

1 **Isolation of ACE2-dependent and -independent sarbecoviruses from Chinese
2 horseshoe bats**

3 Hua Guo¹, Ang Li^{1,2}, Tian-Yi Dong^{1,2}, Hao-Rui Si^{1,2}, Ben Hu¹, Bei Li, Yan Zhu¹, Zheng-Li
4 Shi^{1#†}, Michael Letko^{3#†}

5 1. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology,
6 Chinese Academy of Sciences, Wuhan, 430071, China.
7 2. University of Chinese Academy of Sciences, Beijing, 100049, China.
8 3. Paul G. Allen School for Global Health, Washington State University, Pullman, Washington,
9 99163, USA.

10

11

12

13

14 † co-senior authors

15 # Corresponding authors:

16 Michael Letko, Ph.D.

17 Email: michael.letko@wsu.edu

18 Zheng-Li Shi, Ph.D.

19 Email: zlshi@wh.iov.cn

20

21

22 **Keywords:** coronavirus, sarbecovirus, zoonosis, cross-species transmission, bat

23 **ABSTRACT**

24 While the spike proteins from SARS-CoV and SARS-CoV-2 bind to host ACE2 to infect cells, the
25 majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost
26 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples,
27 leading to the assumption these viruses pose little risk to humans. We have previously shown how
28 spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability
29 to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings
30 into a virus isolation protocol, and recovered two new ACE2-dependent viruses, RsYN2012 and
31 RsYN2016, as well as an ACE2-independent virus, RsHuB2019. Although our stocks of
32 RsHuB2019 rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to
33 trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry
34 factors that support bat sarbecoviruses. Electron microscopy revealed ACE2-independent
35 sarbecoviruses have a prominent spike corona and share similar morphology to other
36 coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and
37 shed light onto the intricacies of coronavirus isolation and propagation *in vitro*.

38

39

40

41

42

43

44

45

46 **SIGNIFICANCE**

47 Several coronaviruses have transmitted from animals to people and 20 years of virus discovery
48 studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-
49 derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor
50 understanding of the *in vitro* requirements for their propagation. Here, we built on our growing
51 body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have
52 developed a virus isolation protocol that allows for exploration of these understudied viruses. Our
53 protocol is robust and practical, leading to successful isolation of more sarbecoviruses than
54 previous approaches and from field samples that had been collected over a 10-year longitudinal
55 study.

56

57

58

59

60

61

62

63

64

65

66

67

68

69 INTRODUCTION

70 With the increase of coronaviruses crossing the species barrier into humans and causing
71 severe diseases over the last 20 years, significant effort has been invested into understanding
72 coronaviruses in diverse animals, globally. The first viral relatives of SARS-CoV were discovered
73 in *Rhinolophus* bats in 2005, demonstrating these animals are a natural reservoir for the
74 sarbecovirus subgenus of the betacoronaviruses (1, 2). However, in comparison to SARS-CoV,
75 these bat sarbecoviruses contained numerous polymorphisms in their spike glycoprotein – the viral
76 protein responsible for binding cell receptor molecules and mediating viral invasion into host cells.

77 Later, cell-culture based studies with these bat sarbecoviruses showed that although their spike
78 proteins were not compatible with some human receptors, exchanging their spike genes with the
79 SARS-CoV spike allowed for the viruses to replicate in cell culture - demonstrating that cell entry
80 is a primary species barrier for bat sarbecoviruses (3). The identification of bat sarbecoviruses that
81 could bind angiotensin-converting enzyme 2 (ACE2), the same receptor as SARS-CoV, has led to
82 the overall assumption that bat sarbecoviruses which do not use this receptor pose little threat of
83 zoonosis to humans.

84 In a broad screen of sarbecovirus entry, we found several host cell entry phenotypes that
85 are determined by the presence or absence of deletions within the receptor binding domain (RBD)
86 of the spike glycoprotein (4). Clade 1 RBDs do not contain any deletions and are capable of binding
87 ACE2 from multiple species, clade 2 RBDs contain 2 deletions and do not use ACE2, clade 3 and
88 4 RBDs contain single deletion, but are capable of binding ACE2 more specifically from their host
89 species (4-12). The first bat sarbecoviruses discovered were clade 2 viruses and any attempts to
90 isolate them from field samples have failed (1, 2). We recently showed that a high concentration
91 of trypsin could facilitate *in vitro* entry and replication of viral pseudotyped and recombinant

92 sarbecoviruses containing clade 2 RBD spike proteins (4, 13). Many other viruses have been
93 shown to replicate in the presence of trypsin, including several gastrointestinal coronaviruses with
94 uncharacterized host receptors (14-17). Taken together, these findings suggest that some clade 2
95 bat sarbecoviruses may also have the capacity to infect human cells, which is a prerequisite for
96 cross-species transmission to humans.

97 Here, we further optimized our methods for propagating clade 2 sarbecoviruses in culture
98 for viral isolation from field samples. We successfully isolated one clade 2 RBD sarbecovirus as
99 well as two new clade 1 RBD sarbecoviruses from *Rhinolophus sinicus* fecal samples collected
100 between 2012-2019, showing that the higher trypsin level used is compatible with both ACE2-
101 dependent and -independent sarbecoviruses. Electron microscopy of virions showed that the spike
102 density on clade 2 virions may vary from clade 1 RBD sarbecoviruses. This new sarbecovirus
103 isolation protocol increases the chance of viral isolation from field samples and has extended our
104 ability to explore and understand the biological features of less studied sarbecoviruses in the
105 laboratory.

106

107 **RESULTS**

108 **Isolation of three novel sarbecoviruses from Chinese horseshoe bats in the presence of** 109 **trypsin**

110 In our previous studies, we showed that some clade 2 sarbecoviruses are capable of entering
111 and replicating in human cell lines in a high trypsin environment (4, 7, 13). To assess if trypsin-
112 mediated entry is sufficient to support clade 2 virus isolation from field samples, we chose 18 bat
113 rectal swabs or fecal samples from the WIV biobank, which were collected from individual bats
114 during a seven-year longitudinal survey from 2012-2019. Sixteen of 18 samples tested positive for

115 betacoronaviruses using an established reverse transcription (RT)-nested PCR targeting a fragment
116 of the RNA-dependent RNA polymerase (RdRp) gene (**Supplementary table 1**) (18, 19). We also
117 performed next-generation sequencing (NGS) on all 18 samples to obtain nearly full-length
118 genome sequences for 15 viruses (**Supplementary table 1**), including two isolates, 7896 and 7909,
119 which we have reported previously (5). In general, samples with lower Ct values produced
120 sequence data, while samples with higher Ct values were somewhat less consistent in our NGS
121 pipeline (**Supplementary table 1**). Based on our study of recombinant bat sarbecoviruses, we
122 modified our virus isolation protocol to include a high concentration of trypsin, and a chilled
123 centrifugation step during inoculation (see METHODS and (13)). With this modified protocol, we
124 isolated three sarbecoviruses from positive samples, in a human liver cell line (Huh-7) and have
125 named them: RsYN2012 (sample 4105), RsYN2016 (sample 162173) and RsHuB2019 (sample
126 190366) (**Fig. 1A**). We further examined the genome sequence of the three isolates and found that
127 they shared a similar genome structure and organization with other bat and human sarbecoviruses
128 (**Fig. 1B**). Based on the RBD portion of the spike that we and others have previously used to group
129 sarbecoviruses into clades, RsYN2012 (4105) and RsYN2016 (162173) belong to clade 1, and
130 RsHuB2019 (190366) belongs to clade 2 (**Fig. 1A-C**). Comparing whole genomes, the two clade
131 1 viruses were 99.9% and 98.3% similar to bat SARS-related CoV, RsWIV1, while the clade 2
132 virus RsHuB2019 (190366) showed 93.2% nucleotide similarity with bat SARS-related CoV,
133 HKU3-1 (**Fig. 1B, Table 1**). All three viruses were only approximately 80% similar to SARS-
134 CoV-2, and less than 80% of similar with clade 3 and 4 viruses. (**Fig. 1B, Table 1**). The largest
135 sequence variation for any of our isolates was in the spike gene of the clade 2 virus, RsHuB2019
136 (190366), which exhibited only between 65-77% similarity to the clade 1 virus spikes genes (**Fig.**
137 **1B, Table 1**).

138 **Cellular tropism of the three bat sarbecovirus**

139 To assess if the three bat sarbecoviruses pose similar cellular or tissue tropism with known
140 sarbecovirus and further assess their risk of interspecies transmission, we conducted infectivity
141 assays in several cell lines common in coronavirus research. We found, in addition to Huh-7 cells,
142 the two clade 1 viruses, RsYN2012 (4105) and RsYN2016 (162173), could replicate efficiently in
143 human cell lines (Caco-2, Calu-3), and African Green Monkey cells (VeroE6) in the presence of
144 trypsin, but poorly infected these cells in the absence of trypsin (**Fig. 1D**). The clade 2 virus,
145 RsHuB2019 (190366), could replicate in Caco-2, Calu-3, and VeroE6 cells, similar to the clade 1
146 viruses, although with lower entry and replicate efficiency (**Fig. 1D**). In addition, HeLa cells were
147 semi-permissive to clade 2 virus RsHuB2019 (190366) infection in the presence of trypsin (**Fig.**
148 **1D**). Consistent with our prior study, both clade 1 and 2 virus were unable to replicate efficiently
149 in baby hamster kidney (BHK-21), and two bat primary cell lines, including *Rhinolophus sinicus*
150 (*R.s.*) intestine (RSI) and lung (RSL), in the presence or absence of trypsin (**Fig. 1D**)(13).

151

152 **ACE2 is the receptor for RBD clade 1 but not RBD clade 2 sarbecovirus**

153 To explore the receptor usage of the three-novel bat sarbecoviruses, we performed virus
154 infectivity studies using BHK-21 cells expressing known coronavirus receptors from humans and
155 bats. Consistent with prior studies (4, 6, 13), we found that only the clade 1 virus could utilize
156 human ACE2 for cell entry and that the clade 2 virus, RsHuB2019 (190366) could not use any
157 known coronavirus receptor, with or without trypsin (**Fig. 2A**).

158 To assess the cell entry capacity of the viruses we failed to isolate from the other samples,
159 we assembled a panel of recombinant RBD chimeras, with SARS-CoV chimeric spike containing
160 the RBD sequence from the different samples (4). Of the eight clade 2 virus-positive samples we

161 attempted to isolate virus from, four samples contained newly identified viruses (B228, 190366,
162 141341, 151491), while the RBD sequences in the other samples were identical to other RBDs
163 from this study or RBD sequences we have previously tested (Rs4081, As6526; **Supplementary**
164 **table 1**) (4, 5, 7, 13). The RBDs for clade 1 viruses 4105 and 162173 are identical to RBDs from
165 RsWIV1 and Rs7327, respectively, which we have also previously tested (4). For comparison, we
166 included a SARS-CoV spike chimera with the RBD from SARS-CoV-2 and a clade 2 RBD from
167 the prototypical virus, Rp3 (**Fig. 2B-C**) (10). All RBD chimeras exhibited similar levels of
168 incorporation into VSV pseudotyped particles (**Fig. 2B**). We have previously shown exogenous
169 trypsin allows mediated sarbecovirus entry into otherwise poorly susceptible cell lines, Huh-7 and
170 293T (4, 7, 13). Transduction of 293T cells with human ACE2 allows for clear detection of ACE2-
171 dependent entry (10, 11). Consistent with the live virus infection assay results, only pseudotyped
172 with clade 1 virus RBDs were capable of entering and transducing human ACE2 expressing cells
173 without trypsin, but not any of the clade 2 viruses (**Fig. 2C**). As we have shown for other clade 2
174 RBDs, the addition of trypsin dramatically increased entry for these spikes, with a notable
175 exception for the RBD from sample 141341 (**Fig. 2C**).

176 Previous studies from our groups and others have reported that the ACE2 gene is diverse
177 across bat species (12, 20-23). We have shown that the ACE2 gene is highly polymorphic in
178 Chinese horseshoe bats (*R. sinicus*), and that different ACE2 alleles within the same species exhibit
179 different susceptibility to various sarbecoviruses infection (20). To further confirm if the ACE2
180 orthologues from different bat species or different Chinese horseshoe bat (*R. sinicus*) ACE2 alleles
181 support the entry of clade 2 viruses, we tested a large panel of bat ACE2 alleles for their ability to
182 support live virus infection in BHK-21 cells. Consistent with our previous study (20), we found
183 the clade 1 virus, RsYN2012 (4105) and RsYN2016 (162173), could utilize most alleles from *R.*

184 *sinicus* ACE2, as well as ACE2 from *Rhinolophus affinis* and *Rhinolophus thomasi*, for cell entry
185 regardless of trypsin (**Fig. 2D**). RsYN2016 (162173) could also enter the BHK-21 cell expressing
186 *Rhinolophus pearsonii* (R.pe) ACE2-1093 with low efficiency, but not the allele 1408. However,
187 RsYN2012 (4105) could not use either of the ACE2 alleles from *Rhinolophus pearsoni* for entry
188 (**Fig. 2D**). In contrast, we found none of these bat ACE2 genes supported replication of clade 2
189 virus RsHuB2019 (190366), even in the presence of trypsin (**Fig. 2D**). Taken together, these
190 results demonstrate that only clade 1 viruses we isolated possess the capacity to use the ACE2
191 from different species and that the clade 2 virus employs an unknown molecule(s) for entry in
192 human cells that is distinct from other coronaviruses.

193

194 **Tissue culture adaptations in ACE2-independent spike increase trypsin resistance**

195 Coronavirus spike genes are known to rapidly acquire cell-culture specific adaptations –
196 sometimes in as few as three passages (24-31). Over the course of this study, we replenished our
197 viral stocks by subsequently passaging the previous stock in Huh-7 cells, leading to three viral
198 passages (experiments from figure 1 are passage 1, figure 2 are passage 2 and figure 4 are passage
199 3). We extracted viral RNA from the remainder of each stock after each passage and looked for
200 potential cell-culture adaptations, across the whole viral genome by next-generation sequencing.
201 We found one nonsynonymous (T24550G) substitution that emerged at low frequency in the clade
202 2 virus, RsHuB2019 (190366) at the 1st passage, resulting in V976L mutation in the S gene. By
203 the third passage, we observed an increase in the frequency of spike V976L mutation (from 61%
204 to 99.4%) with L976 becoming the dominant polymorphism (**Fig. 3A**). We did not observe
205 additional mutations elsewhere in the RsHuB2019 genome or in the genomes of the clade 1 RBD
206 viruses, RsYN2012 (4105) and RsYN2016 (162173).

207 To characterize the V976L mutation in the RsHuB2019 (190366) spike, we constructed
208 VSV-based pseudotyped containing full-length spike with either V976 or L976 and tested their
209 cell entry in Huh-7 and Caco-2 cell lines. Full-length spike from clade 1 viruses, SARS-CoV, and
210 RsWIV1, as well as clade 2 viruses, Rs4081 and As6526, were used as comparative controls (13)
211 (**Fig. 3B-C**). We found that V976L mutation did not increase spike incorporation into virions (**Fig.**
212 **3B**), but moderately enhanced the entry of RsHuB2019 (190366) in both Huh-7 and Caco-2 cell
213 lines, only in the presence of trypsin (**Fig. 3C**).

214 Because the V976L mutation is in close proximity to the host cell fusion machinery present
215 in the spike S2 domain, we wondered if this mutation was influencing the fusogenic properties of
216 RsHuB2019 spike. To test if this mutation modulated spike cell fusion properties, we performed a
217 cell-cell fusion assay similar to previous approaches by combining cells individually expressing
218 spike or receptor and a complementary reporter system (32). HEK 293T cells expressing T7
219 polymerase and human ACE2 or empty vector were combined, 1:1, with HEK 293T cells
220 expressing a T7-driven reporter cassette and spike (**Fig. 3D**). Because RsHuB2019 spike had
221 reduced incorporation into pseudotyped (**Fig. 3B**), we also included a condition with 4 times the
222 amount of spike containing cells to receptor cells (**Fig. 3E; 1:4, dotted line**). Increasing the
223 concentration of trypsin to even 5 μ g/mL resulted in more than a 10-fold increase in cell fusion for
224 spikes with clade 1 and clade 2 RBDs, while the addition of ACE2 to the cells increased basal
225 entry of SARS-CoV-2 spike without trypsin (**Fig. 3E, F**). Curiously, regardless of the ratio
226 between spike-expressing cells and target cells, viral fusion was reduced for the RsHuB2019 spike
227 with V967L mutation compared to the wildtype spike (**Fig. 3E, F; dotted lines**).

228 To further explore how the V976L mutation in increased spike cell entry in the presence
229 of trypsin, we tested the *in vitro* trypsin resistance of spike, with the clade 2 virus Rs4081 as control.

230 Purified V976 or L976 pseudotyped particles were combined with different amounts of trypsin,
231 incubated at 37°C for 5 min, and spike degradation was analyzed by western blot. As we have
232 previously shown, trypsin cleaved the Rs4081 spike into several fragments, including the expected
233 fragments corresponding to cleavage at the S1/S2 boundary as well as a secondary, S2' site, at 25
234 µg/mL or above trypsin (13) (**Fig. 3G, H**). In contrast, RsHuB2019 spike displayed less of these
235 degradation products, with the V976L mutation showing resistance to trypsin digestion at 100
236 µg/mL - the concentration we used to propagate virus in our cultures (**Fig. 3H**). When we
237 performed a second trypsin digestion between 100-200 µg/mL and used a more sensitive western
238 blot substrate, a smaller digestion product, the approximate size of a C-terminal fragment of spike
239 that is predicted to digest from a site near V976, was absent from the V976L mutant but present
240 for Rs4081 and WT RsHuB2019 spike (**Fig. 3G, I; boxed in red**). Thus, V967L may reduce
241 trypsin digestion in spike near this mutation. Taken together, these findings strongly suggest the
242 clade 2 virus spike adapted to the exogenous (porcine) trypsin included during viral propagation,
243 rather than the cell lines themselves.

244

245 **Electron microscopy of purified virions reveals potential difference between RBD clades**

246 In order to confirm if we had isolated the three sarbecoviruses successfully, we purified
247 viral stocks over a 30% sucrose cushion and processed the samples for analysis by transmission
248 electron microscopy. Purified viral particles displayed typical coronavirus morphology under
249 electron microscopy: virions were approximately 100–120 nm in diameter, with “corona-like” ring
250 of spike glycoproteins at the surface. Interestingly, the glycoprotein layer on clade 2 virions
251 appeared denser than on clade 1 RBD virions (**Fig. 4A-C, S1A-C**).

252

253 **DISCUSSION**

254 Although hundreds of sarbecoviruses have been discovered in animals, more than two-
255 thirds of these viruses have clade 2 RBD spikes, which contain indel mutations that prevent them
256 from using host ACE2 as a cell receptor (2-4, 6, 11, 12). Attempts to isolate these ACE2-
257 independent sarbecoviruses from field samples have failed, hampering downstream laboratory-
258 based assessments and leading to the general assumption that they pose little threat to humans.
259 However, we have demonstrated the RBDs from a small group of these viruses are capable of
260 mediating human cell entry, which we have verified with whole spike proteins and most recently,
261 complete sarbecovirus replication recovered through reverse genetics (4, 7, 13). Here, we
262 developed a virus isolation protocol built on these findings that is suitable for recovering both
263 ACE2-dependent and –independent sarbecoviruses from bat fecal samples, underscoring the
264 broader zoonotic threat posed by sarbecoviruses and the complexities underlying coronavirus cell
265 entry.

266 Our successful isolation of a clade 2 RBD sarbecovirus (RsHu2019) and two clade 1 RBD
267 sarbecoviruses: RsYN2012 (4105) and RsYN2016 (162173) suggest our approach is broadly
268 applicable for sarbecoviruses, and an improvement over existing sarbecovirus isolation protocols.
269 Notably, we isolated a viable virus (RsYN2012) from a field sample that had been in storage for
270 more than 10 years (**Supplementary table 1**). The viruses we isolated were from samples with
271 some of the lowest Ct values of the samples tested, suggesting higher viral titers are ideally
272 required for successful isolation (**Supplementary table 1**). The only clade 2 RBD sample with a
273 lower Ct value (141341) than the sample we isolated from (190366) also contained a viral RBD
274 that was the least compatible with human cell entry, providing one explanation for why we failed
275 to recover virus from this sample (**Supplementary table 1, Fig. 2C**).

276 The ACE2-dependent viruses we isolated, RsYN2012 and RsYN2016, were strikingly
277 similar to two other sarbecoviruses we have previously isolated or tested: RsWIV1 and Rs7327 (Fig.
278 **1B, Table 1** (4, 19). RsWIV1 and RsYN2012 were collected from the same location and time
279 during the same sampling mission, which likely explains this close similarity (**Supplementary**
280 **table 1**). However, the high similarity observed between RsWIV1 and viruses collected at later
281 time points, including RsYN2016, suggests evolutionary constraints on these viruses in their hosts.

282 Coronaviruses acquire mutations when grown in cell culture and can rapidly adapt to the
283 conditions and cells used for their propagation (24-31). Sequencing the viral stocks produced for
284 this study revealed the emergence of a tissue-culture adaptation in the clade 2 virus, RsHuB2019,
285 which appeared to increase viral entry in pseudotype experiments (**Fig. 3A-C**). Because this
286 mutation was in close proximity to known fusion machinery in the S2 region of spike, we assessed
287 spike fusion in a standard molecular assay and observed this mutation actually reduced fusion
288 efficiency compared to wild-type spike (**Fig. 3D-F**). A close inspection of western blots following
289 trypsin treatment of concentrated pseudotyped particles revealed this mutation resulted in the loss
290 of a low-molecular weight digestion product, suggesting the mutation enhanced spike resistance
291 to the trypsin used in our protocol (**Fig. 3G-I**). The trypsin we used in our studies is porcine-
292 derived and not TPCK-treated, which may allow for additional spike digestion compared to TPCK-
293 treated trypsin. Importantly, RsHuB2019 spike V967L still required trypsin for entry into cells
294 (**Fig. 3C**), suggesting that the clade 2 viruses may not be capable of readily “evolving away from”
295 trypsin dependence. Thus, while our protocol is suitable for the isolation of sarbecoviruses, more
296 studies are needed into the species-specific proteases utilized by these viruses, which may lead to
297 further protocol changes that reduce the development of cell-culture adaptations.

298 Electron microscopy of clade 1 and clade 2 virus isolates revealed a potential difference in
299 the spike corona surrounding each virion. The spike trimers on ACE2-dependent clade 1 viruses
300 appeared thinner and less evenly distributed than clade 2 virions, which may help explain clade
301 1's increased sensitivity to trypsin versus clade 2 viruses (Fig. 4, S1). The virus stocks used for
302 electron microscopy contained trypsin at the time of processing, therefore the differences in the
303 fullness of the spike corona may reflect the overall trypsin resistance we have previously noted for
304 the clade 2 RBD spikes (13). As the virus stocks used in our electron microscopy are from a later
305 passage, we cannot exclude the possibility that this distinction may also derive from the presence
306 of spike mutation V976L in RsHuB2019.

307 Other betacoronaviruses may provide clues about the entry mechanisms for clade 2
308 sarbecoviruses. For example, the bat merbecoviruses, PDF2180 and neoCoV, contain RBD
309 deletions that prevent them from using host dipeptidyl peptidase IV (DPP4) as their receptor, and
310 have been shown to require trypsin for their cell entry and propagation in human cell cultures (15).
311 However, a recent study has shown these viruses bind to host ACE2 as a receptor and that
312 providing this receptor can effectively remove the protease requirement (33). While we and others
313 have shown the clade 2 sarbecoviruses do not use any known coronavirus receptor, our studies
314 strongly suggest these viruses do rely on a conserved host molecule for entry (**Fig. 2**) (4, 6, 7, 11-
315 13). Thus, more studies are needed to identify the receptor for clade 2 sarbecoviruses. Taken
316 together our viral isolates demonstrate a cluster of bat sarbecoviruses that can infect human cells
317 using mechanisms distinct from known human sarbecoviruses.

318

321 **METHODS**

322 **Cells**

323 HEK 293T, HEK 293T/17, BHK-21, VeroE6, Calu-3, and Hela were obtained from the
324 American Type Culture Collection (ATCC), Caco-2 was generously gifted by Prof. Qin-Xue Hu.
325 Bat-derived cell lines RSI and RSL were stored at the Wuhan Institute of Virology according to
326 the previously described (13, 34). HEK 293T, HEK 293T/17, BHK-21, VeroE6, Huh-7, and Hela
327 were maintained in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal
328 bovine serum (FBS). Calu-3, RSI, and RSL were maintained in Dulbecco's Modified Eagle
329 Medium/Nutrient Mixture F-12 supplemented with 15% fetal bovine serum (FBS). Cultures were
330 maintained at 37°C with 5% CO₂. All cell lines used in this study were species verified by
331 cytochrome sequencing and tested negative for mycoplasma contamination by PCR as described
332 previously (4, 35).

333

334 **Plasmids**

335 Expression plasmids for human ACE2, human DPP4, human APN, human ASGR1, human
336 KERMEN1, *Rhinolophus sinicus* APN, *Rhinolophus affinis* ACE2, and different alleles of
337 *Rhinolophus sinicus* ACE2, were described previously (13, 20). *Rhinolophus pearsonii* ACE2-
338 1093 and 1408, *Rhinolophus thomasi* ACE2, were amplified from the bat intestine as described
339 previously (20).

340 The spike or RBD coding sequences for SARS-CoV/-2, RsWIV1, Rs4081, As6526, Rp3, 4105,
341 163173, B288, 141341, 151491, 190366, and 190366-S-V976L were codon optimized for human
342 cells as previously described (13). Plasmid encoding T7-promoter driven dual reporter GFP and
343 luciferase was generated by cloning firefly luciferase downstream of GFP in pUC19-T7-IRES-

344 GFP. pUC19 - T7 pro - IRES - EGFP was a gift from Fei Chen (Addgene plasmid # 138586;
345 <http://n2t.net/addgene:138586>; RRID: Addgene_138586). All the plasmids used in this study were
346 verified by Sanger sequencing.

347

348 **Virus isolation**

349 Bat fecal swabs or fecal samples were collected from several provinces in China over a
350 seven-year period and stored at -80 °C as described previously (19). The bat species was confirmed
351 by cytochrome b sequence analysis as described previously (19). For virus isolation, the fecal
352 samples were thawed on ice and centrifuged at 10,000g for 10 min at 4 °C before use. The
353 supernatant (in 200 µL buffer) was filtered through 0.45 µm membranes and diluted 1: 2 with cold
354 DMEM, trypsin was added to a final concentration of 625 µg/mL. Trypsin used for virus
355 propagation was standard cell culture grade 0.25% porcine trypsin with EDTA and phenol red
356 (ThermoFisher). Huh-7 cells were seeded on a 24-well plate and incubated at 37 °C overnight,
357 then washed by DMEM once before incubating with 300 µL trypsin-treated samples. Inoculated
358 plates were centrifuged at 1,200 g at 4 °C for 1 h, then incubated at 37 °C overnight. Approximately
359 20-24 hours post-infection, the monolayer cells were supplied with 300 µL fresh DMEM plus 4%
360 FBS to a final concentration of 2% FBS and continued to incubate at 37 °C for 96 h. Cell-free
361 supernatant was collected daily and detected for the presence of virus by RT-PCR.

362

363 **Pseudotyped virus production and entry assay**

364 The coronavirus spike pseudotyped entry assays were performed as previously described
365 with minor adjustments (4, 7, 10, 13). In brief, target cells were seeded in a 96-well plate and
366 washed with PBS once before inoculating with equivalent volumes of pseudotyped stocks in the

367 presence or absence of trypsin. Inoculated plates were centrifuged as described above. Entry
368 efficiency was quantified 18-20 hours post-transduction, by measuring the luciferase activity using
369 Bright-Glo luciferase reagent (Promega), following manufacturers' instructions. Relative entry
370 was calculated as the fold-entry in relative luciferase unit over the no spike control. All
371 experiments were performed at least three times in triplicate.

372

373 **Cell-cell fusion assay**

374 HEK 293T cells were seeded in a 6-well format. One group of cells was transfected with
375 equivalent amounts of human ACE2 plasmid or empty plasmid and T7-polymerase plasmid. The
376 second group of cells was transfected with equivalent amounts of spike expression plasmid and
377 the dual reporter construct. 24 hours post-transfection, cells were trypsinized, diluted to 1×10^6
378 cells/mL, and combined in either 1:1 or 1:4 ratios (receptor: spike transfected cells). 24 hours post-
379 combining, cells were washed in cold PBS, and the cell culture media was replaced with trypsin-
380 media and subsequently centrifuged at 1200 g at 4 degrees for 1 hour (to mimic the spin-infection
381 procedures used in the infection assays). 24 hours post trypsin treatment and centrifugation,
382 luciferase was measured on a plate reader using the bright-glo luciferase reagent (Promega).

383

384 **Electron Microscope Imaging**

385 Virion concentration, purification and negative staining were performed as previously
386 described with minor adjustments (19). In brief, fresh virus stocks were harvested at 72 hours post-
387 infection, then centrifuged at 5,000 g for 30 min at 4 °C. Cell-free supernatants were collected and
388 fixed by 0.1% formaldehyde at 4 °C overnight. Inactivated virions in the supernatant were loaded
389 onto 5 ml of 30% sucrose in PBS buffer and centrifuged at 25,000 rpm in the SW28 rotor at 4°C

390 for 2.5 hours. The pelleted virions were suspended in cold PBS, then applied to the grids and
391 stained with 2% phosphotungstic acid (pH 7.0) on ice. The specimens were examined using a
392 Tecnai transmission electron microscope (FEI) at 200 kV. Images were taken at a magnification
393 of 25,000 \times and 50,000 \times .

394

395 **Phylogenetic analysis**

396 Routine sequence management and analysis were carried out using DNASTar. Sequence
397 alignments were created by Clustal W method in MegAlign from DNASTar package with default
398 parameters. Maximum Likelihood trees with sarbecovirus spike RBD amino acid sequences were
399 generated using PhyML 3.0 (36) with 1000 bootstrap replicates (37) and visualized as a cladogram
400 in FigTree v1.4.4 (<https://github.com/rambaut/figtree>), as previously described (4, 10). Sequence
401 similarity plot was generated using whole genomes for RsWIV1, SARS-CoV/Urbani, SARS-CoV-
402 2 and isolates from this study using Simplot with the Kimura model, a window size of 1500 base
403 pairs and a step size of 150 base pairs. (GenBank accession number: KF367457.1, AY278741.1,
404 NC_045512.2).

405

406 **Viral replication detected by real-time RT-PCR**

407 To study viral replication, target cells were seeded in a 24-well-plate and washed with
408 DMEM once before inoculating with virus stocks in the presence or absence of trypsin. For
409 receptor usage assays, BHK-21 cells were transfected with plasmids expressing different receptors
410 18-20 hours before infecting by the authentic virus with or without trypsin treatment. The
411 inoculated plates were centrifuged at 1200 g at 4 °C for 1 hours and continued to incubate in a
412 37 °C incubator for 72 h. Cell-free supernatants (50 μ L each time) were collected at 0, 24, 48 and

413 72 hours post-infection and stored at -80 °C for future use. Viral RNA was extracted and subjected
414 to RT-PCR as previously described (13). Viral replication was quantified by RT-PCR using
415 primers targeting the RdRp gene, forward primer: 5'-TTGTTCTGCTCGCAACATA-3';
416 reverse primer: 5'- CACACATGACCATCTCACTTAA-3'. The RNA from RsWIV1 stocks with
417 known titers was used as a standard control to correlate the CT value and virus titer of the other
418 viruses. All samples were analyzed in duplicate on two independent runs. One representative
419 dataset is shown.

420

421 **Western blot**

422 To check for cell expression of spike, HEK 293T cells producing viral pseudotyped were
423 lysed in 1% SDS lysis buffer, clarified by centrifugation and blotted for FLAG as described
424 previously (4). To check for spike incorporation, viral-like particle stocks were concentrated over
425 a 10% Opti-Prep cushion in PBS at 21000 g for at 4°C 2 h, and blotted for FLAG on a 10% Bis-
426 Tris gel (ThermoFisher) (4). Spike degradation was measured as in Guo et al. 2022, whereby
427 concentrated pseudotyped stocks were incubated with trypsin concentrations at 37°C for 5 min,
428 boiled, and blotted for FLAG (13). The substrate used in figure 3H is SuperSignal Western Blot
429 Substrate Pico (ThermoFisher), and for increased sensitivity in figure 3I: SuperSignal Western
430 Blot Substrate Atto (ThermoFisher).

431

432 **Statistical analysis and graphing**

433 All graphed data are three technical replicates that are representative of at least 3 biological
434 replicates. Graphed data was analyzed and visualized in GraphPad Prism version 9.

435

436 **Data availability**

437 The nearly full-length genome sequences of SARSr-CoVs obtained in this study have been
438 deposited in the GenBank database and the accession numbers are OQ503495-506, respectively.
439 The accession number of *Rhinolophus pearsonii* ACE2-1093 and 1408, *Rhinolophus thomasi*
440 are OQ511289-291.

441

442 **Biosafety and biosecurity**

443 Laboratory work with VSV pseudotyped in mammalian cell lines was performed according
444 to standard operating procedures (SOPs) under biosafety level 2 (BSL2) conditions that were
445 approved by institutional biosafety committees (IBC) at WSU and Wuhan Institute of Virology
446 (WIV). Work with bat SARS-related CoV was approved by the WIV IBC for this SOP and
447 conform to the recommended guidelines for animal coronaviruses listed in the 6th edition of
448 Biosafety in Microbiological and Biomedical Laboratories (BMBL)(38). WIV facilities for this
449 work adhere to the safety requirements recommended by the China National Accreditation Service
450 for Conformity Assessment.

451

452 **Acknowledgments**

453 We thank the core facility of the Wuhan Institute of Virology for their technical support.
454 We also thank Pei Zhang and Ding Gao from the core facility of the Wuhan Institute of Virology
455 for their help with the ultracentrifugation and Electron Microscopic Analysis. Work performed at
456 WIV was jointly supported by the strategic priority research program (XDB29010101 to Z-LS) ,
457 Key project (2020YJFK-Z-0149 and KJZD-SW-L11 to Z-LS) of the Chinese Academy of
458 Sciences, National Natural Science Foundation of China (31727901 and 31770175 to Z-LS),

459 National Key R&D program of China (2022YFC2305101 to BH) and work from the Paul G. Allen
460 School for Global Health was supported by Washington State University.

461

462 **Author Contributions**

463 M.L., H.G. and Z.-L.S. conceived and designed the study. H.G. performed virus isolation. H.G.
464 and A.L performed virus infection experiments and electron microscopic analysis. M.L. performed
465 pseudotyped experiments. M.L. developed the fusion assay and performed fusion experiments. T.-
466 Y.D., H.-R.S., B.L., and Y.Z. performed the NGS and analyzed the data. B.H. performed Simplot
467 analysis. H.G. and M.L. collected and analyzed data, and assembled figures. M.L., H.G. and Z.-
468 L.S. wrote the manuscript.

469

470 **Declaration of Interests**

471 The authors declare no competing interests.

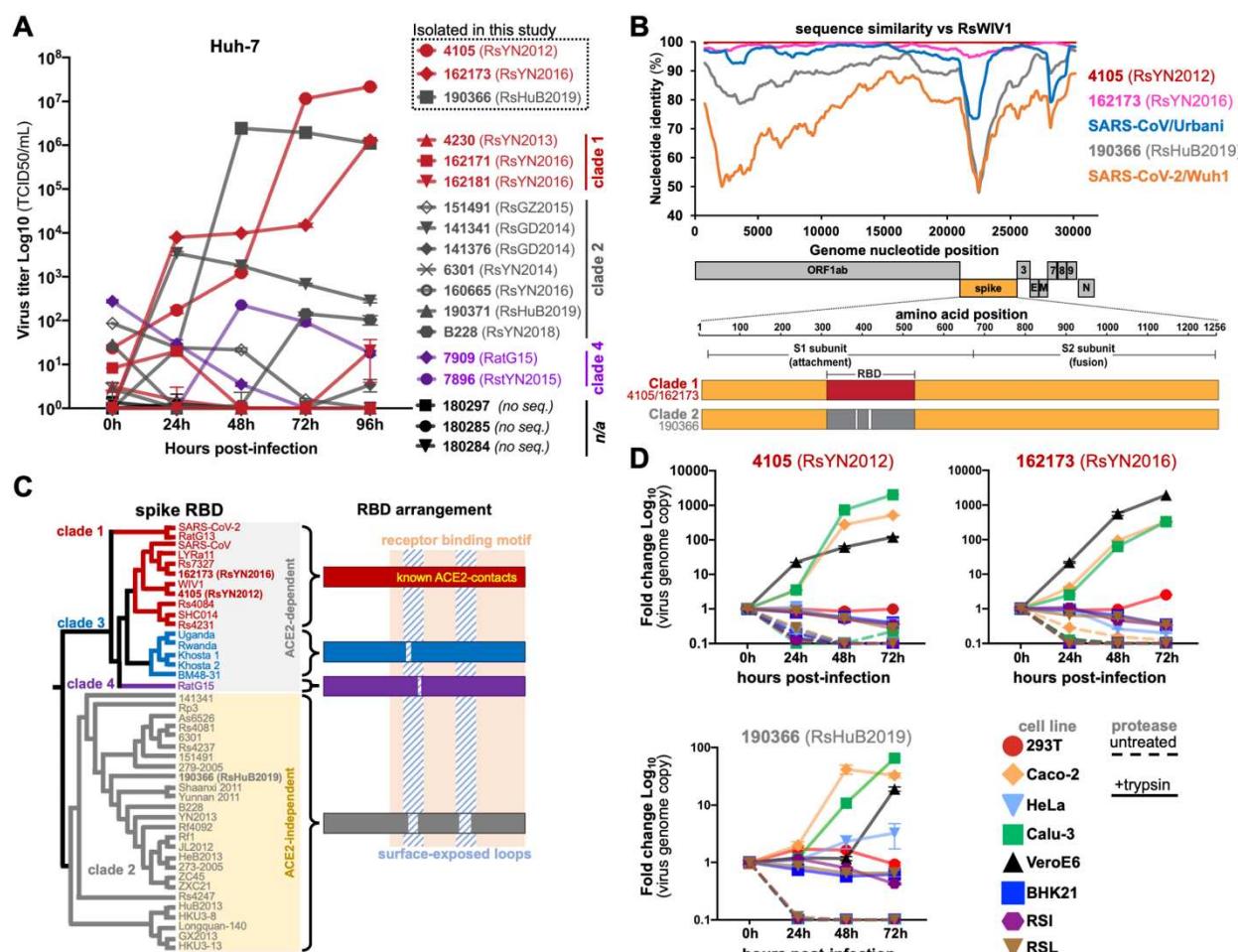
472

473

474

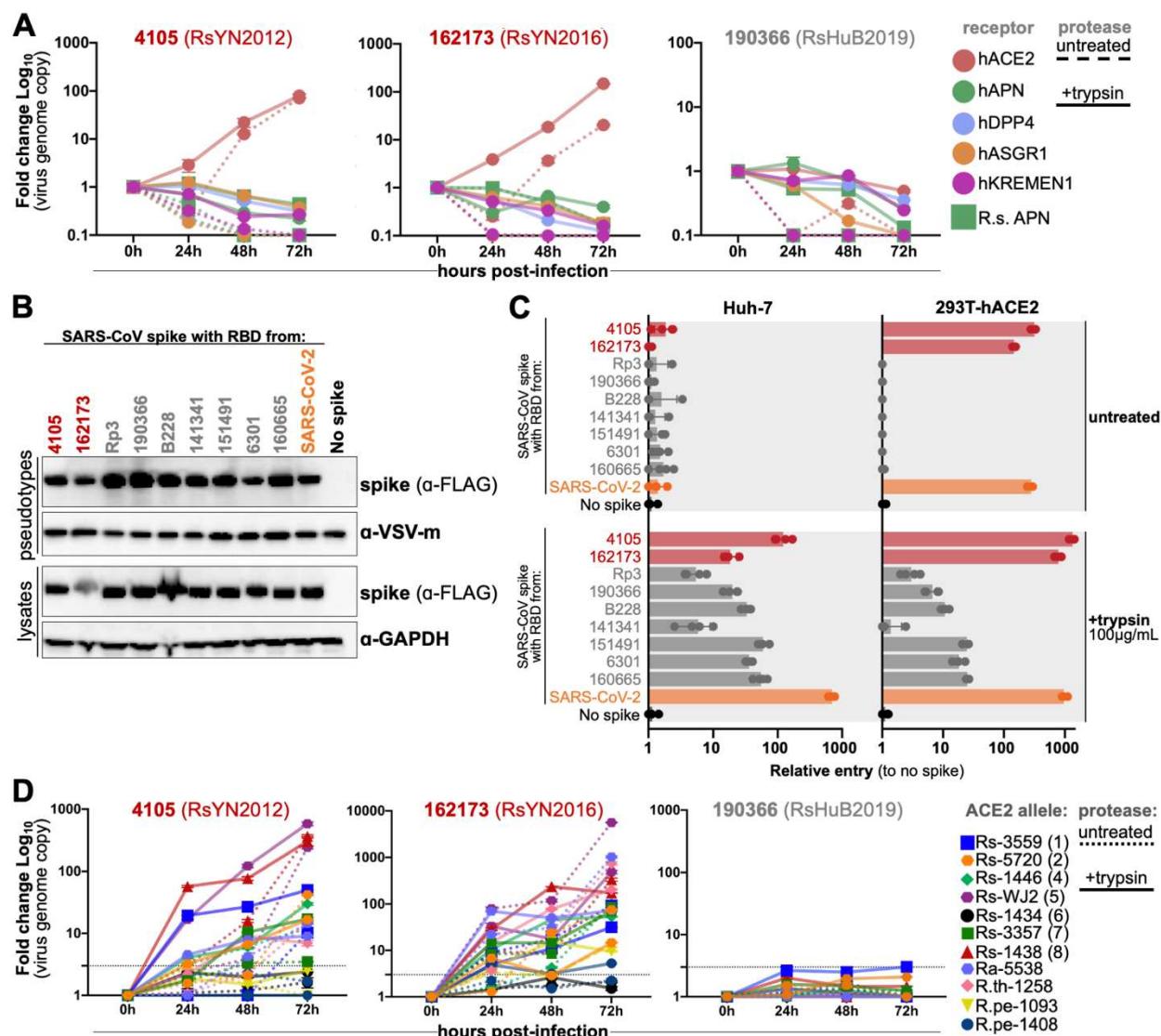
475

476

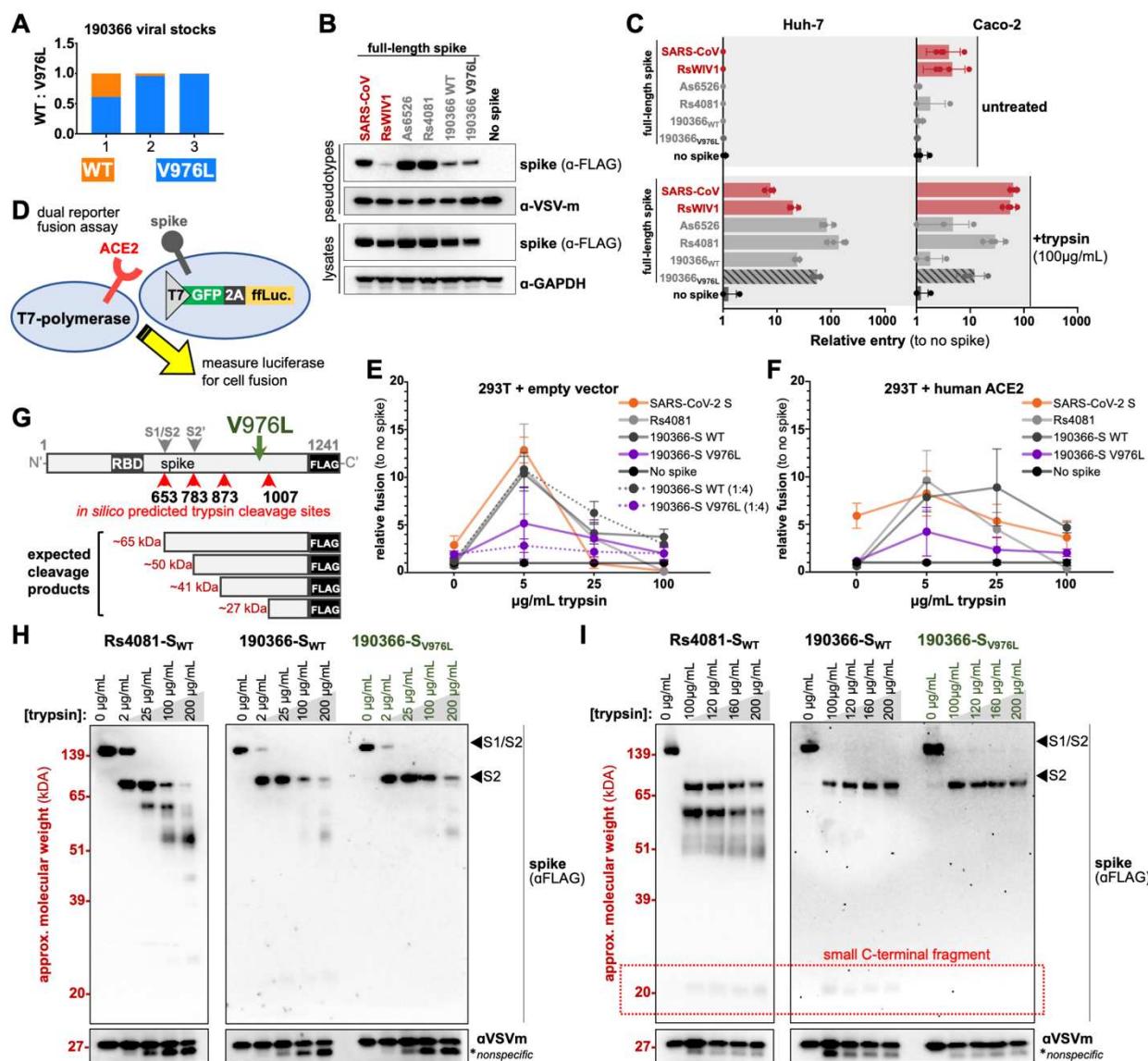

477

478

479

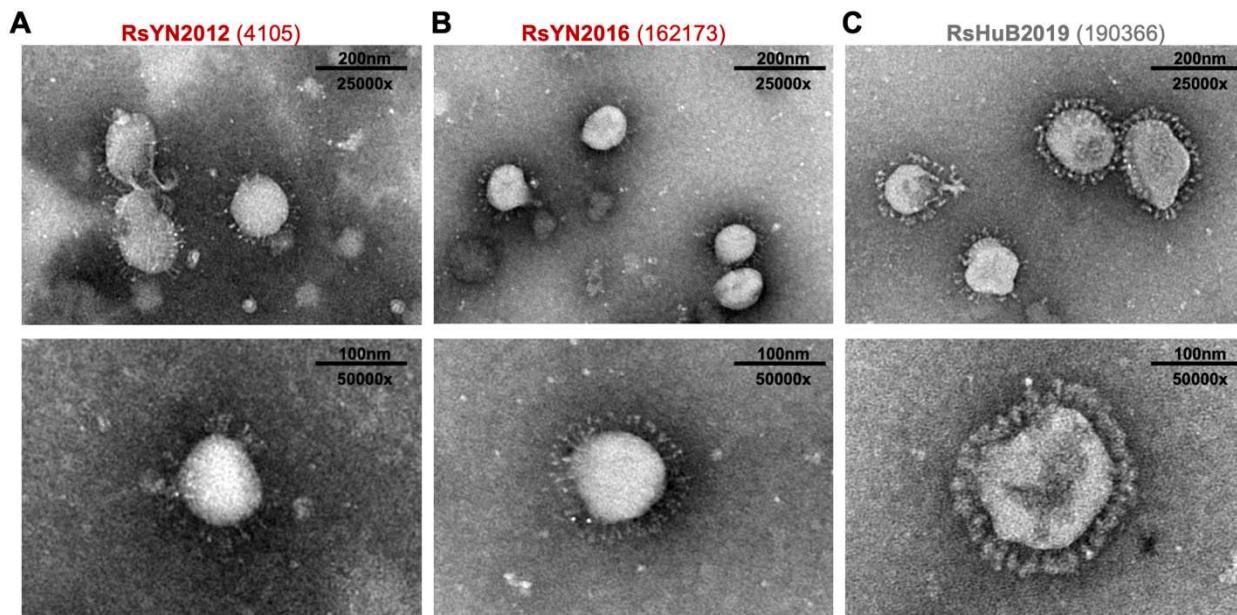

480

481 **FIGURES & FIGURE LEGENDS**



482
483
484
485
486
487
488
489
490
491
492
493

Figure 1. Isolation of clade 1 and clade 2 RBD sarbecoviruses on human cell lines. (A) Field samples were used to inoculate Huh-7 cells in the presence of trypsin. Viral titers were quantified in supernatants by qRT-PCR. (B) Whole genome nucleotide sequences were compared to RsWIV1 with a sequence similarity plot. Open reading frame (ORF) positions indicated under the X-axis. (C) Cladogram analysis of RBD amino acid sequences (corresponding to SARS-CoV spike 323-510) for sarbecoviruses. RBD indels and receptor preferences are indicated for each functional phylogenetic clade. Viruses isolated in this study are in bold font. (D) Viral isolates were inoculated on indicated cell cultures and viral replication was monitored by qRT-PCR.


Figure 2. Clade 2 RBD sarbecoviruses do not use any known coronavirus receptors for cell entry. (A) BHK cells were transfected with human orthologues of known coronavirus receptors and then infected with viral isolates. Replication was quantified by qRT-PCR. (B) VSV pseudotyped bearing chimeric SARS-CoV spikes with the indicated virus RBDs were generated in HEK 293T cells and concentrated in OptiPrep. Spike was detected in cell lysates and pseudotyped by probing for FLAG. (C) Huh-7 cells or cells transduced to express human ACE2 were infected with viral pseudotyped and luciferase was measured as a readout for cell entry. (D) BHK cells were transfected with the indicated bat ACE2 alleles and infected with viral isolates. Replication was monitored by qRT-PCR.

504

505 **Figure 3. Clade 2 RBD virus adaptation to cell-culture.** (A) V976L mutation emerged in
506 190366 virus stocks. (B) Pseudotyped particles were produced with full-length spike WT or the
507 V976L mutant. Spike was detected in producer cells and pseudotyped by western blotting for
508 FLAG. (C) Indicated cells were infected with viral pseudotyped in the presence or absence of
509 trypsin. (D) Schematic overview of the dual-reporter fusion assay developed for this study. T7
510 polymerase drives expression of GFP and luciferase separated by a P2A fusion peptide. (E) HEK
511 293T cells expressing receptor or, (F) empty vector and T7-polymerase were combined with cells
512 expressing spike and the T7-driven reporter. Luciferase was measured as a readout for cell fusion.
513 Dotted lines indicate data from 1:4 ratio of receptor:spike cells. (G) Overview of 190366 spike
514 with *in silico* predicted trypsin digest sites indicated. Location of V976L is indicated in green.
515 (H) Concentrated viral pseudotyped were combined with a wide range of trypsin dilutions or (I) a fine
516 range of trypsin dilutions and incubated at 37°C. Spike digestion was assessed by western blot for
517 FLAG epitope.

518

519

520 **Figure 4. Electron microscopy of purified viral isolates. Viral stocks for (A) RsYN2012 (B)**
521 **RsYN2016 or (C) RsHuB2019 were visualized by transmission electron microscopy. Bottom**
522 **images were taken at a higher magnification to show detail.**

523

524

525

526

527

528

529

530

531

532

533

534

535

536 **Table 1. Genomic comparison of viral isolates with other sarbecoviruses**

Table 1. Genomic comparison of RsHuB2019, RsYN2012, and RsYN2016 with SARS-CoV, SARS-CoV-2 and their related CoVs

Sequence identities with SARS-CoV, SARS-CoV-2 and related bat CoVs (nt/aa %)											
	Full-length genome	ORF1a	ORF1b	S	ORF3	E	M	ORF6	ORF7a	ORF7b	N
RsHuB2019 (190366)	SARS-CoV	88.3	88.2/94.4	92.5/99.0	76.4/79.5	83.0/82.9	97.4/100	94.6/97.3	93.2/90.6	93.8/91.9	93.3/93.3
	SARS-CoV-2	79.6	76.0/80.9	86.1/95.5	73.1/77.9	75.3/74.2	95.2/96.1	84.2/90.1	75.3/66.1	84.2/86.9	84.1/77.3
	Bat SARSr-CoV RsWIV1	88.6	88.3/94.2	92.5/99.1	76.4/79.3	83.5/83.6	97.8/100	95.2/98.2	92.2/89.1	93.5/95.1	93.3/95.6
	Bat SARSr-CoV HKU3-1	93.2	94.0/97.3	93.2/98.7	85.5/89.2	95.3/95.3	100/100	98.5/98.6	98.4/96.9	94.9/96.7	97.0/100
	Bat SARSr-CoV BM48-31	78.6	76.8/81.6	85.6/96.1	70.2/74.4	71.6/68.6	90.5/92.2	80.5/91.0	66.1/52.4	63.3/58.0	60.2/63.4
RsYN2012 (4105)	Bat SARSr-CoV RaTG15	74.5	71.3/76.5	83.6/94.5	65.9/68.9	70.1/66.9	85.3/81.8	79.5/92.3	67.8/55.9	63.4/54.9	51.1/33.3
	SARS-CoV	95.6	96.9/97.9	96.4/99.3	90.2/92.4	98.5/97.1	99.1/100	97.3/98.2	95.2/92.2	93.0/92.7	93.3/93.3
	SARS-CoV-2	79.6	76.0/80.5	85.9/95.6	73.9/78	75.9/74.2	95.6/96.1	84.8/90.1	78.0/72.6	85.5/88.5	84.1/77.3
	Bat SARSr-CoV RsWIV1	99.9	100/100	100/100	100/99.9	99.8/99.6	100/100	100/100	100/100	92.7/95.1	93.3/95.6
	Bat SARSr-CoV HKU3-1	88.2	88.1/94.2	90.9/98.6	77.7/80.1	83.0/82.5	97.8/100	94.0/96.8	93.2/89.1	96.2/96.7	97/100
RsYN2016 (162173)	Bat SARSr-CoV BM48-31	78.9	77.0/81.4	85.7/96.2	70.9/75.8	73.4/72.7	90.9/92.2	80.3/90.5	65.1/52.4	65.3/58.8	60.2/63.4
	Bat SARSr-CoV RaTG15	74.5	71.2/76.5	83.5/94.5	65.6/70.1	70.5/66.5	85.7/100	78.9/91.4	66.7/62.7	64.8/56.6	51.1/33.3
	SARS-CoV	95.6	97.0/98.2	96.5/99.4	90.2/92.5	97.6/96.4	99.6/100	97.0/98.2	94.8/92.2	94.6/94.3	95.6/93.3
	SARS-CoV-2	79.7	76.0/80.9	86.3/95.7	73.7/77.9	75.6/73.8	94.3/96.1	84.8/90.1	78.0/72.6	84.7/87.7	85.6/81.8
	Bat SARSr-CoV RsWIV1	98.3	98.8/100	98.3/99.8	96.5/98.8	98.3/98.2	98.7/100	99.7/100	99.5/100	99.7/99.2	100/100

537

538

539

540

541

542

543

544

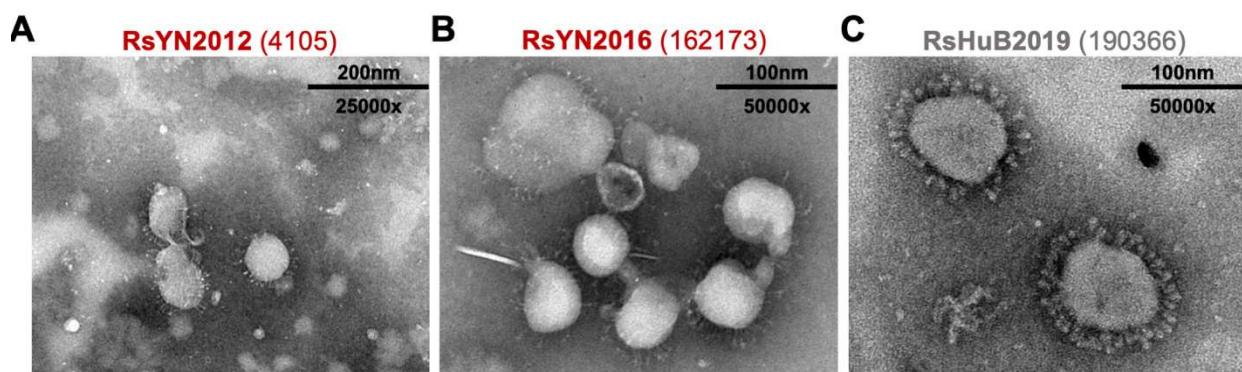
545

546

547

548

549


550 **SUPPLEMENTARY INFORMATION**

551

552 **Supplementary table 1.** Metagenomic information regarding the samples from this study with
553 isolated viruses in highlighted rows and viruses for pseudotyped experiments underlined
554

Supplementary Data Table 1. Sample information

Sample #	Descriptive code (sp.-location-year)	Sampling date (YYYY-MM-DD)	Sarbecovirus spike RBD clade	Previously tested equivalent RBD	Sampling location	GPS	Host bat species	Ct value (Partial RdRp)
4105	RsYN2012	2012-09-18	1	RsWIV1	Xiayang town, Jinning county, Kunming city, <u>Yunnan province</u> , China	N 24°49791, E 102°21805	<i>Rhinolophus sinicus</i>	32.3
162173	RsYN2016	2016-08-13	1	Rs7327	Xiayang town, Jinning county, Kunming city, <u>Yunnan province</u> , China	N 24°46465, E 102°32157	<i>Rhinolophus sinicus</i>	28.4
190366	RsHuB2019	2019-04-19	2	<i>Identical to sample 190371</i>	Xianning city, Hubei province, China	N 29°78537, E 114°31567	<i>Rhinolophus sinicus</i>	34.69
162171	RsYN2016	2016-08-13	1		Xiayang town, Jinning county, Kunming city, <u>Yunnan province</u> , China	N 24°46465, E 102°32157	<i>Rhinolophus sinicus</i>	34.96
162181	RsYN2016	2016-08-13	1		Xiayang town, Jinning county, Kunming city, <u>Yunnan province</u> , China	N 24°46465, E 102°32157	<i>Rhinolophus sinicus</i>	34.11
4230	RsYN2013	2013-04-17	1		Xiayang town, Jinning county, Kunming city, <u>Yunnan province</u> , China	N 24°49791, E 102°21805	<i>Rhinolophus sinicus</i>	36.7
190371	RsHuB2019	2019-04-19	2	<i>Identical to sample 190366</i>	Xianning city, Hubei province, China	N 29°78537, E 114°31567	<i>Rhinolophus sinicus</i>	38.74
151491	RsGZ2015	2015-08-29	2		Shiqian county, Tongren city, <u>Guizhou province</u> , China	N 27°58408, E 108°51612	<i>Rhinolophus sinicus</i>	34.81
160665	RsYN2016	2016-05-19	2	As6526	Lufeng county, Xiongchu city, <u>Yunnan province</u> , China	N 24°95194, E 102°16878	<i>Rhinolophus sinicus</i>	Undetectable
141341	RsGD2014	2014-09-02	2	<i>Identical to sample 141376</i>	Conghua county, Guangzhou city, <u>Guangdong province</u> China	N 23°740333, E 113°83755	<i>Rhinolophus sinicus</i>	29.38
141376	RsGD2016	2014-09-02	2	<i>Identical to sample 141341</i>	Conghua county, Guangzhou city, <u>Guangdong province</u> , China	N 23°740333, E 113°83755	<i>Rhinolophus sinicus</i>	37.05
6301	RsYN2014	2014-05-07	2	Rs4081	Lufeng county, Chuxiong city, <u>Yunnan province</u> , China	N 24°95086, E 102°17924	<i>Rhinolophus sinicus</i>	36.51
B228	RsYN2018	2018-07-03	2		Jingne county, Jinghong city, <u>Yunnan province</u> , China	N 22°43185, E 100°66897	<i>Rhinolophus sinicus</i>	37.4
7896	RstYN2015	2015-05-29	4	RatG15	Tongguan town, Mojiang county, Puer city, <u>Yunnan province</u> , China	N 23°258806, E 101°38947	<i>Rhinolophus stheno</i>	32.21
7909	RatG15	2015-05-29	4	RatG15	Tongguan town, Mojiang county, Puer city, <u>Yunnan province</u> , China	N 23°258806, E 101°38947	<i>Rhinolophus affinis</i>	34.13
180297	n/a	2018-09-01	No sequence		Lancang county, Puer city, <u>Yunnan province</u> , China	N 22°75374, E 99°76519	<i>Rhinolophus pusillus</i>	Undetectable
180284	n/a	2018-08-31	No sequence		Lancang county, Puer city, <u>Yunnan province</u> , China	N 22°71876, E 99°81241	<i>Rhinolophus sinicus</i>	37.42
180285	n/a	2018-08-31	No sequence		Lancang county, Puer city, <u>Yunnan province</u> , China	N 22°71876, E 99°81241	<i>Rhinolophus sinicus</i>	37.17

557

558 **Supplementary figure 1. Additional electron micrographs of purified viral isolates. (A)**
559 **RsYN2012 (B) RsYN2016 or (C) RsHuB2019** were visualized by transmission electron
560 microscopy.

561 **REFERENCES**

- 562 1. Lau SK, Woo PC, Li KS, Huang Y, Tsui HW, Wong BH, Wong SS, Leung SY, Chan
563 KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-like virus in
564 Chinese horseshoe bats. *Proc Natl Acad Sci U S A* 102:14040-5.
- 565 2. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H,
566 Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are
567 natural reservoirs of SARS-like coronaviruses. *Science* 310:676-9.
- 568 3. Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ,
569 Corti D, Johnston RE, Baric RS, Denison MR. 2008. Synthetic recombinant bat SARS-
570 like coronavirus is infectious in cultured cells and in mice. *Proc Natl Acad Sci U S A*
571 105:19944-9.
- 572 4. Letko M, Marzi A, Munster V. 2020. Functional assessment of cell entry and receptor
573 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature Microbiology*
574 doi:10.1038/s41564-020-0688-y.
- 575 5. Guo H, Hu B, Si HR, Zhu Y, Zhang W, Li B, Li A, Geng R, Lin HF, Yang XL, Zhou P,
576 Shi ZL. 2021. Identification of a novel lineage bat SARS-related coronaviruses that use
577 bat ACE2 receptor. *Emerg Microbes Infect* 10:1507-1514.
- 578 6. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang
579 N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. 2017. Discovery
580 of a rich gene pool of bat SARS-related coronaviruses provides new insights into the
581 origin of SARS coronavirus. *PLoS Pathog* 13:e1006698.
- 582 7. Khaledian E, Ulusan S, Erickson J, Fawcett S, Letko MC, Broschat SL. 2022. Sequence
583 determinants of human-cell entry identified in ACE2-independent bat sarbecoviruses: A
584 combined laboratory and computational network science approach. *EBioMedicine*
585 79:103990.
- 586 8. Murakami S, Kitamura T, Matsugo H, Kamiki H, Oyabu K, Sekine W, Takenaka-Uema
587 A, Sakai-Tagawa Y, Kawaoka Y, Horimoto T. 2022. Isolation of Bat Sarbecoviruses,
588 Japan. *Emerg Infect Dis* 28:2500-2503.
- 589 9. Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T, Fujii M, Matsugo H, Kamiki H, Ishida
590 H, Takenaka-Uema A, Shimojima M, Horimoto T. 2020. Detection and Characterization
591 of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan. *Emerg Infect Dis*
592 26:3025-3029.
- 593 10. Seifert SN, Bai S, Fawcett S, Norton EB, Zwezdaryk KJ, Robinson J, Gunn B, Letko M.
594 2022. An ACE2-dependent Sarbecovirus in Russian bats is resistant to SARS-CoV-2
595 vaccines. *PLoS Pathog* 18:e1010828.
- 596 11. Roelle SM, Shukla N, Pham AT, Bruchez AM, Matreyek KA. 2022. Expanded ACE2
597 dependencies of diverse SARS-like coronavirus receptor binding domains. *PLoS Biol*
598 20:e3001738.
- 599 12. Starr TN, Zepeda SK, Walls AC, Greaney AJ, Alkhovsky S, Veesler D, Bloom JD. 2022.
600 ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. *Nature*
601 doi:10.1038/s41586-022-04464-z.
- 602 13. Guo H, Li A, Dong TY, Su J, Yao YL, Zhu Y, Shi ZL, Letko M. 2022. ACE2-
603 Independent Bat Sarbecovirus Entry and Replication in Human and Bat Cells. *mBio*
604 13:e0256622.

605 14. Li W, Hulswit RJJ, Kenney SP, Widjaja I, Jung K, Alhamo MA, van Dieren B, van
606 Kuppeveld FJM, Saif LJ, Bosch BJ. 2018. Broad receptor engagement of an emerging
607 global coronavirus may potentiate its diverse cross-species transmissibility. *Proc Natl
608 Acad Sci U S A* 115:E5135-E5143.

609 15. Menachery VD, Dinnon KH, 3rd, Yount BL, Jr., McAnarney ET, Gralinski LE, Hale A,
610 Graham RL, Scobey T, Anthony SJ, Wang L, Graham B, Randell SH, Lipkin WI, Baric
611 RS. 2019. Trypsin treatment unlocks barrier for zoonotic bat coronaviruses infection. *J
612 Virol* doi:10.1128/JVI.01774-19.

613 16. Wicht O, Li W, Willems L, Meuleman TJ, Wubbolts RW, van Kuppeveld FJ, Rottier PJ,
614 Bosch BJ. 2014. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike
615 fusion protein by trypsin in cell culture. *J Virol* 88:7952-61.

616 17. Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani
617 S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX,
618 Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo
619 Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y,
620 Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY. 2018. Fatal swine acute diarrhoea
621 syndrome caused by an HKU2-related coronavirus of bat origin. *Nature* 556:255-258.

622 18. de Souza Luna LK, Heiser V, Regamey N, Panning M, Drexler JF, Mulangu S, Poon L,
623 Baumgarte S, Haijema BJ, Kaiser L, Drosten C. 2007. Generic detection of coronaviruses
624 and differentiation at the prototype strain level by reverse transcription-PCR and
625 nonfluorescent low-density microarray. *J Clin Microbiol* 45:1049-52.

626 19. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W,
627 Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF,
628 Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus
629 that uses the ACE2 receptor. *Nature* 503:535-8.

630 20. Guo H, Hu BJ, Yang XL, Zeng LP, Li B, Ouyang S, Shi ZL. 2020. Evolutionary Arms
631 Race between Virus and Host Drives Genetic Diversity in Bat Severe Acute Respiratory
632 Syndrome-Related Coronavirus Spike Genes. *J Virol* 94.

633 21. Liu K, Tan S, Niu S, Wang J, Wu L, Sun H, Zhang Y, Pan X, Qu X, Du P, Meng Y, Jia
634 Y, Chen Q, Deng C, Yan J, Wang HW, Wang Q, Qi J, Gao GF. 2021. Cross-species
635 recognition of SARS-CoV-2 to bat ACE2. *Proc Natl Acad Sci U S A* 118.

636 22. Yan H, Jiao H, Liu Q, Zhang Z, Xiong Q, Wang BJ, Wang X, Guo M, Wang LF, Lan K,
637 Chen Y, Zhao H. 2021. ACE2 receptor usage reveals variation in susceptibility to SARS-
638 CoV and SARS-CoV-2 infection among bat species. *Nat Ecol Evol* 5:600-608.

639 23. Frank HK, Enard D, Boyd SD. 2022. Exceptional diversity and selection pressure on
640 coronavirus host receptors in bats compared to other mammals. *Proc Biol Sci*
641 289:20220193.

642 24. Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ,
643 Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA. 2020. Characterisation of the
644 transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame
645 deletion of the furin-like cleavage site from the spike glycoprotein. *Genome Med* 12:68.

646 25. Klimstra WB, Tilston-Lunel NL, Nambulli S, Boslett J, McMillen CM, Gilliland T, Dunn
647 MD, Sun C, Wheeler SE, Wells A, Hartman AL, McElroy AK, Reed DS, Rennick LJ,
648 Duprex WP. 2020. SARS-CoV-2 growth, furin-cleavage-site adaptation and
649 neutralization using serum from acutely infected hospitalized COVID-19 patients. *J Gen
650 Virol* 101:1156-1169.

651 26. Lau SY, Wang P, Mok BW, Zhang AJ, Chu H, Lee AC, Deng S, Chen P, Chan KH, Song
652 W, Chen Z, To KK, Chan JF, Yuen KY, Chen H. 2020. Attenuated SARS-CoV-2
653 variants with deletions at the S1/S2 junction. *Emerg Microbes Infect* 9:837-842.

654 27. Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I, Enjuanes L, Carmody A, van
655 Doremalen N, Munster V. 2018. Adaptive Evolution of MERS-CoV to Species Variation
656 in DPP4. *Cell Rep* 24:1730-1737.

657 28. Liu Z, Zheng H, Lin H, Li M, Yuan R, Peng J, Xiong Q, Sun J, Li B, Wu J, Yi L, Peng
658 X, Zhang H, Zhang W, Hulswit RJJG, Loman N, Rambaut A, Ke C, Bowden TA, Pybus
659 OG, Lu J. 2020. Identification of Common Deletions in the Spike Protein of Severe
660 Acute Respiratory Syndrome Coronavirus 2. *J Virol* 94.

661 29. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens R, van der Meer Y, Caly L,
662 Druce J, de Vries JJC, Kikkert M, Barcena M, Sidorov I, Snijder EJ. 2020. SARS-
663 coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and
664 cytopathology. *J Gen Virol* 101:925-940.

665 30. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD,
666 Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS. 2013.
667 Reverse genetics with a full-length infectious cDNA of the Middle East respiratory
668 syndrome coronavirus. *Proc Natl Acad Sci U S A* 110:16157-62.

669 31. Vega VB, Ruan Y, Liu J, Lee WH, Wei CL, Se-Thoe SY, Tang KF, Zhang T, Kolatkar
670 PR, Ooi EE, Ling AE, Stanton LW, Long PM, Liu ET. 2004. Mutational dynamics of the
671 SARS coronavirus in cell culture and human populations isolated in 2003. *BMC Infect
672 Dis* 4:32.

673 32. Zhao M, Su PY, Castro DA, Tripler TN, Hu Y, Cook M, Ko AI, Farhadian SF, Israelow
674 B, Dela Cruz CS, Xiong Y, Sutton RE, Yale IRT. 2021. Rapid, reliable, and reproducible
675 cell fusion assay to quantify SARS-CoV-2 spike interaction with hACE2. *PLoS Pathog*
676 17:e1009683.

677 33. Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, Shi
678 L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D,
679 Wang X, Yan H. 2022. Close relatives of MERS-CoV in bats use ACE2 as their
680 functional receptors. *Nature* 612:748-757.

681 34. Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De
682 Jong C, Virtue ER, Yu M, Bulach D, Liu JP, Michalski WP, Middleton D, Field HE,
683 Wang LF. 2009. Establishment, immortalisation and characterisation of pteropid bat cell
684 lines. *PLoS One* 4:e8266.

685 35. Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, Si H, Zhu Y, Li B, Huang C, Chen
686 H, Chen J, Luo Y, Guo H, Jiang R, Liu M, Chen Y, Shen X, Wang X, Zheng X, Zhao K,
687 Chen Q, Deng F, Liu L, Yan B, Zhan F, Wang Y, Xiao G, Shi Z. 2020. A pneumonia
688 outbreak associated with a new coronavirus of probable bat origin. *Nature*
689 doi:<https://doi.org/10.1038/s41586-020-2012-7>.

690 36. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
691 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
692 performance of PhyML 3.0. *Syst Biol* 59:307-21.

693 37. Lefort V, Longueville JE, Gascuel O. 2017. SMS: Smart Model Selection in PhyML. *Mol
694 Biol Evol* 34:2422-2424.

695 38. Meechan PJ, Potts J. 2020. Biosafety in microbiological and biomedical laboratories, 6th
696 ed. . Centers for Disease Control and Prevention (US) and National Institutes of Health
697 (US);.
698