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Abstract

Multiple primary cancers are increasingly more frequent due to improved survival of

cancer patients. Characteristics of the first primary cancer largely impact the risk

of developing subsequent primary cancers. Hence, model-based risk characterization

of cancer survivors that captures patient-specific variables is needed for healthcare

policy making. We propose a Bayesian semi-parametric framework, where the occur-

rence processes of the competing cancer types follow independent non-homogeneous

Poisson processes and adjust for covariates including the type and age at diagnosis

of the first primary. Applying this framework to a historically collected cohort with

families presenting a highly enriched history of multiple primary tumors and diverse

cancer types, we have derived a suite of age-to-onset penetrance curves for cancer

survivors. This includes penetrance estimates for second primary lung cancer, po-

tentially impactful to ongoing cancer screening decisions. Using Receiver Operating

Characteristic (ROC) curves, we have validated the good predictive performance of

our models in predicting second primary lung cancer, sarcoma, breast cancer, and all

other cancers combined, with areas under the curves (AUCs) at 0.89, 0.91, 0.76 and

0.68, respectively. In conclusion, our framework provides covariate-adjusted quanti-

tative risk assessment for cancer survivors, hence moving a step closer to personalized

health management for this unique population.

Keywords: Cancer survivors; Frailty modeling; Markov chain Monte Carlo; Personalized

risk prediction; Recurrent event; Competing risk.
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1 Introduction

The most recent report from the National Cancer Institute’s Surveillance, Epidemiology,

and End Results (SEER) program estimated approximately 20% of all incident cancer

cases in the United States are second or later primary cancers, i.e., additional cancers

occurring in cancer survivors (Forjaz et al., 2022). By 2026, the total number of cancer

survivors living in the US will exceed 20 million (Hulvat, 2020). Currently, the health care

management of cancer survivors is largely indifferent from the management of either at-risk

healthy individuals or new cancer patients, thus not yet adequately configured to deliver the

desirable high-quality care in this growing population (Mayer et al., 2017). Recently, large

population-based epidemiology studies have identified a few important features for cancer

survivors: patients with bladder cancer present the highest risk of developing second cancer

(Donin et al., 2016); and patients with breast cancer have a higher risk of developing a

second primary cancer, lung cancer in particular, than the general population (Bao et al.,

2021). Accurate characterization of the onset of second primary cancers is essential for

cancer prevention strategy development, such as the United States Preventive Services

Task Force (USPSTF) guidelines. One such example is the lung-cancer screening, which has

been recommended to adults who are deemed at high-risk, because of the significant survival

improvement with diagnosis at an early stage. However, the current recommendation does

not include previous malignancy as a high-risk feature (Nobel et al., 2022), due to a lack

of accurate personalized risk characterization in such a population.

The NCI SEER program provides a range of databases that allow researchers to directly

query cancer-specific incidence rates, defined as the number of new cases per 100,000 people

per year, for the first primary cancer (www.seer.cancer.gov/seerstat version 8.4.0.1). These

incidence rates can be segmented by 5-year age groups between age 0 and 85, as well
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as by basic demographic features such as gender. To address the increasing number of

cancer survivors, the program recently updated its SEER*Stat software to allow for queries

from patients that developed a specific cancer type as the second primary. Although the

incidence rates for the second primary cancer can be approximated from the SEER data,

such approximation is subject to biases, and hence does not accurately reflect age-at-onset

penetrances. Furthermore, these rates are not fully personalized, i.e., they do not account

for important person-specific features beyond age group and gender. For example, in the

context of inherited cancer syndromes, where the personal risk of developing cancer is

significantly increased by the carrier status of a genetic mutation (Parmigiani et al., 1998;

Chen et al., 2006), the necessary covariate of mutation status is not captured by SEER.

Although covariate-adjusted risk characterization is urgently needed, unbiased and com-

prehensive data collection for cancer survivors, as needed for mathematical modeling, re-

mains a major bottleneck. So far, a pan-cancer risk characterization study is not available

except for the SEER study mentioned above. On the other hand, there exists a well-

characterized and well-ascertained inherited and rare cancer syndrome, called Li-Fraumeni

syndrome (LFS) (Li and Fraumeni, 1969), which is mainly caused by germline mutations

in the tumor suppressor gene TP53 (Malkin et al., 1990). LFS presents a wide spectrum of

cancer types, as well as a much higher incidence rate of multiple primary cancers than the

general population (50% as compared to 2-17%) (Mai et al., 2016; Vogt et al., 2017). We

therefore resort to datasets that were collected from patients affected by LFS (see Table 1

for a dataset example) for real-data motivation, model training and the model-based risk

prediction application. People affected by LFS are more likely to develop a spectrum of

cancer types, including breast cancer, soft-tissue sarcoma, osteosarcoma, and others, and

repeatedly over their lifetime (Li and Fraumeni, 1969). Because of the inheritable nature
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of TP53 mutations, the family members of patients diagnosed with LFS and the patients

themselves live with a constant high level of anxiety, thus actively participating in risk

counseling and cancer screening. This further highlights the need for cancer-specific risk

prediction among cancer survivors while addressing genetic mutations as covariates.

Other than risk modeling for individual data, we also take the opportunity to develop

additional methods that address the family inheritance structure presented in the LFS

datasets. There are several models in the literature that attempt personalized risk pre-

diction given family data. Chen et al. (2009) proposed a frailty model with two-phase

case-control data. Choi (2012) introduced a shared frailty model for analyzing correlated

time-to-event data arising from family-based studies. Both models, however, do not appro-

priately account for the pedigree structure of families that is needed for genetic inheritance

models. Choi et al. (2016) took one step further by proposing a progressive three-state

Markov model, in which a single-step EM algorithm is used to calculate genotype proba-

bilities for individuals with no genetic testing results based on genotype data from other

family members. Shin et al. (2019) and Shin et al. (2020) developed Bayesian semipara-

metric models, which introduced the peeling algorithm (Elston and Stewart, 1971) to take

into account familial genetic structure, and the ascertainment-corrected joint (ACJ) ap-

proach (Iversen and Chen, 2005) to correct for ascertainment bias. However, none of these

approaches have been able to model multiple cancer types beyond the first primary cancer.

In this paper, we introduce a novel Bayesian semiparametric framework that jointly

models both multiple primary cancers and multiple cancer types. We utilize non-homogeneous

Poisson processes to model the occurrence processes of primary cancers, each of which is

characterized by an intensity function that is cancer-type-specific. This modeling approach

allows predictions of the second primary to be dependent on the type and timing of the
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Positive families Negative families

Wildtype Mutation Unknown Total Wildtype Mutation Unknown Total

Male
Healthy 112 41 2,227 2,380 7 0 2,221 2,228
FPC 11 50 339 400 47 0 408 455
SPC 1 39 17 57 32 0 43 75
Subtotal 124 130 2,583 2,837 86 0 2,672 2,758

Female
Healthy 133 32 1,997 2,162 11 0 2,119 2,130
FPC 9 76 375 460 104 0 423 527
SPC 1 97 41 139 113 0 60 173
Subtotal 143 205 2,413 2,761 228 0 2,602 2,830

Total 267 335 4,996 5,598 314 0 5,274 5,588

Table 1: Categorization of family members in the MDACC cohort by gender, number
of primary cancers and TP53 mutation status. FPC: first primary cancer; SPC: second
primary cancer. Families are grouped into two categories, positive: at least one family
member with a TP53 mutation, and negative: no mutation carriers.

first primary. Under this novel framework, we derive an explicit expression for the individ-

ual likelihood contribution, and further a family-wise likelihood through integration across

family members. We train and cross-validate our model on a patient cohort, collected

from MD Anderson Cancer Center (MDACC) using clinical LFS criteria (Li et al., 1988;

Chompret et al., 2001; Bougeard et al., 2015) from year 2000 to 2015 (Table 1).

The paper is organized as follows. In Section 2, we present the modeling and derivation

of individual and family-wise likelihoods, techniques for addressing necessary ascertainment

bias correction and incorporating frailty into family data, as well as simulation studies to

evaluate the parameter estimation performances. In Section 3, we demonstrate how the

individual likelihood can be used to construct effective risk models, with a special emphasis

on lung cancer. In Section 4, we apply our family-wise model to the LFS dataset to obtain

novel penetrance estimates for TP53 mutation carriers and non-carriers. Both sections

include a cross-validation study. Section 5 concludes with future research directions.
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2 Method

2.1 Age-at-onset penetrance of multiple cancer types in multiple

primaries

We assume multiple cancer occurrences as recurrent events (Cook and Lawless, 2007).

To describe the model, we begin by introducing some notations. Let N(t) be a non-

homogeneous Poisson process that counts the number of primary cancers by age t, and Z

be the indicator of cancer type (i.e. Z ∈ {1, . . . , K}) with K being the number of cancer

types. In addition, H(t) denotes the historical information of N(t) up to time t, and X

is a vector of patient-specific covariates, respectively. The kth cancer-specific intensity

function, λk(t|X, H(t)), k = 1, 2, · · · , K, is defined as

λk(t|X, H(t)) = lim
∆t→0+

P [N(t+∆t)−N(t) > 0, Z = k|X, H(t)]

∆t
.

We note that the overall intensity of N(t) is λ(t|X, H(t)) =
∑K

k=1 λk(t|X, H(t)). The

notion of age-at-onset penetrance is defined as the probability that a patient develops the

disease of interest by age t given his or her characteristics (Langbehn et al., 2004). Since

then, the definition has been extended to accommodate more complex settings. For exam-

ple, the kth cancer-specific age-at-onset penetrance is defined as the conditional probability

of having the kth type of cancer by age t prior to developing other cancer types. Compared

to our previous model that estimates age-at-onset cancer-specific penetrance among the

first primary cancers (Shin et al., 2020), here we focus on addressing the need of charac-

terizing the kth cancer type among multiple primary cancers during the patient’s lifetime.

The desired solution will add another layer of complexity to further extend the definition

of penetrance. To this end, let L be a non-negative integer that denotes the number of
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primary cancer occurrences. Then, we define the cancer-specific age-at-onset penetrance

for multiple primary cancer as the probability of having the kth cancer type at the lth

occurrence by age t given the (l − 1)th occurrence at time u in the past, conditional on

covariates representing patient characteristics and cancer history up to a time point u. Let

Tl be the time and Zl be the cancer type of the lth cancer diagnosis. The penetrance of

interest, denoted by qkl(t|u,X(u)), k = 1, . . . , K; l = 1, . . . , L, is then given by

qkl(t|u,X, H(u)) = P [Tl ≤ t, Zl = k|Tl−1 = u,X, H(u)] for t > u,

where T0 = 0 for convenience. For t > u, we then have

qkl(t|u,X, H(u)) =

∫ t

u

λk(v| X, H(u))
K
∏

a=1

Sa(v|u,X, H(u)) dv, (1)

where Sk(t|u,X, H(u)) = exp
[

−
∫ t

u
λk(v|X, H(u)) dv

]

for k = 1, · · · , K.

For a patient with l − 1 primary cancers, we are also interested in the probability of

having the next cancer of any type by age t given the (l − 1)th occurrence at time u.

This penetrance can be obtained by summing over all cancer types, i.e., ql(t|u,X, H(u)) =

∑K

k=1 qkl(t|u,X, H(u)).

2.2 Intensity function modeling

One of the challenges in modeling recurrent events with competing risks is accounting for

the correlations between the events. To address this, we introduce a binary variable Dk(t)

that indicates whether the patient had the kth cancer type as the first primary by time t.

That is, Dk(t) = 1 if T1 < t and Z1 = k, and Dk(t) = 0 otherwise. The variable Dk(t)

allows the risk of later primary to depend on the type of the first one. The relationship
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between the first and second primary has been established in a number of epidemiological

studies (Travis et al., 2005; Mariotto et al., 2007; Donin et al., 2016). We define Dk,l(t),

k = 1, . . . , K, as indicators of the lth primary cancer. That is, Dk,l(t) = 1 if Tl < t and

Zl = k. By incorporating the set of covariates {Dk,l(t) : k = 1 . . . , K and l = 1, . . . , L− 1}

into the model specification, we allow the risk of the lth primary cancer to depend on the

types of the previous l − 1 occurrences. In our application, we consider only dependence

on the type of the first primary cancer due to limited data availability. For each individual

with an inherited cancer syndrome such as LFS, we let G be the mutation status (0 for

wildtype, 1 for mutated) for the gene of interest, and S be the sex (0 for female, 1 for

male). Therefore, the covariate vector is X(t) = {G,S,D1(t), . . . , DK(t)}
T .

We model the cancer-specific intensities using a proportional intensity model as follows:

λk(t|X(t)) = λ0,k(t) exp(β
T
k X(t)), k = 1, . . . , K (2)

where βk denotes the vector of coefficients, and λ0,k(t) is the baseline intensity function. Let

Λ0,k(t) =
∫ t

0
λ0,k(v) dv be the cumulative baseline intensity function. We model Λ0,k(t) using

Bernstein polynomials, which are often used to approximate functions with constraints

such as monotonicity (Lorentz, 1953; Shin et al., 2020). After rescaling t to [0, 1], we can

approximate Λ0,k(t) using the Bernstein polynomials as follows.

Λ0,k(t) ≈
M
∑

m=1

Λ0,k

(m

M

)

(

M

m

)

tm(1− t)M−m,

where M denotes the order of the Bernstein polynomials. By reparameterizing γm,k =
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Λ0,k

(

m
M

)

− Λ0,k

(

m−1
M

)

with Λ0,k(0) = 0, it can be shown that

λ0,k(t) ≈
M
∑

m=1

γm,kfB(m,M−m+1)(t),

where fB(m,M−m+1) denotes the beta density with parameters m and M−m+1 (Curtis and

Ghosh, 2011). In practice, death from other causes is another competing risk that should

be taken into account. One can model the hazard function for death in an identical way to

the other cancer-specific intensities from (2).

2.3 Individual likelihood with known G

We first derive the full likelihood of an individual’s observed cancer history, including the

development of first, second, or more primary cancers over time, until censorship, when

the genotype G is known. For individual j, where j = 1, 2, · · · , n, let Lj be the number of

observed cancer occurrences. Although we focus on Lj ≤ 2 in the applications, we describe

our model in a more general setting. We observe a dataset {tj, zj, cj, gj, sj}
n
j=1, where tj

and zj are Lj-dimensional vectors that indicate the times and cancer types at diagnoses;

cj is the censoring time; and gj and sj denote TP53 mutation status and sex, respectively.

Now, we introduce dj,k(t) = 1 if tj,1 < t and zj,1 = k, and dj,k(t) = 0 otherwise. Finally,

the vector of covariates is given by xj(t) = (gj, sj, dj,1(t), . . . , dj,K(t))
T .

Let β = {βk : k = 1, . . . , K} and γ = {γm,k : m = 1 . . . ,M ; k = 1 . . . , K}. For an

individual with cancer history hj = {tj, zj, cj}, the likelihood can be expressed as a product

of the observed cancer occurrences and the censoring event

P [hj|xj,β,γ] = P [Tj,Lj+1 > cj|Tj,Lj
= tj,Lj

,xij(tij,Lj
),β,γ] ×
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Lj
∏

l=1

P [Tj,l = tj,l, Zj,l = zj,l|Tj,l−1 = tj,l−1,xj(tj,l−1),β,γ].

By noting that dk(t), k = 1, . . . , K, are periodically fixed, we obtain the likelihood contri-

bution from the lth cancer occurrence as follows.

P [Tj,l = tj,l,Zj,l = zj,l|Tj,l−1 = tj,l−1,xj(tj,l−1),β,γ]

= λzj,l(tj,l|xj(tj,l))
K
∏

m=1

Sm(tj,l|tj,l−1,xj(tj,l−1)), l = 1, . . . , Lj, (3)

with tj,0 = 0. The likelihood contribution from the censored event is given by

P [Tj,Lj+1 > cj|Tj,Lj
= tj,Lj

,xj(tj,Lj
),β,γ] =

K
∏

k=1

Sk(cj|tj,Lj
,xj(tj,Lj

))

Finally, the likelihood for the jth individual is

P [hj|xj,β,γ] =
K
∏

k=1

Sk(cj|tj,Lj
,xj(tj,Lj

)) ×

{ Lj
∏

l=1

λzj,l(tj,l|xj(tj,l))
K
∏

m=1

Sm(tj,l|tj,l−1,xj(tj,l−1))

}

. (4)

Since we assume the individuals are independent, the overall likelihood of the dataset is

simply given by the product of all the individual likelihoods. The complete derivations of

the equations above are relegated to Supplementary Material Section A.

2.4 Family-wise likelihood with unknown G

For inherited cancer syndromes in the general population, the total number of carriers is

very low, e.g., ∼1 out of 1,300 for TP53 mutations (Gao et al., 2020). This rare condition

means even one of the most extensively collected datasets would still have just a few
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hundred mutation carriers (n = 335, see Table 1) to be used for estimating a series of

penetrance curves, in order to capture dynamic cancer outcomes within the first and the

second primary cancers (referred to as SPC and FPC from now on). On the other hand,

data collection for inherited cancer syndromes, such as LFS, usually includes cancer history

information from family members. Accordingly, we have data from an additional tens of

thousands of family members (e.g., n = 10, 270, see Table 1), who have all the required

information except for mutation status. Many of these family members can carry the

mutation due to their genetic relationship with the carriers. Therefore, we introduce a

model that includes all family members, including those with unknown G.

2.4.1 Frailty modeling for the family units

Let i = {1, . . . , I} denote the families. In order to account for often-observed non-genetic

correlations between family members, after conditioning on X(t), as a random effect, we

introduce a frailty term (Hougaard, 1995), denoted by ξi,k, into the modeling of the cancer-

specific intensities (2). Importantly, this family-wise random effect may vary across families

and across different cancer types. Hence we have

λk(t|ξi,k,X(t)) = ξi,kλ0,k(t) exp(β
T
k X(t)), k = 1, . . . , K. (5)

For each cancer type k, we assume the frailty term to follow a gamma distribution with

the same shape and scale parameters, i.e., ξ1,k, . . . , ξI,k
iid
∼ Gamma(φk, φk). With the pres-

ence of the frailties, the age-at-onset penetrance defined in eq.(1) is further modified by

marginalizing over the frailties ξ = {ξ1, . . . , ξK}. For t > u, we then have

qkl(t|u,X(u)) =

∫ t

u

λ0,k(v) exp(β
T
k X(u))Rk(v|u,X(u))

K
∏

a=1

Ra(v|u,X(u))φa dv, (6)
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where Rk(t|u,X(u)) = φk/
{

φk +
∫ t

u
λ0,k(v) exp(β

T
k X(u)) dv

}

.

2.4.2 Peeling algorithm to model the Mendelian inheritance

Let θ = {β,γ,φ} be the full set of model parameters. The likelihood contribution of

the jth individual in the ith family, which we call family-wise likelihood, can be derived

similarly to (4), when the covariate vector xij is fully observed for all family member j in

family i:

P [hij|xij,θ, ξi] =
K
∏

k=1

Sk(cij|ξi,k, tij,Lij
,xij(tij,Lij

)) ×

{ Lij
∏

l=1

λzij,l(tij,l|ξi,zij,l ,xij(tij,l))
K
∏

n=1

Sn(tij,l|ξi,n, tij,l−1,xij(tij,l−1))

}

. (7)

Let xi = {xij : j = 1, . . . , ni} and hi = {hij : j = 1, . . . , ni} be the aggregated

covariate vector and cancer history across all family members of the ith family, with

hij = {tij, zij, cij}. Direct evaluation of (7), however, is not possible in our application

since the TP53 mutation status is unknown for most family members.

To tackle this, we employ the peeling algorithm (Elston and Stewart, 1971) as de-

scribed in the following. Let gi = {gij : j = 1, . . . , ni} be the set of genotype infor-

mation. We then partition the covariate vector into genotype and other non-genetic co-

variates, hence xi = gi ∪ gC
i . Let gi,obs = {gij : gij is known} be the observed part

and gi,mis the missing part of the genotype data for the ith family. We then have gi =

gi,mis ∪ gi,obs. We sum over all possible genotype configurations for the family mem-

bers who have missing genotype information to calculate the family-wise likelihood as

P [hi|gi,obs] =
∑

gi,mis
P [hi|gi,mis, gi,obs]P [gi,mis|gi,obs]. Although this summation procedure

seems computationally intractable as the family size increases, the peeling algorithm can

solve it very efficiently(Shin et al., 2019, 2020). The details of the implementation of the
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peeling algorithm are provided in Supplementary Material Section B.

2.4.3 Ascertainment bias correction for families with LFS

The ascertainment bias is inevitable and its correction is essential in studying rare diseases

like LFS since the data can only be collected from high-risk populations. Introducing an

ascertainment indicator for the ith family Ai that takes 1 if the ith family is ascertained

and 0 otherwise, the ascertainment-corrected joint (ACJ) likelihood (Iversen and Chen,

2005) is

P [hi, gi,obs|g
C
i ,θ, ξi,Ai = 1] =

P [Ai = 1|hi, gi,obs, g
C
i ,θ, ξi]P [hi|gi,obs, g

C
i ,θ, ξi]P [gi,obs|g

C
i ,θ, ξi]

P [Ai = 1|gC
i ,θ, ξi]

.

In practice, the ascertainment decision is often made based on the phenotype of the proband

in a deterministic way. If so, the first term in the numerator, P [Ai = 1|hi, gi,obs, g
C
i ,θ, ξi]

is reduced to P [Ai = 1|hi,1] which is independent of the model parameters. In addition, it

is not practical for any model to predict genotype data from non-genetic covariates, hence

we can reasonably assume that P [gi,obs|g
C
i ,θ, ξi] is simplified to P [gi,obs]. We then have the

following ACJ likelihood up to a constant of proportionality

P [hi, gi,obs|g
C
i ,θ, ξi,Ai = 1] ∝

P [hi|gi,obs, g
C
i ,θ, ξi]

P [Ai = 1|gC
i ,θ, ξi]

.

Note that the numerator is the likelihood contribution of the ith family without considering

the ascertainment bias, which can be obtained by the peeling algorithm as described in

Section 2.4.2. For most LFS studies, the probands can be ascertained due to the diagnosis

of a variety of cancer types, in particular those that belong to the LFS spectrum. The

ascertainment probability for LFS studies, where the ascertainment decision is based on
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the first primary cancer diagnosis of the proband, is given by

P [Ai = 1|gC
i ,θ, ξi] =

K
∑

k=1

P [Ai|Tip,1 = tip,1, Zip,1 = k]P [Tip,1 = tip,1, Zip,1 = k|gC
i ,θ, ξi],

where the subscript p denotes the proband. We are interested in the ACJ likelihood up

to proportionality, hence only the ratio between the terms P [Ai|Tip,1 = tip,1, Zip,1 = k],

k = 1, . . . , K, matters. Denoting these terms by a1, . . . , aK , where aK = 1, it follows that

P [Ai = 1|gC
i ,θ, ξi] ∝

K
∑

k=1

akP [Tip,1 = tip,1, Zip,1 = k|gC
i ,θ, ξi]

=
K
∑

k=1

∑

gip∈{0,1}

akP [Tip,1 = tip,1, Zip,1 = k|gip, g
C
i ,θ, ξi]P [gip|g

C
i ].

In our application, the TP53 mutation prevalence is known to be independent of the non-

genetic covariates which yields P [gip|g
C
i ] = P [gip]. This probability can be calculated

readily from the mutated allele frequency κA: P [Gip = 0] = (1 − κA)
2, and P [Gip = 1] =

1 − (1 − κA)
2. In the Western population, we have κA = 0.0006 (Lalloo et al., 2003). In

Section 4, we will show that our model is not sensitive to the choice of ak, k = 1, . . . , K.

We denote the overall likelihood of the dataset by P [h, gobs|g
C ,θ, ξ,A], where the family

subscript i is dropped to represent aggregation across all the I families (e.g., h = {hi : i =

1, . . . , I}). Once the ACJ likelihood has been obtained for each family, the overall likelihood

can easily be evaluated as a product as follows, since the families are independent

P [h, gobs|g
C ,θ, ξ,A] ∝

I
∏

i=1

P [hi|gi,obs, g
C
i ,θ, ξi]

P [Ai = 1|gC
i ,θ, ξi]

.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.02.28.530537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5 Markov chain Monte Carlo (MCMC) estimation

We assume a normal prior distribution for βk: βk ∼ N(0, σ2I), k = 1, . . . , K, where 0 and

I denote the zero vector and the identity matrix respectively, and σ is set to be large enough

(e.g., 100) to reflect little prior knowledge about βk. For the baseline intensity function,

we set γm,k ∼ Gamma(0.01, 0.01), m = 1, . . . ,M and k = 1, . . . , K. This distribution

is non-negative as required of γm,k, and the corresponding variance is 100 to reflect little

prior knowledge. We assume the same gamma prior for φk, k = 1, . . . , K. It has been

shown previously that the penetrance estimates for real data with TP53 mutations are not

particularly sensitive to the choice of parameter for the gamma prior through a sensitivity

analysis (Shin et al., 2020). We denote the priors of β, γ, and φ by P [β], P [γ], and P [φ],

respectively. Then, the joint posterior distribution of θ and ξ is given by

P [θ, ξ|h, gobs, g
C ,A] ∝ P [h, gobs|g

C ,θ, ξ,A] · P [β].P [γ] · P [ξ|φ] · P [φ]

We use a random walk Metropolis-Hastings-within-Gibbs algorithm to generate posterior

samples, of which the first part is discarded as burn-in. The MCMC is coded in R with the

peeling algorithm implemented in C++ and linked via the Rcpp library.

2.6 Simulation study

To test the individual likelihood model, we simulated 20 datasets, each consisting of 10,000

individuals with known genotypes. We generated the cancer outcome data for these in-

dividuals based on a given set of model parameters with K = 2. The MCMC samples

are converged well and the corresponding 95% credible intervals cover corresponding true

parameters In addition, the estimates show promising performance with low bias and mean

squared errors. We refer to Supplementary Materials Section C for complete details
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about the simulation for the individual likelihood model.

For the family-wise likelihood model in Section 2.4, we simulated 20 datasets, each con-

sisting of 300 families with 30 family members spanning three generations. We generated

the mutation and the cancer outcome data for all family members, as well as an ascertain-

ment scheme to collect families that meet certain criteria until the total number reaches

300. We include the frailty term and apply the ACJ likelihood for the bias correction. Sim-

ilar to the individual likelihood case, MCMC estimates converge very well with promising

performance. The βG parameters showed the highest absolute biases, 0.35 for βG
1 = 3 and

0.36 for βG
2 = 2. Considering the high complexity of the family-based likelihood model,

we are satisfied with its overall performance. Supplementary Materials Section D

provides full details about the simulation for the family-wise likelihood model.

3 Application of the individual likelihood

We apply our models to the MDACC patient cohort as introduced in Section 1. We refer to

Table E.1 (Supplementary Materials Section E) for more details about about the first

and second primary cancers in the dataset. Since the positive families have characteristics

that are distinct from the negative ones (e.g., more mutation carriers, more family members

with SPC), we put these two types of families into two separate strata. For the cross-

validation study, we split the full dataset, randomly with each strata, into two subsets of

equal size to have training and validation datasets comparable in cancer-type distributions.

See Table E.2 (Supplementary Materials Section E).

To apply the individual likelihood model to individuals with known G in the training

set, we focused on all family members who were tested for TP53, plus those with a predicted

mutation probability greater than 0.9 (inferred mutation carriers) or less than 0.01 (inferred
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non-carriers). These probabilities were calculated using the peeling algorithm as described

in Section 2.4.2. To utilize the individual likelihood-based penetrance estimates in the

validation set, we expanded our validation subjects to include family members with a

predicted mutation probability greater than 0.9 or less than 0.01. Related summaries of

the training and validation sets for the individual likelihood model are provided in Tables

E.3 and E.4 (Supplementary Materials Section E).

We also compare our penetrance estimates with those that are imputed from the most

recent SEER Research Plus database (2022). The database provides access to incidence

data across eight registries in the US from 1975 to 2019. See Table E.5 (Supplementary

Materials Section E) for the summary of the SEER data.

3.1 Model specifications

We choose three individual cancer-type models to demonstrate utility, with each focused

on a different cancer type group among the second primary cancers: i) breast cancer,

ii) sarcoma, and iii) lung cancer. Here we group all the other cancer types in contrast

with the chosen one to maximize sample size and reduce the number of parameters to

be estimated. Our model design is based on the frequency of cancer types among SPC

(Tables E.1 - E.4, Supplementary Materials Section E) as well as the potential

relevance to public health (e.g., lung cancer screening). In each model, we categorize the

outcomes as breast cancer (or sarcoma, lung cancer), other cancers, and death. For clarity

of notations, we let k ∈ {br/sa/lu, ot, d}, instead of integers, where br, sa, lu, ot, and d

refer to breast cancer, sarcoma, lung cancer, other cancers, and death respectively. For

the latter two groups, the intensity/hazard functions take the form given by Equation

(4), where X(t) = {G,S,D(t)}T , and D(t) is an indicator of previous cancer occurrences

(i.e., D(t) = 1 if the person has had at least one cancer in the past, and D(t) = 0
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otherwise). Here we use a common indicator to alleviate limited data availability, but

cancer-specific indicators, as used in the simulation study, is still applicable to obtain

insights on interactions between cancer types given enough data. Given this covariate vector

X(t), we write βk = (βG
k , β

S
k , β

D
k )

T for the regression coefficients in the intensity of cancer

type k. Our dataset has no male patients diagnosed with breast cancer. Hence we restrict

the intensity of breast cancer to 0 for male as λbr(t|X(t)) = λ0,br(t) exp(β
T
brX(t))I{S = 0}.

The sarcoma model categorizes the outcomes into sarcoma, other cancers, and death (i.e.,

k ∈ {sa, ot, d}). Lastly, the lung cancer model considers lung cancer, other cancers, and

death (i.e., k ∈ {lu, ot, d}). For both models, we do not impose any restrictions such as the

indicator function above on their intensity functions.

3.2 Model estimation

Using the random-walk Metropolis-Hastings-within-Gibbs algorithm, we obtain 10,000 pos-

terior samples, of which the first 5,000 are discarded as burn-in. Each MCMC iteration

takes about two minutes on a high-performance computing cluster at MDACC (407 nodes,

each of which has 28 CPU cores with Intel Skylake 2.6Ghz). Posterior samples for all model

parameters converged well within the first 10,000 iterations (Figures F.1-F.3, Supple-

mentary Material Section F).

Table F.4 (Supplementary Material Section F) shows the estimated parameters.

We observe that βG
br, β

G
sa, and βG

lu are significantly positive across all models as expected,

since breast cancer, sarcoma, and lung cancer all belong to the LFS spectrum. The pa-

rameter βdeD is also significantly positive in all three models as patients with one cancer

in the past are at higher risk of mortality. In the lung cancer model, it is interesting to

see that βS
ot is significantly negative, suggesting that females are more likely to develop

cancers outside of the lung. In light of our competing risk framework, it may be due to the
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prevalence of breast cancer, which is exclusive to females in our training data, within the

group of other cancer types. This hypothesis is further confirmed by observing that βS
sa

in the sarcoma model is not significant, indicating that sarcoma, the second most popular

cancer type in LFS, does not present gender disparity.

3.3 Age-at-onset penetrance

For each of the three models in Section 3.1, our primary goal is to estimate the cancer-

specific age-at-onset penetrances. Using the notations introduced in Section 2, for a patient

with TP53 mutation status g and sex s, the set of cancer-specific penetrances to the first

primary is denoted by qk1(t|0,X), k = 1, 2, 3, where X = {g, s, 0}T . For a patient with

a first primary of any type at age 10, the set of cancer-specific penetrances to the second

primary is given by qk2(t|10,X), k = 1, 2, 3, where X = {g, s, 1}T . While we can construct

penetrance curves for other cancers and death, the primary purpose of the Breast Cancer

model is to estimate penetrance for breast cancer (e.g., qbr,1(t|0,X) and qbr,2(t|10,X)),

which is of clinical relevance. Similarly, we estimate the age-at-onset penetrances to the

first and second primary for sarcoma, and lung cancer, respectively.

The estimated age-at-onset penetrance to the first primary is presented in Figure G.1

(Supplementary Materials Section G). For comparison, we also impute probability

density curves using the SEER incidence rates (2022). Given the rare prevalence of TP53

mutations, one would expect the SEER estimates, which are computed from the general

population, to closely match our model-based penetrance estimates for noncarriers.

The major contribution of our approach, however, is the set of covariate-adjusted pen-

etrance estimates for the second primary cancer, which has never been studied in the

literature. Figure 1 shows the corresponding cancer-specific penetrance estimates to the

second primary, given a first primary cancer of any type at age 10, from the three individual
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likelihood models. In contrast, to produce the SEER estimates that match the covariate

values, we have to perform the following steps manually. We first select SEER individuals

who were diagnosed with first primary cancers of any type at age 10-14 during the period

1975-1989. We then prospectively follow these individuals until 2019 to monitor the occur-

rences of second primary cancers. The cancer-specific incidence rates at gap times of 5, 10,

15, 20, 25, and 30 years are calculated as the proportions of these individuals who further

developed the corresponding cancer type at ages 15-19, 20-24, 25-29, 30-34, 35-39, and

40-44 respectively. In Figure 1, our penetrance estimates for individuals with wildtype

TP53 approximates the SEER estimates reasonably well in breast cancer and sarcoma,

less well in lung cancer, which has much lower penetrance among SPCs as compared to the

other two cancer types. The penetrance estimates of breast cancer and sarcoma are much

higher for mutation carriers compared to wildtypes as expected. The penetrance estimates

of lung cancer are also higher for mutation carriers, but the difference is much smaller.

Although lung cancer belongs to the LFS spectrum, this small difference is not surprising

given the very strong competing risks from breast cancer and sarcoma (i.e., mutation carri-

ers are much more likely to develop these two cancer types before lung cancer). While lung

cancer has been extensively studied by medical researchers, our study is the first to report

age-at-onset penetrance estimates for this cancer type among SPCs. In Figures G.2-G.3

(Supplementary Materials Section G), we provide additional penetrance estimates for

two hypothetical patients: one has a first primary cancer at age 20, and the other has a

first primary cancer at age 30. These penetrance curves collectively describe how the risk

landscapes of patients depend on the ages at diagnosis of their first primary cancers, and

demonstrate the utility of our novel statistical framework that formally accounts for such

covariates.
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Figure 1: Individual likelihood models: estimates of cancer-specific age-at-onset penetrance to
the second primary cancer, given the first primary at age 10. The 95% credible intervals are given
at gap times of 5, 15, and 25 years. Cumulative cancer-specific incidence rates from SEER are
shown for comparison.

3.4 Validation of the penetrance

Let rkl(t|u,X(u),H), where X(u) = {G,S,D(u)}T and H is the family history, be the

risk of developing cancer of type k as the lth primary by age t given the (l−1)th cancer oc-

currence at age u. That is, rkl(t|u,X(u),H) = P (Tl ≤ t, Zl = k|Tl−1 = u,X(u),H). For

patients with known TP53 mutation status, H can be removed based on the conditional

independence assumption. Since we select only family members with measured genotypes,

rkl(t|u,X(u),H) = P (Tl ≤ t, Zl = k|Tl−1 = u,X(u)), is equal to the age-at-onset pene-

trance qkl(t|u,X(u)). For each cancer model, we evaluate its prediction performance for (1)

the first primary, and (2) the second primary for individuals who already had one primary

cancer. Receiver Operating Characteristic (ROC) curves for the first evaluation are given

in Supplementary Materials Section H. The second evaluation is our focus, and the

results are shown in Figure 2. All models displayed good predictive performances, with

areas under the ROC curve (AUCs) being between 0.82 and 0.93, and further presenting

small 95% bootstrap confidence intervals.
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(c) Lung Cancer model

Figure 2: ROC curves, along with the AUCs and their 95% confidence intervals, for cancer-
specific prediction of the second primary based on the individual likelihood models. SA = sarcoma,
BR = breast cancer, LU = lung cancer, OT = other cancer. Sample size: (a) n(BR) = 20, n(OT)
= 70; (b) n(SA) = 16, n(OT) = 74; (c) n(LU) = 7, n(OT) = 83.

4 Application of the family-wise likelihood

4.1 Model Specifications

Aiming to address the data sparsity issue presented in the application of our individual

model to the real dataset, our family-wise model systematically infers missing genotypes

and correspondingly includes all family members in the likelihood calculation. Therefore,

we fit this model to the full training set across everyone reported. Motivated by both the

biologically meaningful outcomes as well as the need for a sufficient sample size for each cat-

egory, we focus on three groups of cancer diagnosis: (1) sarcoma, (2) breast cancer, and (3)

all other cancers combined, which include both LFS-related (i.e., more frequently observed

in LFS) and non-LFS malignancies. We include death from other causes as an additional

competing risk. For clarity of notations, we set k ∈ {sa, br, ot, de}, for sarcoma, breast can-

cer, other cancers, and death respectively. We have X(t) = {G,S,Dsa(t), Dbr(t), Dot(t)}
T

and βk = (βG
k , β

S
k , β

Dsa

k , βDbr

k , βDot

k )T for the regression coefficients in the intensity of can-

cer type k. For sarcoma, other cancers, and death, the intensity functions take the form

given by Equation (5). In this dataset, no male patients were diagnosed with breast can-
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cer. Hence, we impose the following restriction on the intensity function of breast cancer:

λbr(t|ξi,br,X(t)) = ξi,brλ0,br(t) exp(β
T
brX(t))I{S = 0}. For the ascertainment bias correc-

tion, we set asa = 10, abr = 2 and aot = 1 as we observe sarcoma to be more indicative of

TP53 mutation.

4.2 Model estimation

In addition to the settings described in Section 2.5, we set M = 5 for the degree of

the Bernstein polynomial to ensure sufficient flexibility while keeping the computational

cost reasonable. Using the random walk Metropolis-Hastings-within-Gibbs algorithm, we

generate 30,000 posterior samples, of which the first 5,000 are discarded. Overall, the

estimation is computationally intensive due to a large number of parameters, with each

MCMC iteration taking about 45 seconds on the data when both frailty and ascertainment

bias correction is applied. Trace plots of the posterior samples confirm good convergence

within 30,000 iterations (Figures I.1-I.4, Supplementary Material Section I).

Table 2 displays all estimates of the regression coefficients from our model. All esti-

mates are significant at 95% significance level, except β̂S
sa, which agrees with a previous

study on sarcoma by Amadeo et al. (2020). The β̂G
sa, β̂

G
br and β̂G

ot are positive as expected

since mutation carriers are much more susceptible to LFS-related cancer types. Parameters

of the form β
Dq
p , p ∈ {sa, br, ot} and q ∈ {sa, br, ot}, are positive with βDbr

br being the sole

exception, indicating that patients with a first primary are more likely to develop a second

primary later in their lives. A major contributor for this phenomenon is the method of

treatment used for the first primary. Radiotherapy and chemotherapy have long been linked

to increased risk in cancer survivors (Boice et al., 1985). Bhatia and Sklar (2002) found a

strong relationship between radiation-related tumors and the dosage of radiation, and that

the second cancers typically develop within the radiation field after a latency period. They
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also reported some chemotherapeutic agents, such as alkylating agents, that increase the

risk of developing second cancer. Sarcoma is particularly likely to occur in patients who

were treated with radiotherapy (Patel, 2000), which may explain the largest effect for the

onset of second primary cancers is presented by βDbr
sa . Although data on treatment methods

were not collected for our cohort, they can readily be incorporated into our model as an

additional covariate in future studies.

Estimates of γ and φ are provided in Tables I.5-I.6 (Supplementary Material

Section I). To evaluate the sensitivity of our model to the weights ak, we also report

the estimates of the regression coefficients when asa, abr and aot are set to 4, 2 and 1

respectively (Table I.7, Supplementary Material Section I). In this case, sarcoma is

still more indicative of TP53 mutation compared to other cancer types, but to a lesser

extent. We notice that the estimates do not change much from those in Table 2, hence

our model is not overly sensitive to the choice of ak.

4.3 Age-at-onset penetrance

We present penetrance estimates for FPC and those for SPC with example onsets of the first

primary in sarcoma and other cancers in Tables J.1-J.5 (Supplementary Materials

Section J). For comparison, we also show the penetrances that are imputed from the

incidence rates provided by SEER (2022). Here we focus on discussing the penetrance

estimates for SPC, which have never been reported in the literature. For a female patient

with a first primary of breast cancer at age 20, the set of cancer-specific penetrances to

the second primary cancer is given by qk2(t|20,X), where X = {g, 0, 0, 1, 0}T . Figure 3a

shows the penetrance curves for such a patient with g = 0 and g = 1. The SEER curve was

constructed by the following steps. First we selected individuals who were diagnosed with

first primary breast cancers at age 20-24 during the period 1975-1989, and prospectively

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.02.28.530537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Event Parameter Mean Median SD 2.5% 97.5%

Sarcoma

βG
sa 4.063 4.063 0.223 3.645 4.494

βS
sa 0.426 0.426 0.182 0.073 0.789

βDsa
sa 1.416 1.417 0.327 0.753 2.043

βDbr
sa 1.491 1.493 0.316 0.877 2.110

βDot
sa 1.716 1.717 0.267 1.181 2.232

Breast

βG
br 3.516 3.514 0.201 3.118 3.908

βDsa

br 1.222 1.235 0.408 0.365 1.988

β
Dbr

br −0.785 −0.781 0.252 −1.300 −0.314

βDot

br 0.861 0.860 0.197 0.472 1.238

Other

βG
ot 2.410 2.413 0.137 2.139 2.668

βS
ot 0.392 0.392 0.080 0.239 0.545

βDsa
ot 1.183 1.186 0.216 0.762 1.596

β
Dbr
ot 0.641 0.644 0.169 0.295 0.964

βDot
ot 0.783 0.783 0.113 0.557 0.993

Death

βG
de 0.841 0.836 0.132 0.578 1.102

βS
de 0.327 0.328 0.056 0.219 0.435

βDsa

de 2.309 2.314 0.157 1.987 2.614

β
Dbr

de 1.573 1.576 0.112 1.345 1.790

βDot

de 2.139 2.138 0.061 2.016 2.259

Table 2: Summary of estimated βk, k ∈ {sa, br, ot, de}, based on the last 25,000 posterior
samples. The weights asa for sarcoma, abr for breast cancer, and aot for other cancers are set to
10, 2, and 1 respectively.

followed them until 2019. We then computed incidence rates at gap times of 5, 10, 15, 20,

25, 30 years as the proportions of individuals who developed second primary cancers of any

type during the corresponding age intervals. Similar to Figure 3b, we changed the onset

of the first primary breast cancer to age 30. With the females who do not carry TP53

mutations, the SEER estimate approximates closely for those with FPC at age 30 but is

much higher than those with FPC at age 20. This highlights an advancement in our model

to explicitly adjust for mutation status as a covariate, whereas curves derived from the

SEER registry cannot differentiate those with or without TP53 mutations. For individuals

with FPC of breast at age 20, their chances of carrying germline mutations are high. Hence

the corresponding SEER curve should approximate more closely to the penetrance estimate

for mutation carriers (right panel) than noncarriers (left panel) in Figure 3a.
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Figure 3: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given that the first primary is breast cancer. The 95% credible intervals at gap times of 5, 15,
and 25 years are shown. Cumulative incidence rates across all cancer types from SEER are shown
for comparison.

4.4 Validation of the penetrance

A majority of family members of patients with LFS do not undergo genetic testing for

various reasons. Our family-wise likelihood is particularly advantageous in this case because

it incorporates all family members’ cancer history into the computation of the time-to-

event coefficients. Let XG(u) be the set of covariates without the mutation status (i.e.,

XG(u) = X(u) \ {G}). By conditioning on the unobserved G, the risk rkl is given by

a weighted average: rkl(t|u,XG(u),H) =
∑

G∈{0,1}

qkl(t|u,X(u))P (G|Tl−1 = u,XG(u),H),

where the mutation probability P (G|Tl−1 = u,XG(u),H) is calculated recursively using

the peeling algorithm (Elston and Stewart, 1971).

We first evaluate the predictive performance of our joint model in predicting outcomes,

such as the TP53 mutation status, number of primaries, or cancer types within the first
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primary, which are achievable by previous models (Shin et al. (2019, 2020)). The joint

model achieved comparable performances Supplementary Materials Section K.

We then move further to predict a unique outcome made available by the joint model,

the type of cancer within the second primary. This evaluation is particularly noteworthy

as it sets our model apart from others in the literature. Given the limited sample size,

we include individuals with mutation probabilities greater than 0.99 as inferred carriers,

and smaller than 0.01 as inferred wildtypes. For comparison, we consider a näıve model

that assumes independence and identical distributions of the first and second primary.

Under this assumption, we can show that the cancer-specific age-at-onset penetrances to

the second primary is given by

qk2(t|u,X(u)) =
P (T2 ≤ t|Tl−1 = u,X(u))P (T1 ≤ t− u, Z1 = k|X(u))

P (T1 ≤ t− u|X(u))
.

The second term in the numerator is given by a cancer-specific model (Shin et al., 2020),

while the other two are given by an MPC model (Shin et al., 2019). We use the penetrance

estimates produced by this naive model to perform risk prediction on the validation cohort.

Figure 4 compares the validation results of our model with the naive model. For our

model, the AUCs are 0.91, 0.76 and 0.68 for sarcoma, breast cancer, and other cancers,

respectively. Furthermore, the ROC curves of the naive model hoover around the diagonal

line, with AUC not significantly different from 0.5 for sarcoma and other cancer types. This

indicates poor predictive performance and further confirms the importance of accounting

for the type and age-at-onset for the first primary when predicting the second primary.
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Figure 4: ROC curve, along with the AUCs and their 95% confidence intervals, for cancer-
specific prediction of the second primary in the test dataset. SA = sarcoma, BR = breast cancer,
OT = other cancer. Sample size: n(SA) = 12, n(BR) = 16, n(OT) = 36.

5 Conclusion

With the advancements in oncology, cancer patients are living longer, resulting in a sharp

increase in the number of patients diagnosed with multiple primary cancer. Our Bayesian

semiparametric framework that jointly models both multiple primary cancers and multiple

cancer types represent one of the first attempts to build a quantitative foundation for char-

acterizing cancer risk trajectories among cancer survivors. We provide explicit expressions

of both an individual likelihood and a family-wise likelihood, allowing us to evaluate cancer

risk trajectories among both independent individuals and family members. The individual

likelihood can be used for risk characterization of a general population whose cancer history

is captured by registries, while family-wise likelihood can be used for a given inherited dis-

ease where family history data are routinely collected. With estimated coefficients by the

likelihoods, a suite of penetrance curves can be built, which are cancer-type-specific age-

at-onset probabilities for both first and second primary cancers. These probabilities serve

as the basis for calculating personalized risk estimates, some of which, for first primary

cancer only, are already used in clinical practice to facilitate decision-making (Parmigiani
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et al., 1998). Our joint model has the potential to move the needle in clinical management

by expanding the current practice to the population of cancer survivors.

We have validated the performance of our models using both simulation studies and

cross-validation for risk prediction in an extensively collected real dataset. Using the in-

dividual likelihood approach, we accurately characterized the risk of second primary lung

cancer (SPLC) among cancer survivors in our study population. Our estimated penetrance

curves for SPLC is important for the future update of the USPSTF recommendation for

lung cancer screening. Using the family-wise likelihood approach, we have obtained a new

set of penetrance estimates for genetic and risk counseling with families with LFS. A con-

stant question during the counseling sessions from these families is when my child will

develop next cancer and what it will be. Our framework is general and can accommodate

any number of cancer types and the number of primary cancers, as well as additional co-

variates such as treatment information, given additional data availability. Given enriched

data with a long-term follow-up in the future, we can apply our model to reveal a complete

picture of the risk landscape in cancer patients.

One limitation of our methods is the relatively high computation cost. Training the

family-wise model required about three weeks on a high-performance computing cluster,

and training individual likelihood models took even longer. To tackle this issue, We will

explore moving the computation to Stan, a programming language written in C++ that has

been fine-tuned for performance in Bayesian inference.
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Supplementary materials

A. Derivation of individual likelihood

For each individual, the likelihood function is, by definition, given by:

L(θ) = P (T1 = t1, Z1 = z1 . . . , TL = tL, ZL = zL, TL+1 > c|X(t))

= P (TL+1 > c|TL = tL, ZL = zL,X(t))

× P (TL = tL, ZL = zL|TL−1 = tL−1, ZL−1 = zL−1,X(t))× . . .

× P (T2 = t2, Z2 = z2|T1 = t1, Z1 = z1,X(t))

× P (T1 = t1, Z1 = z1|X(t))

= P (TL+1 > c|TL = tL,X(t))
L
∏

l=1

P (Tl = tl, Zl = zl|Tl−1 = tl−1,X(t))

where T0 = 0 with probability 1. Note that we only need to condition on the most recent

event due to the Markov’s property. The last equality assumes that the cancer type of

the next occurrence does not depend on the last one. Each probability in the product

corresponds to the l-th recurrent event and can be calculated as follows:

P (Tl = tl, Zl = zl|Tl−1 = tl−1,X(t))

= P (Tl,zl = tl, Tl,1 > tl, . . . , Tl,K > tl|Tl−1 = tl−1,X(t))

= P (Tl,zl = tl|Tl−1 = tl−1,X(t))
∏

k ̸=zl

P (Tl,k > tl|Tl−1 = tl−1,X(t))

=
d

dtl
P (Tl,zl < tl|Tl−1 = tl−1,X(t))

∏

k ̸=zl

exp
(

−

∫ tl

tl−1

λk(u|X(t)) du
)

Note that

P (Tl,zl < tl|Tl−1 = tl−1,X(t)) = 1− P (Tl,zl > tl|Tl−1 = tl−1,X(t))
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= 1− exp
(

−

∫ tl

tl−1

λzl(u|X(t)) du
)

Therefore,

d

dtl
P (Tl,zl < tl|Tl−1 = tl−1,X(t)) = λzl(tl|X(t)) exp

(

−

∫ tl

tl−1

λzl(u|X(t)) du
)

It then follows that

P (Tl = tl, Zl = zl|Tl−1 = tl−1,X(t))

= λzl(tl|X(t))
K
∏

k=1

exp
(

−

∫ tl

tl−1

λk(u|X(t)) du
)

= λzl(tl|X(t))
K
∏

k=1

Sk(tl|X(t))

Sk(tl−1|X(t))

where Sk(t|X(t)) = exp
(

−
∫ t

0
λk(u|X(t)) du

)

.

To complete the likelihood function, we also need to take care of the censored case:

P (TL+1 > c|TL = tL,X(t))

= P (TL+1,1 > c, . . . , TL+1,K > c|TL = tL,X(t))

=
K
∏

k=1

P (TL+1,k > c|TL = tL,X(t))

=
K
∏

k=1

exp
(

−

∫ c

tL

λk(u|X(t)) du
)

=
K
∏

k=1

Sk(c|X(t))

Sk(tL|X(t))

Thus, the full likelihood function for an individual is given by

L(θ) =

( K
∏

k=1

Sk(c|X(t))

Sk(tL|X(t))

) L
∏

l=1

(

λzl(tl|X(t))
K
∏

k=1

Sk(tl|X(t))

Sk(tl−1|X(t))

)
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B. Family-wise likelihood with the peeling algorithm

Following Shin et al (2018), the pedigree structure is partitioned into three disjoint groups:

(1) a pivot member j, (2) the posterior, which consists of family members that relate to the

pivot through his or her spouse or offsprings, and (3) the anterior, which consists of those

that relate to the pivot through his or her parents. Let h+
ij and h−

ij be the cancer histories

associated with the posterior and the anterior respectively. Thus, we have partitioned the

aggregated family cancer history as hi = {h+
ij,hij,h

−
ij}.

If gij is unobserved, the family-wise likelihood P [hi|gi,obs] is calculated by conditioning

on gij

P [hi|gi,obs] =
∑

gij

P [h−
i ,hij,h

+
i |gij, gi,obs]P [gij|gi,obs]

=
∑

gij

{

P [h−
i |gij, gi,obs]P [hij|gij]P [h+

i |gij, gi,obs]
}

P [gij|gi,obs] (8)

where P [h−
i |gij, gi,obs] is called the anterior probability and P [h+

i |gij, gi,obs] is called the

posterior probability.

If gij is observed, then it is part of gi,obs and the family-wise likelihood is simply

P [hi|gi,obs] = P [h−
i |gi,obs]P [hij|gij]P [h+

i |gi,obs] (9)

Note that P [hij|gij] is the individual likelihood contribution of the pivot member. In either

case, the anterior and posterior probabilities can be computed by recursively partitioning

h−
i and h+

i into disjoint subgroups as before. The computation reduces to the evaluation of

individual likelihoods, and terms of the type P [h+
i |gi,obs], which are easy to compute given

that the mode of inheritance is known. Here we assume the Mendelian law of transmission.
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C. Simulation study for individual likelihood with completely ob-

served G

To test the individual likelihood, we simulated 20 datasets, each consisting of 10,000 indi-

viduals with known genotypes, i.e., mutation carrier (as 1) or noncarrier (as 0) for TP53.

For simplicity, we assume that there are two cancer types (i.e. K = 2). Let W 1
k be the gap

time to the first occurrence of cancer of type k, and W 2
k be a vector of size n containing

the next N gap times, where N is a large number. It is sufficient to choose N = 100. The

genotype of the proband is simulated by G ∼ Bernoulli(0.001). Given G, W 1
k , k = 1, 2,

are sampled from exponential distributions with rates

λk(t|G,D1, D2) = λ0,k(t) exp(β
G
k G+ βD1

k D1 + βD2

k D2), k = 1, 2,

where β1 = {βG
1 , β

D1

1 , βD2

1 }T = {3, 1, 2}T , β2 = {βG
2 , β

D1

2 , βD2

2 }T = {2, 2, 1}T , and baseline

hazards λ0,1(t) = λ0,2(t) = 0.001. Because either of the two cancer types can occur as

the first primary cancer before the onset of the second primary cancer, we let Dk denote

whether cancer type k has happened as the first primary, and it follows that D1 = D2 = 0

for W 1
k . Given W 1

k , W
2
k , are sampled similarly, except that D1 = I(W 1

1 ≤ W 1
2 ) and D2 =

I(W 1
1 > W 1

2 ). In light of the competing risk framework, we can determine the vector of

times at cancer diagnosis, denoted by T = {T1, T2, · · · , TN+1}
T , and the vector of observed

cancer types, denoted by Z = {Z1, Z2, · · · , ZN+1}
T , by comparing W 1

1 with W 1
2 , and W 2

1

with W 2
2 component-wise. The censoring time, denoted by C, is randomly generated

from Uniform(0, 80). To assess the model performance, we generated 20 independent

repetitions.

For parameter estimation, we setM = 2 for the degree of the Bernstein polynomials. We

then fitted our model to each repetition using MCMC with 10,000 iterations, where the first
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5,000 were discarded as burn-in. The trace plots (Figure C.1) showed good convergence

as well as a good fit for our estimates. Given the true value of a model parameter β, we

compute the absolute bias of our estimate β̂

|Bias(β̂)| =
1

20

20
∑

r=1

|β̂r − β|

as well as the mean squared error (MSE)

MSE(β̂) =
1

20

20
∑

r=1

(β̂r − β)2

where β̂r, r = 1, . . . , 20, is the estimate of β from the r-th repetition. The good performance

of our parameter estimation on the simulated datasets is further demonstrated by these

statistical metrics in Table C.2.
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Figure C.1: Trace plots of 10,000 posterior samples. Dotted: True parameter; Solid: Estimated
parameter; Dashed: 95% credible interval.
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Absolute bias MSE

βG
1 0.064 0.005

βD1

1 0.055 0.005

βD2

1 0.036 0.002

βG
2 0.059 0.005

βD1

2 0.056 0.005

βD2

2 0.097 0.012

λ0,1 0.011 0.000

λ0,2 0.013 0.000

Table C.2: Absolute biases and mean squared errors (MSE) of parameter estimates in individual
likelihood simulation over 20 independent repetitions.
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D. Simulation study for family-wise likelihood with partially ob-

served G

To test the family-wise likelihood, we simulate 20 datasets, each consisting of 300 families

with the same pedigree structure of 30 family members spanning three generations (Figure

D.1). For each family, we follow the procedure above to simulate the proband’s cancer

history, with the addition of the frailty term

λk(t|G,D1, D2) = ξkλ0,k(t) exp(β
G
k G+ βD1

k D1 + βD2

k D2), k = 1, 2,

where ξ1, ξ2
iid
∼ Gamma(1, 1). Based on the proband’s data, we generate the genotypes of

his/her relatives using the approach described by Shin et al. (2020). Given the genotype,

the individual cancer history is independent from other family members, and thus it can

be simulated in the same way as the proband. To mimic clinical ascertainment, we use the

current clinically used Chompret criteria (the 2015 updated version, as shown in Table

D.2) (Bougeard et al., 2015) plus a requirement of having at least one TP53 mutation

carrier per family, to ascertain families into an LFS study cohort from the entire simulated

population. We repeat the data generation on one new family and its study ascertainment

(yes or no) until 300 families are ascertained.

During the parameter estimation, we choose M = 2 for the degree of the Bernstein

polynomials to keep the computation cost reasonable. For ascertainment bias correction,

we set a1 = a2 = 1, hence assuming that the ascertainment probability does not depend

on the first primary cancer type of the proband. We test a set of models with and without

ascertainment bias correction, and with and without the frailty term. In addition, we
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Figure D.1 Pedigree structure of a family in a simulated dataset.

—l—X—

Criterion I Diagnosed with an LFS tumor (e.g., soft-tissue sarcoma, osteosarcoma) before age
46, and at least one first- or second-degree relative with LFS tumor (except breast cancer if the

patient is diagnosed with breast cancer) before age 56 or with multiple primary cancers.

Criterion II Diagnosed with multiple primary cancers (except multiple breast tumors), two of
which are LFS tumors, and the first of which occurs before age 46.

Criterion III Diagnosed with a very rare LFS tumor (e.g., adrenocortical carcinoma, choroid
plexus tumor), regardless of the patient’s family history.

Criterion IV Early-onset breast cancer (before age 31).
Table D.2: Description of the 2015 revised Chompret criteria to identify patients affected with
LFS as those who fall under any single criterion out of the four total. (Bougeard et al., 2015).

assess the effectiveness of the peeling algorithm when dealing with missing genotype data,

which commonly happens because most family members do not undergo genetic testing.

Specifically, we consider (1) no missing genotype, and (2) missing genotype, where a random

half of the genotype data are removed. These models are fit to each simulated dataset using

MCMC with 30,000 iterations, where the first 5,000 are discarded as burn-in. Finally,

all MCMC trace plots (Figures D.3 - D.6) show good performance of our parameter

estimates. Table D.7 shows the importance of accounting for ascertainment bias correction

and frailty in our model, which generally leads to smaller absolute biases and MSEs. The

exceptions are βG
1 and βG

2 , which seem to be best estimated without ascertainment bias

correction, with just slightly worse but still good performance after the bias correction.
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Figure D.3: Trace plots of 30,000 posterior samples in the model with both frailty and ascer-
tainment bias correction. Dotted: True parameter; Solid: Estimated parameter; Dashed: 95%
credible interval.
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Figure D.4: Trace plots of 30,000 posterior samples in the model without ascertainment bias
correction. Dotted: True parameter; Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure D.5: Trace plots of 30,000 posterior samples in the model without frailty. Dotted: True
parameter; Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure D.6: Trace plots of 30,000 posterior samples in the model with neither frailty nor ascer-
tainment bias correction. Dotted: True parameter; Solid: Estimated parameter; Dashed: 95%
credible interval.
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No bias correction Bias correction

Genotype No frailty Frailty No frailty Frailty

βG
1 No missing 0.481 (0.350) 0.199 (0.080) 0.464 (0.327) 0.287 (0.110)

Missing 0.431 (0.308) 0.314 (0.159) 0.417 (0.288) 0.346 (0.179)

βD1

1 No missing 0.224 (0.065) 0.208 (0.051) 0.438 (0.208) 0.093 (0.013)
Missing 0.190 (0.047) 0.194 (0.050) 0.396 (0.173) 0.100 (0.016)

βD2

1 No missing 0.450 (0.211) 0.308 (0.102) 0.228 (0.060) 0.085 (0.010)
Missing 0.420 (0.189) 0.299 (0.097) 0.198 (0.052) 0.083 (0.011)

βG
2 No missing 0.561 (0.905) 0.388 (0.593) 0.549 (0.899) 0.392 (0.609)

Missing 0.464 (0.432) 0.346 (0.227) 0.450 (0.406) 0.361 (0.200)

βD1

2 No missing 0.448 (0.209) 0.311 (0.106) 0.223 (0.059) 0.080 (0.011)
Missing 0.487 (0.249) 0.350 (0.132) 0.264 (0.081) 0.108 (0.016)

βD2

2 No missing 0.187 (0.045) 0.196 (0.049) 0.401 (0.176) 0.102 (0.015)
Missing 0.209 (0.064) 0.198 (0.057) 0.434 (0.210) 0.128 (0.025)

λ0,1 No missing 0.028 (0.001) 0.030 (0.001) 0.012 (0.000) 0.015 (0.000)
Missing 0.026 (0.001) 0.028 (0.001) 0.010 (0.000) 0.015 (0.000)

λ0,2 No missing 0.028 (0.001) 0.030 (0.001) 0.012 (0.000) 0.013 (0.000)
Missing 0.030 (0.001) 0.032 (0.001) 0.013 (0.000) 0.012 (0.000)

Table D.7: Absolute biases and mean squared errors (in parentheses) of parameter estimates in
family-wise likelihood simulation over 20 independent repetitions.
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E. Summary of the MDACC patient cohort data

First event Second event
BR SA OT D C Total BR SA OT D C Total

Male
Wildtype 0 27 64 3 116 210 0 10 23 22 36 91
Mutation 0 41 48 1 40 130 0 15 24 25 25 89
Unknown 0 70 737 1131 3317 5255 0 6 54 551 196 807
Subtotal 0 138 849 1135 3473 5595 0 31 101 598 257 987

Female
Wildtype 86 47 94 2 142 371 42 22 50 23 90 227
Mutation 89 36 48 2 30 205 42 24 31 21 55 173
Unknown 350 55 494 881 3235 5015 34 8 59 522 276 899
Subtotal 525 138 636 885 3407 5591 118 54 140 566 421 1299

Total 525 276 1485 2020 6880 11186 118 85 241 1164 678 2286

Table E.1: Categorization of family members in the MDACC prospective dataset by gender,
mutation status, type of first primary cancer, and type of second primary cancer. BR = breast
cancer, SA = sarcoma, OT = other cancers, D = death, C = censored.

Training set Validation set

Wildtype Mutation Unknown Total Wildtype Mutation Unknown Total

Male
Healthy 72 22 2187 2281 47 19 2261 2327
FPC 31 24 388 443 27 26 359 412
SPC 21 26 30 77 12 13 30 55
Subtotal 124 72 2605 2801 86 58 2650 2794

Female
Healthy 77 20 2069 2166 67 12 2047 2126
FPC 53 40 388 481 60 36 410 506
SPC 55 50 51 156 59 47 50 156
Subtotal 185 110 2508 2803 186 95 2507 2788

Total 309 182 5113 5604 272 153 5157 5582

Table E.2: Categorization of family members in the training and validation sets by gender,
number of primary cancers and TP53 mutation status. FPC: first primary cancer. SPC: second
primary cancer.
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Wildtype Mutation Inferred wildtype Inferred mutation Total

Male
Healthy 72 22 1,764 10 1,868
FPC 31 24 182 45 282
SPC 21 26 6 9 62
Subtotal 124 72 1,952 64 2,365

Female
Healthy 77 20 1,754 2 1,853
FPC 53 40 230 49 372
SPC 55 50 25 10 140
Subtotal 185 110 2,009 61 2,212

Total 309 182 3,961 125 4,583

Table E.3: Training data: categorization of family members by gender, number of primary
cancers and mutation status, including individuals with mutation probabilities less than 0.01
(inferred wildtype) or greater than 0.9 (inferred mutation). FPC = first primary cancer, SPC =
second primary cancer.

Wildtype Mutation Inferred wildtype Inferred mutation Total

Male
Healthy 47 19 1,873 13 1,952
FPC 27 26 186 64 303
SPC 12 13 12 5 42
Subtotal 86 58 2,071 82 2,297

Female
Healthy 67 12 1,797 1 1,877
FPC 60 36 234 59 389
SPC 59 47 19 14 139
Subtotal 186 95 2,050 74 2,405

Total 272 153 4,121 156 4,708

Table E.4: Validation data: categorization of family members by gender, number of primary
cancers, and mutation status, including individuals with mutation probabilities less than 0.01
(inferred wildtype) or greater than 0.9 (inferred mutation). FPC = first primary cancer, SPC =
second primary cancer.
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First primary Second primary
BR SA LU BR SA LU

Male
00 years 0 5 4 0 0 0
01-04 years 0 38 10 0 3 0
05-09 years 0 194 3 0 11 1
10-14 years 0 489 19 0 22 1
15-19 years 0 669 48 0 33 1
20-24 years 2 368 98 0 25 3
25-29 years 7 279 185 0 24 6
30-34 years 26 234 526 0 42 27
35-39 years 52 246 1423 6 44 54
40-44 years 114 237 3694 1 55 148
45-49 years 219 233 8557 11 88 433
50-54 years 293 264 16871 23 98 1150
55-59 years 456 260 27933 42 186 2601
60-64 years 536 258 38485 61 212 4896
65-69 years 556 234 45313 115 284 7756
70-74 years 483 194 43109 124 361 9501
75-79 years 373 142 34986 149 368 9431

Female
00 years 0 13 4 0 1 0
01-04 years 1 43 9 0 2 0
05-09 years 1 178 3 0 10 0
10-14 years 8 421 10 1 20 0
15-19 years 42 353 53 4 19 0
20-24 years 479 233 101 18 26 3
25-29 years 3093 204 190 168 38 11
30-34 years 9676 187 472 562 46 29
35-39 years 21593 176 1207 1493 55 116
40-44 years 39236 180 3078 3169 85 341
45-49 years 56739 226 6496 5598 108 799
50-54 years 62683 189 11932 7424 143 1678
55-59 years 65079 179 18378 9297 180 3021
60-64 years 67783 215 24531 11577 250 4797
65-69 years 65899 173 29144 13254 250 6467
70-74 years 56808 153 30288 12898 272 7462
75-79 years 45805 109 26357 11609 302 6927

Table E.5: Categorization of participants in the SEER Research Plus data by gender, age at
diagnosis, type of first primary cancer, and type of second primary cancer. BR = breast cancer,
SA = sarcoma, LU = lung cancer.
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F. Estimation of Model Parameters in the Individual Likelihood

Models
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Figure F.1: Trace plots of 10,000 posterior samples of the regression coefficients β in the Breast
Cancer model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure F.2: Trace plots of 10,000 posterior samples of the regression coefficients β in the Sarcoma
model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure F.3: Trace plots of 10,000 posterior samples of the regression coefficients β in the Lung
Cancer model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Model Event Parameter Mean Median SD 2.5% 97.5%

Breast
βG
br 3.302 3.305 0.158 2.997 3.598

βD
br −0.200 −0.203 0.170 −0.522 0.148

Breast Cancer Other

βG
ot 2.821 2.821 0.090 2.654 2.991

βS
ot 0.260 0.257 0.069 0.127 0.394

βD
ot 0.604 0.605 0.098 0.420 0.781

Death

βG
de 1.346 1.346 0.093 1.151 1.526

βS
de 0.367 0.368 0.051 0.266 0.468

βD
de 1.553 1.556 0.061 1.438 1.666

Sarcoma

βG
sa 3.526 3.527 0.206 3.123 3.939

βS
sa 0.162 0.153 0.174 −0.180 0.540

βD
sa 1.080 1.083 0.221 0.627 1.486

Sarcoma
Other

βG
ot 2.816 2.815 0.085 2.650 2.991

βS
ot −0.341 −0.340 0.074 −0.505 −0.189

βD
ot 0.314 0.316 0.096 0.124 0.503

Death

βG
de 1.344 1.345 0.094 1.165 1.521

βS
de 0.379 0.379 0.053 0.267 0.491

βD
de 1.557 1.561 0.062 1.435 1.676

Lung

βG
lu 2.017 2.017 0.296 1.436 2.567

βS
lu 0.198 0.204 0.198 −0.202 0.585

βD
lu 1.409 1.407 0.239 0.916 1.850

Lung Cancer
Other

βG
ot 2.593 2.593 0.076 2.441 2.736

βS
ot −0.316 −0.319 0.065 −0.441 −0.196

βD
ot 0.788 0.789 0.082 0.627 0.945

Death

βG
de 1.349 1.352 0.091 0.171 1.524

βS
de 0.381 0.375 0.057 0.277 0.503

βD
de 1.559 1.559 0.060 1.443 1.671

Table F.4: Estimated β in the individual likelihood models based on the last 5,000 posterior
samples
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G. Age-at-onset Penetrance from the Individual Likelihood Mod-

els
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Figure G.1: Estimates of cancer-specific age-at-onset penetrance to the first primary cancer for
male and female with and without TP53 mutation based on the individual likelihood models, and
the corresponding 95% credible intervals at ages 15, 30, and 45. Cancer-specific incidence rates
from SEER are shown for comparison.
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Figure G.2: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary at age 20, for male and female with and without TP53 mutation based
on the individual likelihood models, and the corresponding 95% credible intervals at gap times 5,
15, and 25. Cancer-specific incidence rates from SEER are shown for comparison.
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Figure G.3: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary at age 30, for male and female with and without TP53 mutation based
on the individual likelihood models, and the corresponding 95% credible intervals at gap times 5,
15, and 25. Cancer-specific incidence rates from SEER are shown for comparison.
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H. Analyses Results from the Validation Study of the Individual

Likelihood Models
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(c) Lung Cancer model

Figure H.1: ROC curves, and the 95% bootstrap confidence intervals of the AUCs, for cancer-
specific prediction of the first primary cancer in the derived validation dataset. Inferred mutation
and non-carriers are included in (c) only. BR = breast cancer, SA = sarcoma, LU = lung cancer,
OT = other cancer. Sample size: (a) n(BR) = 21, n(OT) = 50; (b) n(SA) = 17, n(OT) = 54;
(c) n(LU) = 44, n(OT) = 618
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I. Estimation of Model Parameters in the Family-wise Likelihood

Model
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Figure I.1: Trace plots of 30,000 posterior samples of sarcoma-specific regression coefficients
βsa. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure I.2: Trace plots of 30,000 posterior samples of breast-cancer-specific regression coefficients
βbr. There is no coefficient for gender since the estimates are based on the female only. Solid:
Estimated parameter; Dashed: 95% credible interval.
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Figure I.3: Trace plots of 30,000 posterior samples of other-cancer-specific regression coefficients
βot. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure I.4: Trace plots of 30,000 posterior samples of mortality-specific regression coefficients
βd. Solid: Estimated parameter; Dashed: 95% credible interval.
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Event Parameter Mean Median SD 2.5% 97.5%

Sarcoma

γ1,sa 0.0007 0.0007 0.0003 0.0002 0.0013
γ2,sa 0.0010 0.0009 0.0006 0.0000 0.0024
γ3,sa 0.0012 0.0010 0.0011 0.0000 0.0037
γ4,sa 0.0060 0.0061 0.0026 0.0007 0.0111
γ5,sa 0.0058 0.0048 0.0051 0.0000 0.0180

Breast

γ1,br 0.0001 0.0001 0.0002 0.0000 0.0006
γ2,br 0.0004 0.0003 0.0005 0.0000 0.0019
γ3,br 0.0039 0.0025 0.0044 0.0000 0.0162
γ4,br 0.1947 0.1945 0.0222 0.1521 0.2370
γ5,br 0.0360 0.0293 0.0320 0.0001 0.1150

Other

γ1,ot 0.0109 0.0108 0.0017 0.0076 0.0142
γ2,ot 0.0018 0.0012 0.0019 0.0000 0.0066
γ3,ot 0.0063 0.0044 0.0064 0.0000 0.0234
γ4,ot 0.1391 0.1399 0.0298 0.0775 0.1965
γ5,ot 0.4578 0.4540 0.0716 0.3267 0.6102

Death

γ1,de 0.0004 0.0002 0.0005 0.0000 0.0018
γ2,de 0.0209 0.0212 0.0039 0.0127 0.0284
γ3,de 0.0063 0.0045 0.0062 0.0000 0.0223
γ4,de 0.0055 0.0033 0.0064 0.0000 0.0225
γ5,de 1.4023 1.4011 0.0788 1.2532 1.5629

Table I.5: Estimated γ based on the last 25,000 posterior samples.

Event Parameter Mean Median SD 2.5% 97.5%

Sarcoma φsa 4.3845 4.1926 1.3750 2.2903 7.4901

Breast φbr 4.3634 4.2271 1.1644 2.4883 7.1033

Other φot 5.0060 4.9171 0.9868 3.3422 7.2996

Death φde 5.6939 5.5757 0.9046 4.2380 7.7092

Table I.6: Estimated φ based on the last 25,000 posterior samples.

58

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.02.28.530537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Event Parameter Mean Median SD 2.5% 97.5%

Sarcoma

βG
sa 3.626 3.624 0.216 3.199 4.061

βS
sa 0.324 0.326 0.173 −0.008 0.664

βDsa

sa 1.461 1.470 0.319 0.817 2.071
βDbr
sa 1.444 1.449 0.308 0.829 2.050

βDot

sa 1.641 1.647 0.262 1.118 2.143

Breast

βG
br 3.563 3.561 0.183 3.201 3.916

βDsa

br 1.246 1.255 0.380 0.471 1.982

β
Dbr

br −0.794 −0.790 0.248 −1.298 −0.323

βDot

br 0.873 0.872 0.191 0.494 1.245

Other

βG
ot 2.447 2.448 0.135 2.183 2.699

βS
ot 0.391 0.392 0.079 0.234 0.556

βDsa

ot 1.175 1.178 0.218 0.745 1.593

β
Dbr

ot 0.633 0.633 0.168 0.299 0.961

βDot

ot 0.783 0.782 0.113 0.563 1.000

Death

βG
de 0.839 0.843 0.140 0.555 1.106

βS
de 0.328 0.327 0.057 0.218 0.441

βDsa

de 2.313 2.314 0.166 1.987 2.627

β
Dbr

de 1.578 1.580 0.114 1.353 1.797

βDot

de 2.137 2.134 0.064 2.012 2.266

Table I.7: Estimated βk, k ∈ {sa, br, ot, de}, based on the last 25,000 posterior samples. The
weights asa for sarcoma, abr for breast cancer, and aot for other cancers are set to 4, 2, and 1
respectively.
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J. Age-at-onset Penetrance from the Family-wise Likelihood Model
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Figure J.1 Cancer-specific age-at-onset penetrance to the first primary cancer for male and
female with and without TP53 mutation, and the corresponding 95% credible intervals at ages
15, 30, and 45. Cumulative incidence rates across all cancer types from SEER are shown for
comparison.

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.02.28.530537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0 5 10 15 20 25 30
Gap time (age − 10)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

A. Wildtype Male 
 (first primary: sarcoma at age 10)

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30
Gap time (age − 10)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

B. Mutation Male 
 (first primary: sarcoma at age 10)

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30
Gap time (age − 10)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

C. Wildtype female 
 (first primary: sarcoma at age 10)

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30
Gap time (age − 10)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

D. Mutation female 
 (first primary: sarcoma at age 10)

Other cancers Breast cancer Sarcoma All cancers SEER−derived

Figure J.2 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary of sarcoma at age 10, and the corresponding 95% credible intervals at gap
times 5, 15, and 25. Cumulative incidence rates across all cancer types from SEER are shown for
comparison.
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Figure J.3 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary of sarcoma at age 30, and the corresponding 95% credible intervals at gap
times 5, 15, and 25. Cumulative incidence rates across all cancer types from SEER are shown for
comparison.
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Figure J.4 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary other than breast cancer and sarcoma at age 10, and the corresponding
95% credible intervals at gap times 5, 15, and 25. Cumulative incidence rates across all cancer
types from SEER are shown for comparison.
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Figure J.5 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary other than breast cancer and sarcoma at age 30, and the corresponding
95% credible intervals at gap times 5, 15, and 25. Cumulative incidence rates across all cancer
types from SEER are shown for comparison.
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K. Analyses Results from the Validation Study of the Family-wise

Likelihood Model
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Figure K.1: ROC curve, along with the AUC and 95% bootstrapped confidence interval, for pre-
diction of TP53 mutation in the validation dataset. Sample size: n(wildtype) = 272, n(mutation)
= 153.
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Figure K.2: ROC curves, along with the AUCs and their 95% bootstrapped confidence intervals,
for prediction of the number of primary cancer in the validation dataset. FPC = first primary
cancer, SPC = second primary cancer. Sample size: n(unaffected) = 144, n(FPC) = 38, n(SPC)
= 23.
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Figure K.3: ROC curves, along with the AUCs and their 95% bootstrapped confidence intervals,
for cancer-specific prediction of FPC in the validation dataset. SA = sarcoma, BR = breast cancer,
OT = other cancers combined. Sample size: n(SA) = 17, n(BR) = 21, n(OT) = 23.
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