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ABSTRACT

Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell

transcriptomics has enabled an increasingly finer genetically defined taxonomy of cortical cell types but the link between the

gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here,

we develop a hybrid modeling approach to bridge this gap. Our approach combines statistical and mechanistic models to

predict cells’ electrophysiological activity from their gene expression pattern. To this end, we fit biophysical Hodgkin-Huxley

models for a wide variety of cortical cell types using simulation-based inference, while overcoming the challenge posed by

the model mismatch between the mathematical model and the data. Using multimodal Patch-seq data, we link the estimated

model parameters to gene expression using an interpretable sparse linear regression model. Our approach recovers specific

ion channel gene expressions as predictive of Hodgkin-Huxley ion channel densities, directly implicating their mechanistic role

in determining neural firing.

1 Introduction

Neural cell types form the basic building blocks of the nervous system1. In the neocortex, they form intricate circuits giving

rise to perception, cognition, and action2–4. Scientists have classically characterized these cell types by their anatomy or

electrophysiology, and more recently, using molecular markers3, 5–7. In the past decade, single-cell transcriptomics has enabled

an increasingly finer genetically defined taxonomy of cortical cell types8–11, but the link between the gene expression profiles

of individual cell types and their physiological and anatomical properties remains poorly understood.

To tackle this question, the Patch-seq technique has been developed to combine electrophysiological recordings, single-cell

RNA sequencing (scRNA-seq) and morphological reconstruction in individual neurons12–15. This approach has made it

possible to directly study the relationship between the gene expression profile of a neural cell type and its physiological and

anatomical characteristics. These studies have found that distinct subclasses of neurons (such as Pvalb or Sst interneurons, or

intratelencephalic pyramidal neurons) show distinct physiological and anatomical properties16, 17. Interestingly these properties

seem to rather continuously vary within these subclasses, with few exceptions17, possibly caused by smooth changes in gene

expression.

This wealth of data has led to the development of sophisticated techniques for multi-modal data integration and analysis18–21,

but uncovering the causal relationships between e.g. transcriptomic and physiological properties of the neurons has been

challenging. For example, sparse reduced-rank regression can reveal patterns of ion channel gene expression statistically

predictive of particular expert-defined electrophysiological features17, but precludes straightforward causal interpretation.

Establishing mechanistic links experimentally is also challenging, as it involves genetic or pharmacological interventions.

Here, we argue that biophysical models of the physiological activity of neurons can help to close this gap as their

parameters are explicitly interpretable. We constructed Hodgkin-Huxley (HH) models with single compartments22–24 for the
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electrophysiological activity of 955 neurons from adult mouse motor cortex (MOp) spanning various neural types and classes17.

In contrast to the expert-defined features previously used to relate gene expression and physiological response patterns, the

parameters of these models correspond to mechanistically interpretable quantities such as ion channel densities. We then

developed a statistical method to predict HH parameters from the gene expression patterns of the same cells, providing a direct

link between gene expression and electrophysiological activity with mechanistically interpretable latent quantities.

In order to find parameters of the mechanistic model that explain observed electrophysiology, we used simulation-based

inference (SBI)25, 26. This approach can recover the parameters of a mechanistic model based on summary statistics derived

from model simulations, providing a posterior distribution over the model parameters. The posterior distribution allows to

quantify the uncertainty in our model parameter estimates, in contrast to previous work using genetic algorithms27, 28. As has

been observed in other contexts29–32, we found that SBI failed for our HH model and our data set due to a small but systematic

mismatch between the data and the model, which could not be easily remedied by standard modifications to the HH model. We

developed an algorithm that introduces noise to the summary statistics during training, which allowed it to perform reliable

inference despite the model misspecification.

Using our improved SBI algorithm, we obtained posteriors over the HH parameters for all 955 neurons in our diverse data

set. We found that parameter samples from the posterior provided for good model fits to the physiological firing patterns of

most neurons, but observed higher parameter uncertainty in some subclasses such as Vip neurons. Furthermore, we showed that

the relationship between gene expression patterns and the inferred HH model parameters could be learned using statistical

techniques such as sparse reduced-rank regression, allowing to predict the electrophysiology of a cell from its gene expression

across cortical neuron types and classes. Our approach recovered specific ion channel genes as predictive of HH model

parameters corresponding to matching ion channel densities, directly implicating them in a mechanistic role for determining

specific neuronal firing patterns that differ between cell types.
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Figure 1 Simulation-based inference for Hodgkin-Huxley parameters in the presence of model misspecification. a Sketch

illustrating model misspecification: in electrophysiological feature space, simulations do not cover the space of experimental

observations. b The MAP parameter set simulation derived with NPE-N is closer to the experimental reference (in blue, below)

than derived with NPE. Residual distance to reference shown for each electrophysiological feature (0 would denote perfect

correspondence). c 1- and 2-dimensional marginals together with 3 simulations of highest posterior weight; NPE (left) vs

NPE-N (right) setting. 4 out of 13 model parameters have been selected for illustration. d Simulations are further away from

experimental observations (blue) than from other simulations (orange). Qualitatively, simulations increasingly further away

from an experimental observation look more dissimilar than from another simulation. Numbers 1,2 and 3 refer to the 2nd, 101st

and 501st closest simulations respectively.
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2 Results

To better understand how the genetic identity of a cortical neuron determines its physiological activity, we studied a previously

published data set of neurons from mouse motor cortex, which had been characterized with respect to their gene expression

profile and electrophysiological properties using Patch-seq17. We focused on a subset of 955 cells which displayed action

potentials to injection of a step current of 300pA and passed transcriptomic quality control. Each neuron expressed between

1202 and 18 118 genes with a mean expression of 7 245. The data set included 278 pyramidal neurons and 677 interneurons,

consisting of 289 Pvalb, 240 Sst, 54 Vip and 11 Sncg neurons, using the cell subclasses and finer cell type labels assigned by

the original authors based on mapping the gene expression patterns of the neurons to a larger reference atlas11, 17.

We hypothesized that we could further clarify the relationship between gene expression patterns and the electrophysiological

response properties of the neurons, if we knew the mechanistically interpretable biophysical parameters underlying those.

Therefore, we implemented a single-compartment HH model based on a previously established ‘minimal’ model that captures

the electrophysiology in a wide range of neuronal subclasses23. We then increased the flexibility of our model with the addition

of a small number of ion channels important for modeling pyramidal cells24. The parameters of the resulting model included

passive parameters such as the capacitance and input resistance as well as active conductances of different ion channels or

currents, which determine the physiological responses (Methods 4.2). Our final model included different sodium (Na+),

potassium (K+), calcium (Ca2+) and leak currents and had 13 free parameters overall, which needed to be inferred from the

measured electrophysiological data (Methods 4.2).

To this end, we used neural posterior estimation (NPE)25, 33, 34, an algorithm for SBI, which learns an approximate posterior

distribution q(θ |x) over the parameter vector θ given a vector of features x computed from the data (Fig. 1a; Methods 4.4).

The posterior distribution is parameterized as a sufficiently flexible neural network. In contrast to previous methods27, 28, this

approach allowed us to quantify the uncertainty in the parameters after seeing the data.

We applied NPE to infer the 13 free parameters of our HH models given 23 features of the experimental recordings. These

features included latency to the first spike, action potential count, amplitude and width or the membrane potential mean and

variance (for a full list of all 23 features, see 4.3). We sampled 15 million parameter sets from a uniform distribution (the prior

distribution) within biologically plausible ranges, ran the simulation for each of these parameter sets, computed the features

of each of the simulated voltage traces, and trained NPE on the resulting synthetic data set. After training, the trained neural

network can be evaluated on features of any experimental recording and returns the corresponding posterior distribution without

further simulations or training.

However, this procedure did not work well for the neurons in our data set. In many cases, samples from the posterior or

the maximum-a-posteriori (MAP) parameters did not produce simulations that came close to the experimental data (Fig. 1b,

c) — on average 18% of posterior-sampled parameter sets produced simulations with at least one undefined summary feature,

such as undefined latency due to a lack of action potentials (Table S1, standard NPE). Therefore, we further investigated the

reason for this failure and found that the poor performance of the SBI pipeline was due to a systematic mismatch between the

electrophysiological recordings and simulations from the model, a phenomenon recently observed also in other settings29–32.

To show this, we selected a simulation from the synthetic data set of 15 million simulations and rank ordered all other

simulations by their distance in the feature space to this reference (Fig. 1d). While few simulations were very close to the

reference, most lay somewhat farther away, but still produced qualitatively very similar outcomes (Fig. 1d, orange). In contrast,

if we chose an experimental trace as reference, the distance to the closest simulation in the electrophysiological feature space

was larger than between any simulation from the synthetic data set (Fig. 1d, blue). Consequently, simulated traces were much

more dissimilar to the experimental observations than to the simulated references.

From this analysis, we concluded that the experimental observations occupied a region of the electrophysiological feature

space which was systematically shifted from the region occupied by the model simulations, despite our best efforts to create

a HH model that has sufficient flexibility to capture the response diversity of the cortical neurons in our data set (Fig. 1a).

For instance, we introduced the rSS parameter to the model (Methods 4.2), that can scale the speed with which ion channels

reach open steady states, in order to alleviate model-data mismatches observed in the action potential width. Although this

approach substantially reduced overall model misspecification, it did not remove it entirely (Fig. S1). As a consequence, many

simulations produced with randomly drawn posterior samples had either one or more undefined electrophysiological feature or

found themselves at a large distance to their experimental reference (Fig. 1b, c left; Table S1).

We found that modifying the estimation algorithm improved the performance of the inference procedure despite the model

mismatch. We smoothed the feature space by adding a small amount of independent Gaussian noise to the electrophysiological

features of selected simulations close to the experimental observations and used those to train the neural density estimator

(Methods 4.5). This procedure yielded posterior simulations which came much closer to their experimental reference both

qualitatively and quantitatively (Fig. 1b,c; distance in electrophysiological feature space ∥xMAP − xo∥2 = 4.35± 2.86 vs.

∥xMAP −xo∥2 = 6.24±3.24, NPE-N vs. NPE, mean ± SD, Table S1). We experimented with different strategies including

different magnitudes of noise and chose a compromise between simulations from the posterior being close to the measured data
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a b

Figure 2 Ranking commonly used electrophysiological features by their ability to constrain posterior estimates. a

Features are ranked by how often they are strongly constraining the posterior of a Pvalb neuron. Strongly constraining features

minimize the KL divergence between posterior estimates subject to all 23 features and estimates considering only five. Important

features were selected across 10 repeated runs. Shading indicates the order in which they are selected as part of the top five.

Features are ranked in descending order. b Summary across all 955 MoP neurons, of which features are strongly constraining

the posterior estimates.

and a low fraction of simulations that result in undefined features (Methods 4.5). We called the resulting procedure NPE-N and

used it to obtain posterior distributions over parameters for all 955 neurons in our data set.

To gain further insights into the inference procedure, we next wondered which out of the 23 features were most important to

constrain the posterior. To this end, we used an algorithm that efficiently compares a posterior constrained by the full set of

features to one constrained by a growing subset of features35 and studied a subset of 50 neurons (Methods 4.6). We ran this

algorithm five times for each of these neurons, and counted how often a feature was selected as one of the five most important

features (Fig. 2a). We then compiled the results of this selection procedure across all 50 neurons that we investigated and found

that on average, the mean resting membrane potential was by far the single most important feature, followed by the mean

potential during current stimulus, action potential amplitude, the action potential threshold and the variance of the membrane

potential (Fig. 2b).

We next returned to our original question and studied how the transcriptomic identity of the neurons in our data set was

related to their electrophysiological properties and the parameters of the best fitting HH model. To this end, we created a

two-dimensional visualization of the gene expression data for all 955 MoP neurons (Fig. 3a). We assigned colors based

on the mapping of the individual neurons to the transcriptomic types identified in a reference atlas11, 17. We found that the

resulting embedding separated the major neural subclasses very well including interneurons and pyramidal neurons (Fig. 3a).

We confirmed the identity of these subclasses by overlaying the expression strength of various marker genes such as Pvalb,

Sst, Vip and Lamp5 (Fig. 3b). Furthermore, the posteriors for neurons from some subclasses were less constrained than those

of others, indicated by higher posterior uncertainty (Fig. 3c). Specifically, this affected Vip neurons, which were relatively

sparsely sampled in the data set. In contrast, Pvalb neurons showed lowest uncertainty indicating that their posteriors were best

constrained using the available features given the current HH model. One reason for this may be that Pvalb neurons fired more

stereotypically, whereas Vip neurons showed greater variability in their firing patterns17, 36, that may require greater flexibility

in the model to reproduce all summarizing statistics.

We overlaid the individual electrophysiological features on this two-dimensional embedding, both for the experimentally

measured data and for simulated MAP traces (Fig. 3e and f). We found that these features varied strongly between neural

subclasses, as expected, and that the features extracted from simulated traces matched the features from measured traces overall

very well: for example, pyramidal neurons showed higher action potential amplitude and width as well as lower spike rates, in

line with the observations. For some features, such as the latency of the response, the match was less perfect, as the simulated

traces of interneuron subclasses had overall higher latency than those experimentally measured.

Next, we studied how the parameters of the HH model varied across this transcriptomically defined embedding (Fig. 3d). This

visualization allowed us to reason about the relationship between biophysical parameters and the resulting electrophysiological

properties in some of the genetically defined subclasses. For example, the conductivity of the delayed rectifier potassium

current gKd
37 was estimated to be high for Pvalb interneurons (Figure 3d), suggesting that these currents were important for

quickly repolarizing the membrane potential Vm(t) during AP generation in order to obtain the small AP widths and high AP

count of fast-spiking Pvalb cells (Figure 3d-f). Likewise , the membrane time constant τ and the scaling parameter rSS seem
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Figure 3 Two-dimensional embedding of 955 MoP neurons reveals difference in HH parameters between neural families.

a T-SNE embedding of n = 955 Mop neurons based on transcriptomic data. Pvalb (red), Sst (yellowish), Vip (purple) and Lamp5

(pink) and secondly excitatory Pyramidal Pyr neurons (blue-and greenish). Cells in the middle of the embedding tend to show

lower quality transcriptomic data and therefore group together. b Marker genes expression levels overlayed and interpolated on

embedding confirm known subclasses (dark purple: low expression, yellow: high). c Uncertainty of MAP parameters for each

cell overlayed on the embedding. The uncertainty was calculated as the posterior entropy ∑
1000
k=1 − logqφ (θk | xo), where we

sampled θk ∼ qφ (θ | xo). d Selection of MAP parameters, overlayed on embedding. e Selection of summary statistics derived

from simulations corresponding to MAP estimates, overlayed on embedding. f Selection of summary statistics describing

observed electrophysiology, overlayed on embedding.

important to fit the large action potential widths and high latency observed for pyramidal neurons (Figure 3d-f).

Given these results, we were now in a position to quantitatively study the relationship between the transcriptomic identity of

a neuron and its biophysical parameters. To this end, we trained a linear sparse reduced-rank regression model (sRRR)18 and a

non-linear sparse bottleneck neural network (sBNN)19 to predict the biophysical parameters (d = 13) from the gene expression

data (Fig. 4a). To ease the interpretability, we focused on ion channel and known marker genes only (d = 427) and trained

linear and non-linear models with a two-dimensional latent space. We found that model parameters could be predicted with

reasonable accuracy (sRRR: R2 = .17±0.03, mean ± SD across cross-validation folds, for a model selecting approximately 25

genes) and that the non-linear model performed just as well as the linear one (sBNN: R2 = 0.17±0.03), so we analyzed only

the linear model further (Fig. 4b). Using the entire data set, this model predicted some parameters such as the conductance of

the voltage dependent or delayed rectifying potassium current (gKV 31 and gKd) or the membrane capacitance C particularly

well (Fig. 4c). Other model parameters were less well predicted, such as the leak current Eleak or the muscarinic potassium

channel gM . Interestingly, the rSS parameter was predicted best, which we introduced as a first step towards alleviating model
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Figure 4 Prediction of MAP parameter estimates from gene expression with sparse reduced-rank regression. a SRRR

schematic. b Cross-validation performance for rank-2 and full rank sRRR models with elastic net penalty. The dashed vertical

line shows the performance with 25 genes. c Rank-2 sRRR model predictive performance for each model parameter, using the

entire data set. d Middle: rank-2 sRRR model latent space visualization. All 955 MoP neurons are shown. Left: Selected ion

channel and marker gene overlays. Right: Predicted model parameter overlays.

mismatch issues.

We visualized the latent space of the sRRR model to better understand the relationship between ion channel and marker

genes and the HH model parameters (Fig. 4d). This embedding is conceptually similar to the t-SNE visualization of the entire

gene space with overlayed model parameters and electrophysiological properties (Fig. 3), except that we here focus on genes

that predict HH model parameters. The 2D latent space of the sRRR model showed two principal directions of variation, where

one separated pyramidal cells from interneurons and the other mostly different interneuron subclasses. In addition, we found

that the sRRR model identified mechanistically plausible relationships: for example, the potassium channel conductances gKv31

and gKd were both high in Pvalb neurons placed in the lower left corner, predicted by the expression of various potassium

channel genes like Kcnc1, that constitutes a subunit of the Kv3.1 voltage-gated potassium channel, and Kcnab3 respectively.

Likewise, the calcium channel conductance gL was predicted by high expression of Cacna2d1 that directly encodes for the

alpha-2 and delta subunits in the L-Type calcium channel. Our sRRR model selected Cacna2d2 as well, which is a paralog

gene with opposite expression to Cacna2d1 (Fig. 4d, left). In addition, classical marker genes like Vip acted as surrogate cell

subclass markers and contributed to the prediction.

This approach can be used to accurately predict HH models for neurons for which we only measured gene expression

but not electrophysiology. The models predictions captured essential variation in the model parameters both on the subclass

and the cell type level (Fig. 5a, b), such that model simulation with these parameters showed very similar firing patterns as

representative examples from the subclasses (Fig. 6).
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Figure 5 MAP parameter estimates and sRRR predictions for each subclass and cell type. a MAP parameter estimates

averaged over cells belonging to a family and belonging to a transcriptomic cell type (left and right respectively). Estimates are

Z-scored. b Analogous to a, but with rank-2 sRRR predicted model parameter values.

3 Discussion

In this study, we directly linked the gene expression profile of a set of cortical neurons to HH model parameters fitted to their

electrophysiological signatures. We believe this is a major step towards closing the “causality” gap between gene expression

and neural physiology: In previous work, we and others have simply correlated gene expression and electrophysiology, e.g.

predicting electrophysiological properties from transcriptomic data17–21, but uncovering the causal relationships between these

quantities has been challenging.

The mechanistic HH model we used here spells out our causal understanding of how electrophysiological properties arise

from ion channel densities and other passive properties of a neuron,leaving the link between these quantities and the expression

of certain genes to be explained by a statistical model.In our approach, we used a linear reduced-rank regression model with

groupwise sparsity constraint on the genes, selecting genes in or out of the model based on the available data. Given the present

data, we found that the linear model with a two-dimensional intermediate layer performed as well as a comparable non-linear

model. Partially, this may be due to the noise in gene expression and the comparably small data set, but it is also possible

that our explicit mechanistic model for the generation of electrophysiological activity explained away some of the nonlinear

relationship between gene expression and electrophysiological features. Larger data sets will likely also help the linear model to

resolve better observed differences in model parameters between fine cell types, which are currently captured only to a certain

extend (Fig. 5).

Previous work has also attempted to infer biophysical parameters in HH models and link the inferred values to neural cell

classes and their gene expression23, 24, 27, 28. This work differed from ours in that most of these studies did not directly link

parameters in HH models to the expression of a large set of genes, but rather studied on HH parameter differences between

genetically defined cell classes23, 24, 27. One recent study examined the relationship between HH parameters and individual

genes28, but did not provide a systematic statistical model for this link. Also, none of these studies used uncertainty aware

parameter inference techniques. Incorporating uncertainty allowed us to highlight cells, cell types or classes for which the

inference procedure returned results which were not as well constrained by the data.

Nevertheless, many trends in model parameters across different cell classes matched previous observations qualitatively.

For instance, we found that different values are needed for the potassium conductance gKv3.1 to model Vip, Sst and Pvalb

neurons and that the expression of Kcnc1 varies accordingly (Fig. 4d). In a similar vein, Nandi et al. report different values for

gKv3.1 and show that Kcnc1 is differentially expressed between these classes28. In their work, this example is hand-selected
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NPE-N

sRRR

Pvalb

Vip

Sst
Lamp5

Pyr

Figure 6 Subclass representation of MAP estimates together with sRRR predictions. T-sne embedding as in Fig 3a.

Simulation on top is derived from the subclass MAP estimate calculated as in Fig. 5a, left. Simulation on the bottom is derived

from the subclass sRRR prediction calculated as in Fig. 5a, left.

for analysis, while in our analysis the evidence emerges from the sRRR model. While not all correspondences with other

studies are as close as this, HH models show redundancy in their parametrizations25, 38, 39, such that different model parameter

combinations can result in similar responses, potentially explaining observed deviations.

Our biological question to identify a quantitative link between gene expression and electrophysiological activity patterns led

us to devise a methodological innovation to overcome the challenges posed by systematic mismatch between our simulations

and the experimental data, which caused the out-of-the-box simulator-based methods to fail. We achieved this by adding noise

to the summary statistics derived from the simulations, effectively smoothing the feature space. In parallel work to this paper,

this phenomenon has recently received more widespread attention29–32: for instance, robust neural posterior estimation29 takes

the opposite approach to our strategy and denoises the measured data towards the model using Monte-Carlo sampling. On

the other hand, robust synthetic likelihood approaches40 that estimate likelihoods rather than posteriors, work similarly to our

approach. Which strategy works best for which models and circumstances remains to be evaluated, but these strategies will

allow to apply simulator-based inference techniques in cases where models provide relatively coarse, but useful approximations

of the true phenomena. Alternatively, one could make the model more realistic. In our case, some of the model mismatch is

likely also caused by the use of single-compartment models in contrast to other studies, which used HH models with two or

more compartments24, 27, 28, however, such complex models are currently difficult to use with simulation-based inference.

Mechanistic models that make biophysical processes explicit are ultimately desirable all the way from gene expression to

electrophysiology, as such models form the highest level of causal understanding41. To further close this “causality” gap would

require an explicit mechanistic model for the translation of mRNA into proteins such as ion channels — a relationship, which is

all but simple42–44. Mechanistic models for this process have been suggested in the literature on a variety of scales45, 46, but it is

an open question how such models could be integrated in the inference procedure given the temporal and spatial processes

involved in mRNA translation45–47. While directly measuring translation dynamics in live cells has become possible using
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live cell imaging approaches48, 49, it remains an extremely challenging task, especially in multicellular systems and given the

diversity of cortical neurons. Therefore, the combination of machine learning-based models with explicit mechanistic models

may provide a viable path forward to improve our understanding of neuronal diversity even if we do not have full causal

empirical knowledge of the entire chain of events, aiding the inference of important intermediate quantities.

4 Methods

4.1 Data Set

We reanalyzed a published data set consisting of n = 1328 adult mouse motor cortex (MOp) neurons17, which had been charac-

terized transcriptomically and electrophysiologically using Patch-seq. We downloaded the read count data from https://

github.com/berenslab/mini-atlas and the electrophysiological traces from https://dandiarchive.org/

dandiset/000008. The authors used Smart-seq2 to obtain single-cell transcriptomes for these neurons. Out of n = 1328

cells, n = 1213 cells passed transcriptomic quality control and were assigned a transcriptomic cell type using the 1000 genes

that were most variable across this subset of cells. For electrophysiological characterization, the authors injected negative to

positive constant currents for 600 ms time windows starting at −200 pA with steps of 20 pA to positive currents beyond 400

pA or until the cell died. Electrophysiological experiments were performed at a temperature of 25 °C. For further experimental

details, see17. Finally, out of n = 1328 cells, we analyzed n = 955 cells that had well-defined summary statistics in their

membrane voltage response to current injection of 300 pA.

4.2 Hodgkin-Huxley Model

We used a single-compartment HH model23 that was designed to reproduce electrophysiological behavior of a wide variety

of neurons across species with a minimal set of ion channels. To account for the variability across excitatory and inhibitory

cortical neurons, we added additional ion channels24 and introduced rSS, a parameter influencing how rapid gates reach open

and closed steady states in some sodium and and potassium currents. Without these modifications we could not fit wider AP

widths observed in Pyramidal cells.

The HH model solves the following ODE Vm(t) = f (Vm(t),θ) for Vm(t), the membrane voltage as a function of time:

dVm(t)

dt
=

1

C
(INa + INat + IKd + IM + IKv3.1 + IL + Ileak − Iin j − Inoise)

INa = gNa m3 h (ENa+ − Vm(t))

INat = gNat m̂3 ĥ (ENa+ − Vm(t))

IKd = gKd n4 (EK+ − Vm(t))

IM = gM p (EK+ − Vm(t))

IKv3.1 = gKv3.1 v (EK+ − Vm(t))

IL = gL q2 r (ECa2+ − Vm(t))

Ileak = gleak (Eleak − Vm(t)) .

Here, gx and Ex denote the maximum channel conductance and reversal potential of membrane ion channel x respectively.

C is the membrane capacitance and Iin j = 300pA denotes the magnitude of experimental current injected between current

stimulation onset at 100 ms and stimulation offset 700 ms. In order to model small membrane voltage fluctuations observed

experimentally, we further introduced Gaussian current noise Inoise ∼ N (10,1) at every time point.

Furthermore, ion channel activation and inactivation gates follow dynamics dx
dt

= αx (Vm(t)) (1− x)+βx (Vm(t)) x, where

x ∈
{

m,h, m̂, ĥ,n, p,v,q,r
}

. Opening αx and closing βx rate constants depend on the membrane voltage Vm(t) as previously

described23, 24. In order to account for the 25 °C temperature at which Patch-seq experiments were performed, we used a

temperature coefficient Q10 = 2.3 to scale the kinetics with which gates in ion channels open and close. Parameter rSS, further

scales the rates with which sodium and potassium currents with maximal conductances gNa and gKd reach steady states.

In total, 13 parameters in the model can be tuned in order to fit observed electrophysiology of n = 955 MOp cells (Table 1

for details). We implemented the model with the Brian2 toolbox50 in Python, which can efficiently transpile and simulate

models in C++.

In order to understand the significance of adding the rSS in reducing model misspefication on a “model implementation”

level rather than training the density estimator, we compared to the same HH model but with scaling parameter rSS = 1 (Fig. S1).
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Model pa-

rameter

Prior range Description

C [0.1,15] µF

cm2 The membrane capacitance C measures how much charge can be

stored per voltage difference Vm across the membrane.

Rinput [20,1000]MΩ The input resistance Rinput , equals the membrane voltage Vm

deflection from resting state divided by injected current. The

inverse is called the leak conductance gleak.

τ [0.1,70]ms Here, τ describes the time for the membrane potential to increase

by a fraction of (1−1/e), or 63 %, from its resting membrane

state during the application of the positive 300 pA current pulse.

gNat [0,250] mS
cm2 Maximal conductance of the fast inactivating Na+ current24, 51.

gNa [0,100] mS
cm2 Maximal conductance of the Na+ current23, 37.

gKd [0,30] mS
cm2 Maximal conductance of the delayed rectifier K+ current23, 37.

gM [0,3] mS
cm2 Maximal conductance of the slow non-inactivating muscarinic

K+ current23, 52.

gKv3.1 [0,250] mS
cm2 Maximal conductance of the fast non-inactivating K+ cur-

rent24, 53.

gL [0,3] mS
cm2 Maximal conductance of the high-threshold Ca2+ current23, 54.

Eleak [−130,−50]mV Reversal potential of the leak current.

τmax [50,4000]ms Time constant describing how rapid the muscarinic current chan-

nel opens (see gM).

VT [−90,−35]mV Parameter that can adjust the AP threshold.

rSS [0.1,3] Rate to steady state (SS). Parameter introduced to change how

rapid gates reach open and closed steady states in Na+ current

with maximal conductance gNa and K+ current with maximal

conductance gKd .

Table 1 Description of the 13 HH-model parameters.

4.3 Electrophysiological Features
We automatically extract 23 electrophysiological summary features from the measured or simulated voltage traces V (t)
using a Python library from the Allen Software Development Kit (SDK) (https://github.com/AllenInstitute/

AllenSDK) with modifications to account for our experimental paradigm

(https://github.com/berenslab/EphysExtraction, Table 2).

4.4 Standard Neural Posterior Estimation
Standard NPE applied to HH models starts off by sampling HH model parameter sets from a prior distribution θ ∼ pθ , followed

by creating synthetic data sets through the simulator or HH model, and eventually trains a deep neural density estimator

qφ (θ | x), a neural network, to learn the probabilistic association between summary statistics x derived from simulations and its

parameter sets θ . Experimental observations xo can then be fed to the density estimator in order to derive all parameter sets

consistent with the data and the prior, i.e. the posterior distribution qφ (θ | xo)
25.

We used the sbi toolbox https://www.mackelab.org/sbi/ to run NPE with different training schedules, including

NPE-N, which we explain in the next section.

4.5 Dealing with Model Mismatch in Neural Posterior Estimation
Posterior distributions derived with standard NPE can suffer from model mismatches, that is, when simulations generally fail to

adequately cover experimental observations in summary statistic or electrophysiological space. They can become confidently

wrong, placing high posterior weight on parameter sets that do not reproduce experimental recordings and low posterior weight

to parameter sets that do (Fig. 1). In machine learning jargon, the trained density estimator fails to extrapolate to experimental

observations (test data) which are outside of the distribution of the training data.

We experimented with various modifications of NPE in order to make the posterior more robust to the mismatch between

model and experimental observations. First, we tried to include only simulations which position themselves close to experimental

observations in summary statistic space (Table S1, Best Euclidean). Closeness was measured by calculating the Euclidean

distance between simulation and observation after standardizing all summary statistics. Second, we introduced different levels
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of isotropic Gaussian noise to the summaries of those simulations (Table S1, Add x amplitude noise to ephys). Third, besides

adding noise to summary statistics, we introduced isotropic Gaussian noise to the model parameters with which the close

simulations were generated (Table S1, Add 0.05 amplitude noise to ephys and model parameters). Finally, we experimented with

a mixture of non-manipulated close simulations and close simulations with noise added to their summary statistics (Table S1,

Data augmentation).

Given their performance measures (Table S1), we decided to use NPE with added isotropic Gaussian noise only to the

summary statistics of simulations close to experimental observations in summary statistic space. We call the method NPE-N.

The noise is of moderate amplitude such that a tradeoff is established between closeness of simulations of MAP estimates to the

experimental observations with closeness of simulations from random posterior samples (Table S1, 3rd and 4th column).

In contrast to NPE, NPE-N produced posteriors that give high posterior weight to model parameter sets that both qualitatively

and quantitatively produce simulations close to experimental observations.

4.6 Feature Selection through Likelihood Marginalization
To analyze which features were informative for constraining the inference procedure, we used Feature Selection through

Likelihood Marginalization35 (FSLM). To ensure comparable posterior estimates between FSLM and NPE, we trained FSLM

with 3 million spiking simulations randomly generated from the prior to which we also introduced isotropic Gaussian noise in

their summary statistics. We then drew 1000 samples from the posteriors of each observation xo, for 5 different initializations

of FSLM and only selected the 50 experimental observations with smallest average KL(pNPE−N(θ | xo)|pFSLM(θ | xo))
55 for

feature selection. The final ranking was derived from 1000 samples per posterior and is averaged across 10 initializations.

4.7 Visualization
We used the openTSNE implementation with default parameters

(https://github.com/pavlin-policar/openTSNE) to embed the transcriptomic space with t-SNE to a final

two-dimensional representation with default parameters.

4.8 Sparse Reduced-Rank Regression and sparse Bottleneck Neural Networks

To link gene expression data to HH model parameters, we used a linear sparse reduced-rank regression18. This framework

reduces the high-dimensional gene space data to a 2-dimensional latent (rank=2), which is maximally predictive of the HH

parameters. An elastic net penalty was used to select the most relevant genes. As a nonlinear extension to sRRR we also tested

the use of sparse bottleneck neural networks (sBNN), that utilize a neural network with bottleneck to predict electrophysiological

measurements from transcriptomic space19. Analogously to sRRR, a group lasso penalty was used on the weights of the first

layer to select most meaningful genes.

12/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.02.530774doi: bioRxiv preprint 

https://github.com/pavlin-policar/openTSNE
https://doi.org/10.1101/2023.03.02.530774
http://creativecommons.org/licenses/by/4.0/


Electrophysiological fea-

ture

Description

AP threshold Membrane voltage at the time where the first derivative of the voltage

w.r.t. time reaches a threshold, which elicits the first AP.

AP amplitude Height of the 1st AP, measured from threshold to maximum voltage.

AP width Width at half height of the 1st AP

AHP Afterhyperpolarization. Depth of the membrane voltage drop after the

1st AP, measured from AP threshold.

3rd AP threshold Analogous to AP threshold but for the 3rd AP.

3rd AP amplitude Analogous to AP amplitude but for the 3rd AP.

3rd AP width Analogous to 3rd AP width but for the 3rd AP.

3rd AHP Analogous to AHP but for the 3rd elicited AP.

AP count* Number of elicited APs in the current injection window 100−700 ms.

AP counts 1st 8th* Number of elicited APs in 100−175 ms.

AP count 1st quarter* Number of APs in 100−250 ms.

AP count 1st half* Number of APs in 100−400 ms.

AP count 2nd half* Number of APs in 400−700 ms.

AP amp adapt* AP amplitude adaptation. 1st elicited AP amplitude divided by the

amplitude of the 2nd elicited AP.

AP average amp adapt* AP average amplitude adaptation. Average ratio of all two consecutive

AP heights as calculated by AP amp adapt during current injection

window.

AP CV* Standard deviation divided by the mean of all AP amplitudes of APs

elicited during the current injection window.

ISI adapt* Interspike interval (ISI) adaptation. ISI: time elapsed between two APs.

ISI adapt: ratio of the 2nd ISI (between 2nd and 3rd elicited AP) to the

1st ISI (between 1st and 2nd elicited AP).

ISI CV* Standard deviation divided by the mean of all ISIs.

Latency* Time it takes to elicit the 1st AP, measured from current stimulation

onset to AP threshold.

Rest Vm mean Mean of the membrane voltage Vm before current stimulation onset

0−100 ms. Also called resting membrane potential.

Vm mean Mean of the membrane voltage Vm during current stimulation window

100−700 ms.

Vm std Standard deviation of the membrane voltage Vm during current stimula-

tion window 100−700 ms.

Vm skewness Skewness of the membrane voltage Vm during current stimulation win-

dow 100−700 ms.

Table 2 Description of 23 extracted electrophysiological features. *To make their distribution more Gaussian, these features

are additionally log-transformed, except for the AP average amp adapt for which we used the sigmoid transform.
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Task / Use Link

Data and code https://github.com/berenslab/

mini-atlas

Read count data https://github.com/berenslab/hh_sbi

Electrophysiological data https://dandiarchive.org/dandiset/

000008/

Electrophysiological features https://github.com/berenslab/

EphysExtraction

HH simulator: Brian2 https://brian2.readthedocs.io/en/

stable/

Inference: SBI Toolbox56 https://www.mackelab.org/sbi/

tSNE: openTSNE https://github.com/pavlin-policar/

openTSNE

Parallel processing: Pathos57 https://mmckerns.github.io/project/

pathos/wiki.html

Table 3 Overview of all ressources used
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SUPPLEMENTARY MATERIAL
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Figure S1 Model misspefication with and without scaling rSS parameter. Analagous to Fig. 1d, but including model

simulations without rSS parameter.

Training schedule MAP simulation

fails (%)

∥xMAP −xo∥2 10 random poste-

rior draw simula-

tion fails (%)

1
k ∑k∥xk −xo∥2

Standard NPE 12.77 6.24±3.24 17.69 6.63±3.24

Best Euclidean 14.14 5.11±3.20 20.86 5.70±3.36

Add 0.001 amplitude noise to ephys 7.33 5.36±3.10 12.58 5.43±3.17

Add 0.01 amplitude noise to ephys 5.86 4.81±2.96 8.54 5.39±3.11

add 0.05 amplitude noise to ephys 4.61 4.71±2.98 9.01 5.34±3.06

NPE-N: Add 0.1 amplitude noise to ephys 2.51 4.35±2.86 6.22 5.11±3.03

Add 1 amplitude noise to ephys 1.36 3.81±2.11 7.27 5.19±2.56

Add 0.05 amplitude noise to ephys and

model parameters

3.66 5.42±2.91 10.28 6.31±2.86

Data augmentation 3.35 4.47±2.98 6.98 4.91±3.12

prior* 0.00 2.63±0.81 52.29 11.79±3.31

Table S1 Performance of various training schedules with NPE. 1st column Training schedules (see 4.5). 2nd column

Percentage of MAP simulation fails. A fail consists in having one or more undefined summary statistic. 3rd column Distance

of the MAP simulation xMAP to the experimental reference xo in standardized summary statistic space (mean ± SD over

n = 955 MoP neurons). 4th column Percentage of simulation fails corresponding to 10 randomly drawn HH model parameter

combinations. 5th column Average distance of simulations from k = 10 randomly drawn HH model parameter sets to the

experimental reference in standardized summary statistic space (mean ± SD over n = 955 MoP neurons). *Regarding the prior,

the MAP simulation is replaced by the prior simulation which has summary statistics closest to the experimental observation

(2nd and 3rd column). In addition, 10 parameter combinations are randomly drawn from the prior (4th and 5th column).
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