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Abstract

This work illustrates the use of normative models in a longitudinal neuroimaging study of children
aged 6-17 years and demonstrates how such models can be used to make meaningful
comparisons in longitudinal studies, even when individuals are scanned with different scanners
across successive study waves. More specifically, we first estimated a large-scale reference
normative model using hierarchical Bayesian regression from N=40,435 individuals across the
lifespan and from dozens of sites. We then transfer these models to a longitudinal developmental
cohort (N=5,985) with three measurement waves acquired on two different scanners that were
unseen during estimation of the reference models. We show that the use of normative models

provides individual deviation scores that are independent of scanner effects and efficiently
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accommodate inter-site variations. Moreover, we provide empirical evidence to guide the
optimization of sample size for the transfer of prior knowledge about the distribution of regional
cortical thicknesses. We show that a transfer set containing as few as 25 samples per site can
lead to good performance metrics on the test set. Finally, we demonstrate the clinical utility of this
approach by showing that deviation scores obtained from the transferred normative models are
able to detect and chart morphological heterogeneity in individuals born pre-term.

1. Introduction

Identifying structural or functional biomarkers of psychiatric and neurological ilinesses across the
lifespan has received increasing attention in recent years. Many of these disorders present
symptoms that begin during childhood and adolescence (Bayer et al., 2021; Rogers & de Brito,
2016; Solmi et al., 2022; Whittle et al., 2020). There is however large inter-individual heterogeneity
in symptoms and underlying biology (DelLisi, 2008; Fuhrmann et al., 2022; Mills et al., 2021;
Tamnes et al., 2017), making it challenging to pinpoint the precise underlying neurobiological
substrates. Longitudinal datasets provide particularly valuable insights on the temporal evolution
of brain development and offer considerable potential to understand the emergence of
psychopathology and to parse this heterogeneity across individuals.

To detect and understand this heterogeneity and atypicality, there is a need to better characterize
typical neurodevelopment (Insel, 2014; Volpe, 2009). In recent years, the availability of large
datasets has greatly assisted efforts to understand inter-individual variability in brain development
(Bethlehem et al., 2022; Rutherford, Fraza, et al., 2022). For example, large scale studies using
cortical volume, cortical thickness (CT) and surface area have identified a general decrease in
these metrics with age, after adolescence (Bethlehem et al., 2022; Frangou et al., 2022;
Rutherford, Fraza, et al., 2022; Tamnes et al., 2017; Thambisetty et al., 2010). CT has been
shown to more accurately reflect underlying pathophysiologic mechanisms than gray matter
volume analysis (Clarkson et al., 2011; Hutton et al., 2009; Pereira et al., 2012; Zhao et al., 2022).
However, these large data resources have expanded in scale via large, long-running longitudinal
cohort studies. While the benefits of these large and unique cohorts are obvious, such studies
impose particularly difficulties. For example, data must often be aggregated across multiple study
centers, necessitating dealing with site effects and across developmental time scale, subjects are
often scanned with different scanner hardware and/or software at successive timepoints. As a
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82  result, there is often little or no overlap in terms of age of participants and site effects in successive
83  acquisition waves. Such non-trivial differences across sites, scanners, and timepoints have been
84  difficult to account for statistically in analyses. Therefore, in addition to longitudinal data, novel
85  methodological tools that map inter-individual differences are needed to generate new insights.
86
87  Normative modeling approaches have recently emerged as a tool for better understanding
88 longitudinal developments with neuroimaging data (Marquand et al., 2019; Marquand, Rezek, et
89 al., 2016). These approaches produce statistical inference at the individual level, without relying
90 on strong assumptions about clustering of individuals or population structure (Antoniades et al.,
91  2021; Cole, 2012; Marquand et al., 2019). Instead, symptoms in individual patients can be related
92 to extreme deviation from the normative range (Fraza et al., 2021; Marquand, Wolfers, et al.,
93 2016; Zabihi et al., 2019). This has shown the potential to detect morphological differences in
94  patient populations which were not evident using standard techniques (Remiszewski et al., 2022).
95 Additionally, a Hierarchical Bayesian Regression (HBR) approach to normative modeling has
96 been shown to efficiently accommodate inter-site variation and to provide good computational
97 scaling, which is useful when using large studies, longitudinal studies, or combining smaller
98  studies together, that are acquired across multiple sites (Bayer et al., 2021; Kia et al., 2022;
99  Rutherford, Fraza, et al., 2022). It also supports federated (i.e. decentralized) multi-site normative
100  modeling to transfer previously trained models onto unseen sites, while benefiting from the
101  training on the large reference datasets (Kia et al., 2022; Rutherford, Kia, et al., 2022). This is
102  especially interesting given that in longitudinal studies running over several years, changes of
103  scanner hardware, software and/or scan protocols are the norm rather than the exception, which
104  generates a need to correct for the resulting scanner effects.
105
106 In this work, we provide a case study in using the transfer of prior knowledge about CT
107  distributions from normative models derived from a large reference (e.g. lifespan) cohort to better
108 estimate parameters on a smaller target (e.g. clinical) cohort. For this, we use longitudinal CT
109  data from the Generation R study (Jaddoe et al., 2006; Kooijman et al., 2016; White et al., 2018),
110  which contains data from children aged 6-17 years scanned in two different scanners, unseen by
111 the reference models. The narrow age-range makes this study a good candidate for transfer
112 learning in that it is necessary to transfer information learned from a large lifespan cohort to obtain
113  precise estimates of the slope or trajectory of developmental effects across this narrow age range.
114 This method provides important benefits: one, it allows meaningful comparison of individuals

115  scanned on different scanners, while taking advantage of previous knowledge, built from large
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116  publicly available datasets to set informed hyperpriors: expected mean and variance of the
117  distribution of samples for each ROIs. This, in turn, provide three benefits to the study, one
118  providing more accurate predictions from the models thanks to the use of the mentioned informed
119  priors; second this enables to reduce the ratio of training samples necessary to learn
120 developmental trajectories for to the unseen sites, thereby enabling more participants to be
121  allocated to the test set, and thus improving statistical power (Pan & Yang, 2010). Third, we will
122  show that it provides a means to draw meaningful inferences within individuals across timepoints,
123  even when follow-up scans are derived from a different scanner. This work also aims to offer
124 some guidance on the methodology, e.g. providing empirical estimates of the number of samples
125 required for the transfer of knowledge from previous learnings and choices in transfer
126  configurations, e.g. factors included as batch effects. Finally, we provide a demonstration of the
127  clinical utility of this approach by using it to understand inter-individual differences in brain
128  morphology resulting from pre-term birth.

129

130

131 2. Methods

132 2.1 Normative modeling

133  We estimated normative models using Hierarchical Bayesian Regression (HBR) to predict cortical
134  thickness from age, sex and scanner site, for each region of interest (ROI) using the PCNtoolkit
135 python package, version 0.22 (Rutherford, Kia, et al., 2022).

136 2.1.1 Reference models

137 We assembled a large reference cohort (Kia et al., 2022) containing n=40,435 (95%) healthy
138 individuals to train the normative models before validating this model on n=2,548 controls and
139  patients (5%, stratified by sites) from a collection of mostly publicly available MRI datasets across
140 77 sites and 42,983 participants: ABIDE-1, ADHD-200, CAMCAM, PNC, CNP, HCP-Aging, HCP-
141 Dev, HCP-EP, OASIS, OPN, IXI, NKI-RS, UKBB, ABCD and CMI-HBN. The reference model is
142  available on the PCNportal (https:/pcnportal.dccn.nl/). Cortical thickness measures were

143  obtained from FreeSurfer processing (versions 5.3 or 6.0), as referred in the publications
144  associated with the datasets (Dale et al., 1999; Fischl et al., 1999, 2002; Fischl & Dale, 2000).
145  Parcellation of the brain was made with the Destrieux atlas (Destrieux et al., 2010). One normative
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146  model was estimated per ROI. Linear HBR models were estimated using fixed effects of age and
147  batch (i.e. random) effects for site and sex. In practice, this allows each site and sex to have
148  different slopes, intercepts and variances. We included only data from the first visit when multiple
149  visits were available (i.e. UKBB and ABCD). Any single missing individual ROl data (less than
150  0.1% of the samples per ROI) was imputed as the site and sex specific ROl mean.

151 Estimated reference models performed well according to accuracy metrics (explained variance:
152 mean=0.44, SD=0.13, standardized mean squared error (SMSE): mean=0.55, SD=0.13, and
153  mean standardized log loss (MSLL): mean=-0.37, SD=0.14). Outputs include hyperparameters
154  defining the mean and variance of the site-specific mean effects and variance, estimated during
155  the training over the collection of datasets. This can be used as informed priors when adapting
156  the normative models to unseen target sites. These hyperparameters are adapted to the unseen
157  site using a holdout subset of the target dataset, i.e. the adaptation set. This allows to reduce the
158  number of samples used for adaptation while retaining a low variance of the estimations.

159

160

161 2.1.2 Target cohort

162  Astarget cohort, 8,523 T1-weighted MRI scans from the population-based longitudinal Generation
163 R study (Jaddoe et al., 2006; Kooijman et al., 2016) were used. In short, the Generation R study
164 is a prospective cohort study from fetal life until adulthood that is designed to find early markers
165 for typical and atypical development, growth, and health. Almost 10,000 pregnant women living
166  in Rotterdam, the Netherlands, were enrolled in the study between 2002 and 2006. Data from the
167  children and caregivers was collected at several time points and written informed consent and/or
168 assent was obtained from all participants. The imaging protocol and quality assessment is
169  extensively described by White, Muetzel and colleagues (White et al., 2018). MRI scans were
170  acquired in 3 waves using 2 different scanners, making the cohort an ideal validation set to
171 investigate the transfer of hyperparameters from a reference dataset to an unseen target set. In
172  longitudinal studies running over several years, changes of scanner hardware, software and/or
173  scan protocols are often inevitable, which generates a need to correct for the resulting scanner
174  effects. In the first wave, 1,033 participants (484 female, age range: [6-10]) were imaged with a
175 3T MR750 Discovery MRI scanner, while in the second (n=3,920, 1,977 female, age range: [9-
176  12]) and third wave (n=3,570, 1,866 female, age range: [13-17]) a 3T MR750w Discovery scanner
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177  (General Electric, Milwaukee, WI, USA) was used. After exclusion of scans with incidental findings
178  (n=58), braces (n=1067), and low-quality visual inspection ratings of FreeSurfer reconstructions
179  (n=2067), a total of 6,285 scans were included in the target dataset. Figure 1 shows a histogram
180  of age and scanner distributions in the target dataset.
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183 Figure 1. Histogram of the scanning waves and age distributions in the Generation R target dataset.
184

185 2.2. Transfer of hyperparameters from reference models to target
186 cohort

187 By making use of the Generation R study cohort, we set out to show the advantage of transferring
188  the hyperparameters to an unseen site by 1) determining the optimal number of samples needed
189  for adaptation to the target cohort, 2) validating the recalibration of data to the target cohort and
190  successful removal of site-effects by comparing raw and scanner corrected values, and 3)
191  illustrating the utility of site-corrected deviations scores to uncover changes in morphology
192  between groups and individuals. In the following, these three aims are described in more detail.

193 2.2.1. Optimal sample size for parameter adaptation

194  In order to determine the optimal number of samples in the adaptation set we leveraged the large
195  amount of data available in the Generation R dataset. As described above, to prevent bias, held-
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196  out data should be used for adapting the parameters of the normative model to the target cohort
197 (see Kia et al., 2020, 2022 for details). The number of scans in the adaptation set was varied
198 ranging from 5 to 300 scans and model metrics (explained variance, SMSE, MSLL) of the
199  subsequent models was calculated for each sample size. The resulting information is particularly
200  useful for small imaging cohorts, since cohorts with smaller sample sizes can employ the current
201  approach to boost power by making use of the hyperpriors inferred from large data. Yet, this is
202  only viable if the samples needed to recalibrate the models can be kept to an optimal minimum.

203 2.2.2 Validation of adaptation

204  Additionally, two aspects of the Generation R study design make the cohort an ideal target set to
205 validate the successful recalibration of the normative models to an unseen site. First, scans of
206  participants that have repeated measurements over all 3 scanning time points are present.
207  Uncorrected CT values of a participant with scans across all 3 measurement waves (and therefore
208  across both scanners) show heterogeneity over time points that is partly due to changes over time
209 and partly due to confounding site-effects. After successful recalibration of the normative model,
210  we expect resulting z-scores, which are in principle free of site-effects, of the same participant to
211 be in a similar range while raw values will differ. Second, there is an overlapping age range (8,6
212 - 10,7 years of age), in which scans from both scanners were obtained (Fig. 1). Z-scores of
213  participants from wave 1 (scanner 1), that fall in the overlapping age range of wave 1 and wave
214 2 should be distributed similarly after recalibration as z-scores in the same age range of wave 2
215  (scanner 2) while raw, uncorrected values differ due to scanner effects. Therefore, scans of
216  participants with measurements at all 3 scanning time points (n=1,317) and scans from the first
217  imaging wave that fall in the overlapping age range (n=211) were withheld from the adaptation
218  setthat was used to recalibrate the reference normative model to the new unseen site. As outlined
219  above, these scans hold valuable information that will be used to determine the successful
220 calibration of the models by comparing raw CT before adaptation and corrected estimates after
221  adaptation.

222 2.2.3 Clinical application of normative estimates

223  Lastly, we used the resulting site-effect free estimates to illustrate their potential to uncover
224  morphological deviations in clinical cohorts by contrasting estimates in CT per ROI between
225 participants in the Generation R cohort born pre-term (gestational age < 37 weeks, n=339) and
226  children born at term (n=5,646). Pre-term birth interrupts a vulnerable period for brain
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227  development, as processes such as synaptogenesis, axonal growth, and neuronal migration, take
228  place during the third semester (Volpe, 2009). Therefore, deviation scores from the normative
229  models can for instance be used to explore the variability in CT within children born pre-term, but
230 also to find ROls that differ between children born pre-term and at term. Notably, these deviation
231  scores are free of site-effects and therefore especially suited for longitudinal MRI designs, as it is
232  the case with the Generation R study.

233 3. Results

234 3.1. Transfer results

235 3.1.1 Optimal number of samples for parameter adaptation

236  We first determined the optimal number of subjects needed in the adaptation set. Figure 2 shows
237  evaluation metrics for each ROI as the sample size of the adaptation set increases. Performance
238  of the model reaches a plateau around 100 subjects. We thus adapted the initial reference models
239  to the unseen sites of the Generation R study on n=300 (4.8%) (n=100 for scanner 1 in wave 1;
240 n=200 for scanner 2 in wave 2 and 3) and tested the models on the remaining participants
241 (n=5,985; n=813 for scanner 1 in wave 1, n=5,172 for scanner 2 in wave 2 and 3). Subjects from
242 wave 1 and 3 were sampled randomly, whereas subjects from wave 2 were sampled pseudo-
243 randomly to ensure a uniform cover of the full range of the narrow and highly peaked age
244  distribution in this wave (Fig. 1). While model performance reached a performance ceiling at
245  approximately 100 scans per scanner/wave in the adaptation sample, only slight concessions in
246  model performance are present as adaptation sample size decreases to only 25 scans.
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248 Figure 2.: Comparison of model performance as the number of subjects in adaptation set increases. Colored lines
249 show evaluation metrics per ROI, color coded according to cerebral area. The black line illustrates the mean across
250 all ROIs. Model performance reaches a plateau at approximately 100 scans per wave in the adaptation sample
251 (vertical dotted line).

252
253

254 3.1.2 Adaptation settings

255  We furthermore tested different adaptation settings. Despite the fact that scans in wave 2 and 3
256  of the target cohort were acquired on the same scanner, we compared adaptation settings treating
257 waves 2 and 3 as the same but also as different sites. When treated as same sites, we found a
258  slight bias for higher deviation scores (z-scores) when running the adaptation to a wave 2+3 test
259  set with wave 3 subjects compared to wave 2 subjects only, in particular for frontal ROIs. The
260 effect of the different adaptation settings on all ROls is shown in Supplementary Figure 1 and is
261  explicitly illustrated in an example ROI in Figure 3. Panel A shows that the model is more
262  successful in reparametrizing the raw data to centiles when each time point of measurement is
263 handled as a separate site-effect. Possible sources for such effects might stem from changes in
264  scanner software, changes in image quality with age (i.e. motion artifacts), or sample variability.
265 In our target cohort, scanner software was upgraded after the first 370 scans of wave 2 but was
266  otherwise identical in wave 2 and wave 3. However, age-related improvements in images quality
267  are frequently reported in the literature and quality assurance, measured as topological defects
268 in the surface reconstruction for FreeSurfer processed MRI data (https:/github.com/Deep-
269  Ml/gatools-python), does show improvements in image quality with age across the three waves
270  (Meanwave 1=229.06, SDwave 1=98.56; Meanwave 2=213.89, SDwave 2=67.15; Meanwave 3=166.97,
271 SDwave3=67.15).
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273 Figure 3. Effects of different recalibration configurations on the target cohort illustrated in an example ROI (inferior
274 frontal sulcus). Panel A) shows z-score distributions when measurement waves 2 and 3 of the Generation R target
275 cohort are treated as the same (same scanner) or different sites in a frontal example ROI, the inferior frontal sulcus.
276 Median and interquartile range are represented by green dots and black bars, respectively. For each measurement
277 wave, we would expect the median z-score to be around 0. However, this is not the case if measurement wave 2 and
278 3 are treated as the same site. The difference from 0 is indicated by red bars. By examining the CT trajectories in panel
279 B) and C), we see that this might be due to a misestimation of mean and variance in females when both waves are
280 treated as the same site.

281 3.1.3. Adaptation Validation

282

283  After choosing for a adaptation setting treating the three measurement waves as different batch
284  effects, we validated the success of the adaptation of the reference model to the target cohort by
285 examining the differences between raw CT values and corrected deviations (z-scores) after
286 transfer of the subjects which were withheld from the adaptation sets (Fig. 4). Scans of
287  participants with repeated measurements at all imaging waves (a random sample of ten
288  participants is depicted by green lines) show a decline over time in raw CT. As expected, thinning
289  of the cortex can be observed with age, however, the raw CT values are confounded by noise
290 stemming from site-effects of the different measurement waves. In the resulting z-scores of the
291  withheld subjects, these site-effects are removed as demonstrated by stable deviations from the
292  normative model within a participant (Fig. 4B). The same holds true for the withheld subjects from
293 measurement wave 1 that fall in the overlapping age range (8,6 - 10,7 years of age) of wave 1
294  (scanner 1) and 2 (scanner 2). While raw CT values in the overlapping age range vary vastly
295  between the two measurement waves (#(2874)=13.4, p<0.001), with a tendency of higher values
296 in measurement wave 1 compared to wave 2 (Fig. 4C), this difference is slightly reduced when
297  correcting for sex (Fig. 4D) (#(2874)=11.4, p<0.001) and practically absent in the sex- and
298 additionally site-effect corrected z-scores (Fig. 4E) (#(2874)=1.0, p=0.324). Therefore, we can
299  meaningfully compare individuals on the basis of z-scores, bearing in mind that the z-scores are
300 defined with respect to a lifespan based normative model.

301
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302

303 Figure 4: Validation of transferring the reference normative model to the target cohort using two groups of subjects that
304 were withheld from the adaptation set: 1) subjects with repeated measurements at all 3 imaging waves (random sample
305 of ten participants depicted by green lines, panels A and B; 2) subjects from imaging waves 1 and 2 that fall in the
306 overlapping age range of both scanners [8,6 - 10,7] (depicted by darker shaded red and blue dots and lines, panels A-
307 E). Panel A and C show raw cortical thickness values. Panels B, D, and E show sex-effect (panel D) or sex- and site-
308 effect corrected z-scores of the same participants (panels B&E). For consistency, the same ROI (inferior frontal sulcus)
309  asinthe previous figures is illustrated.

310 3.2. Relating site-effect corrected z-scores to gestational age

311 To illustrate the usefulness of the resulting models, we compared extreme deviations, acquired
312  at the level of individuals, between children born pre-term and children born at term in the target
313  cohort. Percentages of individuals with an extreme z-score (larger/smaller than 2) per ROI are
314 shown in Figure 5. In the children born at term, we find approximately 2.5% of children with
315 extreme negative and extreme positive z-scores respectively across ROls. Exceptions are
316  primarily smaller ROls (sulcus intermedius primus (left & right), posterior ramus of the lateral
317  sulcus (left), anterior transverse collateral sulcus (right), orbital sulcus (right)) where areas with
318  thicker cortices than expected can be observed. Importantly, extreme deviations are much more
319  prevalent with children born pre-term with the most pronounced extreme positive deviations
320 (thicker cortex than expected) found in the left pericallosal sulcus and lateral aspect of the superior
321  temporal gyrus, as well as in the anterior part of cingulate gyrus and sulcus (ACC) of both
322  hemispheres. The most striking extreme negative deviations (thinner cortex than expected) can
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323 be seen on the left hemisphere in the superior and inferior temporal sulcus, lingual sulcus,
324  superior part of the precentral sulcus, supramarginal gyrus, and on the right hemisphere in the
325 superior and inferior part of the precentral sulcus, superior frontal sulcus, angular gyrus,
326  precentral gyrus and the precuneus.

327  These regions are consistent with previous findings on CT differences in adolescents born pre-
328 term. Pronounced cortical thinning has been found persistently in areas surrounding the central
329  sulcus and temporal lobes (Martinussen et al., 2005; Nagy et al., 2011; Zubiaurre-Elorza et al.,
330 2012) as well as thicker cortices in frontal regions surrounding the anterior cingulate cortex
331  (Bjuland et al., 2013). The current approach has been shown to capture structural deviations
332  better than case-control studies as they are more sensitive to individual heterogeneity
333 (Remiszewski et al., 2022). It also offers improved insights in longitudinal cohorts, as these
334  deviation scores are not cofounded by site-effects.

335
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336 '
337 Figure 5.: Differences in site-effect corrected z-scores between children born pre-term (low gestational age (GA)) and

338 children born term (typical gestational age (GA)). On the left side, extreme negative deviations (cortex thinner than
339 expected) are illustrated. On the right, extreme positive deviations (cortex thicker than expected) are shown.

340

Page 13 of 23


https://doi.org/10.1101/2023.03.02.530742
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.02.530742; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

sa1 4. Discussion

342 In this study, we used information from normative models that were initially trained on a large
343  number of samples, scanned over 77 sites, as prior knowledge for the parameters of the CT
344  distributions when adapting these models to the two scanners of the longitudinal Generation R
345  study.

346  We report three main findings: first, transfer learning is successful and allows for meaningful
347  comparisons between individuals from different scanners, and sexes, as previously reported (Kia
348 et al., 2022). Second, we quantified the number of samples in the transfer set needed to obtain
349  good performance metrics on the test set and show that relatively few samples are sufficient for
350 good performance (approximately n=25). This provides the added benefit of improving the
351 statistical power of statistical analyses on the resulting larger test set. While we used 100 samples
352  per measurement wave in the adaptation site, slightly smaller adaptation samples decreased the
353  evaluation metrics only marginally. Third, we show that the deviations from these normative
354 models are meaningful in that they are altered in a highly individualized manner in individuals
355  born pre-term.

356

357  Our results support the finding that normative models capture the general trend of decreasing
358  cortical thickness with age, as reported in previous studies (Bethlehem et al., 2022; Frangou et
359 al., 2022; Rutherford, Fraza, et al., 2022; Tamnes et al., 2017; Thambisetty et al., 2010).
360 Interestingly, we found that the model performed better when each measurement wave of the
361  transfer cohort was treated as a separate site-effect, even though two of three waves were
362 acquired on the same scanner. This could be due to sample variability or a misestimation of
363  parameters in the female cohort, possibly linked to the fact that scan quality tends to improve with
364  age. For future studies, it may be useful to treat distinct measurement intervals as separate batch-
365 effects, resulting in a factorial design of sex x scanners x waves, even if the scanner setup has
366 not changed, to produce more precise models. Our recommendations might differ for longer
367 timescales, non-linear or non-Gaussian lifespan trajectories, which usually requires more data
368 (de Boer et al., 2022). However, the methods we introduce can be used to determine the optimal
369  number of subjects for such cases.

370

371  The successful validation of the use of transfer learning with normative models opens the door
372  for further investigations exploring the relationship between deviation scores and various
373  phenotypes. Individual-level deviations, as obtained through normative models, have been shown
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374  to provide stronger effects than typical case-control studies using uncorrected raw measurements
375  (Rutherford, Fraza, et al., 2022) and are therefore particularly suitable for exploring and
376 investigating individual differences within and across datasets. The used federated learning
377  framework makes it possible to use the models presented in this work as informed priors (models
378 are available online via PCNportal [https://pcnportal.dccn.nl/] to investigate CT in smaller and/or
379  clinical cohorts.

380

381 In this study, we provide an example how normative models can be used to investigate clinical
382  phenotypes, by investigating the relation between extreme deviations scores and the gestational
383  age at birth, that is between children born at-term and pre-term. While children born at-term show
384  an expected distribution of approximately 2.5% with z-scores higher than 2 or lower than -2
385  respectively, children born pre-term are more likely to have extreme deviations in specific ROIs,
386  which are consistent with previous literature showing pronounced differences in particular in
387  frontal and temporal cortices. While we show a comparison between groups, the current approach
388  does not require clustering of individuals into groups but instead can be used to make inferences
389  about heterogeneity within clinical groups as well as about deviations on an individual level.

390

391 4.1. Limitations and future directions

392  Although we demonstrate that evaluation metrics level off after 100 scans in the adaptation set,
393 as few as 25 scans can still lead to effective transfer of knowledge. However, this limitation
394  prevents small cohorts from utilizing the current approach due to the fact that the median sample
395  size of neuroimaging studies typically includes 25 participants (Marek et al., 2022).

396  Furthermore, our work estimates normative models on a single ROI, thereby neglecting any
397  gpatial interdependencies between brain regions. Moreover, other image-derived phenotypes,
398  such as the cerebellum, could also be considered.

399 5. Conclusion

400  Using longitudinal cortical thickness data from the Generation R study on children aged 6 to 17
401  years old, we present an application of transfer learning of large-scale normative models which
402 produce good performance metrics with even a limited size of adaptation set. The resulting
403  deviation scores per age and ROls, allow for meaningful comparison inter sites and inter sex.
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404  Using these obtained deviation scores, we were able to show specifically localized differences in
405 cortical thickness between children born pre-term and children born at-term.

406

407
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