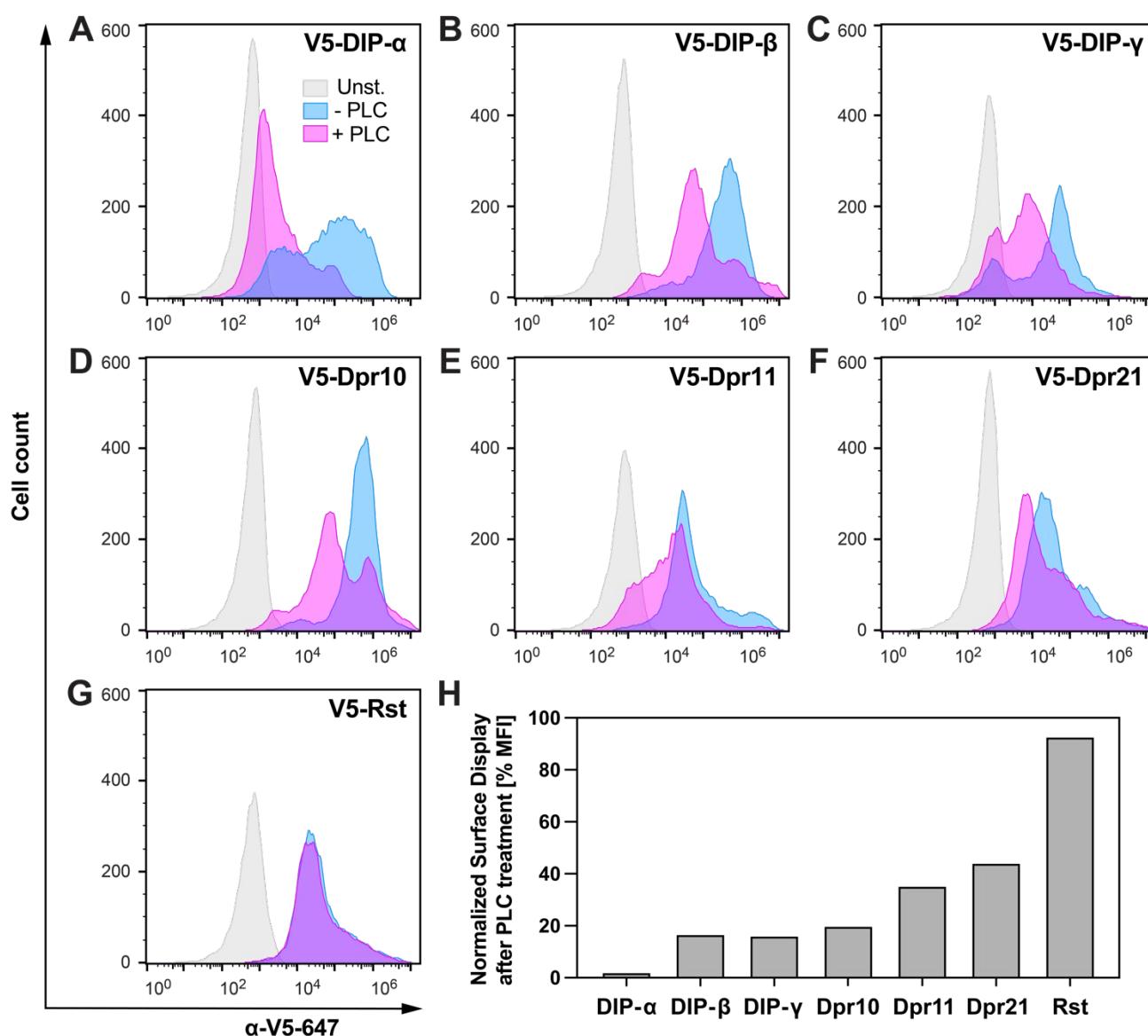
748 68. Ranganayakulu, G., Elliott, D.A., Harvey, R.P., and Olson, E.N. (1998). Divergent roles for
749 NK-2 class homeobox genes in cardiogenesis in flies and mice. *Development* 125, 3037–
750 3048. 10.1242/dev.125.16.3037.

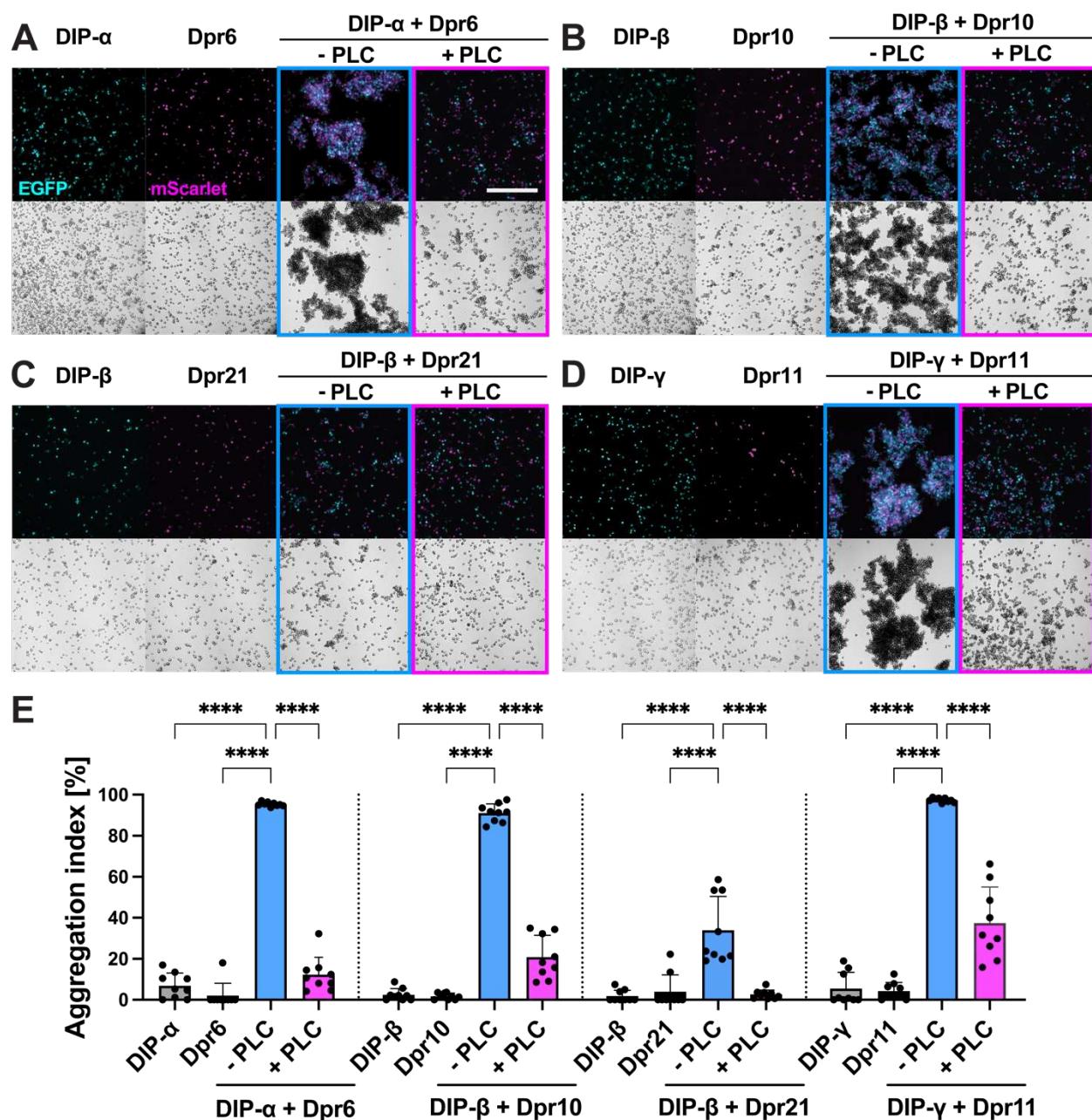

751 69. Xu, S., Xiao, Q., Cosmanescu, F., Sergeeva, A.P., Yoo, J., Lin, Y., Katsamba, P.S., Ahlsen,
752 G., Kaufman, J., Linaval, N.T., et al. (2018). Interactions between the Ig-Superfamily
753 Proteins DIP- α and Dpr6/10 Regulate Assembly of Neural Circuits. *Neuron* 100, 1369–
754 1384.e6. 10.1016/j.neuron.2018.11.001.

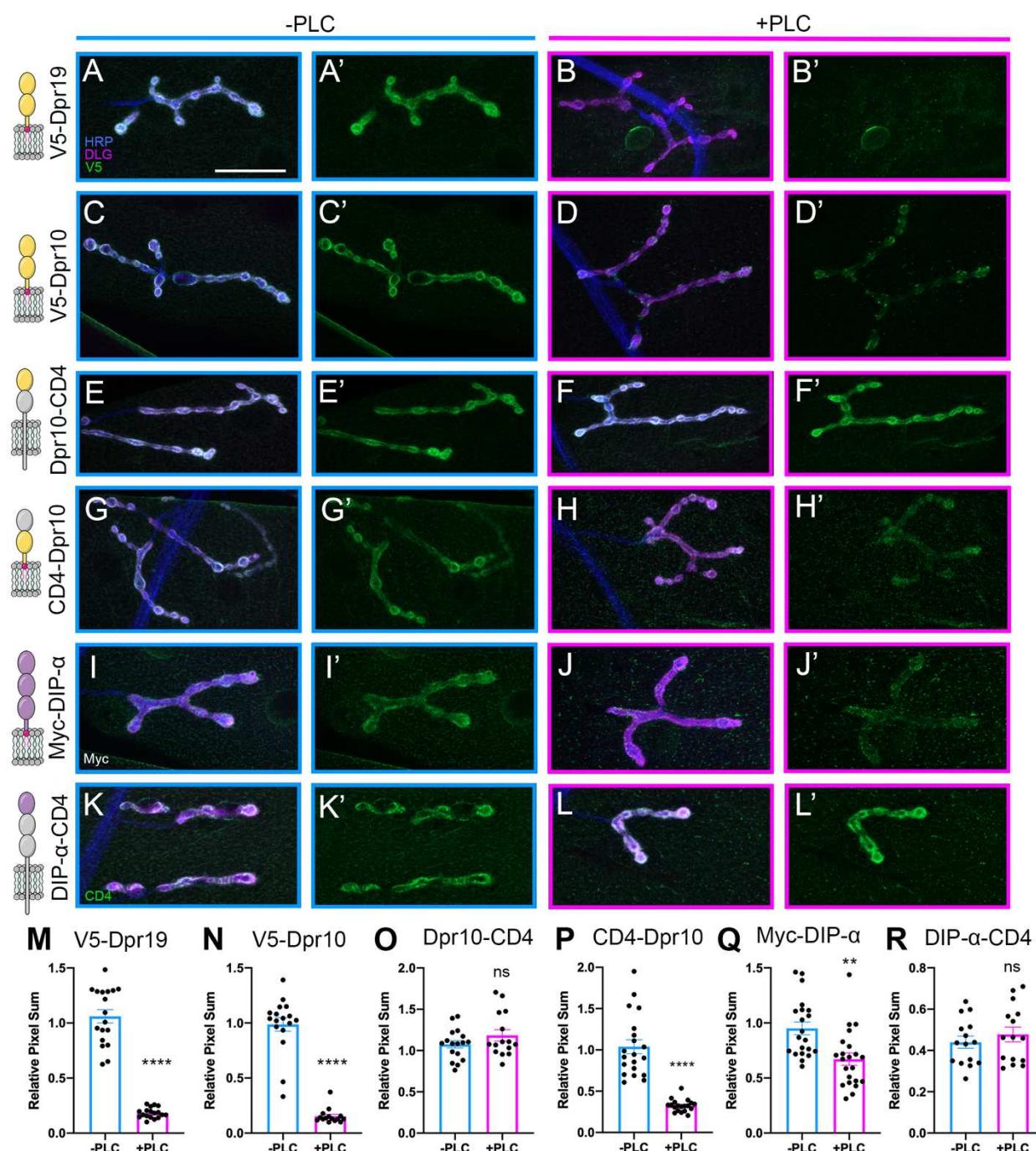
755 70. Bumgarner, G.W., Zampell, J.C., Nagarajan, S., Poloso, N.J., Dorn, A.S., D’Souza, M.J.,
756 and Selvaraj, P. (2005). Modified cell ELISA to determine the solubilization of cell surface
757 proteins: Applications in GPI-anchored protein purification. *J Biochem Biophys Methods* 64,
758 99–109. 10.1016/j.jbbm.2005.05.007.


759 71. Boucard, A.A., Ko, J., and Südhof, T.C. (2012). High affinity neurexin binding to cell
760 adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion
761 complex. *J Biol Chem* 287, 9399–9413. 10.1074/jbc.M111.318659.

762 72. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
763 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
764 platform for biological-image analysis. *Nat Methods* 9, 676–682. 10.1038/nmeth.2019.


765


Figure 1. GPI anchoring predictions for the Dpr and DIP families of CSPs. (A) Dpr-DIP interactome. Lines indicate interactions determined in previously published *in vitro* studies. cDIP, common DIP-interacting protein; Klg, Klingon. (B) Two potential membrane-anchoring modes of Dprs and DIPs. TMD, transmembrane domain; GPI, glycosylphosphatidylinositol. (C) GPI anchor predictions using PredGPI and NetGPI. Specificity values as calculated by PredGPI were plotted for each protein. Proteins with specificity values above 99% are considered GPI-anchored. For NetGPI, positive predictions are shown as green and negative are shown as red.


Figure 2. PLC treatment cleaves Dprs and DIPs from S2 cells, as observed by western blotting. (A) Schematic for PLC cleavage assay on S2 cells, when a CSP is GPI anchored. Green color indicates where the GPI-anchored protein is (on cells or in culture media). (B) Western blots of the supernatant fraction, cell lysate, and Tubulin- α loading control for with (+) and without (-) PLC treatment for all members of Dpr/DIP subfamilies. See key in the top row for B.

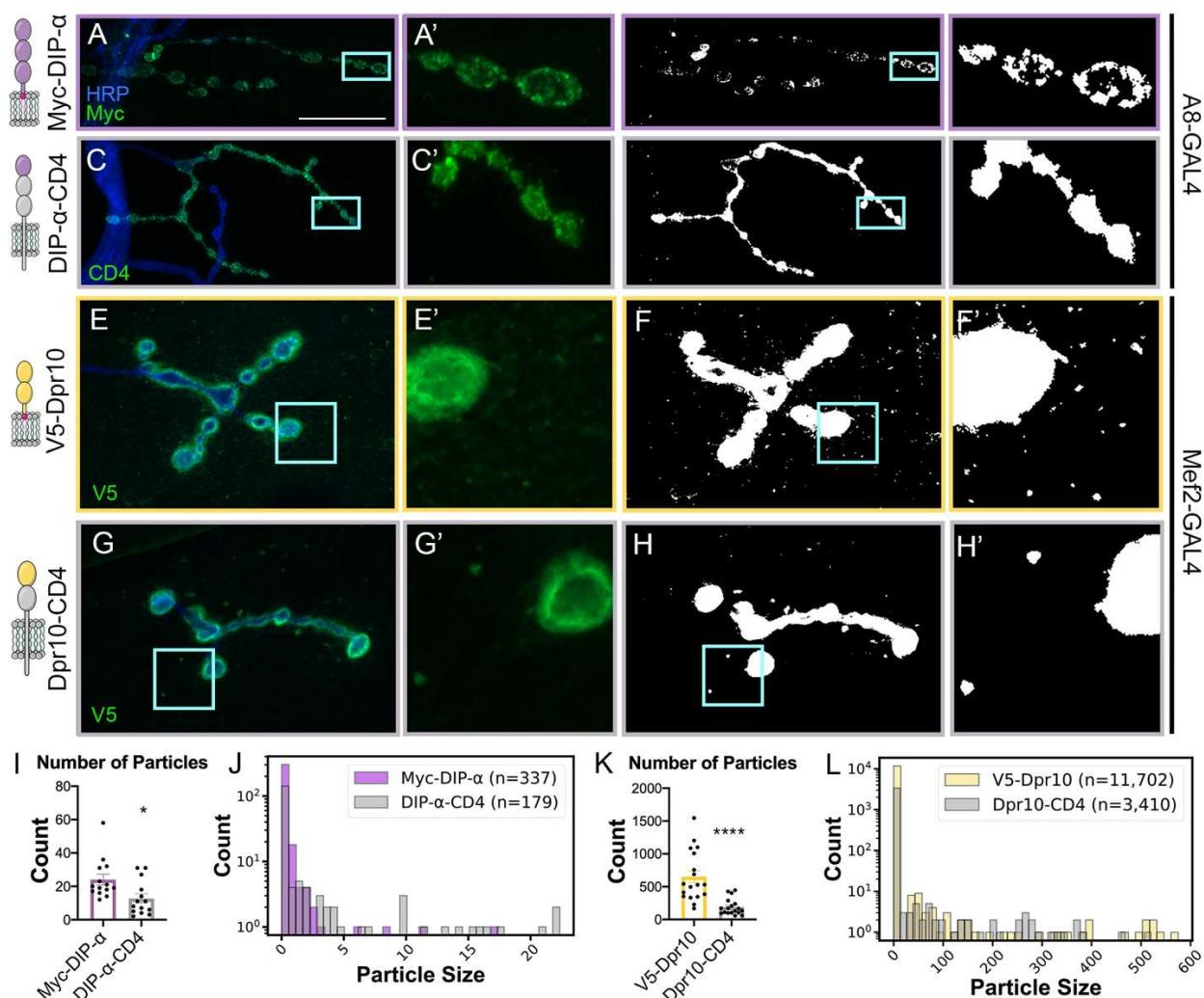

Figure 3. Surface display of Dprs and DIPs is reduced by PLC treatment, as observed by flow cytometry. (A-G) Histograms showing fluorescence levels of baculovirus-infected, unstained Sf9 cells (gray), cells infected and stained with anti-V5-Alexa Fluor 647 antibody (blue), and cells infected, treated with PLC and stained with anti-V5-Alexa Fluor 647 antibody (magenta). (H) Remaining Dpr and DIP levels on Sf9 cell surface following PLC treatment, normalized as the ratio of median fluorescence intensity (MFI) for PLC-treated and not treated cells after subtraction of the background MFI value of unstained cells.

Figure 4. PLC cleavage eliminates Dpr-DIP-mediated cell aggregation. (A-D) Cell aggregation experiments with Sf9 cells. Controls included cultures expressing either DIP or Dpr (first two panels from the left) and cultures expressing DIP or Dpr mixed together but not treated with PLC (-PLC). Cell aggregation was abolished when PLC was added to the mixed cultures 30 minutes after aggregation (+PLC). Scale bar = 500 μ m. (E) Cell aggregation index for the samples shown in A-D; ****p<0.0001; one-way ANOVA.

Figure 5. Dpr and DIP proteins are GPI anchored *in vivo*. (A-L') Tagged Dprs and DIPs were expressed in muscles, and dissected larvae were treated with PLC and compared to non-treated controls. Cartoon presentations of tagged Dprs and DIPs and their domains are depicted in left column. Surface localized proteins are shown in green, neuronal tissue in blue (HRP), and postsynaptic membrane in magenta (DLG). (A-B) PLC efficiently reduced surface labeling of V5 on muscles expressing V5-Dpr19. (C-D) PLC efficiently reduced surface labeling of V5 on muscles expressing V5-Dpr19. (E-F) PLC failed to reduce labeling of V5 in muscles expressing Dpr10-CD4 chimeras. (G-H) PLC efficiently reduced surface labeling of V5 in muscles expressing CD4-Dpr10 chimeras. (I-J) PLC reduced surface labeling of Myc on muscles expressing Myc-DIP-α. (K-L) PLC failed to reduce muscle labeling of CD4 on muscles expressing DIP-α-CD4 chimeras (M-R) Quantification of experiments shown in A-L'. Scale bar = 50 μ m.

Figure 6. GPI anchor alters localization of DIP- α in neurons and Dpr10 in muscles. (A-H') Cartoon depictions of constructs are shown in left column. Surface localized proteins are shown in green, neuronal tissue in blue (HRP). Scale bar = 50 μ m. (A-B') A8-GAL4 driving Myc-DIP- α leads to punctate surface localization outside the boutons. (B-B') Binary thresholded image of A. (C-C') A8-GAL4 driving DIP- α -CD4 leads to localization of DIP- α throughout the Is motor neuron terminal. (D-D') Binary thresholded image of C. (E-E') Mef2-GAL4 driving V5-Dpr10 leads to punctate surface localization. (F-F') Binary thresholded image of E. (G-G') Mef2-GAL4 driving Dpr10-CD4 leads to loss of Dpr10 throughout the muscle surface. (H-H') Binary thresholded image of G. (I,K) Particles counted for experiments depicted in A-D and E-H, respectively. (J, L) Histogram showing counts for particle size distribution.

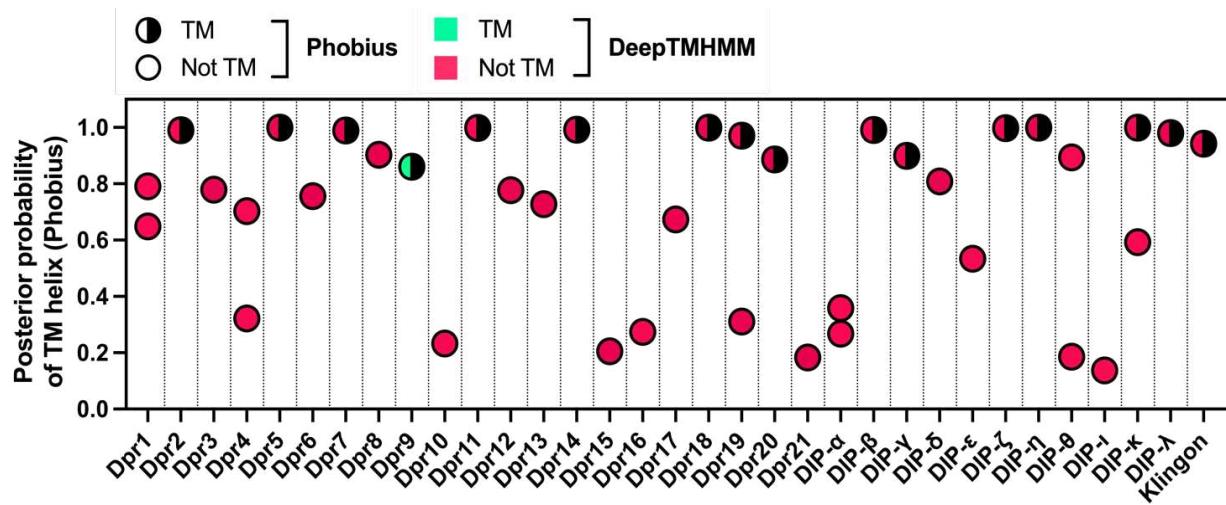

SUPPLEMENTAL MATERIALS

Table S1. Selection of sequences used in our analyses. X under isoform indicates the exact sequence for the predicted isoform does not exist in Flybase.

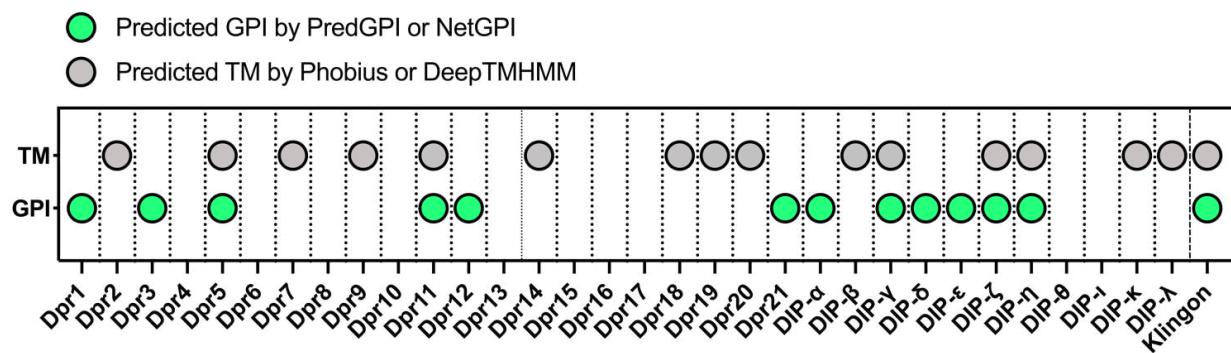
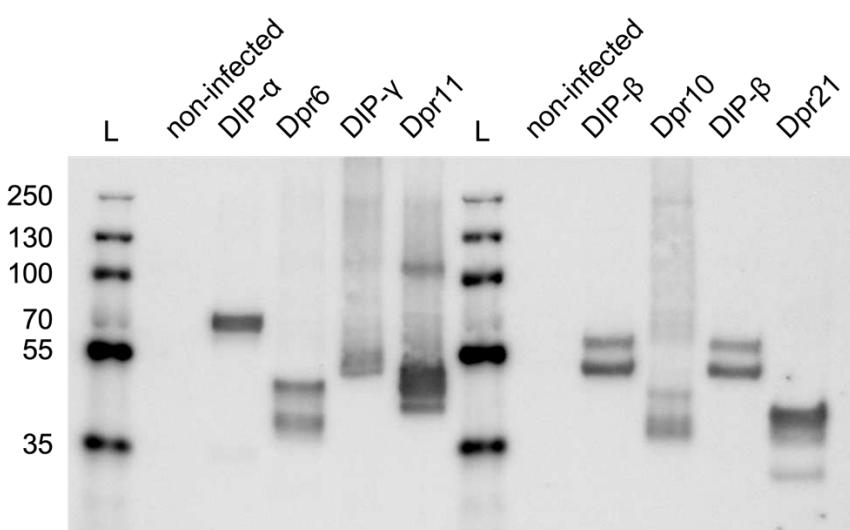

Protein	Isoform	FlyBase ID	Source	DGRC cDNA clone
Dpr1	A	FBcl0481435	DGRC	IP20514
Dpr2	F	FBtr0340553	Extended ECD	-
Dpr3	B	FBtr0300671	Extended ECD	-
Dpr4	B	FBcl0702669	DGRC	FI04761
Dpr5	B	FBcl0135155	DGRC	GH08163
Dpr6	C	FBtr0331536	Extended ECD	-
Dpr7	F	FBtr0334408	Extended ECD	-
Dpr8	A	FBcl0120305	DGRC	GH05565
Dpr9	X	FBcl0129707	DGRC	GH01517
Dpr10	D	FBtr0331552	Extended ECD	-
Dpr11	B	FBcl0127201	DGRC	GH22307
Dpr12	C	FBcl0317539	DGRC	IP17045
Dpr13	B	FBcl0345923	DGRC	IP04317
Dpr14	A	FBcl0119149	DGRC	GH19181
Dpr15	X	FBcl0474633	DGRC	FI05813
Dpr16	B	FBtr0110950	Extended ECD	-
Dpr17	A	FBcl0743266	DGRC	FI20195
Dpr18	A	FBcl0212563	DGRC	RE24718
Dpr19	A	FBcl0191639	DGRC	LP09705
Dpr20	A	FBcl0124577	DGRC	GH16485
Dpr21	C	FBtr0334939	Extended ECD	-
DIP- α	A	FBcl0222778	DGRC	RE16159
DIP- β	G	FBtr0343091	Extended ECD	-
DIP- γ	A	FBcl0116341	DGRC	GH08175
DIP- δ	D	FBcl0303889	DGRC	IP08460
DIP- ϵ	A	FBtr0299967	Extended ECD	-
DIP- ζ	A	FBcl0474748	DGRC	FI03417
DIP- η	B	FBtr0302933	Extended ECD	-
DIP- θ	A	FBtr0079114	Extended ECD	-
DIP- ι	B	FBcl0293758	DGRC	IP10422
DIP- κ	A	FBcl0202207	DGRC	RE42927
DIP- λ	A	FBtr0346766	Extended ECD	-
Klingon	-	FBcl0158367	DGRC	LD10776

Table S2. GPI site predictions by PredGPI and NetGPI. Results of GPI-anchor site predictions with PredGPI and NetGPI. Values of specificity index calculated by PredGPI indicate the probability of the presence of a GPI-anchor. Likelihood values for the positive calls from NetGPI pertain to the prediction of the ω site position.


Protein	PredGPI prediction	Specificity	NetGPI prediction	Likelihood
Dpr1	GPI	99.60%	Not-GPI	0.975
Dpr2	Not-GPI	45.20%	Not-GPI	0.978
Dpr3	Not-GPI	37.30%	GPI	0.565
Dpr4	Not-GPI	74.80%	Not-GPI	0.813
Dpr5	Not-GPI	16.00%	GPI	0.407
Dpr6	Not-GPI	71.20%	Not-GPI	0.994
Dpr7	Not-GPI	34.80%	Not-GPI	0.508
Dpr8	Not-GPI	64.00%	Not-GPI	0.885
Dpr9	Not-GPI	71.20%	Not-GPI	0.995
Dpr10	Not-GPI	50.70%	Not-GPI	0.989
Dpr11	GPI	99.60%	GPI	0.341
Dpr12	GPI	99.90%	GPI	0.542
Dpr13	Not-GPI	45.20%	Not-GPI	0.922
Dpr14	Not-GPI	21.10%	Not-GPI	0.831
Dpr15	Not-GPI	67.70%	Not-GPI	0.992
Dpr16	Not-GPI	47.80%	Not-GPI	0.305
Dpr17	Not-GPI	57.20%	Not-GPI	0.793
Dpr18	Not-GPI	10.10%	Not-GPI	0.612
Dpr19	Not-GPI	98.90%	Not-GPI	0.352
Dpr20	Not-GPI	90.90%	Not-GPI	0.338
Dpr21	GPI	99.90%	GPI	0.283
DIP- α	Not-GPI	98.60%	GPI	0.301
DIP- β	Not-GPI	14.50%	Not-GPI	0.941
DIP- γ	GPI	100.00%	GPI	0.686
DIP- δ	GPI	100.00%	GPI	0.432
DIP- ϵ	GPI	99.60%	GPI	0.45
DIP- ζ	GPI	99.90%	GPI	0.643
DIP- η	Not-GPI	1.00%	GPI	0.422
DIP- θ	Not-GPI	74.80%	Not-GPI	0.606
DIP- ι	Not-GPI	98.80%	Not-GPI	0.501
DIP- κ	Not-GPI	25.90%	Not-GPI	0.992
DIP- λ	Not-GPI	9.10%	Not-GPI	0.802
Klingon	Not-GPI	98.50%	GPI	0.486

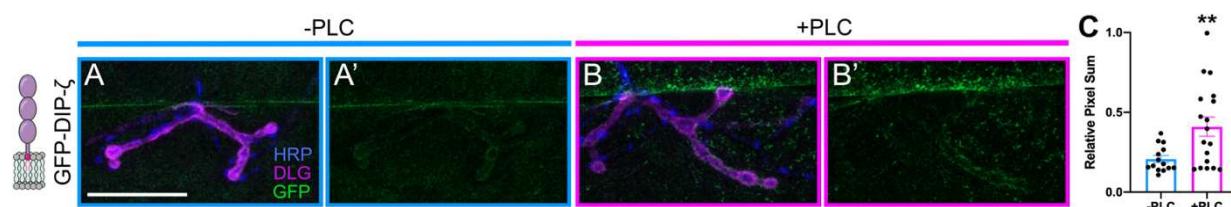

Figure S1. Transmembrane region prediction by Phobius and DeepTMHMM. Plotted are the highest values of posterior probability of a TM helix reported from Phobius. In cases where there were two regions with posterior probability of TM helix above 0.1, the highest values for both were plotted. TM, transmembrane. The highest values of posterior probability in Phobius do not always correlate with positive prediction for a given protein (Käll et al., 2007; for example, posterior probabilities of TM helix for Dpr8 or DIP-θ are higher than the one for Dpr9, but the former two were not predicted by Phobius to have a TM helix).

Figure S2. Summary of GPI anchor and TM helix predictions.

Figure S3. Expression of V5-tagged Dprs and DIPs in Sf9 cells used in cell aggregation assays. Sf9 cell pellets were solubilized and used in western blot with anti-V5-Alexa Fluor 647 antibody. L, molecular weight ladder.

Figure S4: DIP-ζ aggregates in response to PLC treatment. (A-B') Tagged DIP-ζ was expressed in muscles and dissected larvae were treated with PLC and compared to non-treated controls. Cartoon of tagged DIP-ζ is shown in left column. Surface localized DIP-ζ is shown in green, neuronal tissue in blue (HRP), and postsynaptic membrane in magenta (DLG). (A-B) PLC efficiently increased surface labeling of V5 on muscles expressing EGFP-DIP-ζ. Scale bar = 50 μ m. (C) Quantification of experiments shown in A-B'.