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Detailed descriptions of behavior provide critical insight into the1

structure and function of nervous systems. In Drosophila larvae2

and many other systems, short behavioral experiments have been3

successful in characterizing rapid responses to a range of stimuli at4

the population level. However, the lack of long-term continuous ob-5

servation makes it difficult to dissect comprehensive behavioral dy-6

namics of individual animals and how behavior (and therefore the7

nervous system) develops over time. To allow for long-term con-8

tinuous observations in individual fly larvae, we have engineered9

a robotic instrument that automatically tracks and transports lar-10

vae throughout an arena. The flexibility and reliability of its design11

enables controlled stimulus delivery and continuous measurement12

over developmental time scales, yielding an unprecedented level of13

detailed locomotion data. We utilize the new system’s capabilities14

to perform continuous observation of exploratory behavior over a15

duration of six hours with and without a thermal gradient present,16

and in a single larva for over 30 hours. Long-term free-roaming17

behavior and analogous short-term experiments show similar dy-18

namics that take place at the beginning of each experiment. Fi-19

nally, characterization of larval thermotaxis in individuals reveals20

a bimodal distribution in navigation efficiency, identifying distinct21

phenotypes that are obfuscated when only analyzing population22

averages.23
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25

Introduction26

A complete description of an organism’s behavior, or any re-27

sponsive system more generally, would include a map of how28

inputs transform into outputs. Reflexes or decisions made by29

the peripheral and central nervous systems, for example, can be30

characterized as functions that take surrounding environmen-31

tal (and internal) stimulus information, process it, and lead to32

a physical behavior. An organism’s transformation properties33

are rarely constant, and instead change over short and long time34

scales, determined by its stimulus history and development. A35

comprehensive understanding of animal behavior and its under-36

lying mechanisms would ideally address all time scales between37

fast neural responses through the slow physiological changes38

associated with development (1–4). Short-term responses to39

individual stimuli have been characterized in many organisms,40

but a high-bandwidth treatment with continuous measurement41

of behavior through the entire time course of an animal’s devel-42

opment has been prohibitive (5–7). While shorter experiments43

have been successful in characterizing behavior and acute re- 44

sponses to stimuli at the population level, the lack of continu- 45

ous observation make it difficult to dissect individual behavioral 46

dynamics and their development over time. In most organisms, 47

behavior is too fast, too complicated, is performed in too large 48

of a space, or otherwise too difficult to observe with sufficient 49

resolution over a long time. An ideal system would perform 50

slow, well-defined actions in a confined space while responding 51

robustly to internal and external stimuli. 52

The Drosophila melanogaster larva model system presents an 53

opportunity to study navigational behavioral dynamics over long 54

time scales, well-suited to a detailed quantitative treatment. It 55

possesses a well-defined, slow behavioral repertoire and robust 56

response to many stimuli (8–10). The fruit fly has a relatively 57

short life cycle with high accessibility to their three short lar- 58

val stages (11). During these stages, larvae are highly food- 59

motivated and thus in the absence of food engage in nearly 60

continuous exploratory movement, which facilitates behavioral 61

studies of locomotion over long times (12). They also demon- 62

strate responses to chemosensory cues (13–15), mechanical and 63

nociceptive stimulation (16–18), light (19), as well as the abil- 64

ity to retain memory and change their behaviors in accordance 65

to learned experiences, and habituate to prolonged stimuli (20– 66

23). Larvae also perform robust behavioral responses to tem- 67

perature changes, engaging in thermotaxis along thermal gra- 68

dients, and modulating aspects of their locomotive behavior, 69

in particular their turning rate, in order to reach optimal con- 70

ditions (6, 24). The recent availability of a connectome brain 71

wiring diagram (25, 26) and numerous genetic tools have fa- 72

cilitated probing the neural circuits and molecular mechanisms 73

that underlie these behaviors (2, 8, 27–30). Here we focus on 74

directly observed exploration and navigation behavior and seek 75

to continuously measure fly larva crawling over times scales of 76

many hours. 77

Responses to a wide range of stimuli in larvae typically occur 78

through changes in their navigation and locomotion. Their nav- 79

igation behavior, when confined to flat 2D spaces, is akin to an 80

organism-scale 2D random walk (31, 32), characterized as an 81

alternating sequence of forward crawling “runs” and direction- 82

altering “turns”, making the animal’s behavior and response to 83

stimuli straightforward to quantify (7, 33–35). However, larvae 84

crawl away and typically remain at the edges of confining barri- 85

ers, or climb walls or bury into a substrates (9). Either scenario 86
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results in the termination of exploratory behavior, limiting most87

experiments to shorter snap-shots of larval behavior, typically88

on the order of 10 minutes (6, 7, 36, 37). Manually prolonging89

exploratory crawling behavior, such as picking up a larva with90

a wet paintbrush and placing them back at the center, are inef-91

ficient, difficult to perform consistently, and too labor-intensive92

over long times, and thus not very practical. Longer experi-93

ments with adult Drosophila have successfully been automated94

to allow higher throughput (36–38), but no such system has pre-95

viously been developed for freely crawling larvae.96

Here, we present the design and operation of an automated “larva97

picker” robot and demonstrate its capabilities through continu-98

ous observation of larval exploration and navigation behavioral99

response with high detail and over unprecedented duration. Im-100

portantly, identity is maintained throughout tracking, so we can101

characterize exploration and navigation at the population and102

individual animal levels together, as larvae search for food un-103

der varying hunger conditions, or negotiate variable temperature104

environments. In doing so, we are able to reveal new behav-105

ioral dynamics, where the animals’ search strategy is modulated106

over hours and we can discriminate between different individual107

statistics that are otherwise hidden by population averages.108

Methods109

Larva Picker Robot. To perform long-term behavioral studies110

with the larva, we have designed and fabricated a robotic in-111

strument that automatically tracks, transports, and feeds larvae112

throughout a large arena. The flexibility of its design enables113

arbitrary stimulus delivery alongside continuous measurement114

of behavior, yielding an unprecedented level of detailed loco-115

motion data and a comprehensive view of locomotion strategies116

at the population and individual animal levels together.117

The system operates by tightly coordinating video acquisition118

from an overhead camera with a manipulator arm capable of119

traversing three dimensions (Fig. 1B). The manipulator arm is120

translated by stepper motors (Nema 8) in the X- and Y-axes and121

a 5V solenoid (SparkFun) for the Z-axis, which are driven by a122

programmable controller board (SmoothieBoard) with physical123

and software limits in place to prevent overtravel. At the end of124

the arm is a custom 18-Gauge nozzle (Fig. 1C) that can inter-125

act with the larva and the experimental arena (Fig. 1D) that sit126

below the camera and manipulator assembly.127

A 2.3-megapixel CMOS camera (Grasshopper3) observes a small128

number (4-6) of larvae crawling on a 22 x 22 cm agar gel (2.5%129

wt./vol. agar in water, with 0.75% charcoal added for improved130

contrast) and records at 10 Hz. Larvae are illuminated with four131

strips of red LEDs (dominant wavelength around 620 nm, which132

is outside the visible range of the larva (39), arranged in a square133

around the agar gel. To maintain larval exploratory behavior134

over a long duration, the camera detects when one nears the135

edge of the arena. This triggers the manipulator to pick up the136

larva with the nozzle. The larva is maintained on the nozzle via137

the surface tension of a water droplet. The water droplet pro-138

vides a way to indirectly interact with the larva to prevent caus-139

ing damage to the animal. After the manipulator arm moves to 140

the center of the arena, it drops off the larva with a slow hor- 141

izontal motion, effectively rolling it off the nozzle (Fig. 1E). 142

The manipulator replenishes the water droplet before each pick 143

up, and a small flat Delrin plastic disk (2 mm diameter) at the 144

bottom of the nozzle provides more surface area for the droplet 145

to form (Fig. 1C). When the surface tension of the water is in- 146

sufficient to pick up the larva, the nozzle is capable of exerting 147

vacuum suction to assist in pick up, as well as allowing air flow 148

to release the larva during drop off. 149

Meanwhile, the mounted camera refreshes the image and there- 150

fore the position of the larva before and after each step of any 151

protocol, ensuring that the process is robust to variations in 152

crawling speed and behavior and to failed attempts, which are 153

detected and repeated (Fig. 1E). The pick up/drop off procedure 154

is 99.8%/99.9% successful (90%/95% on the first try), highly 155

important for the viability of long-term experiments. 156

Our system must also address desiccation of the agar gel sub- 157

strate and animal starvation, which limit experiment times and 158

affect behavior. To address the former, we have built an auto- 159

replenishing water moat (Fig. 1D) in direct contact with the gel, 160

which then maintains its water content and physical shape. In 161

addition, the moat also provides a convenient and readily avail- 162

able water source for the nozzle. To address the latter, the robot 163

can automatically administer a drop of apple juice (≈ 0.1g/mL 164

sugar concentration) directly to the larva on a predetermined 165

schedule. The larva is allowed to eat for a fixed time, then rinsed 166

with water so that it can return to a free-crawling state. 167

With these features in place, our system has so far achieved 168

more than 30 hours of continuous observation of individual larva 169

behavior. 170

In some experiments we observe how larvae navigate a variable 171

sensory environment. We use a similar system as outlined in 172

(6) to generate a 1D linear spatial thermal gradient. We fit the 173

underside of the experimental arena’s aluminium base with hot 174

and cold reservoirs on opposite sides, each equipped with two 175

liquid-cooled water blocks. PID (proportional-integral-derivative) 176

controllers drive thermoelectric coolers between each water block 177

and its reservoir to maintain a thermal gradient of 0.035 °C/mm 178

across the agar gel in the arena, with 13 °C on one side and 179

21 °C on the other side. 180

Analysis Pipeline. Our data analysis pipeline extracts numerous 181

behavioral features from video recordings of crawling larvae 182

(Fig. 2). Custom computer vision software takes raw movies 183

and extracts the position and body contour of each larva while 184

preserving individual animal identities (Fig. 2A). Because the 185

robot arm can briefly block the camera during pickup events, re- 186

sulting in dropped frames, the software interpolates larval posi- 187

tions in these frames to maintain continuous observation. Since 188

the larva’s body length is roughly 1 mm and it crawls with an 189

average speed well below 1 mm/s, significant behavior events 190

are unlikely to occur during dropped frames and interpolation is 191

sufficient to rebuild trajectories. 192
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Figure 1. The automated larva transport robot enables continuous, long-term observation of fly larva crawling behavior. A. Schematic illustrating the fly larva’s simple search

behavior. They explore their environment in a modified 2D random walk, with 20 example paths (black) shown. Trajectories are characterized by an alternating series of forward

crawling runs (red) and turns (blue). B. Isometric CAD schematic of the transport robot. The robot is built from a modified 3D printer with a custom nozzle. Feedback from a

mounted overhead camera allows for tight coordination with the moving arm to safely and robustly interact with the experimental arena. C. The nozzle is built as a narrow tube

that allows air and vacuum flow with a flat plastic disk fitted at the bottom. The disk provides ample surface area for a water droplet to form, and the droplet’s surface pressure can

pick up larvae while minimizing stress on the animal during the interaction. D. Top and side view schematics of the flat crawling arena. Larvae crawl atop an agar substrate, which

is kept hydrated by a surrounding moat. The robot nozzle picks up larvae as they approach the edge of the arena and transports them back to the center to continue their

free-roaming behavior. E. Flowchart of the larva pick-up feedback process. In standby mode, the camera records a video of larval behavior. When it detects a larva nearing the

perimeter, it triggers the pick-up protocol for the robot. The manipulator arm moves to a point in the moat nearest to the larva and dips the nozzle in, forming a droplet at the tip to

be used for pick up. The camera provides a more recent position for the moving larva as the robot attempts a pick up. If feedback from the camera suggests a successful pick up,

it attempts a drop off. Otherwise, the manipulator repeats its attempt after receiving an updated larval position. Multiple failed attempts can trigger small perturbations to robot

calibration parameters to allow better flexibility through reinforcement learning before continuing pick up attempts. Similarly, the robot performs multiple drop off attempts at the

center of the arena until it receives a positive confirmation from the camera, at which point the system returns to its original standby mode. F. Photographs before (top) and after

(bottom) the robot moves a larva from the perimeter to the center of the arena.
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Figure 2. Analysis pipeline. A. Raw video acquired during the experiment is fed into computer vision software that tracks each larva while maintaining their identity. B. A posture

tracker analyzes the isolated crops of each larva to determine its posture and orientation. C. A state tracker determines the behavioral state of each animal at each time point. D.

Compiling all information from the preceding algorithms allows the pipeline to identify and calculate a wide variety of behavioral features.

The isolated crops (64 x 64 in pixels) of each larva are run193

through a recurrent U-Net (40) convolutional neural network194

(Fig. 2B) to determine the posture and orientation. The U-Net195

architecture has been shown to be highly effective at tasks that196

preserve spatial structure in an image by taking advantage of197

both global and local features (40–42). We design our model 198

such that the output is a probability heat map of the head and 199

tail of the larva, which preserves the global spatial structure of 200

the larva’s body. 201
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Traditional convolutional neural networks, including U-Net, of-202

ten fail when analyzing sparse images with low-resolution fea-203

tures (41). This is particularly pronounced in our case since204

each larva is generally captured as clusters of only ≈ 30 uni-205

formly bright pixels surrounded by black pixels. To compen-206

sate for this, we utilize more temporal information, such as the207

current momentum of the centroid. Since larval posture does208

not deviate much from frame to frame, we add recurrence in the209

form of long short term memory (LSTM) cells (43) at the be-210

ginning, middle, and final layers of the network to simplify the211

problem at each subsequent time step. The recurrence also cre-212

ates an additional cost for head-tail flips which we have found213

to be a common issue with previous approaches to the prob-214

lem (41, 44, 45).215

Using all available information (position, contour, and posture),216

we use a densely connected neural network with bidirectional217

recurrence to classify the behavioral state of the larva (“run”,218

“turn”) at each time point (Fig. 2C) (34). The bidirectional219

recurrence here allows the network to identify the bends in the220

larva’s path and swings of the larva’s head by comparing frames221

both before and after. From here, we can identify a wide range222

of behavioral features and track them over extended time peri-223

ods.224

Results225

The robot enables continuous observation of free exploration226

over six hours. Optimizing exploration by modulating behav-227

ior is essential to the larva’s ability to find a food source effi-228

ciently. While previous studies on Drosophila larvae have re-229

vealed some changes to its navigation over the first few minutes230

of exploration of an isotropic environment, how and whether231

their behavior evolves or persists afterwards remains unknown (7).232

Studies on another small organism with qualitatively compara-233

ble navigation dynamics, the nematode C. elegans, show sim-234

ilar changes in behavior during the first ≈ 100 seconds. Some235

longer-duration experiment (1 hour vs 15 minutes) reveal a tran-236

sition in navigation strategy between two distinct modes of lo-237

cal and global searches, but transitions across similar or longer238

time scales have yet to be observed in Drosophila (7, 46). Here,239

we demonstrate how our larva picker robot enables continuous240

observation and analysis of larval locomotive behavior on very241

long time scales to study changes in its exploration strategy in242

an isotropic environment.243

In Fig. 3, we present the results from continuous observation of244

second instar wild type (Canton-S) larvae (N = 42) freely roam-245

ing the experimental stage for a six hour time duration. Fig. 3A246

and C show the speed and the turn rate of the larvae, respec-247

tively, exhibiting the dynamics of their behavior. Notably, there248

is a significant drop in activity (both speed and turn rate) over249

the first hour before settling into a plateau that lasts for the fol-250

lowing few hours. The correlation between larval crawl speed251

and turn rate over time has been previously observed (34) and252

is clearly evident here, and we measure a correlation coefficient253

of 0.572 in the population mean speeds and turn rates. With254

the large amount of data gathered on each individual, we con- 255

firm that this correlation also exist at the individual level with 256

an average correlation coefficient of 0.348±0.098. 257

Long-term free roaming behavior is consistent with analogous 258

snapshot observations. Since the larva were not fed over the 259

duration of the experiment, we compare continuous observa- 260

tions with short “snapshot” observations of larvae at various 261

stages of starvation (N = 200 per stage). Larvae were removed 262

from food and starved over a certain number of hours, then 263

placed on an agar gel arena to be observe for 10 minutes with- 264

out interruption, and with no interaction with the robot. The 265

decline in activity seen in the robot-mediated experiments is 266

not present when observing crawl speeds averaged over the 10- 267

minute duration (Fig. 3A, purple bars). Upon closer inspec- 268

tion, however, larval crawl speed measured in the starvation 269

studies (Fig. 3B) reveal a trend over time that mirrors what 270

we observe in the first hour of continuous observations. Over 271

these 10-minute snapshot observations, we measure an average 272

decline of −7.7 × 10−5 mm/s2, comparable to the average of 273

−6.9 × 10−5 mm/s2 seen over the first hour of continuous ob- 274

servations. The similarity offers confidence that the behavioral 275

dynamics present here are not caused by transport robot actions 276

but are real features of the animal that that continue to persist 277

and develop over a period that is more than 30 times longer than 278

what snapshot observations can capture. 279

To further ensure that disruptions to behavior due to the robot’s 280

interference have minimal influence, we analyzed larval behav- 281

ior before and after each interaction with the robot (i.e., a pick 282

up and drop off event). Fig. 3D shows averaged larval crawl 283

speeds 5 minutes before and 5 minutes after an interaction event 284

(vertical dashed line). As expected, mean larval speeds before 285

the interaction shows little change over the small window. We 286

do observe a transient of approximately 1-2 minutes just after 287

the interaction, where there is a noticeable increase in speed 288

(p<0.05), but it quickly returns to the same mean as before (hor- 289

izontal line). 290

A freely-crawling single larva is continuously monitored for more 291

than 30 hours. As noted in the previous section, the robot is also 292

capable of automatic scheduled feeding. To keep the larva alive 293

as long as possible, the robot administers a drop of sugar-rich 294

solution directly to the larva once every hour. The larva is al- 295

lowed to feed for one minute, then the animal and the drop site 296

is rinsed with water, and the larva resumes exploration. Using 297

this protocol, we are able to study larval locomotive behavior for 298

over 30 hours, yielding an unprecedented amount of behavioral 299

and developmental information on an individual animal. Fig. 4 300

presents the trajectory of a single larva and some of its behavior 301

features observed over a duration of 30 hours, where the indi- 302

vidual animal crawls for more than 48 meters. Some behavioral 303

features exhibit steady change, like a decreasing speed through- 304

out the experiment. Notable differences in path shape occur 305

approximately half way through the long observation, with dra- 306

matic increases in curvature and turn size, consistent with the 307

tight loops seen in the full trajectory plot (Fig. 4 left). We also 308
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Figure 4. Long-term observation of a single larva. In order to maintain exploratory behavior in a fly larva without starving it, the robot automatically delivers a drop of apple juice

(≈ 0.1g/mL sugar concentration). The larva is allowed to eat for 1 − 2 minutes, after which the robot uses water and air to rinse the larva, which then continues roaming freely.

This protocol allows for continuous observation of larval behavior over developmental timescales. Left. The larva’s trajectory over a 30-hour duration, with its path (green) stitched

together at each robot pick-up and drop-off positions (orange markers) to produce a continuous trajectory. The larva begins at the top right (red) and ends its run at the bottom

(blue). Cutout. A x20 magnification on a small section of the path, showing the scale of the path compared to the larva’s body (black bar, ≈ 1mm). Right. We plot a number of

behavioral features observed during its exploration, including its speed (red), body bend angle (orange), trajectory curvature (green), turn rate (blue), turn size (purple) and turn

handedness (olive). Turn handedness is calculated as (Nleft − Nright)/Ntotal, such that a handedness of 1.0 indicates all left turns, and a handedness of −1.0 indicates

all right turns.

note that this larva maintains a left-turning bias throughout the309

experiment.310

Larval thermotaxis is maintained over long periods. By lever- 311

aging the automated transport system’s flexible design to de- 312

liver and study responses to stimuli, we manipulate the tem- 313

perature of the agar arena to study larval thermotaxis behav- 314
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ior. Drosophila larvae have robust, highly-sensitive, and well-315

documented response to changes in temperature, and work has316

been done to decipher the behavioral strategy utilized to effi-317

ciently navigate thermal gradients (6, 24). However, there is a318

lack of abundant data on individual animals, since single ex-319

periments last on the order of 10 minutes, and thus a lack of320

understanding of the differences in thermotaxis strategy and its321

development between individuals. It is also unknown how ther-322

motaxis might evolve over long times. The automated transport323

system here provides an opportunity to delve deeper into these324

questions.325

Navigational effectiveness can be captured by a dimensionless326

navigation index equal to ïvxð/ïvð, the average of the compo-327

nent of crawling velocity along the thermal gradient normalized328

to the average speed. The resulting thermal navigation index329

ranges from +1.0 (parallel to gradient, i.e. crawling directly330

towards the warm side of the arena) to −1.0 (anti-parallel to331

gradient, i.e. crawling directly towards the cold side of the332

arena) (6, 24, 47). Fig. 5 shows the thermal navigation index of333

second instar wild type (Canton-S) larvae as they crawl across334

the experiment arena for six hours, both with (N = 38) and335

without (N = 42) a thermal gradient present. The thermal gradi-336

ent is centered at 17 °C with a steepness of 0.032 °C/mm, which337

would normally evoke robust cold avoidance behavior (24).338

When roaming freely with no stimulus present, we observe an339

average navigation index of 0.032±0.020 (range indicating stan-340

dard deviation). When a thermal gradient is applied to the arena,341

we observe a clear increase in navigation index to an average342

of 0.130 ± 0.017 (p < 0.001), indicating positive thermotaxis,343

where larvae crawl towards warmer temperature. The naviga-344

tion index also remains steady over the 6-hour measurement345

time.346

Navigation efficiency of individuals exhibits distinct behavioral347

phenotypes. Short snapshot observations produce limited infor-348

mation on any single individual animal, therefore limiting most349

thermotaxis analysis to population-level statistics. Long contin-350

uous observation enabled by the transport robot produces much351

more detail on individual animals, allowing us to analyze be-352

havioral features at the individual level as well (Fig. 6). Impor-353

tantly, averaging over a population necessarily results in some354

loss of information such that different statistics at the individual355

level can generate the same population mean.356

Fig. 6A-B demonstrates the differences between two such cases357

by examining simulated toy examples of a probability distri-358

bution of observations of a navigation index. Each series of359

observations is sampled from a Gaussian distribution, whose360

mean and standard deviation are randomly determined with two361

different statistics. Both simulations have similar distributions362

when analyzing navigation index occurrences at the population363

level (red), but produce distinct means of intra-animal probabil-364

ity distributions (purple). In the first simulation (Fig. 6A), high365

intra-animal variability produces a mean of intra-animal distri-366

butions that is similar to the population mean distribution. In367

the second (Fig. 6B), high inter-animal variability instead pro-368

duces a multimodal distribution for individuals despite the extra 369

modes not being present at the population level. Because our 370

long time scale thermotaxis experiments produce enough data 371

to establish both population-level and invididual-level naviga- 372

tion indexes, we can examine thermal navigation in a similar 373

way. 374

Interestingly, we find that larval thermotaxis behavior switches 375

between the two models when a thermal gradient is applied (Fig. 376

6C,D). While the population means have a similar shape and 377

spread in both contexts (red traces), without a thermal gradient 378

(Fig. 6C), the individual distributions exhibit high intra-animal 379

variability and low inter-animal variability, mirroring those seen 380

in the former (A). When in the presence of a thermal gradient 381

(Fig. 6D), we observe a bimodal distribution that more closely 382

resembles the latter (B) instead. We measure a binomial co- 383

efficient (BC) (33, 48) of 0.67 here, compared to BC = 0.48 384

when there is no gradient present. This is a significant increase 385

(p < 0.01) that crosses the critical value for detecting bimodal- 386

ity (BCcrit = 5/9), clearly indicating a shift in the shape of the 387

distribution. 388

Discussion 389

We have developed an automated system for long-term obser- 390

vation of Drosophila larvae (Fig. 1). The robotic arm is capable 391

of transporting larvae as they approach the edge of the experi- 392

ment arena back to the center, allowing continuous observation 393

of exploratory or directed navigation behavior from an overhead 394

camera. Through coordination and constant feedback between 395

the robot and video acquisition, the system maintains larvae 396

within the arena with high reliability, and we are able to achieve 397

continuous observation over developmental timescales. The ac- 398

companying analysis pipeline takes the output video from these 399

experiments to track larval posture and behavioral state while 400

maintaining individual identities. The analysis compensates for 401

the output video’s low resolution and lack of detailed features 402

of the larvae through a combination of local and global features 403

and the use of recurrent neural networks (Fig. 2). 404

We present a study of free roaming behavior in larvae over six 405

hours of continuous observation, comparing results to short 10- 406

minute snapshot observations of larvae at various stages of star- 407

vation (Fig. 3). The comparison yields dissimilar patterns when 408

considering the 10-minute averages, but similar dynamics when 409

considering the change in behavior over time, such that the 10- 410

minute trajectory in larval crawl speed resembles that seen in 411

the first hour of continuous observation. The similarity sug- 412

gests behavioral dynamics that are present in both experiments, 413

but persist and develop over a duration that is an order of mag- 414

nitude longer than what snapshot observations can capture. 415

Since our analysis maintains animal identities throughout the 416

video, we are able to capture behavioral information on single 417

individuals with unprecedented detail. We leverage this new 418

trove of data to analyze larval response to a thermal gradient and 419

examine the probability distribution of the observed navigation 420

index over time (Fig. 6). In particular, we note that the same 421
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Figure 5. Comparison of navigation index in a zero gradient environment (A, N = 42) and in a presence of a linear thermal gradient of 0.035°C/mm (B, N = 38). Thermal

navigation index is calculated as a dimensionless index equal to ïvxð/ïvð, such that +1.0 is parallel to gradient, 0.0 is normal to gradient, and −1.0 is anti-parallel to gradient.

We observe a clear increase in average navigation index when exposed to a thermal gradient (increase from 0.032 ± 0.020 to 0.130 ± 0.017 (p < 0.001, Student’s t-test)), but

we do not observe any significant pattern of change in that index over time. Shaded region indicates one standard deviation.
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Figure 6. Examination of inter- and intra-animal variability via analysis of probability distribution of the observed larval thermal navigation index. When dissecting probability

distributions of observed behavior, we notice that the same population (inter-animal) mean can be produced by two individual (intra-animal) distributions. A. Simulated example of

individual probability distributions with high intra-animal variability. The resulting mean of intra-animal distribution (purple) closely resembles the population mean (red). B.

Simulated example of individual probability distributions with high inter-animal variability. The resulting mean of intra-animal distribution (purple) form a multimodal distribution

despite a similar population mean (red) as A. C. Probability distribution of thermal navigation index observed without a thermal gradient. There is high intra-animal variability but

low inter-animal variability, such that the intra-animal mean forms a similar distribution to the population mean, as was the case seen in A. D. Probability distribution of thermal

navigation index observed in presence of a thermal gradient (0.035° C/mm). In contrast to C, the intra-animal mean forms a bimodal distribution, more closely resembling a

distribution with high inter-animal variability as seen in B.

population (inter-animal) mean can be produced by different in-422

dividual (intra-animal) distributions. Interestingly, larvae seem423

to switch between two such distribution shapes upon encoun-424

tering a thermal gradient. The individual distributions of ther-425

mal navigation index without a thermal gradient exhibits high426

intra-animal variability but low inter-animal variability, form-427

ing a unimodal mean distribution that is similar to the popu-428

lation mean. In contrast, the individual distributions exhibits429

high inter-animal variability, such that it become bimodal when430

a gradient is applied, despite the distribution shape remaining 431

unimodal at the population level. This is consistent with re- 432

cent findings that suggest a switch-like (all-or-none) learning 433

behavior in larval Drosophila, which is also not apparent when 434

only analyzing population means (49). By observing decision- 435

making behavior of individual larvae over several cycles of stim- 436

ulus and reward, Lesar, et al. (49) find that Pavlovian training 437

of preference for carbon dioxide is similarly quantized to two 438

states (all-or-none), each centered at a fixed preference index. 439
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While the context and modality for the learning assays are dif-440

ferent than our observation of larval thermotaxis, both results441

reveal new features of larval behavior that were previously ob-442

scured in population averages. Both results also suggest the ex-443

istence of larval “personality types”, or distinct, quantized be-444

havioral phenotypes that vary between individual animals (6,445

34, 49, 50). This work provides some progress in uncovering446

such phenotypes and furthering our understanding of learning447

and development of navigational strategies in individual ani-448

mals in addition to population averages.449

With the robot’s flexible design, we can continue to probe these450

questions in many different contexts. For example, the robot can451

deliver food or soluble drugs directly to the larvae on a predeter-452

mined schedule to measure both the acute and chronic effects on453

the animal’s behavior and physiology (27, 51–56). We can also454

leverage the existing lighting system to implement optogenetic455

activation or suppression of specific neurons, allowing delivery456

of fictive stimuli or studies of the effects of certain neuronal457

circuits on larval behavior and development (4, 5, 19, 57, 58).458

This can either be activated on a predetermined schedule, or in-459

tegrated directly with the existing robot and camera feedback460

system to enable activation triggers based on specific condi-461

tions such as larval behavior (e.g. activate upon larva initiating462

a turn).463

A major obstacle in way of achieving continuous observation464

of the entire larval life cycle (≈ 100 hours) is a reliable method465

of delivering enough nutrition and ensuring the larva has suffi-466

ciently fed. The current method of delivering drops of sugar-467

rich solutions has not been sufficient to trigger molting into the468

next instar stage, thus limiting us to a single instar stage. We469

hope to solve this problem and others as we continue to develop470

the system and expand its capabilities, for example with a sec-471

ond adjacent arena with more nutritive food where larvae could472

experience longer feeding times before being returned by the473

robot to the primary behavioral arena. Such rich detail covering474

the entire development of the larva would provide powerful in-475

sight into the long-term learning, memory, and behavioral adap-476

tations in tandem with the physiological developments that take477

place between instar stages.478

We hope that this study has highlighted some advantages of long479

term continuous measurement, and that similar instrumentation480

and analysis method could be applied to other organisms, along481

with a wide range of investiations in the fly larva.482
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