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Abstract

Multiple primary cancers are increasingly more frequent due to improved survival of
cancer patients. Characteristics of the first primary cancer largely impact the risk
of developing subsequent primary cancers. Hence, model-based risk characterization
of cancer survivors that captures patient-specific variables is needed for healthcare
policy making. We propose a Bayesian semi-parametric framework, where the occur-
rence processes of the competing cancer types follow independent non-homogeneous
Poisson processes and adjust for covariates including the type and age at diagnosis
of the first primary. Applying this framework to a historically collected cohort with
families presenting a highly enriched history of multiple primary tumors and diverse
cancer types, we have derived a suite of age-to-onset penetrance curves for cancer
survivors. This includes penetrance estimates for second primary lung cancer, po-
tentially impactful to ongoing cancer screening decisions. Using Receiver Operating
Characteristic (ROC) curves, we have validated the good predictive performance of
our models in predicting second primary lung cancer, sarcoma, breast cancer, and all
other cancers combined, with areas under the curves (AUCs) at 0.89, 0.91, 0.76 and
0.68, respectively. In conclusion, our framework provides covariate-adjusted quanti-
tative risk assessment for cancer survivors, hence moving a step closer to personalized

health management for this unique population.
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1 Introduction

The most recent report from the National Cancer Institute’s Surveillance, Epidemiology,
and End Results (SEER) program estimated approximately 20% of all incident cancer
cases in the United States are second or later primary cancers, i.e., additional cancers
occurring in cancer survivors (Forjaz et al., 2022). By 2026, the total number of cancer
survivors living in the US will exceed 20 million (Hulvat, 2020). Currently, the health care
management of cancer survivors is largely indifferent from the management of either at-risk
healthy individuals or new cancer patients, thus not yet adequately configured to deliver the
desirable high-quality care in this growing population (Mayer et al., 2017). Recently, large
population-based epidemiology studies have identified a few important features for cancer
survivors: patients with bladder cancer present the highest risk of developing second cancer
(Donin et al., 2016); and patients with breast cancer have a higher risk of developing a
second primary cancer, lung cancer in particular, than the general population (Bao et al.,
2021). Accurate characterization of the onset of second primary cancers is essential for
cancer prevention strategy development, such as the United States Preventive Services
Task Force (USPSTF) guidelines. One such example is the lung-cancer screening, which has
been recommended to adults who are deemed at high-risk, because of the significant survival
improvement with diagnosis at an early stage. However, the current recommendation does
not include previous malignancy as a high-risk feature (Nobel et al., 2022), due to a lack
of accurate personalized risk characterization in such a population.

The NCI SEER program provides a range of databases that allow researchers to directly
query cancer-specific incidence rates, defined as the number of new cases per 100,000 people
per year, for the first primary cancer (www.seer.cancer.gov/seerstat version 8.4.0.1). These

incidence rates can be segmented by 5-year age groups between age 0 and 85, as well
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as by basic demographic features such as gender. To address the increasing number of
cancer survivors, the program recently updated its SEER*Stat software to allow for queries
from patients that developed a specific cancer type as the second primary. Although the
incidence rates for the second primary cancer can be approximated from the SEER data,
such approximation is subject to biases, and hence does not accurately reflect age-at-onset
penetrances. Furthermore, these rates are not fully personalized, i.e., they do not account
for important person-specific features beyond age group and gender. For example, in the
context of inherited cancer syndromes, where the personal risk of developing cancer is
significantly increased by the carrier status of a genetic mutation (Parmigiani et al., 1998;
Chen et al., 2006), the necessary covariate of mutation status is not captured by SEER.
Although covariate-adjusted risk characterization is urgently needed, unbiased and com-
prehensive data collection for cancer survivors, as needed for mathematical modeling, re-
mains a major bottleneck. So far, a pan-cancer risk characterization study is not available
except for the SEER study mentioned above. On the other hand, there exists a well-
characterized and well-ascertained inherited and rare cancer syndrome, called Li-Fraumeni
syndrome (LFS) (Li and Fraumeni, 1969), which is mainly caused by germline mutations
in the tumor suppressor gene TP53 (Malkin et al., 1990). LFS presents a wide spectrum of
cancer types, as well as a much higher incidence rate of multiple primary cancers than the
general population (50% as compared to 2-17%) (Mai et al., 2016; Vogt et al., 2017). We
therefore resort to datasets that were collected from patients affected by LFS (see Table 1
for a dataset example) for real-data motivation, model training and the model-based risk
prediction application. People affected by LFS are more likely to develop a spectrum of
cancer types, including breast cancer, soft-tissue sarcoma, osteosarcoma, and others, and

repeatedly over their lifetime (Li and Fraumeni, 1969). Because of the inheritable nature
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of TP53 mutations, the family members of patients diagnosed with LFS and the patients
themselves live with a constant high level of anxiety, thus actively participating in risk
counseling and cancer screening. This further highlights the need for cancer-specific risk
prediction among cancer survivors while addressing genetic mutations as covariates.
Other than risk modeling for individual data, we also take the opportunity to develop
additional methods that address the family inheritance structure presented in the LFS
datasets. There are several models in the literature that attempt personalized risk pre-
diction given family data. Chen et al. (2009) proposed a frailty model with two-phase
case-control data. Choi (2012) introduced a shared frailty model for analyzing correlated
time-to-event data arising from family-based studies. Both models, however, do not appro-
priately account for the pedigree structure of families that is needed for genetic inheritance
models. Choi et al. (2016) took one step further by proposing a progressive three-state
Markov model, in which a single-step EM algorithm is used to calculate genotype proba-
bilities for individuals with no genetic testing results based on genotype data from other
family members. Shin et al. (2019) and Shin et al. (2020) developed Bayesian semipara-
metric models, which introduced the peeling algorithm (Elston and Stewart, 1971) to take
into account familial genetic structure, and the ascertainment-corrected joint (ACJ) ap-
proach (Iversen and Chen, 2005) to correct for ascertainment bias. However, none of these
approaches have been able to model multiple cancer types beyond the first primary cancer.
In this paper, we introduce a novel Bayesian semiparametric framework that jointly
models both multiple primary cancers and multiple cancer types. We utilize non-homogeneous
Poisson processes to model the occurrence processes of primary cancers, each of which is
characterized by an intensity function that is cancer-type-specific. This modeling approach

allows predictions of the second primary to be dependent on the type and timing of the


https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.530537; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Positive families Negative families

Wildtype Mutation Unknown Total | Wildtype Mutation Unknown Total
Male
Healthy 112 41 2,227 2,380 7 0 2,221 2,228
FPC 11 50 339 400 47 0 408 455
SPC 1 39 17 57 32 0 43 75
Subtotal 124 130 2,583 2,837 86 0 2,672 2,758
Female
Healthy 133 32 1,997 2,162 11 0 2,119 2,130
FPC 9 76 375 460 104 0 423 527
SPC 1 97 41 139 113 0 60 173
Subtotal 143 205 2,413 2,761 228 0 2,602 2,830
Total 267 335 4,996 5,598 314 0 5,274 5,588

Table 1: Categorization of family members in the MDACC cohort by gender, number
of primary cancers and TP53 mutation status. FPC: first primary cancer; SPC: second
primary cancer. Families are grouped into two categories, positive: at least one family
member with a T'P53 mutation, and negative: no mutation carriers.

first primary. Under this novel framework, we derive an explicit expression for the individ-
ual likelihood contribution, and further a family-wise likelihood through integration across
family members. We train and cross-validate our model on a patient cohort, collected
from MD Anderson Cancer Center (MDACC) using clinical LFS criteria (Li et al., 1988;

Chompret et al., 2001; Bougeard et al., 2015) from year 2000 to 2015 (Table 1).

The paper is organized as follows. In Section 2, we present the modeling and derivation
of individual and family-wise likelihoods, techniques for addressing necessary ascertainment
bias correction and incorporating frailty into family data, as well as simulation studies to
evaluate the parameter estimation performances. In Section 3, we demonstrate how the
individual likelihood can be used to construct effective risk models, with a special emphasis
on lung cancer. In Section 4, we apply our family-wise model to the LFS dataset to obtain
novel penetrance estimates for TP53 mutation carriers and non-carriers. Both sections

include a cross-validation study. Section 5 concludes with future research directions.
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2 Method

2.1 Age-at-onset penetrance of multiple cancer types in multiple
primaries

We assume multiple cancer occurrences as recurrent events (Cook and Lawless, 2007).
To describe the model, we begin by introducing some notations. Let N(t) be a non-
homogeneous Poisson process that counts the number of primary cancers by age t, and Z
be the indicator of cancer type (i.e. Z € {1,..., K}) with K being the number of cancer
types. In addition, H(t) denotes the historical information of N(¢) up to time ¢, and X
is a vector of patient-specific covariates, respectively. The kth cancer-specific intensity

function, \g(t| X, H(t)),k =1,2,--- | K, is defined as

M(UX H (1) = A?f(lw P[N(t+ At) — N(t)At> 0,7 = k| X, H(t)].
We note that the overall intensity of N(t) is A(t| X, H(t)) = S_0 \(t| X, H(t)). The
notion of age-at-onset penetrance is defined as the probability that a patient develops the
disease of interest by age ¢ given his or her characteristics (Langbehn et al., 2004). Since
then, the definition has been extended to accommodate more complex settings. For exam-
ple, the kth cancer-specific age-at-onset penetrance is defined as the conditional probability
of having the kth type of cancer by age t prior to developing other cancer types. Compared
to our previous model that estimates age-at-onset cancer-specific penetrance among the
first primary cancers (Shin et al., 2020), here we focus on addressing the need of charac-
terizing the kth cancer type among multiple primary cancers during the patient’s lifetime.
The desired solution will add another layer of complexity to further extend the definition

of penetrance. To this end, let L be a non-negative integer that denotes the number of
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primary cancer occurrences. Then, we define the cancer-specific age-at-onset penetrance
for multiple primary cancer as the probability of having the kth cancer type at the Ith
occurrence by age t given the (I — 1)th occurrence at time u in the past, conditional on
covariates representing patient characteristics and cancer history up to a time point u. Let
T, be the time and Z; be the cancer type of the [th cancer diagnosis. The penetrance of

interest, denoted by qu(t|u, X (u)),k=1,...,K;l=1,..., L, is then given by
qkl(t|uaX7 H(U’)) = P[,Tl <t, Z = k|ﬂ—1 - u,X,H(U)] for ¢ > u,

where Ty = 0 for convenience. For t > u, we then have

qri(t|u, X, H(u)) :/ Ak (V] X,H(u))HSa(v|u,X,H(u)) dv, (1)

a=1

where Sk (tlu, X, H(u)) = exp [— f; (0| X, H(w)) dv} fork=1,--- | K.
For a patient with [ — 1 primary cancers, we are also interested in the probability of
having the next cancer of any type by age ¢ given the (I — 1)th occurrence at time u.

This penetrance can be obtained by summing over all cancer types, i.e., ¢ (t|u, X, H(u)) =

> e G (tlu, X, H (u)).

2.2 Intensity function modeling

One of the challenges in modeling recurrent events with competing risks is accounting for
the correlations between the events. To address this, we introduce a binary variable Dy (t)
that indicates whether the patient had the kth cancer type as the first primary by time .
That is, Di(t) = 1if T7 < t and Z; = k, and Dg(t) = 0 otherwise. The variable Dy (t)

allows the risk of later primary to depend on the type of the first one. The relationship
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between the first and second primary has been established in a number of epidemiological
studies (Travis et al., 2005; Mariotto et al., 2007; Donin et al., 2016). We define Dy (%),
k=1,...,K, as indicators of the Ith primary cancer. That is, Dy, (t) = 1 if T} < t and
Z; = k. By incorporating the set of covariates {Dy,;(t) :k=1...,Kandl=1,...,L—1}
into the model specification, we allow the risk of the [th primary cancer to depend on the
types of the previous [ — 1 occurrences. In our application, we consider only dependence
on the type of the first primary cancer due to limited data availability. For each individual
with an inherited cancer syndrome such as LFS, we let G be the mutation status (0 for
wildtype, 1 for mutated) for the gene of interest, and S be the sex (0 for female, 1 for
male). Therefore, the covariate vector is X (t) = {G, S, Dy(t), ..., Dg(t)}".

We model the cancer-specific intensities using a proportional intensity model as follows:
Me(t X (1) = Xow(t) exp(BE X (1)), E=1,....K (2)

where By, denotes the vector of coefficients, and Ao () is the baseline intensity function. Let
Aoi(t) = fot Mok (v) dv be the cumulative baseline intensity function. We model Ag () using
Bernstein polynomials, which are often used to approximate functions with constraints
such as monotonicity (Lorentz, 1953; Shin et al., 2020). After rescaling ¢ to [0, 1], we can

approximate Ag(t) using the Bernstein polynomials as follows.

Ao i(t) = mZM:lAO,k (%) (Anf) (1 — )M,

where M denotes the order of the Bernstein polynomials. By reparameterizing 7, =
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AO,k(%) — Ao (mv_l) with Agx(0) =0, it can be shown that

M

Ao i (t) =~ Z Yoo S Bm, M —mt1) (1),

m=1

where fp(m,1—m+1) denotes the beta density with parameters m and M —m+1 (Curtis and
Ghosh, 2011). In practice, death from other causes is another competing risk that should
be taken into account. One can model the hazard function for death in an identical way to

the other cancer-specific intensities from (2).

2.3 Individual likelihood with known G

We first derive the full likelihood of an individual’s observed cancer history, including the
development of first, second, or more primary cancers over time, until censorship, when
the genotype G is known. For individual j, where j =1,2,--- ,n, let L; be the number of
observed cancer occurrences. Although we focus on L; < 2 in the applications, we describe
our model in a more general setting. We observe a dataset {t;, z;, ¢;, g;, sj}?zl, where t;
and z; are Lj;-dimensional vectors that indicate the times and cancer types at diagnoses;
c; is the censoring time; and g; and s; denote TP53 mutation status and sex, respectively.
Now, we introduce d;(t) = 1 if ¢;; < t and z;; = k, and d;;(t) = 0 otherwise. Finally,
the vector of covariates is given by x;(t) = (g;, s, d;1(t), ..., d;x(t))".

Let B={Bc:k=1,...,K}and vy ={ypp :m=1...,M;k =1...,K}. For an
individual with cancer history h; = {t;, z;, ¢; }, the likelihood can be expressed as a product

of the observed cancer occurrences and the censoring event

Plhjlx;, B,7]) = P, 11 > ¢|TjL, = tj 1, ij(tir,;), B,7] X

10
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L;

H PlTy, = tj1, Zji = zj| Tju1 = tj1, 2(tj-1), B, 7]

=1

By noting that di(t), k = 1,..., K, are periodically fixed, we obtain the likelihood contri-

bution from the [th cancer occurrence as follows.

PlT = tj,2Z50 = zj|Tjp-1 = tj1, 25(tj-1), B, 7]
K
Aoy (Gl () TT Smtialti (i), 1=1,...,L;  (3)

m=1

with ¢;9 = 0. The likelihood contribution from the censored event is given by

P41 > ¢l Tin, =t ®i(tir;), 3,7 = k(cjltyn,, xi(tL,))

P
@)

Finally, the likelihood for the jth individual is

K
Plhjlz;,B8,v] = HSk: (¢iltjr,, ®;(tjr,)) x

LJ

K
{ sy (tiala;(t.0) T S al|tj,l—1=33j(tj,1—1))}- (4)
=1 m=1

Since we assume the individuals are independent, the overall likelihood of the dataset is
simply given by the product of all the individual likelihoods. The complete derivations of

the equations above are relegated to Supplementary Material Section A.

2.4 Family-wise likelihood with unknown G

For inherited cancer syndromes in the general population, the total number of carriers is
very low, e.g., ~1 out of 1,300 for TP53 mutations (Gao et al., 2020). This rare condition

means even one of the most extensively collected datasets would still have just a few

11
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hundred mutation carriers (n = 335, see Table 1) to be used for estimating a series of
penetrance curves, in order to capture dynamic cancer outcomes within the first and the
second primary cancers (referred to as SPC and FPC from now on). On the other hand,
data collection for inherited cancer syndromes, such as LFS, usually includes cancer history
information from family members. Accordingly, we have data from an additional tens of
thousands of family members (e.g., n = 10,270, see Table 1), who have all the required
information except for mutation status. Many of these family members can carry the
mutation due to their genetic relationship with the carriers. Therefore, we introduce a

model that includes all family members, including those with unknown G.

2.4.1 Frailty modeling for the family units

Let ¢ = {1,..., I} denote the families. In order to account for often-observed non-genetic
correlations between family members, after conditioning on X (t), as a random effect, we
introduce a frailty term (Hougaard, 1995), denoted by &; i, into the modeling of the cancer-
specific intensities (2). Importantly, this family-wise random effect may vary across families

and across different cancer types. Hence we have

(i, X (1)) = & pdor(t) exp(BL X (1)), k=1,...,K. (5)

For each cancer type k, we assume the frailty term to follow a gamma distribution with
the same shape and scale parameters, i.e., &1k, ..., &k w Gamma(¢y, ¢r). With the pres-

ence of the frailties, the age-at-onset penetrance defined in eq.(1) is further modified by

marginalizing over the frailties & = {&1,...,&x}. For t > u, we then have
t K
G (tu, X (u)) = / Ao s (v) exp(BL X () R(v]u, X (u)) [ [ Ra(vlu, X (w))? dv,  (6)
u a=1

12
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where Ry (t|u, X (u gbk/{gbk + f Aok (v) exp(BL X (u) dv}
2.4.2 Peeling algorithm to model the Mendelian inheritance

Let @ = {B,~,¢} be the full set of model parameters. The likelihood contribution of
the jth individual in the ith family, which we call family-wise likelihood, can be derived

similarly to (4), when the covariate vector x;; is fully observed for all family member j in

family ¢:
K
Plh;j|z;;,0,&] = HSk(cij‘fi,katij,Lijawij(tij,Lij)) X
k=1
Lv] K
{ Azija (Cig |Gz 0 Tig (i) HSn(tij,llfi,n,tij,l—lamij(tij,l—l))}- (7)
=1 n=1

Let ¢, = {x;; : j = 1,...,n;} and h; = {h;; : j = 1,...,n;} be the aggregated
covariate vector and cancer history across all family members of the ¢th family, with
h;; = {tij, zij, c;;}. Direct evaluation of (7), however, is not possible in our application
since the T'P53 mutation status is unknown for most family members.

To tackle this, we employ the peeling algorithm (Elston and Stewart, 1971) as de-
scribed in the following. Let g; = {gi;; : j = 1,...,n;} be the set of genotype infor-
mation. We then partition the covariate vector into genotype and other non-genetic co-
variates, hence x; = g; U gl-C . Let giovs = {gij : ¢i; is known} be the observed part
and g; mis the missing part of the genotype data for the ith family. We then have g; =
Gimis U Giobs- We sum over all possible genotype configurations for the family mem-
bers who have missing genotype information to calculate the family-wise likelihood as
Plhi|giobs) = 2

seems computationally intractable as the family size increases, the peeling algorithm can

PRi|Gi miss Giobs) P[Gimis|Giobs). Although this summation procedure

9i,mis

solve it very efficiently(Shin et al., 2019, 2020). The details of the implementation of the

13
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peeling algorithm are provided in Supplementary Material Section B.

2.4.3 Ascertainment bias correction for families with LFS

The ascertainment bias is inevitable and its correction is essential in studying rare diseases
like LF'S since the data can only be collected from high-risk populations. Introducing an
ascertainment indicator for the ith family 4; that takes 1 if the ith family is ascertained
and 0 otherwise, the ascertainment-corrected joint (ACJ) likelihood (Iversen and Chen,
2005) is

P[Az - ]-|hi7gi,obsvgz‘cveagi]P[hi|gi,obsugz‘C7easi]P[gi,obs|gz‘C797€i]
P[A; = 1|QiC>9,€i]

P[hivgi,obs|gicg 07€i;Ai = 1] =

In practice, the ascertainment decision is often made based on the phenotype of the proband
in a deterministic way. If so, the first term in the numerator, P[A; = 1|h;, g; obs, gic ,0, &
is reduced to P[A; = 1]h; ] which is independent of the model parameters. In addition, it
is not practical for any model to predict genotype data from non-genetic covariates, hence
we can reasonably assume that P[g; |gS, 0, &;] is simplified to P[g; obs]. We then have the
following ACJ likelihood up to a constant of proportionality

P[hi|gz’,ob57 gZC’ 07 51]

Phi7 1,0bs '0707 “‘AZ:l .
[P, Gi.slgC 0, € V< Pl = 1167 6.€]

Note that the numerator is the likelihood contribution of the ith family without considering
the ascertainment bias, which can be obtained by the peeling algorithm as described in
Section 2.4.2. For most LF'S studies, the probands can be ascertained due to the diagnosis
of a variety of cancer types, in particular those that belong to the LFS spectrum. The

ascertainment probability for LFS studies, where the ascertainment decision is based on
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the first primary cancer diagnosis of the proband, is given by

K
P[ = 1|gz 70 Ez = ZP Aiu—%p,l - tip,la Zip,l - k]P[Ep,l - tip,la ip, 1 — k|gz ,0 51]
k=1

where the subscript p denotes the proband. We are interested in the ACJ likelihood up
to proportionality, hence only the ratio between the terms P[A;|Tp1 = tip1, Zip1 = k.

k=1,..., K, matters. Denoting these terms by aq,...,ax, where ax = 1, it follows that

Mw

P[A; = 1|Qicaoa€i} apP[Tip1 = tip1, Zipa = k|gica 0.&

k=1

Z kP T‘zpl t1p17 ip,1 kngpagz 70 EZ} [glp|gz]
p€{0,1}

TTMN

In our application, the TP53 mutation prevalence is known to be independent of the non-
genetic covariates which yields Plg;,|g°] = Plgiy). This probability can be calculated
readily from the mutated allele frequency k4: P[Gi, = 0] = (1 — k4)?, and P[G;, = 1] =
1 — (1 — k4)? In the Western population, we have k4 = 0.0006 (Lalloo et al., 2003). In
Section 4, we will show that our model is not sensitive to the choice of ay, k =1,..., K.
We denote the overall likelihood of the dataset by P[h, gos|g®, 0, €, A], where the family
subscript ¢ is dropped to represent aggregation across all the I families (e.g., h = {h; : i =
1,...,1}). Once the ACJ likelihood has been obtained for each family, the overall likelihood

can easily be evaluated as a product as follows, since the families are independent

~

[h’ ‘gl ObS?gz 70 61]
1 = 1‘91 70751]

P[hvgobs|gca07€7“4 O<H
=1
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2.5 Markov chain Monte Carlo (MCMC) estimation

We assume a normal prior distribution for By: B ~ N(0,0%I), k =1,..., K, where 0 and
I denote the zero vector and the identity matrix respectively, and o is set to be large enough
(e.g., 100) to reflect little prior knowledge about Bj. For the baseline intensity function,
we set Y ~ Gamma(0.01,0.01), m = 1,...,M and k = 1,..., K. This distribution
is non-negative as required of 7,5, and the corresponding variance is 100 to reflect little
prior knowledge. We assume the same gamma prior for ¢, £k = 1,..., K. It has been
shown previously that the penetrance estimates for real data with T'P53 mutations are not
particularly sensitive to the choice of parameter for the gamma prior through a sensitivity
analysis (Shin et al., 2020). We denote the priors of 3, v, and ¢ by P[3], P[v], and P[¢],

respectively. Then, the joint posterior distribution of @ and & is given by

P[07£|hagob87gc7~’4] X P[h7gobs|gca97€7"4] : P[/B]Ph/] ’ P[€|¢] ’ P[d)]

We use a random walk Metropolis-Hastings-within-Gibbs algorithm to generate posterior
samples, of which the first part is discarded as burn-in. The MCMC is coded in R with the

peeling algorithm implemented in C++ and linked via the Rcpp library.

2.6 Simulation study

To test the individual likelihood model, we simulated 20 datasets, each consisting of 10,000
individuals with known genotypes. We generated the cancer outcome data for these in-
dividuals based on a given set of model parameters with K = 2. The MCMC samples
are converged well and the corresponding 95% credible intervals cover corresponding true
parameters In addition, the estimates show promising performance with low bias and mean

squared errors. We refer to Supplementary Materials Section C for complete details
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about the simulation for the individual likelihood model.

For the family-wise likelihood model in Section 2.4, we simulated 20 datasets, each con-
sisting of 300 families with 30 family members spanning three generations. We generated
the mutation and the cancer outcome data for all family members, as well as an ascertain-
ment scheme to collect families that meet certain criteria until the total number reaches
300. We include the frailty term and apply the ACJ likelihood for the bias correction. Sim-
ilar to the individual likelihood case, MCMC estimates converge very well with promising
performance. The 3¢ parameters showed the highest absolute biases, 0.35 for 5% = 3 and
0.36 for 3¢ = 2. Considering the high complexity of the family-based likelihood model,
we are satisfied with its overall performance. Supplementary Materials Section D

provides full details about the simulation for the family-wise likelihood model.

3 Application of the individual likelihood

We apply our models to the MDACC patient cohort as introduced in Section 1. We refer to
Table E.1 (Supplementary Materials Section E) for more details about about the first
and second primary cancers in the dataset. Since the positive families have characteristics
that are distinct from the negative ones (e.g., more mutation carriers, more family members
with SPC), we put these two types of families into two separate strata. For the cross-
validation study, we split the full dataset, randomly with each strata, into two subsets of
equal size to have training and validation datasets comparable in cancer-type distributions.
See Table E.2 (Supplementary Materials Section E).

To apply the individual likelihood model to individuals with known G in the training
set, we focused on all family members who were tested for TP53, plus those with a predicted

mutation probability greater than 0.9 (inferred mutation carriers) or less than 0.01 (inferred

17


https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.530537; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

non-carriers). These probabilities were calculated using the peeling algorithm as described
in Section 2.4.2. To utilize the individual likelihood-based penetrance estimates in the
validation set, we expanded our validation subjects to include family members with a
predicted mutation probability greater than 0.9 or less than 0.01. Related summaries of
the training and validation sets for the individual likelihood model are provided in Tables
E.3 and E.4 (Supplementary Materials Section E).

We also compare our penetrance estimates with those that are imputed from the most
recent SEER Research Plus database (2022). The database provides access to incidence
data across eight registries in the US from 1975 to 2019. See Table E.5 (Supplementary

Materials Section E) for the summary of the SEER data.

3.1 Model specifications

We choose three individual cancer-type models to demonstrate utility, with each focused
on a different cancer type group among the second primary cancers: i) breast cancer,
ii) sarcoma, and iii) lung cancer. Here we group all the other cancer types in contrast
with the chosen one to maximize sample size and reduce the number of parameters to
be estimated. Our model design is based on the frequency of cancer types among SPC
(Tables E.1 - E.4, Supplementary Materials Section E) as well as the potential
relevance to public health (e.g., lung cancer screening). In each model, we categorize the
outcomes as breast cancer (or sarcoma, lung cancer), other cancers, and death. For clarity
of notations, we let k € {br/sa/lu,ot,d}, instead of integers, where br, sa, lu, ot, and d
refer to breast cancer, sarcoma, lung cancer, other cancers, and death respectively. For
the latter two groups, the intensity/hazard functions take the form given by Equation
(4), where X (t) = {G, S, D(t)}*, and D(t) is an indicator of previous cancer occurrences

(i.e., D(t) = 1 if the person has had at least one cancer in the past, and D(t) = 0
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otherwise). Here we use a common indicator to alleviate limited data availability, but
cancer-specific indicators, as used in the simulation study, is still applicable to obtain
insights on interactions between cancer types given enough data. Given this covariate vector
X (t), we write By, = (8S, 87, BP)T for the regression coefficients in the intensity of cancer
type k. Our dataset has no male patients diagnosed with breast cancer. Hence we restrict
the intensity of breast cancer to 0 for male as A\, (£| X (t)) = Ao (t) exp(BL X (8))I{S = 0}.
The sarcoma model categorizes the outcomes into sarcoma, other cancers, and death (i.e.,
k € {sa,ot,d}). Lastly, the lung cancer model considers lung cancer, other cancers, and
death (i.e., k € {lu,ot,d}). For both models, we do not impose any restrictions such as the

indicator function above on their intensity functions.

3.2 Model estimation

Using the random-walk Metropolis-Hastings-within-Gibbs algorithm, we obtain 10,000 pos-
terior samples, of which the first 5,000 are discarded as burn-in. Each MCMC iteration
takes about two minutes on a high-performance computing cluster at MDACC (407 nodes,
each of which has 28 CPU cores with Intel Skylake 2.6Ghz). Posterior samples for all model
parameters converged well within the first 10,000 iterations (Figures F.1-F.3, Supple-
mentary Material Section F).

Table F.4 (Supplementary Material Section F) shows the estimated parameters.
We observe that 85, 8%, and B¢ are significantly positive across all models as expected,
since breast cancer, sarcoma, and lung cancer all belong to the LFS spectrum. The pa-
rameter Bde” is also significantly positive in all three models as patients with one cancer
in the past are at higher risk of mortality. In the lung cancer model, it is interesting to

see that 5 is significantly negative, suggesting that females are more likely to develop

cancers outside of the lung. In light of our competing risk framework, it may be due to the
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prevalence of breast cancer, which is exclusive to females in our training data, within the
group of other cancer types. This hypothesis is further confirmed by observing that %,
in the sarcoma model is not significant, indicating that sarcoma, the second most popular

cancer type in LFS, does not present gender disparity.

3.3 Age-at-onset penetrance

For each of the three models in Section 3.1, our primary goal is to estimate the cancer-
specific age-at-onset penetrances. Using the notations introduced in Section 2, for a patient
with TP53 mutation status g and sex s, the set of cancer-specific penetrances to the first
primary is denoted by g1 (|0, X), k = 1,2,3, where X = {g,s,0}7. For a patient with
a first primary of any type at age 10, the set of cancer-specific penetrances to the second
primary is given by qu2 (|10, X), k = 1,2, 3, where X = {g, s, 1}7. While we can construct
penetrance curves for other cancers and death, the primary purpose of the Breast Cancer
model is to estimate penetrance for breast cancer (e.g., gu-1(¢|0, X) and gp.2(¢]10, X)),
which is of clinical relevance. Similarly, we estimate the age-at-onset penetrances to the
first and second primary for sarcoma, and lung cancer, respectively.

The estimated age-at-onset penetrance to the first primary is presented in Figure G.1
(Supplementary Materials Section G). For comparison, we also impute probability
density curves using the SEER incidence rates (2022). Given the rare prevalence of TP53
mutations, one would expect the SEER estimates, which are computed from the general
population, to closely match our model-based penetrance estimates for noncarriers.

The major contribution of our approach, however, is the set of covariate-adjusted pen-
etrance estimates for the second primary cancer, which has never been studied in the
literature. Figure 1 shows the corresponding cancer-specific penetrance estimates to the

second primary, given a first primary cancer of any type at age 10, from the three individual
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likelihood models. In contrast, to produce the SEER estimates that match the covariate
values, we have to perform the following steps manually. We first select SEER individuals
who were diagnosed with first primary cancers of any type at age 10-14 during the period
1975-1989. We then prospectively follow these individuals until 2019 to monitor the occur-
rences of second primary cancers. The cancer-specific incidence rates at gap times of 5, 10,
15, 20, 25, and 30 years are calculated as the proportions of these individuals who further
developed the corresponding cancer type at ages 15-19, 20-24, 25-29, 30-34, 35-39, and
40-44 respectively. In Figure 1, our penetrance estimates for individuals with wildtype
TP53 approximates the SEER estimates reasonably well in breast cancer and sarcoma,
less well in lung cancer, which has much lower penetrance among SPCs as compared to the
other two cancer types. The penetrance estimates of breast cancer and sarcoma are much
higher for mutation carriers compared to wildtypes as expected. The penetrance estimates
of lung cancer are also higher for mutation carriers, but the difference is much smaller.
Although lung cancer belongs to the LFS spectrum, this small difference is not surprising
given the very strong competing risks from breast cancer and sarcoma (i.e., mutation carri-
ers are much more likely to develop these two cancer types before lung cancer). While lung
cancer has been extensively studied by medical researchers, our study is the first to report
age-at-onset penetrance estimates for this cancer type among SPCs. In Figures G.2-G.3
(Supplementary Materials Section G), we provide additional penetrance estimates for
two hypothetical patients: one has a first primary cancer at age 20, and the other has a
first primary cancer at age 30. These penetrance curves collectively describe how the risk
landscapes of patients depend on the ages at diagnosis of their first primary cancers, and
demonstrate the utility of our novel statistical framework that formally accounts for such

covariates.
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Figure 1: Individual likelihood models: estimates of cancer-specific age-at-onset penetrance to
the second primary cancer, given the first primary at age 10. The 95% credible intervals are given
at gap times of 5, 15, and 25 years. Cumulative cancer-specific incidence rates from SEER are
shown for comparison.

3.4 Validation of the penetrance

Let ry(t|u, X (u), H), where X (u) = {G,S, D(u)}T and H is the family history, be the
risk of developing cancer of type k as the Ith primary by age t given the (I —1)th cancer oc-
currence at age u. That is, ry(tlu, X (u), H) = P(T; < t, 7, = k|T)_1 = u, X (u), H). For
patients with known TP53 mutation status, H can be removed based on the conditional
independence assumption. Since we select only family members with measured genotypes,
re(tlu, X (u), H) = P(Ty < t,Z, = k|Ti-1 = u, X (u)), is equal to the age-at-onset pene-
trance gy (t|u, X (u)). For each cancer model, we evaluate its prediction performance for (1)
the first primary, and (2) the second primary for individuals who already had one primary
cancer. Receiver Operating Characteristic (ROC) curves for the first evaluation are given
in Supplementary Materials Section H. The second evaluation is our focus, and the
results are shown in Figure 2. All models displayed good predictive performances, with
areas under the ROC curve (AUCs) being between 0.82 and 0.93, and further presenting

small 95% bootstrap confidence intervals.
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Figure 2: ROC curves, along with the AUCs and their 95% confidence intervals, for cancer-
specific prediction of the second primary based on the individual likelihood models. SA = sarcoma,
BR = breast cancer, LU = lung cancer, OT = other cancer. Sample size: (a) n(BR) = 20, n(OT)
= 70; (b) n(SA) = 16, n(OT) = 74; (c) n(LU) = 7, n(OT) = 83.

4 Application of the family-wise likelihood

4.1 Model Specifications

Aiming to address the data sparsity issue presented in the application of our individual
model to the real dataset, our family-wise model systematically infers missing genotypes
and correspondingly includes all family members in the likelihood calculation. Therefore,
we fit this model to the full training set across everyone reported. Motivated by both the
biologically meaningful outcomes as well as the need for a sufficient sample size for each cat-
egory, we focus on three groups of cancer diagnosis: (1) sarcoma, (2) breast cancer, and (3)
all other cancers combined, which include both LFS-related (i.e., more frequently observed
in LF'S) and non-LFS malignancies. We include death from other causes as an additional
competing risk. For clarity of notations, we set k € {sa, br, ot, de}, for sarcoma, breast can-
cer, other cancers, and death respectively. We have X (t) = {G, S, Dy (t), Dy (t), Doy (t)}T
and By = (B¢, 82, B, ,? br ,? )T for the regression coefficients in the intensity of can-
cer type k. For sarcoma, other cancers, and death, the intensity functions take the form

given by Equation (5). In this dataset, no male patients were diagnosed with breast can-
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cer. Hence, we impose the following restriction on the intensity function of breast cancer:
Nor (] &ipry X (1)) = Eiprdopr () exp(BL.X ())I{S = 0}. For the ascertainment bias correc-
tion, we set ag, = 10, ap. = 2 and a,; = 1 as we observe sarcoma to be more indicative of

TP58 mutation.

4.2 Model estimation

In addition to the settings described in Section 2.5, we set M = 5 for the degree of
the Bernstein polynomial to ensure sufficient flexibility while keeping the computational
cost reasonable. Using the random walk Metropolis-Hastings-within-Gibbs algorithm, we
generate 30,000 posterior samples, of which the first 5,000 are discarded. Overall, the
estimation is computationally intensive due to a large number of parameters, with each
MCMC iteration taking about 45 seconds on the data when both frailty and ascertainment
bias correction is applied. Trace plots of the posterior samples confirm good convergence
within 30,000 iterations (Figures I.1-1.4, Supplementary Material Section I).

Table 2 displays all estimates of the regression coefficients from our model. All esti-

S

sa?

mates are significant at 95% significance level, except 35 which agrees with a previous

study on sarcoma by Amadeo et al. (2020). The Bfa, Bg and Bg are positive as expected
since mutation carriers are much more susceptible to LFS-related cancer types. Parameters
of the form Bl?q, p € {sa,br,ot} and q € {sa,br,ot}, are positive with 55}” being the sole
exception, indicating that patients with a first primary are more likely to develop a second
primary later in their lives. A major contributor for this phenomenon is the method of
treatment used for the first primary. Radiotherapy and chemotherapy have long been linked
to increased risk in cancer survivors (Boice et al., 1985). Bhatia and Sklar (2002) found a

strong relationship between radiation-related tumors and the dosage of radiation, and that

the second cancers typically develop within the radiation field after a latency period. They
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also reported some chemotherapeutic agents, such as alkylating agents, that increase the
risk of developing second cancer. Sarcoma is particularly likely to occur in patients who
were treated with radiotherapy (Patel, 2000), which may explain the largest effect for the
onset of second primary cancers is presented by 32, Although data on treatment methods
were not collected for our cohort, they can readily be incorporated into our model as an
additional covariate in future studies.

Estimates of v and ¢ are provided in Tables 1.5-1.6 (Supplementary Material
Section I). To evaluate the sensitivity of our model to the weights aj, we also report
the estimates of the regression coefficients when a,, ap. and a, are set to 4, 2 and 1
respectively (Table 1.7, Supplementary Material Section I). In this case, sarcoma is
still more indicative of TP53 mutation compared to other cancer types, but to a lesser
extent. We notice that the estimates do not change much from those in Table 2, hence

our model is not overly sensitive to the choice of ay.

4.3 Age-at-onset penetrance

We present penetrance estimates for FPC and those for SPC with example onsets of the first
primary in sarcoma and other cancers in Tables J.1-J.5 (Supplementary Materials
Section J). For comparison, we also show the penetrances that are imputed from the
incidence rates provided by SEER (2022). Here we focus on discussing the penetrance
estimates for SPC, which have never been reported in the literature. For a female patient
with a first primary of breast cancer at age 20, the set of cancer-specific penetrances to
the second primary cancer is given by qxe (|20, X), where X = {g,0,0,1,0}”. Figure 3a
shows the penetrance curves for such a patient with ¢ = 0 and g = 1. The SEER curve was
constructed by the following steps. First we selected individuals who were diagnosed with

first primary breast cancers at age 20-24 during the period 1975-1989, and prospectively
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Event Parameter Mean Median SD 2.5% 97.5%

BG 4.063  4.063 0223 3.645  4.494
B3, 0.426  0.426  0.182 0.073  0.789

Sarcoma Dsa 1.416  1.417  0.327 0.753  2.043
BLor 1.491 1493  0.316 0.877  2.110
Dot 1716 1.717  0.267 1.181  2.232
BE 3.516  3.514  0.201 3.118  3.908
Bl 1.222  1.235  0.408 0.365  1.988
D

Breast gl —0.785 —0.781 0.252 —1.300 —0.314
Dot 0.861  0.860  0.197 0.472  1.238
BS 2.410 2413 0137 2139  2.668
B 0.392  0.392  0.080 0.239  0.545
DS(l

Other 5% 1.183  1.18 0216 0.762  1.596
Bor 0.641  0.644  0.169 0.295  0.964
Bl 0.783  0.783  0.113 0.557  0.993
B 0.841  0.836  0.132 0.578  1.102
B3 0.327  0.328  0.056 0.219  0.435

Desth 5dD;a 2.309 2314 0.157 1.987  2.614
o 1.573  1.576  0.112 1.345  1.790
Bl 2.139 2138 0.061 2.016  2.259

Table 2: Summary of estimated By, k € {sa,br,ot,de}, based on the last 25,000 posterior
samples. The weights as, for sarcoma, ap, for breast cancer, and a,; for other cancers are set to
10, 2, and 1 respectively.

followed them until 2019. We then computed incidence rates at gap times of 5, 10, 15, 20,
25, 30 years as the proportions of individuals who developed second primary cancers of any
type during the corresponding age intervals. Similar to Figure 3b, we changed the onset
of the first primary breast cancer to age 30. With the females who do not carry TP53
mutations, the SEER estimate approximates closely for those with FPC at age 30 but is
much higher than those with FPC at age 20. This highlights an advancement in our model
to explicitly adjust for mutation status as a covariate, whereas curves derived from the
SEER registry cannot differentiate those with or without T'P53 mutations. For individuals
with FPC of breast at age 20, their chances of carrying germline mutations are high. Hence
the corresponding SEER curve should approximate more closely to the penetrance estimate

for mutation carriers (right panel) than noncarriers (left panel) in Figure 3a.
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Figure 3: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given that the first primary is breast cancer. The 95% credible intervals at gap times of 5, 15,
and 25 years are shown. Cumulative incidence rates across all cancer types from SEER are shown
for comparison.

4.4 Validation of the penetrance

A majority of family members of patients with LFS do not undergo genetic testing for
various reasons. Our family-wise likelihood is particularly advantageous in this case because
it incorporates all family members’ cancer history into the computation of the time-to-
event coefficients. Let Xg(u) be the set of covariates without the mutation status (i.e.,

Xg(u) = X(u) \ {G}). By conditioning on the unobserved G, the risk ry is given by

2.

Ge{0,1}
where the mutation probability P(G|T;-; = u, X¢(u), H) is calculated recursively using

a weighted average: ry(t|u, Xg(u), H)

Gua (tlu, X (W) P(G|Tioy = u, Xa(u), H),

the peeling algorithm (Elston and Stewart, 1971).
We first evaluate the predictive performance of our joint model in predicting outcomes,

such as the TP53 mutation status, number of primaries, or cancer types within the first
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primary, which are achievable by previous models (Shin et al. (2019, 2020)). The joint
model achieved comparable performances Supplementary Materials Section K.

We then move further to predict a unique outcome made available by the joint model,
the type of cancer within the second primary. This evaluation is particularly noteworthy
as it sets our model apart from others in the literature. Given the limited sample size,
we include individuals with mutation probabilities greater than 0.99 as inferred carriers,
and smaller than 0.01 as inferred wildtypes. For comparison, we consider a naive model
that assumes independence and identical distributions of the first and second primary.
Under this assumption, we can show that the cancer-specific age-at-onset penetrances to

the second primary is given by

P(T <11 = u, X (w)P(Th <t —u, Zy = k[ X (u))

Gra(t]u, X (u)) = P(Ty <t —u|X (u))

The second term in the numerator is given by a cancer-specific model (Shin et al., 2020),
while the other two are given by an MPC model (Shin et al., 2019). We use the penetrance
estimates produced by this naive model to perform risk prediction on the validation cohort.
Figure 4 compares the validation results of our model with the naive model. For our
model, the AUCs are 0.91, 0.76 and 0.68 for sarcoma, breast cancer, and other cancers,
respectively. Furthermore, the ROC curves of the naive model hoover around the diagonal
line, with AUC not significantly different from 0.5 for sarcoma and other cancer types. This
indicates poor predictive performance and further confirms the importance of accounting

for the type and age-at-onset for the first primary when predicting the second primary.
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Figure 4: ROC curve, along with the AUCs and their 95% confidence intervals, for cancer-
specific prediction of the second primary in the test dataset. SA = sarcoma, BR = breast cancer,

OT = other cancer. Sample size: n(SA) = 12, n(BR) = 16, n(OT) = 36.

5 Conclusion

With the advancements in oncology, cancer patients are living longer, resulting in a sharp
increase in the number of patients diagnosed with multiple primary cancer. Our Bayesian
semiparametric framework that jointly models both multiple primary cancers and multiple
cancer types represent one of the first attempts to build a quantitative foundation for char-
acterizing cancer risk trajectories among cancer survivors. We provide explicit expressions
of both an individual likelihood and a family-wise likelihood, allowing us to evaluate cancer
risk trajectories among both independent individuals and family members. The individual
likelihood can be used for risk characterization of a general population whose cancer history
is captured by registries, while family-wise likelihood can be used for a given inherited dis-
ease where family history data are routinely collected. With estimated coefficients by the
likelihoods, a suite of penetrance curves can be built, which are cancer-type-specific age-
at-onset probabilities for both first and second primary cancers. These probabilities serve
as the basis for calculating personalized risk estimates, some of which, for first primary

cancer only, are already used in clinical practice to facilitate decision-making (Parmigiani
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et al., 1998). Our joint model has the potential to move the needle in clinical management
by expanding the current practice to the population of cancer survivors.

We have validated the performance of our models using both simulation studies and
cross-validation for risk prediction in an extensively collected real dataset. Using the in-
dividual likelihood approach, we accurately characterized the risk of second primary lung
cancer (SPLC) among cancer survivors in our study population. Our estimated penetrance
curves for SPLC is important for the future update of the USPSTF recommendation for
lung cancer screening. Using the family-wise likelihood approach, we have obtained a new
set of penetrance estimates for genetic and risk counseling with families with LFS. A con-
stant question during the counseling sessions from these families is when my child will
develop next cancer and what it will be. Our framework is general and can accommodate
any number of cancer types and the number of primary cancers, as well as additional co-
variates such as treatment information, given additional data availability. Given enriched
data with a long-term follow-up in the future, we can apply our model to reveal a complete
picture of the risk landscape in cancer patients.

One limitation of our methods is the relatively high computation cost. Training the
family-wise model required about three weeks on a high-performance computing cluster,
and training individual likelihood models took even longer. To tackle this issue, We will
explore moving the computation to Stan, a programming language written in C++ that has

been fine-tuned for performance in Bayesian inference.
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Supplementary materials

A. Derivation of individual likelihood
For each individual, the likelihood function is, by definition, given by:

LO)=P(Ty=t,Zy =2 ..., Tp =t1, Zr = 21, Trr > ¢| X (£))
=P(Tp >cTy, =tr, Zp =z, X(1))
X P(Ty, =tp, Zp = zp|Tp1 =tp 1,21 = zp-1, X (t)) x ...
X P(Ty =t9, Zy = 2o|Th = t1, 71 = 21, X (1))
x P(Ty =t1, 7, = z1| X (1))

= P(Tpy1 > Ty =tr, X(t)) HP(Tl =t,Z1=2|Ti-1 =1, X(t))

=1

where Ty = 0 with probability 1. Note that we only need to condition on the most recent
event due to the Markov’s property. The last equality assumes that the cancer type of
the next occurrence does not depend on the last one. Each probability in the product

corresponds to the [-th recurrent event and can be calculated as follows:

P(Ty=t,2 = z|Ti—1 = ti—1, X (1))
=P, =t,Tin>t,....,Tix > t|Ti-1 =t_1, X (1))
= P(T1,, = t|Ti1 =1, X(1)) H P(Tiy > 4|1y =11, X (1))

k#z;

_ ip(ﬂ,zl <t|Ti—y = ti1, X (1)) H exp ( — /l Ak (u] X (1)) du>

t
dtl k;ﬁzl ti_1

Note that

P(T., <t|Ti-1=1t-1,X(t) =1—P(T1,, > t|T1-1 =t,-1, X (1))
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:1—exp<—/tl Ao (0 X (1)) du)

t;—1
Therefore,

d g
i <tl\Tl1:1511,X(t)):)\Zl(tl]X(t))exp<—/ A (U] X (1)) du)
t—1

It then follows that
P(Ty=t,2, = z|T)-1 = ti—1, X (1))

= (X (1) Hexp( / M(ul X (1)) du)

K

S(t| X (1))
=\, (L] X(t
(& HSktl X (1)

where S, (/X (£)) = exp ( — (| X (1) du).

To complete the likelihood function, we also need to take care of the censored case:
P(TL+1 > C|TL =i, X(t))
= P(Try10>c¢, ..., Tpp g > Ty = tp, X (1))

K
H TL-H k> C|TL = tL7X(t))

I
EN I

exp (- / Ae(ulX (1)) du)

1 S X (@)
H Si(tr] X (1))

Thus, the full likelihood function for an individual is given by
Sk C|X > L < K Sk tl|X )
L (4] X (¢
o) (TS5 T (vt TT X0
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B. Family-wise likelihood with the peeling algorithm

Following Shin et al (2018), the pedigree structure is partitioned into three disjoint groups:
(1) a pivot member j, (2) the posterior, which consists of family members that relate to the
pivot through his or her spouse or offsprings, and (3) the anterior, which consists of those
that relate to the pivot through his or her parents. Let h;; and h;; be the cancer histories
associated with the posterior and the anterior respectively. Thus, we have partitioned the
aggregated family cancer history as h; = {h;;, hij, hi;}.

If g;; is unobserved, the family-wise likelihood P[h;|g; w5 is calculated by conditioning

on gm

P[hi|gi,obs] = ZP[h'L_a h’ij7h?_|gij7gi7obs]P[gij|gi,obs]

gij

= Z {P[hi_lgijagi,obs]P[hij|gij]P[h2_|gz‘jagi,obs]}P[gij|gi,obs] (8)

9ij

where P[h; |gij, Giobs) is called the anterior probability and P[h]|gi;, giobs) is called the
posterior probability.

If g;; is observed, then it is part of g; ,s and the family-wise likelihood is simply
Phi|giobs) = Pl; |giobs| PlPij|9i5] PR 1Gi obs) (9)

Note that P[h;;|g;;] is the individual likelihood contribution of the pivot member. In either
case, the anterior and posterior probabilities can be computed by recursively partitioning
h; and h; into disjoint subgroups as before. The computation reduces to the evaluation of

individual likelihoods, and terms of the type P[h;"|g; os], which are easy to compute given

that the mode of inheritance is known. Here we assume the Mendelian law of transmission.
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C. Simulation study for individual likelihood with completely ob-

served GG

To test the individual likelihood, we simulated 20 datasets, each consisting of 10,000 indi-
viduals with known genotypes, i.e., mutation carrier (as 1) or noncarrier (as 0) for TP53.
For simplicity, we assume that there are two cancer types (i.e. K = 2). Let W} be the gap
time to the first occurrence of cancer of type k, and W} be a vector of size n containing
the next N gap times, where NN is a large number. It is sufficient to choose N = 100. The
genotype of the proband is simulated by G ~ Bernoulli(0.001). Given G, W}, k = 1,2,

are sampled from exponential distributions with rates

)\k(t|G, Dl, DQ) = )\07143(25) exp(ﬁ,?G + 551D1 + 552D2), k’ = 1, 2,

where B = {B%, BP", B2} = {3,1,2}7, By = {BY, B2, B2} = {2,2,1}7, and baseline
hazards A\ 1(t) = Ao2(t) = 0.001. Because either of the two cancer types can occur as
the first primary cancer before the onset of the second primary cancer, we let D; denote
whether cancer type k£ has happened as the first primary, and it follows that D; = Dy =0
for W}l. Given W}, W2, are sampled similarly, except that D; = I(W}! < W3) and D, =
I(W} > WJ}). In light of the competing risk framework, we can determine the vector of
times at cancer diagnosis, denoted by T' = {T}, Ty, -+, Tn41}7, and the vector of observed
cancer types, denoted by Z = {Z1, Zy,- - , Zn41}T, by comparing W with W3, and W}
with W} component-wise. The censoring time, denoted by C, is randomly generated
from Uniform(0,80). To assess the model performance, we generated 20 independent
repetitions.

For parameter estimation, we set M = 2 for the degree of the Bernstein polynomials. We

then fitted our model to each repetition using MCMC with 10,000 iterations, where the first
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5,000 were discarded as burn-in. The trace plots (Figure C.1) showed good convergence
as well as a good fit for our estimates. Given the true value of a model parameter 5, we

A

compute the absolute bias of our estimate 3
TREL
Bi = — . —
Bias(9)| = 55 2 16 = 0l

as well as the mean squared error (MSE)

where BT, r=1,...,20, is the estimate of $ from the r-th repetition. The good performance
of our parameter estimation on the simulated datasets is further demonstrated by these

statistical metrics in Table C.2.
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Figure C.1: Trace plots of 10,000 posterior samples. Dotted: True parameter; Solid: Estimated
parameter; Dashed: 95% credible interval.
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Absolute bias MSE

¢ 0.064 0.005
D1 0.055 0.005
D2 0.036 0.002
¢ 0.059 0.005
21 0.056 0.005
P2 0.097 0.012
Xoa  0.011 0.000
Xo2 0.013 0.000

Table C.2: Absolute biases and mean squared errors (MSE) of parameter estimates in individual
likelihood simulation over 20 independent repetitions.
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D. Simulation study for family-wise likelihood with partially ob-
served GG

To test the family-wise likelihood, we simulate 20 datasets, each consisting of 300 families
with the same pedigree structure of 30 family members spanning three generations (Figure
D.1). For each family, we follow the procedure above to simulate the proband’s cancer

history, with the addition of the frailty term

Me(t|G, Dy, Da) = & Ao k() exp(BEG + B Dy + B2 Ds), k=12,

where &1, & S Gamma(1,1). Based on the proband’s data, we generate the genotypes of
his/her relatives using the approach described by Shin et al. (2020). Given the genotype,
the individual cancer history is independent from other family members, and thus it can
be simulated in the same way as the proband. To mimic clinical ascertainment, we use the
current clinically used Chompret criteria (the 2015 updated version, as shown in Table
D.2) (Bougeard et al., 2015) plus a requirement of having at least one T'P53 mutation
carrier per family, to ascertain families into an LF'S study cohort from the entire simulated
population. We repeat the data generation on one new family and its study ascertainment

(yes or no) until 300 families are ascertained.

During the parameter estimation, we choose M = 2 for the degree of the Bernstein
polynomials to keep the computation cost reasonable. For ascertainment bias correction,
we set a; = as = 1, hence assuming that the ascertainment probability does not depend
on the first primary cancer type of the proband. We test a set of models with and without

ascertainment bias correction, and with and without the frailty term. In addition, we
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Figure D.1 Pedigree structure of a family in a simulated dataset.

~]-X

Criterion I Diagnosed with an LFS tumor (e.g., soft-tissue sarcoma, osteosarcoma) before age

46, and at least one first- or second-degree relative with LFS tumor (except breast cancer if the
patient is diagnosed with breast cancer) before age 56 or with multiple primary cancers.

Criterion II Diagnosed with multiple primary cancers (except multiple breast tumors), two of
which are LFS tumors, and the first of which occurs before age 46.

Criterion III Diagnosed with a very rare LFS tumor (e.g., adrenocortical carcinoma, choroid
plexus tumor), regardless of the patient’s family history.

Criterion IV Early-onset breast cancer (before age 31).
Table D.2: Description of the 2015 revised Chompret criteria to identify patients affected with
LFS as those who fall under any single criterion out of the four total. (Bougeard et al., 2015).

assess the effectiveness of the peeling algorithm when dealing with missing genotype data,
which commonly happens because most family members do not undergo genetic testing.
Specifically, we consider (1) no missing genotype, and (2) missing genotype, where a random
half of the genotype data are removed. These models are fit to each simulated dataset using
MCMC with 30,000 iterations, where the first 5,000 are discarded as burn-in. Finally,
all MCMC trace plots (Figures D.3 - D.6) show good performance of our parameter
estimates. Table D.7 shows the importance of accounting for ascertainment bias correction
and frailty in our model, which generally leads to smaller absolute biases and MSEs. The
exceptions are ¢ and 3, which seem to be best estimated without ascertainment bias

correction, with just slightly worse but still good performance after the bias correction.
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Figure D.3: Trace plots
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Figure D.4: Trace plots of 30,000 posterior samples in the model without ascertainment bias
correction. Dotted: True parameter; Solid: Estimated parameter; Dashed: 95% credible interval.

44


https://doi.org/10.1101/2023.02.28.530537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.28.530537; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BG D, Dy
1 1 1
4
() 2, 3
© B
% é 2
it} 1
0 0 0.0 0
0 10000 20000 30000 21 2.4 2.7 3.0 0 10000 20000 30000 1.0 12 1.4 1.6 18
Iteration Estimate Iteration Estimate
D, D, G pe
1 1 2 2
° 1
4 D0 er e e -5
[} Q
T % 3 ® 15 - wdlaid e b - ‘% 1.0
% éc’ 2 % Lo é 05
Wos 1 LI 0.5 - FArRI e S S IOT IR TH T = '
0.0 0 0.0 0.0
0 10000 20000 30000 15 1.7 19 0 10000 20000 30000 0.0 0.5 1.0 15
Iteration Estimate Iteration Estimate
Dy Dy D, D;
2 2 2 2
° 4
2 @1 2,
g3 g G
T2 - G2
e 1 w05 Q.
0 0 0.0 0
0 10000 20000 30000 1.6 1.8 2.0 2.2 0 10000 20000 30000 1.0 1.2 1.4 1.6
Iteration Estimate Iteration Estimate

Figure D.5: Trace plots of 30,000 posterior samples in the model without frailty. Dotted: True
parameter; Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure D.6: Trace plots of 30,000 posterior samples in the model with neither frailty nor ascer-
tainment bias correction. Dotted: True parameter; Solid: Estimated parameter; Dashed: 95%

credible interval.
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No bias correction Bias correction

Genotype No frailty Frailty No frailty Frailty
B¢ No missing 0.481 (0.350) 0.199 (0.080) 0.464 (0.327) 0.287 (0.110)
Missing 0.431 (0.308) 0.314 (0.159) 0.417 (0.283) 0.346 (0.179)
Di No missing 0.224 (0.065) 0.208 (0.051) 0.438 (0.208) 0.093 (0.013)
Missing 0.190 (0.047) 0.194 (0.050) 0.396 (0.173) 0.100 (0.016)
?2 No missing 0.450 (0.211) 0.308 (0.102) 0.228 (0.060) 0.085 (0.010)
Missing 0.420 (0.189) 0.299 (0.097) 0.198 (0.052) 0.083 (0.011)
B¢ No missing 0.561 (0.905) 0.388 (0.593) 0.549 (0.899) 0.392 (0.609)
Missing 0.464 (0.432) 0.346 (0.227) 0.450 (0.406) 0.361 (0.200)
51 No missing 0.448 (0.209) 0.311 (0.106) 0.223 (0.059) 0.080 (0.011)
Missing 0.487 (0.249) 0.350 (0.132) 0.264 (0.081) 0.108 (0.016)
QDQ No missing 0.187 (0.045) 0.196 (0.049) 0.401 (0.176) 0.102 (0.015)
Missing 0.209 (0.064) 0.198 (0.057) 0.434 (0.210) 0.128 (0.025)
Xo,1 No missing 0.028 (0.001) 0.030 (0.001) 0.012 (0.000) 0.015 (0.000)
Missing 0.026 (0.001) 0.028 (0.001) 0.010 (0.000) 0.015 (0.000)
Ao,z No missing 0.028 (0.001) 0.030 (0.001) 0.012 (0.000) 0.013 (0.000)
Missing 0.030 (0.001) 0.032 (0.001) 0.013 (0.000) 0.012 (0.000)

Table D.7: Absolute biases and mean squared errors (in parentheses) of parameter estimates in
family-wise likelihood simulation over 20 independent repetitions.
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E. Summary of the MDACC patient cohort data

First event Second event
BR SA OT D C Total | BR SA OT D C Total

Male

Wildtype | 0 27 64 3 116 210 0 10 23 22 36 91

Mutation | 0 41 48 1 40 130 0 15 24 25 25 &9

Unknown | 0 70 737 1131 3317 5255 |0 6 54 551 196 807

Subtotal | 0 138 849 1135 3473 5595 |0 31 101 598 257 987

Female

Wildtype | 86 47 94 2 142 371 42 22 50 23 90 227

Mutation | 89 36 48 2 30 205 42 24 31 21 55 173

Unknown | 350 55 494 881 3235 5015 |34 8 59 522 276 899

Subtotal | 525 138 636 885 3407 5591 | 118 54 140 566 421 1299
Total 525 276 1485 2020 6880 11186 | 118 &85 241 1164 678 2286

Table E.1: Categorization of family members in the MDACC prospective dataset by gender,
mutation status, type of first primary cancer, and type of second primary cancer. BR = breast
cancer, SA = sarcoma, OT = other cancers, D = death, C = censored.

Training set Validation set
Wildtype Mutation Unknown Total | Wildtype Mutation Unknown Total

Male

Healthy 72 22 2187 2281 47 19 2261 2327
FPC 31 24 388 443 27 26 359 412
SPC 21 26 30 7 12 13 30 55
Subtotal 124 72 2605 2801 86 58 2650 2794
Female

Healthy 77 20 2069 2166 67 12 2047 2126
FPC 53 40 388 481 60 36 410 506
SPC 55 50 51 156 59 47 50 156
Subtotal 185 110 2508 2803 186 95 2507 2788
Total 309 182 5113 5604 272 153 5157 5582

Table E.2: Categorization of family members in the training and validation sets by gender,
number of primary cancers and TP53 mutation status. FPC: first primary cancer. SPC: second

primary cancer.
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Wildtype Mutation Inferred wildtype Inferred mutation Total

Male
Healthy 72 22 1,764 10 1,868
FPC 31 24 182 45 282
SPC 21 26 6 9 62
Subtotal 124 72 1,952 64 2,365
Female
Healthy 77 20 1,754 2 1,853
FPC 53 40 230 49 372
SPC 55 50 25 10 140
Subtotal 185 110 2,009 61 2,212
Total 309 182 3,961 125 4,583

Table E.3: Training data: categorization of family members by gender, number of primary
cancers and mutation status, including individuals with mutation probabilities less than 0.01
(inferred wildtype) or greater than 0.9 (inferred mutation). FPC = first primary cancer, SPC =
second primary cancer.

Wildtype Mutation Inferred wildtype Inferred mutation Total

Male
Healthy 47 19 1,873 13 1,952
FPC 27 26 186 64 303
SPC 12 13 12 5 42
Subtotal 86 58 2,071 82 2,297
Female
Healthy 67 12 1,797 1 1,877
FPC 60 36 234 59 389
SPC 59 47 19 14 139
Subtotal 186 95 2,050 74 2,405
Total 272 153 4,121 156 4,708

Table E.4: Validation data: categorization of family members by gender, number of primary
cancers, and mutation status, including individuals with mutation probabilities less than 0.01
(inferred wildtype) or greater than 0.9 (inferred mutation). FPC = first primary cancer, SPC =
second primary cancer.
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First primary Second primary

BR SA LU BR SA LU

Male

00 years 0 ) 4 0 0 0
01-04 years | 0 38 10 0 3 0
05-09 years | 0 194 3 0 11 1
10-14 years | 0 489 19 0 22 1
15-19 years | 0 669 48 0 33 1
20-24 years | 2 368 98 0 25 3
25-29 years | 7 279 185 0 24 6
30-34 years | 26 234 526 0 42 27
35-39 years | 52 246 1423 | 6 44 54
40-44 years | 114 237 3694 |1 55 148
45-49 years | 219 233 8557 | 11 88 433
50-54 years | 293 264 16871 | 23 98 1150
55-59 years | 456 260 27933 | 42 186 2601
60-64 years | 536 258 38485 | 61 212 4896

65-69 years | 556 234 45313 | 115 284 7756
70-74 years | 483 194 43109 | 124 361 9501
75-79 years | 373 142 34986 | 149 368 9431

Female
00 years 0 13 4 0 1 0
01-04 years | 1 43 9 0 2 0
05-09 years | 1 178 3 0 10 0
10-14 years | 8 421 10 1 20 0
15-19 years | 42 353 53 4 19 0
20-24 years | 479 233 101 18 26 3
25-29 years | 3093 204 190 168 38 11

30-34 years | 9676 187 472 562 46 29
35-39 years | 21593 176 1207 | 1493 55 116
40-44 years | 39236 180 3078 | 3169 85 341
45-49 years | 56739 226 6496 | 5598 108 799
50-54 years | 62683 189 11932 | 7424 143 1678
55-59 years | 65079 179 18378 | 9297 180 3021
60-64 years | 67783 215 24531 | 11577 250 4797
65-69 years | 65899 173 29144 | 13254 250 6467
70-74 years | 56808 153 30288 | 12898 272 7462
75-79 years | 45805 109 26357 | 11609 302 6927

Table E.5: Categorization of participants in the SEER Research Plus data by gender, age at
diagnosis, type of first primary cancer, and type of second primary cancer. BR = breast cancer,
SA = sarcoma, LU = lung cancer.
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F. Estimation of Model Parameters in the Individual Likelihood

Models
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Figure F.1: Trace plots of 10,000 posterior samples of the regression coefficients 3 in the Breast
Cancer model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure F.2: Trace plots of 10,000 posterior samples of the regression coefficients 3 in the Sarcoma
model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure F.3: Trace plots of 10,000 posterior samples of the regression coefficients 3 in the Lung
Cancer model. Solid: Estimated parameter; Dashed: 95% credible interval.
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Model Event Parameter Mean Median SD 2.5% 97.5%
BS 3.302  3.305  0.158 2997  3.598
Breast yo)
Bb —0.200 —0.203 0.170 —0.522 0.148
BS 2.821  2.821  0.090 2.654  2.991
Breast Cancer | Other BS, 0.260  0.257  0.069 0.127  0.394
BL 0.604  0.605  0.098 0.420  0.781
B¢ 1.346  1.346  0.093 1.151  1.526
Death B3, 0.367  0.368  0.051 0.266  0.468
By 1.553  1.556  0.061 1.438  1.666
BS 3.526  3.527  0.206 3.123  3.939
Sarcoma 8% 0.162  0.153  0.174 —0.180 0.540
BE 1.080  1.083  0.221 0.627  1.486
Other B 2.816  2.815  0.085 2.650  2.991
Sarcoma B3 —0.341 —0.340 0.074 —0.505 —0.189
D 0.314 0316  0.096 0.124  0.503
¢ 1.344  1.345  0.094 1.165  1.521
Death -~ 0.379 0379  0.053 0267  0.491
By 1.557  1.561  0.062 1.435  1.676
o 2.017  2.017  0.296 1.436  2.567
Lung B 0.198  0.204  0.198 —0.202 0.585
D 1.409  1.407 0239 0.916  1.850
Other BG 2593 2593 0.076 2.441  2.736
Lung Cancer B3, —0.316 —0.319 0.065 —0.441 —0.196
D 0.788  0.789  0.082 0.627  0.945
¢ 1.349  1.352  0.091 0.171  1.524
Death B3, 0.381 0375  0.057 0277  0.503
1 1.559  1.559  0.060 1.443  1.671

Table F.4: Estimated 3 in the individual likelihood models based on the last 5,000 posterior
samples
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G. Age-at-onset Penetrance from the Individual Likelihood Mod-

els
A. Breast cancer B. Sarcoma C. Lung cancer
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Figure G.1: Estimates of cancer-specific age-at-onset penetrance to the first primary cancer for
male and female with and without TP53 mutation based on the individual likelihood models, and
the corresponding 95% credible intervals at ages 15, 30, and 45. Cancer-specific incidence rates
from SEER are shown for comparison.
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Figure G.2: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary at age 20, for male and female with and without 7T'P53 mutation based
on the individual likelihood models, and the corresponding 95% credible intervals at gap times 5,
15, and 25. Cancer-specific incidence rates from SEER are shown for comparison.
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A. Breast cancer B. Sarcoma C. Lung cancer
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Figure G.3: Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary at age 30, for male and female with and without T'P53 mutation based
on the individual likelihood models, and the corresponding 95% credible intervals at gap times 5,
15, and 25. Cancer-specific incidence rates from SEER are shown for comparison.
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H. Analyses Results from the Validation Study of the Individual

Likelihood Models
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Figure H.1: ROC curves, and the 95% bootstrap confidence intervals of the AUCs, for cancer-
specific prediction of the first primary cancer in the derived validation dataset. Inferred mutation
and non-carriers are included in (c) only. BR = breast cancer, SA = sarcoma, LU = lung cancer,
OT = other cancer. Sample size: (a) n(BR) = 21, n(OT) = 50; (b) n(SA) = 17, n(OT) = 54;
(c) n(LU) = 44, n(OT) = 618
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I. Estimation of Model Parameters in the Family-wise Likelihood

Model
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Figure I1.1: Trace plots of 30,000 posterior samples of sarcoma-specific regression coefficients
Bsa. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure 1.2: Trace plots of 30,000 posterior samples of breast-cancer-specific regression coeflicients
By There is no coefficient for gender since the estimates are based on the female only. Solid:
Estimated parameter; Dashed: 95% credible interval.
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Figure 1.3: Trace plots of 30,000 posterior samples of other-cancer-specific regression coefficients

Bot. Solid: Estimated parameter; Dashed: 95% credible interval.
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Figure 1.4: Trace plots of 30,000 posterior samples of mortality-specific regression coefficients
B34. Solid: Estimated parameter; Dashed: 95% credible interval.
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Event Parameter Mean Median SD 2.5% 97.5%

V1,0 0.0007 0.0007  0.0003 0.0002 0.0013
V2,5 0.0010 0.0009  0.0006 0.0000 0.0024
Sarcoma 135 0.0012 0.0010  0.0011 0.0000 0.0037
Vi,sa 0.0060 0.0061 0.0026 0.0007 0.0111
¥5,5a 0.0058 0.0048  0.0051 0.0000 0.0180
V1,br 0.0001 0.0001  0.0002 0.0000 0.0006
Yo,br 0.0004 0.0003  0.0005 0.0000 0.0019
Breast 307 0.0039 0.0025 0.0044 0.0000 0.0162
Vabr 0.1947 0.1945 0.0222 0.1521 0.2370
¥5,br 0.0360 0.0293  0.0320 0.0001 0.1150
V1,0t 0.0109 0.0108 0.0017 0.0076 0.0142
¥2,0t 0.0018 0.0012  0.0019 0.0000 0.0066
Other 3 0.0063 0.0044  0.0064 0.0000 0.0234
Va,0 0.1391 0.1399  0.0298 0.0775 0.1965
5,0t 0.4578 0.4540 0.0716 0.3267 0.6102
V1,de 0.0004 0.0002 0.0005 0.0000 0.0018
Yo.de 0.0209 0.0212  0.0039 0.0127 0.0284
Dot V3de 0.0063 0.0045 0.0062 0.0000 0.0223
Vade 0.0055 0.0033  0.0064 0.0000 0.0225
V5. de 1.4023 1.4011 0.0788 1.2532 1.5629

Table 1.5: Estimated « based on the last 25,000 posterior samples.

Event Parameter Mean Median SD 2.5% 97.5%

Sarcoma ¢ 4.3845 4.1926  1.3750 2.2903 7.4901
Breast Dor 4.3634 4.2271  1.1644 2.4883 7.1033
Other Dot 5.0060 4.9171  0.9868 3.3422 7.2996
Death Dde 5.6939 5.5757 0.9046 4.2380 7.7092

Table 1.6: Estimated ¢ based on the last 25,000 posterior samples.
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Event Parameter Mean Median SD 2.5% 97.5%

BG 3.626  3.624  0.216 3.199  4.061
B3, 0.324 0326  0.173 —0.008 0.664
Sarcoma Dsa 1.461  1.470  0.319 0.817  2.071
BDor 1.444 1449  0.308 0.829  2.050
Dot 1.641  1.647 0262 1.118  2.143
BE 3.563  3.561  0.183 3.201  3.916
Bl 1.246  1.255  0.380 0.471  1.982
Breast gl —0.794 —0.790 0.248 —1.298 —0.323
Dot 0873  0.872  0.191 0.494  1.245
85 2.447 2448  0.135 2.183  2.699
3, 0.391 0392  0.079 0.234  0.556
Other Bhsa 1175 1178 0218 0.745  1.593
B 0.633  0.633  0.168 0.299  0.961
Bl 0.783  0.782  0.113 0.563  1.000
B¢ 0.839  0.843  0.140 0.555  1.106
B3, 0.328  0.327  0.057 0.218  0.441

2.313 2.314 0.166 1.987 2.627
e 1.578 1.580 0.114 1.353 1.797
Bd%’t 2.137 2.134 0.064 2.012 2.266

Death p ClDG;T

Table I.7: Estimated B, k € {sa,br,ot,de}, based on the last 25,000 posterior samples. The
weights ag, for sarcoma, ap- for breast cancer, and a,: for other cancers are set to 4, 2, and 1
respectively.
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J. Age-at-onset Penetrance from the Family-wise Likelihood Model
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Figure J.1 Cancer-specific age-at-onset penetrance to the first primary cancer for male and
female with and without 7TP53 mutation, and the corresponding 95% credible intervals at ages
15, 30, and 45. Cumulative incidence rates across all cancer types from SEER are shown for
comparison.
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Figure J.2 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary of sarcoma at age 10, and the corresponding 95% credible intervals at gap
times 5, 15, and 25. Cumulative incidence rates across all cancer types from SEER are shown for
comparison.
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Figure J.3 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary of sarcoma at age 30, and the corresponding 95% credible intervals at gap
times 5, 15, and 25. Cumulative incidence rates across all cancer types from SEER, are shown for
comparison.
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Figure J.4 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary other than breast cancer and sarcoma at age 10, and the corresponding
95% credible intervals at gap times 5, 15, and 25. Cumulative incidence rates across all cancer

types from SEER are shown for comparison.
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Figure J.5 Estimates of cancer-specific age-at-onset penetrance to the second primary cancer,
given the first primary other than breast cancer and sarcoma at age 30, and the corresponding
95% credible intervals at gap times 5, 15, and 25. Cumulative incidence rates across all cancer
types from SEER are shown for comparison.
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K. Analyses Results from the Validation Study of the Family-wise

Likelihood Model
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Figure K.1: ROC curve, along with the AUC and 95% bootstrapped confidence interval, for pre-
diction of TP53 mutation in the validation dataset. Sample size: n(wildtype) = 272, n(mutation)
= 153.
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Figure K.2: ROC curves, along with the AUCs and their 95% bootstrapped confidence intervals,
for prediction of the number of primary cancer in the validation dataset. FPC = first primary
cancer, SPC = second primary cancer. Sample size: n(unaffected) = 144, n(FPC) = 38, n(SPC)
= 23.
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Figure K.3: ROC curves, along with the AUCs and their 95% bootstrapped confidence intervals,
for cancer-specific prediction of FPC in the validation dataset. SA = sarcoma, BR = breast cancer,
OT = other cancers combined. Sample size: n(SA) = 17, n(BR) = 21, n(OT) = 23.
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