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Abstract 40 

This work illustrates the use of normative models in a longitudinal neuroimaging study of children 41 

aged 6-17 years and demonstrates how such models can be used to make meaningful 42 

comparisons in longitudinal studies, even when individuals are scanned with different scanners 43 

across successive study waves. More specifically, we first estimated a large-scale reference 44 

normative model using hierarchical Bayesian regression from N=40,435 individuals across the 45 

lifespan and from dozens of sites. We then transfer these models to a longitudinal developmental 46 

cohort (N=5,985) with three measurement waves acquired on two different scanners that were 47 

unseen during estimation of the reference models. We show that the use of normative models 48 

provides individual deviation scores that are independent of scanner effects and efficiently 49 
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accommodate inter-site variations. Moreover, we provide empirical evidence to guide the 50 

optimization of sample size for the transfer of prior knowledge about the distribution of regional 51 

cortical thicknesses. We show that a transfer set containing as few as 25 samples per site can 52 

lead to good performance metrics on the test set. Finally, we demonstrate the clinical utility of this 53 

approach by showing that deviation scores obtained from the transferred normative models are 54 

able to detect and chart morphological heterogeneity in individuals born pre-term. 55 

 56 

1. Introduction 57 

Identifying structural or functional biomarkers of psychiatric and neurological illnesses across the 58 

lifespan has received increasing attention in recent years. Many of these disorders present 59 

symptoms that begin during childhood and adolescence (Bayer et al., 2021; Rogers & de Brito, 60 

2016; Solmi et al., 2022; Whittle et al., 2020). There is however large inter-individual heterogeneity 61 

in symptoms and underlying biology (DeLisi, 2008; Fuhrmann et al., 2022; Mills et al., 2021; 62 

Tamnes et al., 2017), making it challenging to pinpoint the precise underlying neurobiological 63 

substrates. Longitudinal datasets provide particularly valuable insights on the temporal evolution 64 

of brain development and offer considerable potential to understand the emergence of 65 

psychopathology and to parse this heterogeneity across individuals.  66 

 67 

To detect and understand this heterogeneity and atypicality, there is a need to better characterize 68 

typical neurodevelopment (Insel, 2014; Volpe, 2009). In recent years, the availability of large 69 

datasets has greatly assisted efforts to understand inter-individual variability in brain development 70 

(Bethlehem et al., 2022; Rutherford, Fraza, et al., 2022). For example, large scale studies using 71 

cortical volume, cortical thickness (CT) and surface area have identified a general decrease in 72 

these metrics with age, after adolescence (Bethlehem et al., 2022; Frangou et al., 2022; 73 

Rutherford, Fraza, et al., 2022; Tamnes et al., 2017; Thambisetty et al., 2010). CT has been 74 

shown to more accurately reflect underlying pathophysiologic mechanisms than gray matter 75 

volume analysis (Clarkson et al., 2011; Hutton et al., 2009; Pereira et al., 2012; Zhao et al., 2022). 76 

However, these large data resources have expanded in scale via large, long-running longitudinal 77 

cohort studies. While the benefits of these large and unique cohorts are obvious, such studies 78 

impose particularly difficulties. For example, data must often be aggregated across multiple study 79 

centers, necessitating dealing with site effects and across developmental time scale, subjects are 80 

often scanned with different scanner hardware and/or software at successive timepoints. As a 81 
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result, there is often little or no overlap in terms of age of participants and site effects in successive 82 

acquisition waves. Such non-trivial differences across sites, scanners, and timepoints have been 83 

difficult to account for statistically in analyses. Therefore, in addition to longitudinal data, novel 84 

methodological tools that map inter-individual differences are needed to generate new insights. 85 

 86 

Normative modeling approaches have recently emerged as a tool for better understanding 87 

longitudinal developments with neuroimaging data (Marquand et al., 2019; Marquand, Rezek, et 88 

al., 2016). These approaches produce statistical inference at the individual level, without relying 89 

on strong assumptions about clustering of individuals or population structure (Antoniades et al., 90 

2021; Cole, 2012; Marquand et al., 2019). Instead, symptoms in individual patients can be related 91 

to extreme deviation from the normative range (Fraza et al., 2021; Marquand, Wolfers, et al., 92 

2016; Zabihi et al., 2019). This has shown the potential to detect morphological differences in 93 

patient populations which were not evident using standard techniques (Remiszewski et al., 2022). 94 

Additionally, a Hierarchical Bayesian Regression (HBR) approach to normative modeling has 95 

been shown to efficiently accommodate inter-site variation and to provide good computational 96 

scaling, which is useful when using large studies, longitudinal studies, or combining smaller 97 

studies together, that are acquired across multiple sites (Bayer et al., 2021; Kia et al., 2022; 98 

Rutherford, Fraza, et al., 2022). It also supports federated (i.e. decentralized) multi-site normative 99 

modeling to transfer previously trained models onto unseen sites, while benefiting from the 100 

training on the large reference datasets (Kia et al., 2022; Rutherford, Kia, et al., 2022). This is 101 

especially interesting given that in longitudinal studies running over several years, changes of 102 

scanner hardware, software and/or scan protocols are the norm rather than the exception, which 103 

generates a need to correct for the resulting scanner effects. 104 

 105 

In this work, we provide a case study in using the transfer of prior knowledge about CT 106 

distributions from normative models derived from a large reference (e.g. lifespan) cohort to better 107 

estimate parameters on a smaller target (e.g. clinical) cohort. For this, we use longitudinal CT 108 

data from the Generation R study (Jaddoe et al., 2006; Kooijman et al., 2016; White et al., 2018), 109 

which contains data from children aged 6-17 years scanned in two different scanners, unseen by 110 

the reference models. The narrow age-range makes this study a good candidate for transfer 111 

learning in that it is necessary to transfer information learned from a large lifespan cohort to obtain 112 

precise estimates of the slope or trajectory of developmental effects across this narrow age range. 113 

This method provides important benefits: one, it allows meaningful comparison of individuals 114 

scanned on different scanners, while taking advantage of previous knowledge, built from large 115 
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publicly available datasets to set informed hyperpriors: expected mean and variance of the 116 

distribution of samples for each ROIs. This, in turn, provide three benefits to the study, one 117 

providing more accurate predictions from the models thanks to the use of the mentioned informed 118 

priors; second this enables to reduce the ratio of training samples necessary to learn 119 

developmental trajectories for to the unseen sites, thereby enabling more participants to be 120 

allocated to the test set, and thus improving statistical power (Pan & Yang, 2010). Third, we will 121 

show that it provides a means to draw meaningful inferences within individuals across timepoints, 122 

even when follow-up scans are derived from a different scanner. This work also aims to offer 123 

some guidance on the methodology, e.g. providing empirical estimates of the number of samples 124 

required for the transfer of knowledge from previous learnings and choices in transfer 125 

configurations, e.g. factors included as batch effects. Finally, we provide a demonstration of the 126 

clinical utility of this approach by using it to understand inter-individual differences in brain 127 

morphology resulting from pre-term birth.    128 

 129 

 130 

2. Methods 131 

2.1 Normative modeling 132 

We estimated normative models using Hierarchical Bayesian Regression (HBR) to predict cortical 133 

thickness from age, sex and scanner site, for each region of interest (ROI) using the PCNtoolkit 134 

python package, version 0.22 (Rutherford, Kia, et al., 2022). 135 

2.1.1 Reference models 136 

We assembled a large reference cohort (Kia et al., 2022) containing n=40,435 (95%) healthy 137 

individuals to train the normative models before validating this model on n=2,548 controls and 138 

patients (5%, stratified by sites) from a collection of mostly publicly available MRI datasets across 139 

77 sites and 42,983 participants: ABIDE-1, ADHD-200, CAMCAM, PNC, CNP, HCP-Aging, HCP-140 

Dev, HCP-EP, OASIS, OPN, IXI, NKI-RS, UKBB, ABCD and CMI-HBN. The reference model is 141 

available on the PCNportal (https://pcnportal.dccn.nl/). Cortical thickness measures were 142 

obtained from FreeSurfer processing (versions 5.3 or 6.0), as referred in the publications 143 

associated with the datasets (Dale et al., 1999; Fischl et al., 1999, 2002; Fischl & Dale, 2000). 144 

Parcellation of the brain was made with the Destrieux atlas (Destrieux et al., 2010). One normative 145 
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model was estimated per ROI. Linear HBR models were estimated using fixed effects of age and 146 

batch (i.e. random) effects for site and sex. In practice, this allows each site and sex to have 147 

different slopes, intercepts and variances. We included only data from the first visit when multiple 148 

visits were available (i.e. UKBB and ABCD). Any single missing individual ROI data (less than 149 

0.1% of the samples per ROI) was imputed as the site and sex specific ROI mean.  150 

Estimated reference models performed well according to accuracy metrics (explained variance: 151 

mean=0.44, SD=0.13, standardized mean squared error (SMSE): mean=0.55, SD=0.13, and 152 

mean standardized log loss (MSLL): mean=-0.37, SD=0.14). Outputs include hyperparameters 153 

defining the mean and variance of the site-specific mean effects and variance, estimated during 154 

the training over the collection of datasets. This can be used as informed priors when adapting 155 

the normative models to unseen target sites. These hyperparameters are adapted to the unseen 156 

site using a holdout subset of the target dataset, i.e. the adaptation set. This allows to reduce the 157 

number of samples used for adaptation while retaining a low variance of the estimations.  158 

  159 

 160 

2.1.2 Target cohort 161 

As target cohort, 8,523 T1-weighted MRI scans from the population-based longitudinal Generation 162 

R study (Jaddoe et al., 2006; Kooijman et al., 2016) were used. In short, the Generation R study 163 

is a prospective cohort study from fetal life until adulthood that is designed to find early markers 164 

for typical and atypical development, growth, and health. Almost 10,000 pregnant women living 165 

in Rotterdam, the Netherlands, were enrolled in the study between 2002 and 2006. Data from the 166 

children and caregivers was collected at several time points and written informed consent and/or 167 

assent was obtained from all participants. The imaging protocol and quality assessment is 168 

extensively described by White, Muetzel and colleagues (White et al., 2018). MRI scans were 169 

acquired in 3 waves using 2 different scanners, making the cohort an ideal validation set to 170 

investigate the transfer of hyperparameters from a reference dataset to an unseen target set. In 171 

longitudinal studies running over several years, changes of scanner hardware, software and/or 172 

scan protocols are often inevitable, which generates a need to correct for the resulting scanner 173 

effects. In the first wave, 1,033 participants (484 female, age range: [6-10]) were imaged with a 174 

3T MR750 Discovery MRI scanner, while in the second (n=3,920, 1,977 female, age range: [9-175 

12]) and third wave (n=3,570, 1,866 female, age range: [13-17]) a 3T MR750w Discovery scanner 176 
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(General Electric, Milwaukee, WI, USA) was used. After exclusion of scans with incidental findings 177 

(n=58), braces (n=1067), and low-quality visual inspection ratings of FreeSurfer reconstructions 178 

(n=2067), a total of 6,285 scans were included in the target dataset. Figure 1 shows a histogram 179 

of age and scanner distributions in the target dataset. 180 

 181 

 182 

Figure 1. Histogram of the scanning waves and age distributions in the Generation R target dataset. 183 

 184 

2.2. Transfer of hyperparameters from reference models to target 185 

cohort 186 

By making use of the Generation R study cohort, we set out to show the advantage of transferring 187 

the hyperparameters to an unseen site by 1) determining the optimal number of samples needed 188 

for adaptation to the target cohort, 2) validating the recalibration of data to the target cohort and 189 

successful removal of site-effects by comparing raw and scanner corrected values, and 3) 190 

illustrating the utility of site-corrected deviations scores to uncover changes in morphology 191 

between groups and individuals. In the following, these three aims are described in more detail. 192 

2.2.1. Optimal sample size for parameter adaptation 193 

In order to determine the optimal number of samples in the adaptation set we leveraged the large 194 

amount of data available in the Generation R dataset. As described above, to prevent bias, held-195 
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out data should be used for adapting the parameters of the normative model to the target cohort 196 

(see Kia et al., 2020, 2022 for details). The number of scans in the adaptation set was varied 197 

ranging from 5 to 300 scans and model metrics (explained variance, SMSE, MSLL) of the 198 

subsequent models was calculated for each sample size. The resulting information is particularly 199 

useful for small imaging cohorts, since cohorts with smaller sample sizes can employ the current 200 

approach to boost power by making use of the hyperpriors inferred from large data. Yet, this is 201 

only viable if the samples needed to recalibrate the models can be kept to an optimal minimum.    202 

2.2.2 Validation of adaptation 203 

Additionally, two aspects of the Generation R study design make the cohort an ideal target set to 204 

validate the successful recalibration of the normative models to an unseen site. First, scans of 205 

participants that have repeated measurements over all 3 scanning time points are present. 206 

Uncorrected CT values of a participant with scans across all 3 measurement waves (and therefore 207 

across both scanners) show heterogeneity over time points that is partly due to changes over time 208 

and partly due to confounding site-effects. After successful recalibration of the normative model, 209 

we expect resulting z-scores, which are in principle free of site-effects, of the same participant to 210 

be in a similar range while raw values will differ. Second, there is an overlapping age range (8,6 211 

- 10,7 years of age), in which scans from both scanners were obtained (Fig. 1). Z-scores of 212 

participants from wave 1 (scanner 1), that fall in the overlapping age range of wave 1 and wave 213 

2 should be distributed similarly after recalibration as z-scores in the same age range of wave 2 214 

(scanner 2) while raw, uncorrected values differ due to scanner effects. Therefore, scans of 215 

participants with measurements at all 3 scanning time points (n=1,317) and scans from the first 216 

imaging wave that fall in the overlapping age range (n=211) were withheld from the adaptation 217 

set that was used to recalibrate the reference normative model to the new unseen site. As outlined 218 

above, these scans hold valuable information that will be used to determine the successful 219 

calibration of the models by comparing raw CT before adaptation and corrected estimates after 220 

adaptation. 221 

2.2.3 Clinical application of normative estimates 222 

Lastly, we used the resulting site-effect free estimates to illustrate their potential to uncover 223 

morphological deviations in clinical cohorts by contrasting estimates in CT per ROI between 224 

participants in the Generation R cohort born pre-term (gestational age < 37 weeks, n=339) and 225 

children born at term (n=5,646). Pre-term birth interrupts a vulnerable period for brain 226 
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development, as processes such as synaptogenesis, axonal growth, and neuronal migration, take 227 

place during the third semester (Volpe, 2009). Therefore, deviation scores from the normative 228 

models can for instance be used to explore the variability in CT within children born pre-term, but 229 

also to find ROIs that differ between children born pre-term and at term. Notably, these deviation 230 

scores are free of site-effects and therefore especially suited for longitudinal MRI designs, as it is 231 

the case with the Generation R study. 232 

3. Results 233 

3.1. Transfer results 234 

3.1.1 Optimal number of samples for parameter adaptation 235 

We first determined the optimal number of subjects needed in the adaptation set. Figure 2 shows 236 

evaluation metrics for each ROI as the sample size of the adaptation set increases. Performance 237 

of the model reaches a plateau around 100 subjects. We thus adapted the initial reference models 238 

to the unseen sites of the Generation R study on n=300 (4.8%) (n=100 for scanner 1 in wave 1; 239 

n=200 for scanner 2 in wave 2 and 3) and tested the models on the remaining participants 240 

(n=5,985; n=813 for scanner 1 in wave 1, n=5,172 for scanner 2 in wave 2 and 3). Subjects from 241 

wave 1 and 3 were sampled randomly, whereas subjects from wave 2 were sampled pseudo-242 

randomly to ensure a uniform cover of the full range of the narrow and highly peaked age 243 

distribution in this wave (Fig. 1). While model performance reached a performance ceiling at 244 

approximately 100 scans per scanner/wave in the adaptation sample, only slight concessions in 245 

model performance are present as adaptation sample size decreases to only 25 scans. 246 

 247 
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Figure 2.: Comparison of model performance as the number of subjects in adaptation set increases. Colored lines 248 

show evaluation metrics per ROI, color coded according to cerebral area. The black line illustrates the mean across 249 

all ROIs. Model performance reaches a plateau at approximately 100 scans per wave in the adaptation sample 250 

(vertical dotted line).  251 

 252 

 253 

3.1.2 Adaptation settings 254 

We furthermore tested different adaptation settings. Despite the fact that scans in wave 2 and 3 255 

of the target cohort were acquired on the same scanner, we compared adaptation settings treating 256 

waves 2 and 3 as the same but also as different sites. When treated as same sites, we found a 257 

slight bias for higher deviation scores (z-scores) when running the adaptation to a wave 2+3 test 258 

set with wave 3 subjects compared to wave 2 subjects only, in particular for frontal ROIs. The 259 

effect of the different adaptation settings on all ROIs is shown in Supplementary Figure 1 and is 260 

explicitly illustrated in an example ROI in Figure 3. Panel A shows that the model is more 261 

successful in reparametrizing the raw data to centiles when each time point of measurement is 262 

handled as a separate site-effect. Possible sources for such effects might stem from changes in 263 

scanner software, changes in image quality with age (i.e. motion artifacts), or sample variability. 264 

In our target cohort, scanner software was upgraded after the first 370 scans of wave 2 but was 265 

otherwise identical in wave 2 and wave 3. However, age-related improvements in images quality 266 

are frequently reported in the literature and quality assurance, measured as topological defects 267 

in the surface reconstruction for FreeSurfer processed MRI data (https://github.com/Deep-268 

MI/qatools-python), does show improvements in image quality with age across the three waves 269 

(Meanwave 1=229.06, SDwave 1=98.56; Meanwave 2=213.89, SDwave 2=67.15; Meanwave 3=166.97, 270 

SDwave 3=67.15). 271 

 272 
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Figure 3. Effects of different recalibration configurations on the target cohort illustrated in an example ROI (inferior 273 

frontal sulcus). Panel A) shows z-score distributions when measurement waves 2 and 3 of the Generation R target 274 

cohort are treated as the same (same scanner) or different sites in a frontal example ROI, the inferior frontal sulcus. 275 

Median and interquartile range are represented by green dots and black bars, respectively. For each measurement 276 

wave, we would expect the median z-score to be around 0. However, this is not the case if measurement wave 2 and 277 

3 are treated as the same site. The difference from 0 is indicated by red bars. By examining the CT trajectories in panel 278 

B) and C), we see that this might be due to a misestimation of mean and variance in females when both waves are 279 

treated as the same site.  280 

3.1.3. Adaptation Validation 281 

 282 

After choosing for a adaptation setting treating the three measurement waves as different batch 283 

effects, we validated the success of the adaptation of the reference model to the target cohort by 284 

examining the differences between raw CT values and corrected deviations (z-scores) after 285 

transfer of the subjects which were withheld from the adaptation sets (Fig. 4). Scans of 286 

participants with repeated measurements at all imaging waves (a random sample of ten 287 

participants is depicted by green lines) show a decline over time in raw CT. As expected, thinning 288 

of the cortex can be observed with age, however, the raw CT values are confounded by noise 289 

stemming from site-effects of the different measurement waves. In the resulting z-scores of the 290 

withheld subjects, these site-effects are removed as demonstrated by stable deviations from the 291 

normative model within a participant (Fig. 4B). The same holds true for the withheld subjects from 292 

measurement wave 1 that fall in the overlapping age range (8,6 - 10,7 years of age) of wave 1 293 

(scanner 1) and 2 (scanner 2). While raw CT values in the overlapping age range vary vastly 294 

between the two measurement waves (t(2874)=13.4, p<0.001), with a tendency of higher values 295 

in measurement wave 1 compared to wave 2 (Fig. 4C), this difference is slightly reduced when 296 

correcting for sex (Fig. 4D) (t(2874)=11.4, p<0.001) and practically absent in the sex- and 297 

additionally site-effect corrected z-scores (Fig. 4E) (t(2874)=1.0, p=0.324). Therefore, we can 298 

meaningfully compare individuals on the basis of z-scores, bearing in mind that the z-scores are 299 

defined with respect to a lifespan based normative model.  300 

 301 
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 302 

Figure 4: Validation of transferring the reference normative model to the target cohort using two groups of subjects that 303 

were withheld from the adaptation set: 1) subjects with repeated measurements at all 3 imaging waves (random sample 304 

of ten participants depicted by green lines, panels A and B; 2) subjects from imaging waves 1 and 2 that fall in the 305 

overlapping age range of both scanners [8,6 - 10,7] (depicted by darker shaded red and blue dots and lines, panels A-306 

E). Panel A and C show raw cortical thickness values. Panels B, D, and E show sex-effect (panel D) or sex- and site-307 

effect corrected z-scores of the same participants (panels B&E). For consistency, the same ROI (inferior frontal sulcus) 308 

as in the previous figures is illustrated. 309 

3.2. Relating site-effect corrected z-scores to gestational age 310 

To illustrate the usefulness of the resulting models, we compared extreme deviations, acquired 311 

at the level of individuals, between children born pre-term and children born at term in the target 312 

cohort. Percentages of individuals with an extreme z-score (larger/smaller than 2) per ROI are 313 

shown in Figure 5. In the children born at term, we find approximately 2.5% of children with 314 

extreme negative and extreme positive z-scores respectively across ROIs. Exceptions are 315 

primarily smaller ROIs (sulcus intermedius primus (left & right), posterior ramus of the lateral 316 

sulcus (left), anterior transverse collateral sulcus (right), orbital sulcus (right)) where areas with 317 

thicker cortices than expected can be observed. Importantly, extreme deviations are much more 318 

prevalent with children born pre-term with the most pronounced extreme positive deviations 319 

(thicker cortex than expected) found in the left pericallosal sulcus and lateral aspect of the superior 320 

temporal gyrus, as well as in the anterior part of cingulate gyrus and sulcus (ACC) of both 321 

hemispheres. The most striking extreme negative deviations (thinner cortex than expected) can 322 
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be seen on the left hemisphere in the superior and inferior temporal sulcus, lingual sulcus, 323 

superior part of the precentral sulcus, supramarginal gyrus, and on the right hemisphere in the 324 

superior and inferior part of the precentral sulcus, superior frontal sulcus, angular gyrus, 325 

precentral gyrus and the precuneus. 326 

These regions are consistent with previous findings on CT differences in adolescents born pre-327 

term. Pronounced cortical thinning has been found persistently in areas surrounding the central 328 

sulcus and temporal lobes (Martinussen et al., 2005; Nagy et al., 2011; Zubiaurre-Elorza et al., 329 

2012) as well as thicker cortices in frontal regions surrounding the anterior cingulate cortex 330 

(Bjuland et al., 2013). The current approach has been shown to capture structural deviations 331 

better than case-control studies as they are more sensitive to individual heterogeneity 332 

(Remiszewski et al., 2022). It also offers improved insights in longitudinal cohorts, as these 333 

deviation scores are not cofounded by site-effects. 334 

 335 

 336 

Figure 5.: Differences in site-effect corrected z-scores between children born pre-term (low gestational age (GA)) and 337 

children born term (typical gestational age (GA)). On the left side, extreme negative deviations (cortex thinner than 338 

expected) are illustrated. On the right, extreme positive deviations (cortex thicker than expected) are shown. 339 

 340 
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4. Discussion 341 

In this study, we used information from normative models that were initially trained on a large 342 

number of samples, scanned over 77 sites, as prior knowledge for the parameters of the CT 343 

distributions when adapting these models to the two scanners of the longitudinal Generation R 344 

study. 345 

We report three main findings: first, transfer learning is successful and allows for meaningful 346 

comparisons between individuals from different scanners, and sexes, as previously reported (Kia 347 

et al., 2022). Second, we quantified the number of samples in the transfer set needed to obtain 348 

good performance metrics on the test set and show that relatively few samples are sufficient for 349 

good performance (approximately n=25). This provides the added benefit of improving the 350 

statistical power of statistical analyses on the resulting larger test set. While we used 100 samples 351 

per measurement wave in the adaptation site, slightly smaller adaptation samples decreased the 352 

evaluation metrics only marginally. Third, we show that the deviations from these normative 353 

models are meaningful in that they are altered in a highly individualized manner in individuals 354 

born pre-term. 355 

 356 

Our results support the finding that normative models capture the general trend of decreasing 357 

cortical thickness with age, as reported in previous studies (Bethlehem et al., 2022; Frangou et 358 

al., 2022; Rutherford, Fraza, et al., 2022; Tamnes et al., 2017; Thambisetty et al., 2010). 359 

Interestingly, we found that the model performed better when each measurement wave of the 360 

transfer cohort was treated as a separate site-effect, even though two of three waves were 361 

acquired on the same scanner. This could be due to sample variability or a misestimation of 362 

parameters in the female cohort, possibly linked to the fact that scan quality tends to improve with 363 

age. For future studies, it may be useful to treat distinct measurement intervals as separate batch-364 

effects, resulting in a factorial design of sex x scanners x waves, even if the scanner setup has 365 

not changed, to produce more precise models. Our recommendations might differ for longer 366 

timescales, non-linear or non-Gaussian lifespan trajectories, which usually requires more data 367 

(de Boer et al., 2022). However, the methods we introduce can be used to determine the optimal 368 

number of subjects for such cases. 369 

 370 

The successful validation of the use of transfer learning with normative models opens the door 371 

for further investigations exploring the relationship between deviation scores and various 372 

phenotypes. Individual-level deviations, as obtained through normative models, have been shown 373 
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to provide stronger effects than typical case-control studies using uncorrected raw measurements 374 

(Rutherford, Fraza, et al., 2022) and are therefore particularly suitable for exploring and 375 

investigating individual differences within and across datasets. The used federated learning 376 

framework makes it possible to use the models presented in this work as informed priors (models 377 

are available online via PCNportal [https://pcnportal.dccn.nl/] to investigate CT in smaller and/or 378 

clinical cohorts. 379 

 380 

In this study, we provide an example how normative models can be used to investigate clinical 381 

phenotypes, by investigating the relation between extreme deviations scores and the gestational 382 

age at birth, that is between children born at-term and pre-term. While children born at-term show 383 

an expected distribution of approximately 2.5% with z-scores higher than 2 or lower than -2 384 

respectively, children born pre-term are more likely to have extreme deviations in specific ROIs, 385 

which are consistent with previous literature showing pronounced differences in particular in 386 

frontal and temporal cortices. While we show a comparison between groups, the current approach 387 

does not require clustering of individuals into groups but instead can be used to make inferences 388 

about heterogeneity within clinical groups as well as about deviations on an individual level.  389 

 390 

4.1. Limitations and future directions 391 

Although we demonstrate that evaluation metrics level off after 100 scans in the adaptation set, 392 

as few as 25 scans can still lead to effective transfer of knowledge. However, this limitation 393 

prevents small cohorts from utilizing the current approach due to the fact that the median sample 394 

size of neuroimaging studies typically includes 25 participants  (Marek et al., 2022).   395 

Furthermore, our work estimates normative models on a single ROI, thereby neglecting any 396 

spatial interdependencies between brain regions. Moreover, other image-derived phenotypes, 397 

such as the cerebellum, could also be considered. 398 

5. Conclusion 399 

Using longitudinal cortical thickness data from the Generation R study on children aged 6 to 17 400 

years old, we present an application of transfer learning of large-scale normative models which 401 

produce good performance metrics with even a limited size of adaptation set. The resulting 402 

deviation scores per age and ROIs, allow for meaningful comparison inter sites and inter sex. 403 
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Using these obtained deviation scores, we were able to show specifically localized differences in 404 

cortical thickness between children born pre-term and children born at-term.   405 

 406 

 407 
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