

Continuous, long-term crawling behavior characterized by a robotic transport system

James Yu¹, Stephanie Dancausse², Maria Paz¹, Tolu Faderin¹, Melissa Gaviria², Joseph Shomar², Dave Zucker³, Vivek Venkatachalam^{1,✉,*}, and Mason Klein^{2,✉,*}

¹Department of Physics, Northeastern University, Boston, MA 02115 USA

²Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA

³FlySorter, LLC, Seattle, WA 98107 USA

*These authors contributed equally to this work.

1 **Detailed descriptions of behavior provide critical insight into the
2 structure and function of nervous systems. In *Drosophila* larvae
3 and many other systems, short behavioral experiments have been
4 successful in characterizing rapid responses to a range of stimuli at
5 the population level. However, the lack of long-term continuous ob-
6 servation makes it difficult to dissect comprehensive behavioral dy-
7 namics of individual animals and how behavior (and therefore the
8 nervous system) develops over time. To allow for long-term con-
9 tinuous observations in individual fly larvae, we have engineered
10 a robotic instrument that automatically tracks and transports lar-
11 vae throughout an arena. The flexibility and reliability of its design
12 enables controlled stimulus delivery and continuous measurement
13 over developmental time scales, yielding an unprecedented level of
14 detailed locomotion data. We utilize the new system's capabilities
15 to perform continuous observation of exploratory behavior over a
16 duration of six hours with and without a thermal gradient present,
17 and in a single larva for over 30 hours. Long-term free-roaming
18 behavior and analogous short-term experiments show similar dy-
19 namics that take place at the beginning of each experiment. Fi-
20 nally, characterization of larval thermotaxis in individuals reveals
21 a bimodal distribution in navigation efficiency, identifying distinct
22 phenotypes that are obfuscated when only analyzing population
23 averages.**

24 Correspondence: v.venkatachalam@northeastern.edu, klein@miami.edu

26 Introduction

27 A complete description of an organism's behavior, or any re-
28 sponsive system more generally, would include a map of how
29 inputs transform into outputs. Reflexes or decisions made by
30 the peripheral and central nervous systems, for example, can be
31 characterized as functions that take surrounding environmen-
32 tal (and internal) stimulus information, process it, and lead to
33 a physical behavior. An organism's transformation properties
34 are rarely constant, and instead change over short and long time
35 scales, determined by its stimulus history and development. A
36 comprehensive understanding of animal behavior and its under-
37 lying mechanisms would ideally address all time scales between
38 fast neural responses through the slow physiological changes
39 associated with development (1–4). Short-term responses to
40 individual stimuli have been characterized in many organisms,
41 but a high-bandwidth treatment with continuous measurement
42 of behavior through the entire time course of an animal's devel-
43 opment has been prohibitive (5–7). While shorter experiments

44 have been successful in characterizing behavior and acute re-
45 sponses to stimuli at the population level, the lack of continu-
46 ous observation make it difficult to dissect individual behavioral
47 dynamics and their development over time. In most organisms,
48 behavior is too fast, too complicated, is performed in too large
49 of a space, or otherwise too difficult to observe with sufficient
50 resolution over a long time. An ideal system would perform
51 slow, well-defined actions in a confined space while responding
52 robustly to internal and external stimuli.

53 The *Drosophila melanogaster* larva model system presents an
54 opportunity to study navigational behavioral dynamics over long
55 time scales, well-suited to a detailed quantitative treatment. It
56 possesses a well-defined, slow behavioral repertoire and robust
57 response to many stimuli (8–10). The fruit fly has a relatively
58 short life cycle with high accessibility to their three short lar-
59 val stages (11). During these stages, larvae are highly food-
60 motivated and thus in the absence of food engage in nearly
61 continuous exploratory movement, which facilitates behavioral
62 studies of locomotion over long times (12). They also demon-
63 strate responses to chemosensory cues (13–15), mechanical and
64 nociceptive stimulation (16–18), light (19), as well as the abil-
65 ity to retain memory and change their behaviors in accordance
66 to learned experiences, and habituate to prolonged stimuli (20–
67 23). Larvae also perform robust behavioral responses to tem-
68 perature changes, engaging in thermotaxis along thermal gra-
69 dients, and modulating aspects of their locomotive behavior,
70 in particular their turning rate, in order to reach optimal con-
71 ditions (6, 24). The recent availability of a connectome brain
72 wiring diagram (25, 26) and numerous genetic tools have fa-
73 cilitated probing the neural circuits and molecular mechanisms
74 that underlie these behaviors (2, 8, 27–30). Here we focus on
75 directly observed exploration and navigation behavior and seek
76 to continuously measure fly larva crawling over times scales of
77 many hours.

78 Responses to a wide range of stimuli in larvae typically occur
79 through changes in their navigation and locomotion. Their nav-
80 igation behavior, when confined to flat 2D spaces, is akin to an
81 organism-scale 2D random walk (31, 32), characterized as an
82 alternating sequence of forward crawling "runs" and direction-
83 altering "turns", making the animal's behavior and response to
84 stimuli straightforward to quantify (7, 33–35). However, larvae
85 crawl away and typically remain at the edges of confining barriers,
86 or climb walls or bury into a substrates (9). Either scenario

87 results in the termination of exploratory behavior, limiting most
88 experiments to shorter snap-shots of larval behavior, typically
89 on the order of 10 minutes (6, 7, 36, 37). Manually prolonging
90 exploratory crawling behavior, such as picking up a larva with
91 a wet paintbrush and placing them back at the center, are inef-
92 ficient, difficult to perform consistently, and too labor-intensive
93 over long times, and thus not very practical. Longer experi-
94 ments with adult *Drosophila* have successfully been automated
95 to allow higher throughput (36–38), but no such system has pre-
96 viously been developed for freely crawling larvae.

97 Here, we present the design and operation of an automated “larva
98 picker” robot and demonstrate its capabilities through continu-
99 ous observation of larval exploration and navigation behavioral
100 response with high detail and over unprecedented duration. Im-
101 portantly, identity is maintained throughout tracking, so we can
102 characterize exploration and navigation at the population and
103 individual animal levels together, as larvae search for food un-
104 der varying hunger conditions, or negotiate variable temperature
105 environments. In doing so, we are able to reveal new behav-
106 ioral dynamics, where the animals’ search strategy is modulated
107 over hours and we can discriminate between different individual
108 statistics that are otherwise hidden by population averages.

109 Methods

110 **Larva Picker Robot.** To perform long-term behavioral studies
111 with the larva, we have designed and fabricated a robotic in-
112 strument that automatically tracks, transports, and feeds larvae
113 throughout a large arena. The flexibility of its design enables
114 arbitrary stimulus delivery alongside continuous measurement
115 of behavior, yielding an unprecedented level of detailed loco-
116 motion data and a comprehensive view of locomotion strategies
117 at the population and individual animal levels together.

118 The system operates by tightly coordinating video acquisition
119 from an overhead camera with a manipulator arm capable of
120 traversing three dimensions (Fig. 1B). The manipulator arm is
121 translated by stepper motors (Nema 8) in the X- and Y-axes and
122 a 5V solenoid (SparkFun) for the Z-axis, which are driven by a
123 programmable controller board (SmoothieBoard) with physical
124 and software limits in place to prevent overtravel. At the end of
125 the arm is a custom 18-Gauge nozzle (Fig. 1C) that can inter-
126 act with the larva and the experimental arena (Fig. 1D) that sit
127 below the camera and manipulator assembly.

128 A 2.3-megapixel CMOS camera (Grasshopper3) observes a small
129 number (4–6) of larvae crawling on a 22 x 22 cm agar gel (2.5%
130 wt./vol. agar in water, with 0.75% charcoal added for improved
131 contrast) and records at 10 Hz. Larvae are illuminated with four
132 strips of red LEDs (dominant wavelength around 620 nm, which
133 is outside the visible range of the larva (39), arranged in a square
134 around the agar gel. To maintain larval exploratory behavior
135 over a long duration, the camera detects when one nears the
136 edge of the arena. This triggers the manipulator to pick up the
137 larva with the nozzle. The larva is maintained on the nozzle via
138 the surface tension of a water droplet. The water droplet pro-
139 vides a way to indirectly interact with the larva to prevent caus-

140 ing damage to the animal. After the manipulator arm moves to
141 the center of the arena, it drops off the larva with a slow hor-
142 izontal motion, effectively rolling it off the nozzle (Fig. 1E).
143 The manipulator replenishes the water droplet before each pick
144 up, and a small flat Delrin plastic disk (2 mm diameter) at the
145 bottom of the nozzle provides more surface area for the droplet
146 to form (Fig. 1C). When the surface tension of the water is in-
147 sufficient to pick up the larva, the nozzle is capable of exerting
148 vacuum suction to assist in pick up, as well as allowing air flow
149 to release the larva during drop off.

150 Meanwhile, the mounted camera refreshes the image and there-
151 fore the position of the larva before and after each step of any
152 protocol, ensuring that the process is robust to variations in
153 crawling speed and behavior and to failed attempts, which are
154 detected and repeated (Fig. 1E). The pick up/drop off procedure
155 is 99.8%/99.9% successful (90%/95% on the first try), highly
156 important for the viability of long-term experiments.

157 Our system must also address desiccation of the agar gel sub-
158 strate and animal starvation, which limit experiment times and
159 affect behavior. To address the former, we have built an auto-
160 replenishing water moat (Fig. 1D) in direct contact with the gel,
161 which then maintains its water content and physical shape. In
162 addition, the moat also provides a convenient and readily avail-
163 able water source for the nozzle. To address the latter, the robot
164 can automatically administer a drop of apple juice ($\approx 0.1\text{g/mL}$
165 sugar concentration) directly to the larva on a predetermined
166 schedule. The larva is allowed to eat for a fixed time, then rinsed
167 with water so that it can return to a free-crawling state.

168 With these features in place, our system has so far achieved
169 more than 30 hours of continuous observation of individual larva
170 behavior.

171 In some experiments we observe how larvae navigate a variable
172 sensory environment. We use a similar system as outlined in
173 (6) to generate a 1D linear spatial thermal gradient. We fit the
174 underside of the experimental arena’s aluminium base with hot
175 and cold reservoirs on opposite sides, each equipped with two
176 liquid-cooled water blocks. PID (proportional-integral-derivative)
177 controllers drive thermoelectric coolers between each water block
178 and its reservoir to maintain a thermal gradient of 0.035 °C/mm
179 across the agar gel in the arena, with 13 °C on one side and
180 21 °C on the other side.

181 **Analysis Pipeline.** Our data analysis pipeline extracts numerous
182 behavioral features from video recordings of crawling larvae
183 (Fig. 2). Custom computer vision software takes raw movies
184 and extracts the position and body contour of each larva while
185 preserving individual animal identities (Fig. 2A). Because the
186 robot arm can briefly block the camera during pickup events,
187 resulting in dropped frames, the software interpolates larval pos-
188 i tions in these frames to maintain continuous observation. Since
189 the larva’s body length is roughly 1 mm and it crawls with an
190 average speed well below 1 mm/s, significant behavior events
191 are unlikely to occur during dropped frames and interpolation is
192 sufficient to rebuild trajectories.

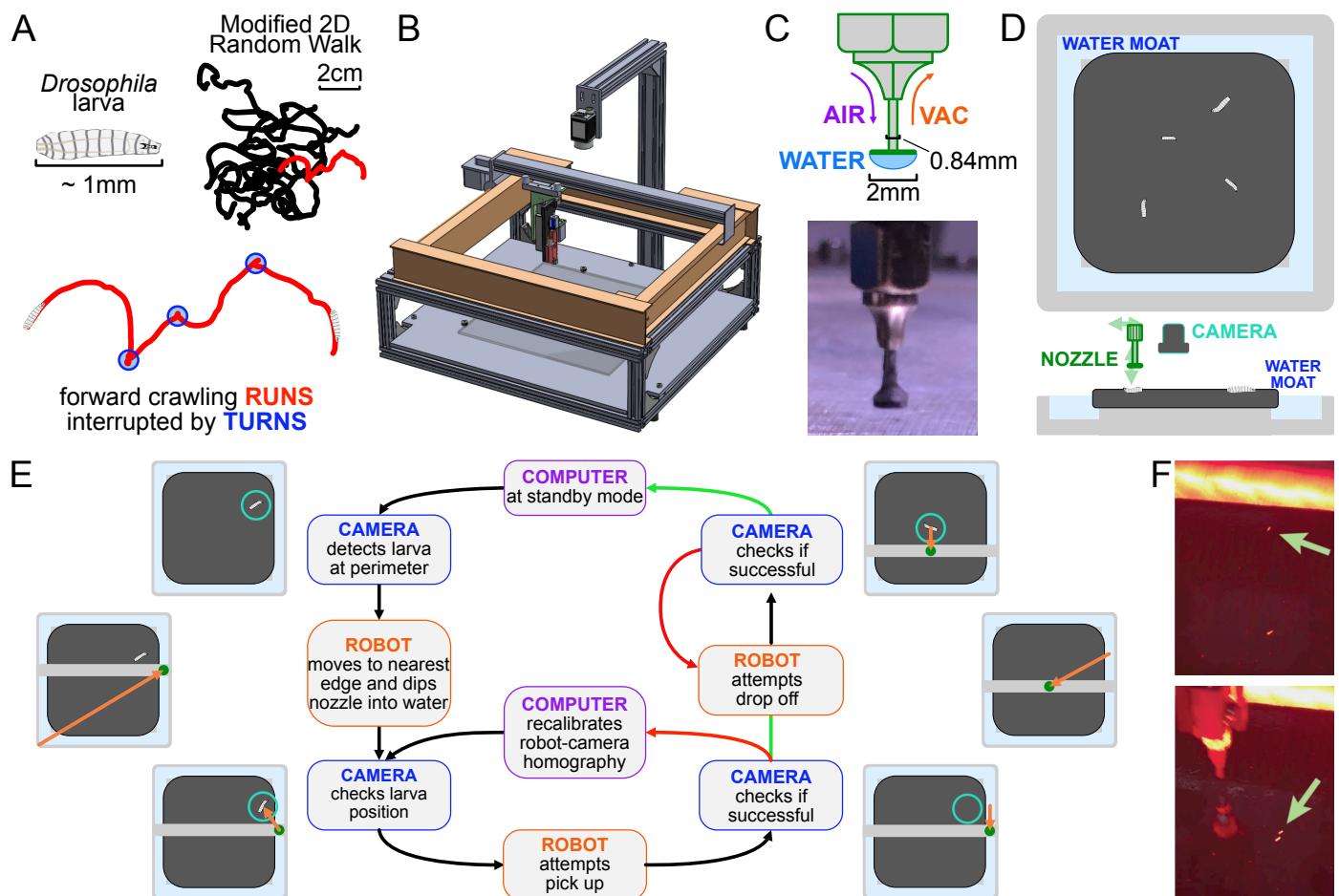


Figure 1. The automated larva transport robot enables continuous, long-term observation of fly larva crawling behavior. **A.** Schematic illustrating the fly larva's simple search behavior. They explore their environment in a modified 2D random walk, with 20 example paths (black) shown. Trajectories are characterized by an alternating series of forward crawling runs (red) and turns (blue). **B.** Isometric CAD schematic of the transport robot. The robot is built from a modified 3D printer with a custom nozzle. Feedback from a mounted overhead camera allows for tight coordination with the moving arm to safely and robustly interact with the experimental arena. **C.** The nozzle is built as a narrow tube that allows air and vacuum flow with a flat plastic disk fitted at the bottom. The disk provides ample surface area for a water droplet to form, and the droplet's surface pressure can pick up larvae while minimizing stress on the animal during the interaction. **D.** Top and side view schematics of the flat crawling arena. Larvae crawl atop an agar substrate, which is kept hydrated by a surrounding moat. The robot nozzle picks up larvae as they approach the edge of the arena and transports them back to the center to continue their free-roaming behavior. **E.** Flowchart of the larva pick-up feedback process. In standby mode, the camera records a video of larval behavior. When it detects a larva nearing the perimeter, it triggers the pick-up protocol for the robot. The manipulator arm moves to a point in the moat nearest to the larva and dips the nozzle in, forming a droplet at the tip to be used for pick up. The camera provides a more recent position for the moving larva as the robot attempts a pick up. If feedback from the camera suggests a successful pick up, it attempts a drop off. Otherwise, the manipulator repeats its attempt after receiving an updated larval position. Multiple failed attempts can trigger small perturbations to robot calibration parameters to allow better flexibility through reinforcement learning before continuing pick up attempts. Similarly, the robot performs multiple drop off attempts at the center of the arena until it receives a positive confirmation from the camera, at which point the system returns to its original standby mode. **F.** Photographs before (top) and after (bottom) the robot moves a larva from the perimeter to the center of the arena.

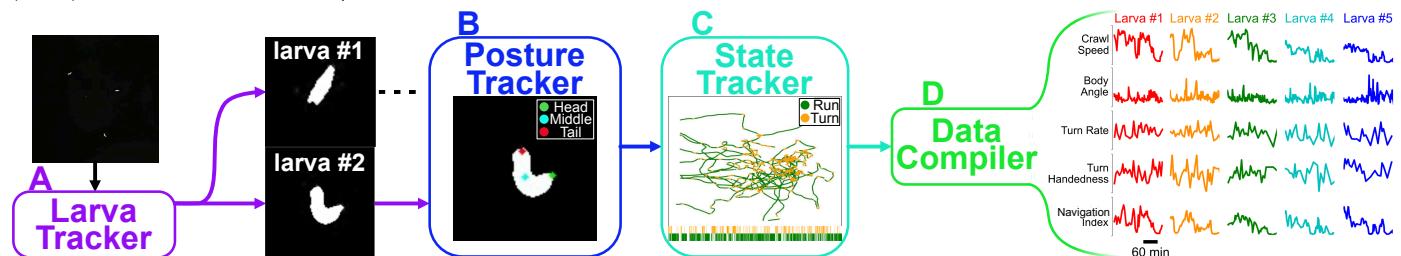


Figure 2. Analysis pipeline. **A.** Raw video acquired during the experiment is fed into computer vision software that tracks each larva while maintaining their identity. **B.** A posture tracker analyzes the isolated crops of each larva to determine its posture and orientation. **C.** A state tracker determines the behavioral state of each animal at each time point. **D.** Compiling all information from the preceding algorithms allows the pipeline to identify and calculate a wide variety of behavioral features.

193 The isolated crops (64 x 64 in pixels) of each larva are run
 194 through a recurrent U-Net (40) convolutional neural network
 195 (Fig. 2B) to determine the posture and orientation. The U-Net
 196 architecture has been shown to be highly effective at tasks that
 197 preserve spatial structure in an image by taking advantage of

198 both global and local features (40–42). We design our model
 199 such that the output is a probability heat map of the head and
 200 tail of the larva, which preserves the global spatial structure of
 201 the larva's body.

202 Traditional convolutional neural networks, including U-Net, often fail when analyzing sparse images with low-resolution features (41). This is particularly pronounced in our case since 203 each larva is generally captured as clusters of only ≈ 30 uniformly 204 bright pixels surrounded by black pixels. To compensate 205 for this, we utilize more temporal information, such as the 206 current momentum of the centroid. Since larval posture does 207 not deviate much from frame to frame, we add recurrence in the 208 form of long short term memory (LSTM) cells (43) at the 209 beginning, middle, and final layers of the network to simplify the 210 problem at each subsequent time step. The recurrence also 211 creates an additional cost for head-tail flips which we have found 212 to be a common issue with previous approaches to the 213 problem (41, 44, 45).

214 Using all available information (position, contour, and posture), 215 we use a densely connected neural network with bidirectional 216 recurrence to classify the behavioral state of the larva (“run”, 217 “turn”) at each time point (Fig. 2C) (34). The bidirectional 218 recurrence here allows the network to identify the bends in the 219 larva’s path and swings of the larva’s head by comparing frames 220 both before and after. From here, we can identify a wide range 221 of behavioral features and track them over extended time 222 periods.

225 Results

226 **The robot enables continuous observation of free exploration 227 over six hours.** Optimizing exploration by modulating behavior 228 is essential to the larva’s ability to find a food source efficiently. 229 While previous studies on *Drosophila* larvae have revealed some 230 changes to its navigation over the first few minutes of exploration 231 of an isotropic environment, how and whether their behavior 232 evolves or persists afterwards remains unknown (7). Studies 233 on another small organism with qualitatively comparable 234 navigation dynamics, the nematode *C. elegans*, show similar 235 changes in behavior during the first ≈ 100 seconds. Some 236 longer-duration experiment (1 hour vs 15 minutes) reveal a 237 transition in navigation strategy between two distinct modes of 238 local and global searches, but transitions across similar or longer 239 time scales have yet to be observed in *Drosophila* (7, 46). Here, 240 we demonstrate how our larva picker robot enables continuous 241 observation and analysis of larval locomotive behavior on very 242 long time scales to study changes in its exploration strategy in 243 an isotropic environment.

244 In Fig. 3, we present the results from continuous observation of 245 second instar wild type (Canton-S) larvae ($N = 42$) freely roaming 246 the experimental stage for a six hour time duration. Fig. 3A 247 and C show the speed and the turn rate of the larvae, respectively, 248 exhibiting the dynamics of their behavior. Notably, there is a 249 significant drop in activity (both speed and turn rate) over the 250 first hour before settling into a plateau that lasts for the following 251 few hours. The correlation between larval crawl speed and turn 252 rate over time has been previously observed (34) and is clearly 253 evident here, and we measure a correlation coefficient of 0.572 in 254 the population mean speeds and turn rates. With

255 the large amount of data gathered on each individual, we 256 confirm that this correlation also exist at the individual level with 257 an average correlation coefficient of 0.348 ± 0.098 .

258 **Long-term free roaming behavior is consistent with analogous 259 snapshot observations.** Since the larva were not fed over the 260 duration of the experiment, we compare continuous observations 261 with short “snapshot” observations of larvae at various 262 stages of starvation ($N = 200$ per stage). Larvae were removed 263 from food and starved over a certain number of hours, then 264 placed on an agar gel arena to be observe for 10 minutes without 265 interruption, and with no interaction with the robot. The 266 decline in activity seen in the robot-mediated experiments is 267 not present when observing crawl speeds averaged over the 10- 268 minute duration (Fig. 3A, purple bars). Upon closer inspection, 269 however, larval crawl speed measured in the starvation 270 studies (Fig. 3B) reveal a trend over time that mirrors what 271 we observe in the first hour of continuous observations. Over 272 these 10-minute snapshot observations, we measure an average 273 decline of -7.7×10^{-5} mm/s², comparable to the average of 274 -6.9×10^{-5} mm/s² seen over the first hour of continuous 275 observations. The similarity offers confidence that the behavioral 276 dynamics present here are not caused by transport robot actions 277 but are real features of the animal that continue to persist 278 and develop over a period that is more than 30 times longer than 279 what snapshot observations can capture.

280 To further ensure that disruptions to behavior due to the robot’s 281 interference have minimal influence, we analyzed larval behavior 282 before and after each interaction with the robot (i.e., a pick 283 up and drop off event). Fig. 3D shows averaged larval crawl 284 speeds 5 minutes before and 5 minutes after an interaction event 285 (vertical dashed line). As expected, mean larval speeds before 286 the interaction shows little change over the small window. We 287 do observe a transient of approximately 1-2 minutes just after 288 the interaction, where there is a noticeable increase in speed 289 ($p < 0.05$), but it quickly returns to the same mean as before (horizontal 290 line).

291 **A freely-crawling single larva is continuously monitored for more 292 than 30 hours.** As noted in the previous section, the robot is also 293 capable of automatic scheduled feeding. To keep the larva alive 294 as long as possible, the robot administers a drop of sugar-rich 295 solution directly to the larva once every hour. The larva is 296 allowed to feed for one minute, then the animal and the drop site 297 is rinsed with water, and the larva resumes exploration. Using 298 this protocol, we are able to study larval locomotive behavior for 299 over 30 hours, yielding an unprecedented amount of behavioral 300 and developmental information on an individual animal. Fig. 4 301 presents the trajectory of a single larva and some of its behavior 302 features observed over a duration of 30 hours, where the 303 individual animal crawls for more than 48 meters. Some behavioral 304 features exhibit steady change, like a decreasing speed throughout 305 the experiment. Notable differences in path shape occur 306 approximately half way through the long observation, with dramatic 307 increases in curvature and turn size, consistent with the 308 tight loops seen in the full trajectory plot (Fig. 4 left). We also

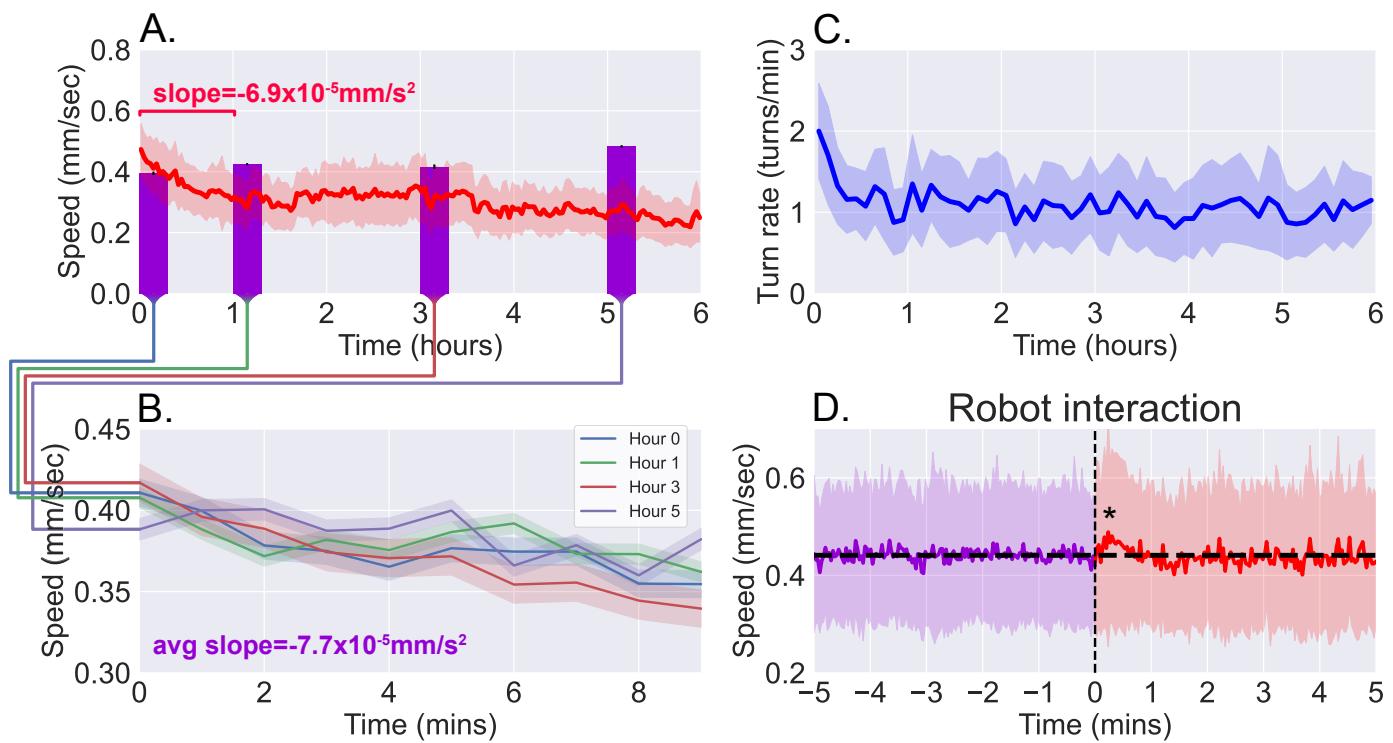


Figure 3. Observations of continuous free roaming for six hours. **A.** Larval crawl speed over time, comparing the results from continuous 6-hour observation recorded on the robot system (red, $N = 42$) to shorter 10-minute observation of larger numbers of starved larvae (purple, $N = 200$ per bar, from 10 experiments with 20 larvae each). **B.** Larval crawl speed over 10 minutes after starvation. We observe a decline in crawl speed ($-7.7 \times 10^{-5} \text{ mm/s}^2$) comparable to that observed during the first hour of the continuous observation ($-6.9 \times 10^{-5} \text{ mm/s}^2$). **C.** Larval turn rate over time. Similar to larval crawl speed (A), there is a noticeable drop in turn rate over the first hour, indicating an overall decrease in activity. **D.** Analysis of larval crawl speed before and after an interaction with the larva picker robot. We plot larval crawl speed during the five minutes immediately before (purple) and the five minutes immediately after (red) an interaction with the robot, i.e., a pick up and drop off event (vertical black dashed line). After a 1-2 min. transient ($p < 0.05$, Student's t-test), speed returns to the mean pre-interaction level (horizontal black line). For all panels, shaded regions indicate standard deviation from the mean.

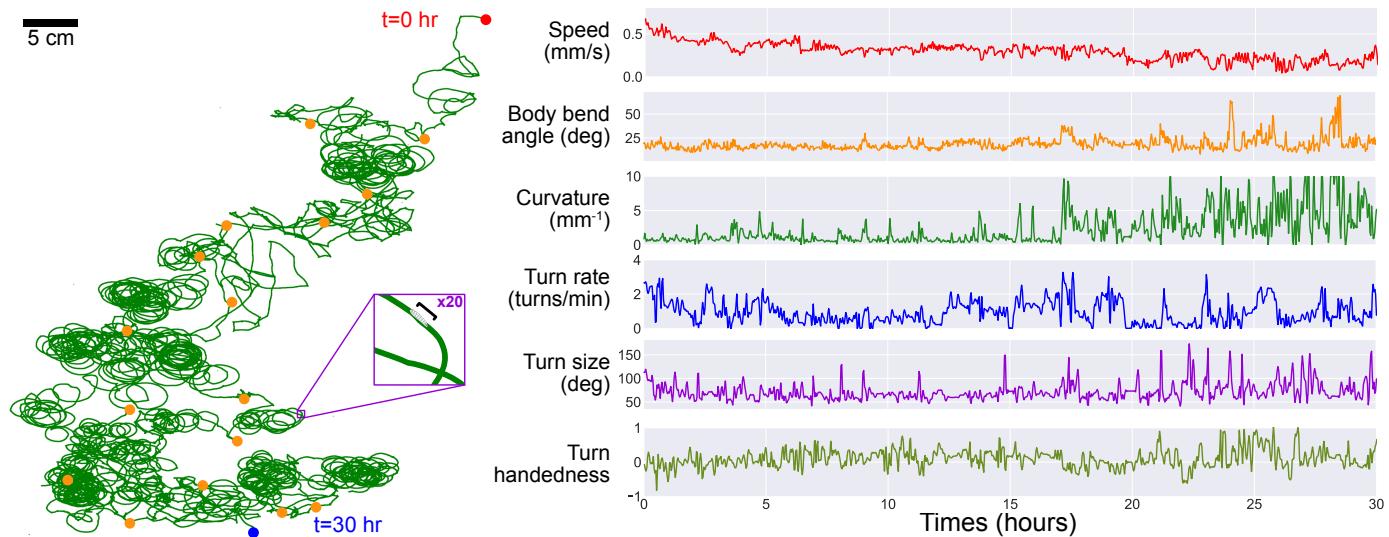


Figure 4. Long-term observation of a single larva. In order to maintain exploratory behavior in a fly larva without starving it, the robot automatically delivers a drop of apple juice ($\approx 0.1 \text{ g/mL}$ sugar concentration). The larva is allowed to eat for 1 – 2 minutes, after which the robot uses water and air to rinse the larva, which then continues roaming freely. This protocol allows for continuous observation of larval behavior over developmental timescales. **Left.** The larva's trajectory over a 30-hour duration, with its path (green) stitched together at each robot pick-up and drop-off positions (orange markers) to produce a continuous trajectory. The larva begins at the top right (red) and ends its run at the bottom (blue). **Cutout.** A x20 magnification on a small section of the path, showing the scale of the path compared to the larva's body (black bar, $\approx 1 \text{ mm}$). **Right.** We plot a number of behavioral features observed during its exploration, including its speed (red), body bend angle (orange), trajectory curvature (green), turn rate (blue), turn size (purple) and turn handedness (olive). Turn handedness is calculated as $(N_{\text{left}} - N_{\text{right}})/N_{\text{total}}$, such that a handedness of 1.0 indicates all left turns, and a handedness of -1.0 indicates all right turns.

309 note that this larva maintains a left-turning bias throughout the
310 experiment.

Larval thermotaxis is maintained over long periods. By leveraging the automated transport system's flexible design to deliver and study responses to stimuli, we manipulate the temperature of the agar arena to study larval thermotaxis behav-

315 ior. *Drosophila* larvae have robust, highly-sensitive, and well-
316 documented response to changes in temperature, and work has
317 been done to decipher the behavioral strategy utilized to effi-
318 ciently navigate thermal gradients (6, 24). However, there is a
319 lack of abundant data on individual animals, since single ex-
320 periments last on the order of 10 minutes, and thus a lack of
321 understanding of the differences in thermotaxis strategy and its
322 development between individuals. It is also unknown how ther-
323 motaxis might evolve over long times. The automated transport
324 system here provides an opportunity to delve deeper into these
325 questions.

326 Navigational effectiveness can be captured by a dimensionless
327 navigation index equal to $\langle v_x \rangle / \langle v \rangle$, the average of the compo-
328 nent of crawling velocity along the thermal gradient normalized
329 to the average speed. The resulting thermal navigation index
330 ranges from +1.0 (parallel to gradient, i.e. crawling directly
331 towards the warm side of the arena) to -1.0 (anti-parallel to
332 gradient, i.e. crawling directly towards the cold side of the
333 arena) (6, 24, 47). Fig. 5 shows the thermal navigation index of
334 second instar wild type (Canton-S) larvae as they crawl across
335 the experiment arena for six hours, both with ($N = 38$) and
336 without ($N = 42$) a thermal gradient present. The thermal gradi-
337 ent is centered at 17 °C with a steepness of 0.032 °C/mm, which
338 would normally evoke robust cold avoidance behavior (24).

339 When roaming freely with no stimulus present, we observe an
340 average navigation index of 0.032 ± 0.020 (range indicating stan-
341 dard deviation). When a thermal gradient is applied to the arena,
342 we observe a clear increase in navigation index to an average
343 of 0.130 ± 0.017 ($p < 0.001$), indicating positive thermotaxis,
344 where larvae crawl towards warmer temperature. The naviga-
345 tion index also remains steady over the 6-hour measurement
346 time.

347 **Navigation efficiency of individuals exhibits distinct behavioral**
348 **phenotypes.** Short snapshot observations produce limited infor-
349 mation on any single individual animal, therefore limiting most
350 thermotaxis analysis to population-level statistics. Long contin-
351 uous observation enabled by the transport robot produces much
352 more detail on individual animals, allowing us to analyze be-
353 havioral features at the individual level as well (Fig. 6). Import-
354 antly, averaging over a population necessarily results in some
355 loss of information such that different statistics at the individual
356 level can generate the same population mean.

357 Fig. 6A-B demonstrates the differences between two such cases
358 by examining simulated toy examples of a probability distri-
359 bution of observations of a navigation index. Each series of
360 observations is sampled from a Gaussian distribution, whose
361 mean and standard deviation are randomly determined with two
362 different statistics. Both simulations have similar distributions
363 when analyzing navigation index occurrences at the population
364 level (red), but produce distinct means of intra-animal probabili-
365 ty distributions (purple). In the first simulation (Fig. 6A), high
366 intra-animal variability produces a mean of intra-animal distri-
367 butions that is similar to the population mean distribution. In
368 the second (Fig. 6B), high inter-animal variability instead pro-

369 duces a multimodal distribution for individuals despite the extra
370 modes not being present at the population level. Because our
371 long time scale thermotaxis experiments produce enough data
372 to establish both population-level and individual-level naviga-
373 tion indexes, we can examine thermal navigation in a similar
374 way.

375 Interestingly, we find that larval thermotaxis behavior switches
376 between the two models when a thermal gradient is applied (Fig.
377 6C,D). While the population means have a similar shape and
378 spread in both contexts (red traces), without a thermal gradient
379 (Fig. 6C), the individual distributions exhibit high intra-animal
380 variability and low inter-animal variability, mirroring those seen
381 in the former (A). When in the presence of a thermal gradient
382 (Fig. 6D), we observe a bimodal distribution that more closely
383 resembles the latter (B) instead. We measure a binomial co-
384 efficient (BC) (33, 48) of 0.67 here, compared to $BC = 0.48$
385 when there is no gradient present. This is a significant increase
386 ($p < 0.01$) that crosses the critical value for detecting bimodal-
387 ity ($BC_{crit} = 5/9$), clearly indicating a shift in the shape of the
388 distribution.

389 Discussion

390 We have developed an automated system for long-term obser-
391 vation of *Drosophila* larvae (Fig. 1). The robotic arm is capable
392 of transporting larvae as they approach the edge of the experi-
393 ment arena back to the center, allowing continuous observation
394 of exploratory or directed navigation behavior from an overhead
395 camera. Through coordination and constant feedback between
396 the robot and video acquisition, the system maintains larvae
397 within the arena with high reliability, and we are able to achieve
398 continuous observation over developmental timescales. The ac-
399 companying analysis pipeline takes the output video from these
400 experiments to track larval posture and behavioral state while
401 maintaining individual identities. The analysis compensates for
402 the output video's low resolution and lack of detailed features
403 of the larvae through a combination of local and global features
404 and the use of recurrent neural networks (Fig. 2).

405 We present a study of free roaming behavior in larvae over six
406 hours of continuous observation, comparing results to short 10-
407 minute snapshot observations of larvae at various stages of star-
408 vation (Fig. 3). The comparison yields dissimilar patterns when
409 considering the 10-minute averages, but similar dynamics when
410 considering the change in behavior over time, such that the 10-
411 minute trajectory in larval crawl speed resembles that seen in
412 the first hour of continuous observation. The similarity sug-
413 gests behavioral dynamics that are present in both experiments,
414 but persist and develop over a duration that is an order of mag-
415 nitude longer than what snapshot observations can capture.

416 Since our analysis maintains animal identities throughout the
417 video, we are able to capture behavioral information on single
418 individuals with unprecedented detail. We leverage this new
419 trove of data to analyze larval response to a thermal gradient and
420 examine the probability distribution of the observed navigation
421 index over time (Fig. 6). In particular, we note that the same

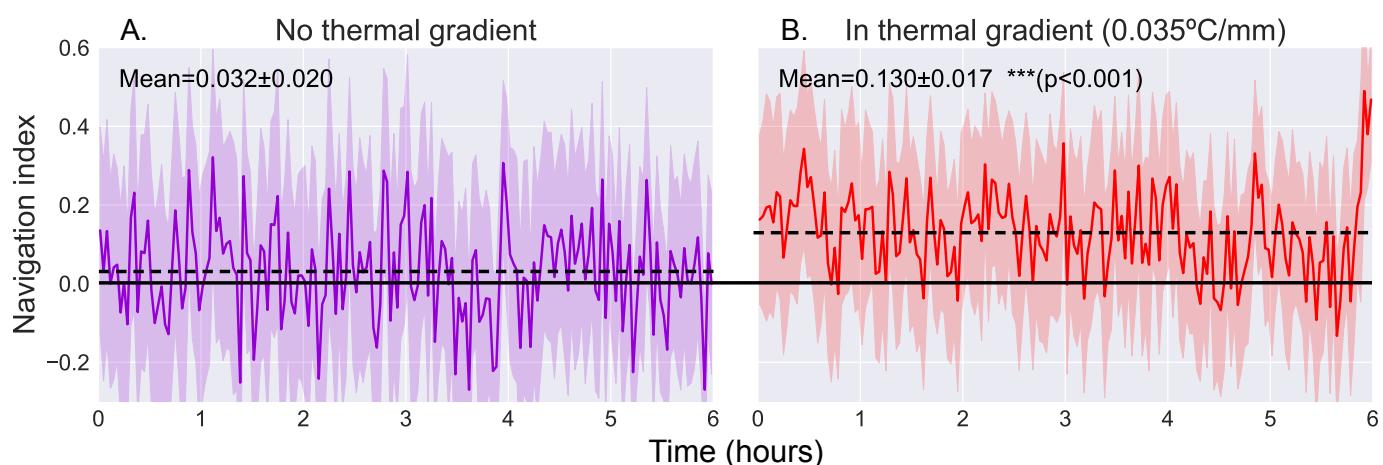


Figure 5. Comparison of navigation index in a zero gradient environment (A, $N = 42$) and in a presence of a linear thermal gradient of $0.035^{\circ}\text{C}/\text{mm}$ (B, $N = 38$). Thermal navigation index is calculated as a dimensionless index equal to $\langle v_x \rangle / \langle v \rangle$, such that $+1.0$ is parallel to gradient, 0.0 is normal to gradient, and -1.0 is anti-parallel to gradient. We observe a clear increase in average navigation index when exposed to a thermal gradient (increase from 0.032 ± 0.020 to 0.130 ± 0.017 ($p < 0.001$, Student's t-test)), but we do not observe any significant pattern of change in that index over time. Shaded region indicates one standard deviation.

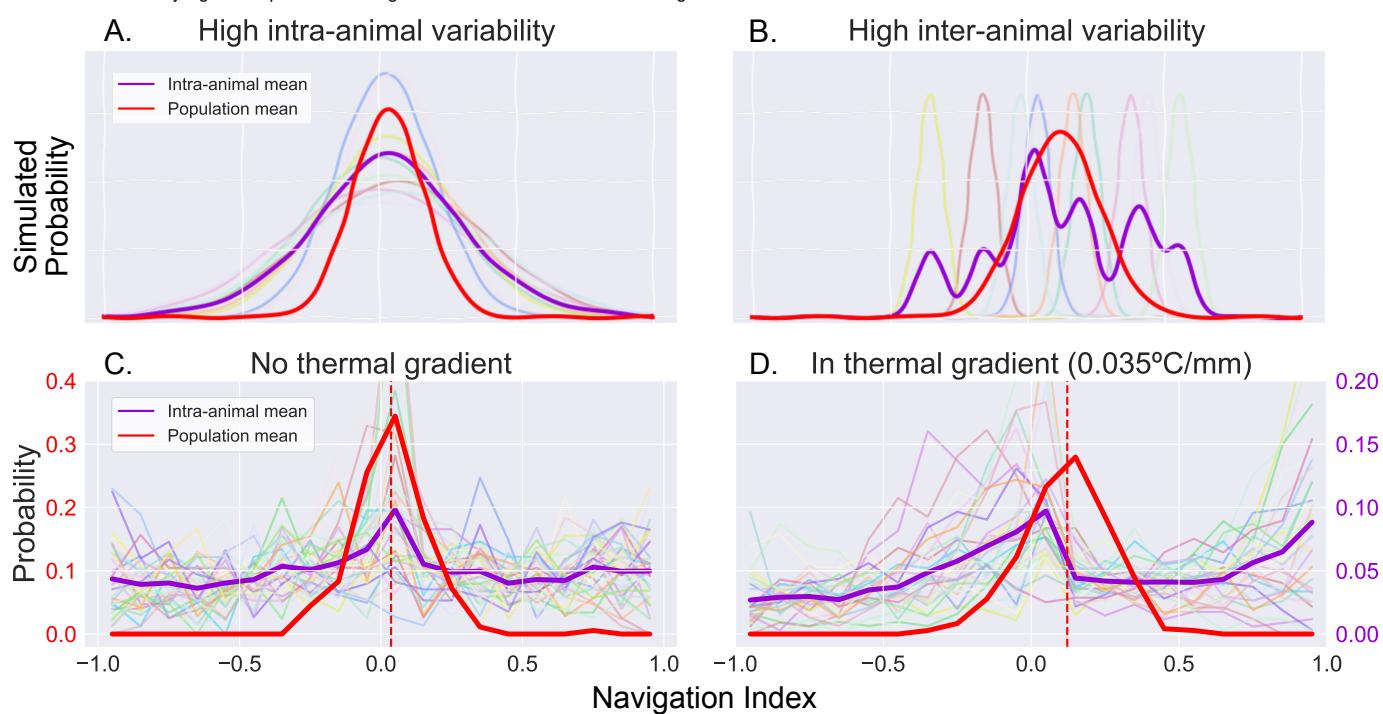


Figure 6. Examination of inter- and intra-animal variability via analysis of probability distribution of the observed larval thermal navigation index. When dissecting probability distributions of observed behavior, we notice that the same population (inter-animal) mean can be produced by two individual (intra-animal) distributions. **A.** Simulated example of individual probability distributions with high intra-animal variability. The resulting mean of intra-animal distribution (purple) closely resembles the population mean (red). **B.** Simulated example of individual probability distributions with high inter-animal variability. The resulting mean of intra-animal distribution (purple) form a multimodal distribution despite a similar population mean (red) as A. **C.** Probability distribution of thermal navigation index observed without a thermal gradient. There is high intra-animal variability but low inter-animal variability, such that the intra-animal mean forms a similar distribution to the population mean, as was the case seen in A. **D.** Probability distribution of thermal navigation index observed in presence of a thermal gradient ($0.035^{\circ}\text{C}/\text{mm}$). In contrast to C, the intra-animal mean forms a bimodal distribution, more closely resembling a distribution with high inter-animal variability as seen in B.

422 population (inter-animal) mean can be produced by different in-
 423 dividual (intra-animal) distributions. Interestingly, larvae seem
 424 to switch between two such distribution shapes upon encoun-
 425 tering a thermal gradient. The individual distributions of ther-
 426 mal navigation index without a thermal gradient exhibits high
 427 intra-animal variability but low inter-animal variability, form-
 428 ing a unimodal mean distribution that is similar to the pop-
 429 ulation mean. In contrast, the individual distributions exhibits
 430 high inter-animal variability, such that it become bimodal when

431 a gradient is applied, despite the distribution shape remaining
 432 unimodal at the population level. This is consistent with re-
 433 cent findings that suggest a switch-like (all-or-none) learning
 434 behavior in larval *Drosophila*, which is also not apparent when
 435 only analyzing population means (49). By observing decision-
 436 making behavior of individual larvae over several cycles of stim-
 437 ulus and reward, Lesar, et al. (49) find that Pavlovian training
 438 of preference for carbon dioxide is similarly quantized to two
 439 states (all-or-none), each centered at a fixed preference index.

440 While the context and modality for the learning assays are dif-
441 ferent than our observation of larval thermotaxis, both results
442 reveal new features of larval behavior that were previously ob-
443 scured in population averages. Both results also suggest the ex-
444 istence of larval “personality types”, or distinct, quantized be-
445 havioral phenotypes that vary between individual animals (6,
446 34, 49, 50). This work provides some progress in uncovering
447 such phenotypes and furthering our understanding of learning
448 and development of navigational strategies in individual ani-
449 mals in addition to population averages.

450 With the robot’s flexible design, we can continue to probe these
451 questions in many different contexts. For example, the robot can
452 deliver food or soluble drugs directly to the larvae on a predeter-
453 mined schedule to measure both the acute and chronic effects on
454 the animal’s behavior and physiology (27, 51–56). We can also
455 leverage the existing lighting system to implement optogenetic
456 activation or suppression of specific neurons, allowing delivery
457 of fictive stimuli or studies of the effects of certain neuronal
458 circuits on larval behavior and development (4, 5, 19, 57, 58).
459 This can either be activated on a predetermined schedule, or in-
460 tegrated directly with the existing robot and camera feedback
461 system to enable activation triggers based on specific condi-
462 tions such as larval behavior (e.g. activate upon larva initiating
463 a turn).

464 A major obstacle in way of achieving continuous observation
465 of the entire larval life cycle (\approx 100 hours) is a reliable method
466 of delivering enough nutrition and ensuring the larva has suffi-
467 ciently fed. The current method of delivering drops of sugar-
468 rich solutions has not been sufficient to trigger molting into the
469 next instar stage, thus limiting us to a single instar stage. We
470 hope to solve this problem and others as we continue to develop
471 the system and expand its capabilities, for example with a sec-
472 ond adjacent arena with more nutritive food where larvae could
473 experience longer feeding times before being returned by the
474 robot to the primary behavioral arena. Such rich detail covering
475 the entire development of the larva would provide powerful in-
476 sight into the long-term learning, memory, and behavioral adap-
477 tations in tandem with the physiological developments that take
478 place between instar stages.

479 We hope that this study has highlighted some advantages of long
480 term continuous measurement, and that similar instrumentation
481 and analysis method could be applied to other organisms, along
482 with a wide range of investigations in the fly larva.

483 **Acknowledgements** VV acknowledges support from the Bur-
484 roughs Wellcome Fund and NIH R01 NS126334. MK acknowl-
485 edges support from the NSF CAREER Award 2144385.

486 **Data Availability** Code written for this paper can be found on
487 GitHub here <https://github.com/venkatachalamlab/LarvaPickerRobot>.
488 Mildly compressed versions of all video recordings can be found
489 hosted on Zenodo.

References

1. Julien Colomb, Nicola Grillenzi, Reinhard F. Stocker, and Ariane Ramaekers. Complex behavioural changes after odour exposure in *drosophila* larvae. *Animal Behaviour*, 73:587–594, 2007. ISSN 00033472. doi: 10.1016/j.anbehav.2006.04.016. 491
492
493
2. Luis Hernandez-Nunez, Alicia Chen, Gonzalo Budelli, Vincent Richter, Anna Rist, Andreas S Thum, Mason Klein, Paul Garrity, and Aravinthan D T Samuel. Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. *bioRxiv*, page 2020.07.09.196428, 1 2020. doi: 10.1101/2020.07.09.196428. URL <http://biorexiv.org/content/early/2020/11/05/2020.07.09.196428.abstract>. 494
495
496
3. Helmut V B Hirsch, John Mercer, Hera Sambaziotis, Michael Huber, Diane T Stark, Tara Tornor-Morley, Kurt Hollocher, Helen Ghiradella, and Douglas M Ruden. Behavioral effects of chronic exposure to low levels of lead in *drosophila* melanogaster. *NeuroToxicology*, 24:435–442, 6 2003. 497
498
499
4. Kengo Inada, Hiroshi Kohsaka, Etsuko Takasu, Teruyuki Matsunaga, and Akinao Nose. Optical dissection of neural circuits responsible for *drosophila* larval locomotion with halorhodopsin. *PLoS ONE*, 6:22–23, 2011. ISSN 19326203. doi: 10.1371/journal.pone.0029019. 500
501
502
5. Luis Hernandez-Nunez, Jonas Belina, Mason Klein, Guangwei Si, Lindsey Claus, John R. Carlson, and Aravinthan D.T. Samuel. Reverse-correlation analysis of navigation dynamics in *drosophila* larva using optogenetics. *eLife*, 4:1–16, 2015. ISSN 2050084X. doi: 10.7554/eLife.06225. 503
504
505
6. Mason Klein, Bruno Afonso, Ashley J. Vonner, Luis Hernandez-Nunez, Matthew Berck, Christopher J. Tabone, Elizabeth A. Kane, Vincent A. Pieribone, Michael N. Nitabach, Albert Cardona, Marta Zlatic, Simon G. Sprecher, Marc Gershow, Paul A. Garrity, Aravinthan D.T. Samuel, and Paul W. Sternberg. Sensory determinants of behavioral dynamics in *drosophila* thermotaxis. *Proceedings of the National Academy of Sciences of the United States of America*, 112:E220–E229, 2015. ISSN 10916490. doi: 10.1073/pnas.1416212112. 506
507
508
7. Mason Klein, Sergei V. Krivov, Anggie J. Ferrer, Linjiao Luo, Aravinthan D.T. Samuel, and Martin Karplus. Exploratory search during directed navigation in *c. elegans* and *drosophila* larva. *eLife*, 6:1–14, 2017. ISSN 2050084X. doi: 10.7554/eLife.30503. 509
510
511
8. Marla B Sokolowski. Foraging strategies of *drosophila* melanogaster: A chromosomal analysis. *Behavioral Genetics*, 10:291–302, 1980. ISSN 1573-3297. doi: 10.1007/BF01067774. URL <https://doi.org/10.1007/BF01067774>. 512
513
514
9. Matthieu Louis and Gonzalo de Polavieja. Collective behavior: Social digging in *drosophila* larvae. *Current Biology*, 27:R1010–R1012, 2017. ISSN 09609822. doi: 10.1016/j.cub.2017.08.023. URL <http://dx.doi.org/10.1016/j.cub.2017.08.023>. 515
516
517
10. Julia Riedl and Matthieu Louis. Behavioral neuroscience: Crawling is a no-brainer for fruity fly larvae. *Current Biology*, 22:R867–R869, 2012. ISSN 09609822. doi: 10.1016/j.cub.2012.08.018. URL <http://dx.doi.org/10.1016/j.cub.2012.08.018>. 518
519
520
11. Miguel Angel Fernández-Moreno, Carol L. Farr, Lauri S. Kaguri, and Rafael Garesse. *Drosophila* melanogaster as a model system to study mitochondrial biology. *Methods in molecular biology* (Clifton, N.J.), 372:33–49, 2007. ISSN 1064-3745. doi: 10.1007/978-1-59745-365-3_3. URL <https://pubmed.ncbi.nlm.nih.gov/18314716/>. 521
522
523
12. Marina E Wosniack, Dylan Festa, Nan Hu, Julijana Gjorgjieva, and Jimena Berni. Adaptation of *drosophila* larva foraging in response to changes in food resources. *elife*, 11, 12 2022. ISSN 2050-084X. doi: 10.7554/ELIFE.75826. URL <https://pubmed.ncbi.nlm.nih.gov/36458693/>. 524
525
526
13. Isabell Schumann, Michael Berger, Nadine Nowag, Yannick Schäfer, Juliane Saumweber, Henrike Scholz, and Andreas S. Thum. Ethanol-guided behavior in *drosophila* larvae. *Scientific reports*, 11, 12 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-91677-3. URL <https://pubmed.ncbi.nlm.nih.gov/34112872/>. 527
528
529
14. Daeyeon Kim, Mar Alvarez, Laura M. Lechuga, and Matthieu Louis. Species-specific modulation of food-search behavior by respiration and chemosensation in *drosophila* larvae. *elife*, 6, 9 2017. ISSN 2050084X. doi: 10.7554/ELIFE.27057. 530
531
532
15. Katrin Vogt, David M. Zimmerman, Matthias Schlichting, Luis Hernandez-Nunez, Shanshan Qin, Karen Malacon, Michael Rosbash, Cengiz Pehlevan, Albert Cardona, and Aravinthan D.T. Samuel. Internal state configures olfactory behavior and early sensory processing in *drosophila* larvae. *Science advances*, 7, 1 2021. ISSN 2375-2548. doi: 10.1126/sciadv.ABD6900. URL <https://pubmed.ncbi.nlm.nih.gov/33523854/>. 533
534
535
16. Maria J. Almeida-Carvalho, Dimitri Berh, Andreas Braun, Yi Chun Chen, Katharina Eichler, Claire Eschlbach, Pauline M.J. Fritsch, Bertram Gerber, Nina Hoyer, Xiaoyi Jiang, Jörg Kleber, Christian Klämbt, Christian König, Matthieu Louis, Birgit Michels, Anton Miroshnikow, Christen Mirth, Daisuke Miura, Thomas Niewalda, Nils Otto, Emmanuel Paisios, Michael J. Pankratz, Meike Petersen, Noel Ramsperger, Nadine Randel, Benjamin Risse, Timo Saumweber, Philipp Schlegel, Michael Schleyer, Peter Soba, Simon G. Sprecher, Teiichi Tanimura, Andreas S. Thum, Naoko Toshima, Jim W. Truman, Ayse Yarali, and Marta Zlatic. The ol1mpiad: Concordance of behavioural faculties of stage 1 and stage 3 *drosophila* larvae. *Journal of Experimental Biology*, 220:2452–2475, 7 2017. ISSN 00220949. doi: 10.1242/jeb.15664/VIDEO-6. URL <https://journals.biologists.com/jeb/article/220/13/2452/17919/The-Ol1mpiad-concordance-of-behavioural-faculties>. 536
537
538
17. Fernanda Almeida-Oliveira, Bryon F. Tuthill, Katia C. Gondim, David Majerowicz, and Laura Palanker Musselman. dhnf4 regulates lipid homeostasis and oogenesis in *drosophila* melanogaster. *Insect biochemistry and molecular biology*, 133, 6 2021. ISSN 1879-0240. doi: 10.1016/j.ibmb.2021.103569. URL <https://pubmed.ncbi.nlm.nih.gov/33753225/>. 539
540
541
18. Nana Kudow, Azusa Kamikouchi, and Teiichi Tanimura. Softness sensing and learning in *drosophila* larvae. *Journal of Experimental Biology*, 222, 4 2019. ISSN 00220949. doi: 10.1242/jeb.196329/VIDEO-1. URL <https://journals.biologists.com/jeb/article/222/7/jeb196329/20612/Softness-sensing-and-learning-in-Drosophila-larvae>. 542
543
544
19. Elizabeth A. Kane, Marc Gershow, Bruno Afonso, Ivan Larderet, Mason Klein, Ashley R. Carter, Benjamin L. De Bivort, Simon G. Sprecher, and Aravinthan D.T. Samuel. Sensorimotor structure of *drosophila* larva phototaxis. *Proceedings of the National Academy of Sciences of the United States of America*, 110, 2013. ISSN 00278424. doi: 10.1073/pnas.1215295110. 545
546
547
20. Sean E. McGuire, Phuong T. Le, Alexander J. Osborn, Kunihiro Matsumoto, and Ronald L. Davis. Spatiotemporal rescue of memory dysfunction in *drosophila*. *Science*, 302:1765–1768, 548
549
550

574 12 2003. ISSN 00368075. doi: 10.1126/SCIENCE.1089035.

575 21. Sean E. McGuire, Gregg Roman, and Ronald L. Davis. Gene expression systems in drosophila: 660
576 a synthesis of time and space. *Trends in genetics : TIG*, 20:384–391, 8 2004. ISSN 0168- 661
577 9525. doi: 10.1016/J.TIG.2004.06.012. URL [https://pubmed.ncbi.nlm.nih.gov/ 662
578 15262411/](https://pubmed.ncbi.nlm.nih.gov/15262411/).

579 22. Aoife Larkin, Ming Yu Chen, Leonie Kirszenblat, Judith Reinhard, Bruno van Swinderen, 663
580 and Charles Claudianos. Neurexin-1 regulates sleep and synaptic plasticity in drosophila 664
581 melanogaster. *European Journal of Neuroscience*, 42:2455–2466, 10 2015. ISSN 1460-9568. 665
582 doi: 10.1111/ejn.13023. URL <https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.13023https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13023>.

583 23. Alexander Berne, Tom Zhang, Joseph Shomar, Anggie J. Ferrer, Aaron Valdes, Tomoko 666
584 Ohyama, and Mason Klein. Mechanical vibration patterns elicit behavioral transitions and 667
585 habituation in crawling drosophila larvae. *bioRxiv*, page 2021.04.26.441415, 4 2021. doi: 668
586 10.1101/2021.04.26.441415. URL <https://www.biorxiv.org/content/10.1101/2021.04.26.441415v1https://www.biorxiv.org/content/10.1101/2021.04.26.441415v1.abstract>.

587 24. Linjiao Luo, Marc Gershon, Mark Rosenzweig, Kyeong Jin Kang, Christopher Fang-Yen, Paul A. 669
588 Garrity, and Aravindh T. D. Samuel. Navigational decision making in drosophila thermotaxis. 670
589 *Journal of Neuroscience*, 30:4261–4272, 2010. ISSN 02706474. doi: 10.1523/JNEUROSCI. 671
590 4090-09.2010.

591 25. A Huser, A Rohwedder, A A Apostolopoulou, A Widmann, and J E Pfitzenmaier. The serotonergic 672
592 central nervous system of the drosophila larva: Anatomy and behavioral function. *PLoS ONE*, 7:47518, 673
593 2012. doi: 10.1371/journal.pone.0047518. URL www.plosone.org.

594 26. Ivan Larderat, Pauline M.J. Fritsch, Nanae Gendre, G. Larisa Neagu-Maier, Richard D. Fetter, 674
595 Casey M. Schneider-Mizell, James W. Truman, Marta Zlatic, Albert Cardona, and Simon G. 675
596 Sprecher. Organization of the drosophila larval visual circuit. *eLife*, 6, 8 2017. ISSN 2050084X. 676
597 doi: 10.7554/ELIFE.28387.

598 27. Karla R Kaun, Anita V Devineni, and Ulrike Heberlein. Drosophila melanogaster as a model 677
599 to study drug addiction. *Human Genetics*, 131:959–975, 6 2012.

600 28. Ruben Gepner, Mirna Mihovilovic Skanata, Natalie M Bernat, Margarita Kaplow, and Marc 678
601 Gershon. Computations underlying drosophila photo-taxis, odor-taxis, and multi-sensory 679
602 integration. *eLife*, 4, 5 2015. ISSN 2050-084X. doi: 10.7554/eLife.06229. URL <https://elifesciences.org/articles/06229>.

603 29. Lin Tian, S. Andrew Hires, Tianyi Mao, Daniel Huber, M. Eugenia Chiappe, Sreekanth H. Chala- 680
604 sanasi, Leopoldo Petreanu, Jasper Akerboom, Sean A. McKinney, Eric R. Schreiter, Cornelia I. 681
605 Bargmann, Vivek Jayaraman, Karel Svoboda, and Loren L. Looger. Imaging neural activity in 682
606 worms, flies and mice with improved gcamp calcium indicators. *Nature Methods*, 6, 2009. ISSN 683
607 15487091. doi: 10.1038/nmeth.1398.

608 30. Tingting Xie, Margaret C.W. Ho, Qili Liu, Wakako Horiuchi, Chun Chieh Lin, Darya Task, 684
609 Haojiang Luan, Benjamin H. White, Christopher J. Potter, and Mark N. Wu. A genetic 685
610 toolkit for dissecting dopamine circuit function in drosophila. *Cell Reports*, 23:652–665, 2018. 686
611 ISSN 22111247. doi: 10.1016/j.celrep.2018.03.068. URL <https://doi.org/10.1016/j.celrep.2018.03.068>.

612 31. Howard C Berg and Douglas A Brown. Chemotaxis in escherichia coli analysed by three- 687
613 dimensional tracking. *Nature*, 239:500–504, 1972. ISSN 1476-4687. doi: 10.1038/239500a0. 688
614 URL <https://doi.org/10.1038/239500a0>.

615 32. Howard C Berg. *E. Coli in Motion*. Springer New York, 2004. ISBN 0387008888. doi: 10.1007/ 689
616 b97370.

617 33. Edward A. Codling, Michael J. Plank, and Simon Benhamou. Random walk models in biology. 690
618 *Journal of the Royal Society Interface*, 5, 2008. ISSN 17425662. doi: 10.1098/rsif.2008.0014.

619 34. Maximilian N. Günther, Guilherme Nettlesheim, and George T. Shubeita. Quantifying and 691
620 predicting drosophila larvae crawling phenotypes. *Scientific Reports* 2016 6:1, 6:1–10, 6 2016. 692
621 ISSN 2045-2322. doi: 10.1038/srep27972. URL <https://www.nature.com/articles/srep27972>.

622 35. Subhaneil Lahiri, Konlin Shen, Mason Klein, Anji Tang, Elizabeth Kane, Marc Gershon, Paul 693
623 Garrity, and Aravindh T. D. Samuel. Two alternating motor programs drive navigation in 694
624 drosophila larva. *PLoS ONE*, 6, 2011. ISSN 19326203. doi: 10.1371/journal.pone.0023180.

625 36. Maria D.L.A. Jaime, Sean Karott, Ghadi H. Salem, Jonathan Krynetsky, Marcial 695
626 Garmendia-Cedillos, Sarah Anderson, Susan Harbison, Thomas J. Pohida, and Brian 696
627 Oliver. The high-throughput waffl system for treating and monitoring individual 697
628 drosophila melanogaster adults. *bioRxiv*, page 428037, 9 2018. doi: 10.1101/ 698
629 428037. URL <https://www.biorxiv.org/content/10.1101/428037v2https://www.biorxiv.org/content/10.1101/428037v2.abstract>.

630 37. Tom Alisch, James D Crall, Albert B Kao, Dave Zucker, and Benjamin L De Bivort. Maple (699
631 modular automated platform for large-scale experiments), a robot for integrated organism-handling 700
632 and phenotyping. *eLife*, 2018. doi: 10.7554/eLife.37166.001. URL <https://doi.org/10.7554/eLife.37166.001>.

633 38. Sean M. Buchanan, Jamey S. Kain, and Benjamin L. De Bivort. Neuronal control of locomotor 701
634 handedness in drosophila. *Proceedings of the National Academy of Sciences of the United 702
635 States of America*, 112, 2015. ISSN 10916490. doi: 10.1073/pnas.1500804112.

636 39. Simon G. Sprecher, Franck Pichaud, and Claude Desplanc. Adult and larval photoreceptors 703
637 use different mechanisms to specify the same rhodopsin fates. *Genes & Development*, 21:2182, 9 2007. 704
638 ISSN 08909369. doi: 10.1101/GAD.1565407. URL <https://pmc/articles/PMC1950857//pmc/articles/PMC1950857/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950857/>.

639 40. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for 705
640 biomedical image segmentation. pages 234–241. Springer International Publishing, 2015. ISBN 706
641 978-3-319-24574-4.

642 41. Benjamin Risse, Dimitri Berh, Nils Otto, Christian Klämbt, and Xiaoyi Jiang. Fimtrack: An open 707
643 source tracking and locomotion analysis software for small animals. *PLoS Computational Biology*, 13, 5 2017. ISSN 15537358. doi: 10.1371/journal.pcbi.1005530.

644 42. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 708
645 recognition. *arXiv*, 12 2015. URL <http://arxiv.org/abs/1512.03385>.

646 43. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9: 709
647 1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/NECO.1997.9.8.1735. URL <https://pubmed.ncbi.nlm.nih.gov/9377276/>.

648 44. Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Mackenzie 710
649 Weygandt Mathis, and Matthias Bethge. DeepLabcut: markerless pose estimation of 711
650 user-defined body parts with deep learning. *Nature Neuroscience*, 21:1281–1289, 2018. ISSN 1546-1726. doi: 10.1038/s41593-018-0209-y. URL <https://doi.org/10.1038/s41593-018-0209-y>.

651 45. Semih Günel, Helge Rhodin, Daniel Morales, João Campagnolo, Pavan Ramdya, and Pascal 712
652 Fua. DeepFly3d: A deep learning-based approach for 3d limb and appendage tracking in tethered, 713
653 adult drosophila. *bioRxiv*, page 640375, 2019. ISSN 2050-084X. doi: 10.1101/640375.

654 46. Adam J Calhoun, Sreekanth H Chalasani, and Tatyana O Sharpee. Maximally informative foraging 714
655 by caenorhabditis elegans. *eLife*, 3, 12 2014. ISSN 2050-084X. doi: 10.7554/eLife.04220. 715
656 URL <https://elifesciences.org/articles/04220>.

657 47. Marco Gallo, Tyler A. Ofstad, Lindsey J. Macpherson, Jing W. Wang, and Charles S. Zuker. 716
658 The coding of temperature in the drosophila brain. *Cell*, 144, 2011. ISSN 00928674. doi: 717
659 10.1016/j.cell.2011.01.028.

660 48. Jonathan B. Freeman and Rick Dale. Assessing bimodality to detect the presence of a dual 718
661 cognitive process. *Behavior research methods*, 45:83–97, 2013. ISSN 1554-3528. doi: 10.3758/S13428-012-0225-X. URL <https://pubmed.ncbi.nlm.nih.gov/22806703/>.

662 49. Amanda Lesar, Javan Tahir, Jason Wolk, and Marc Gershon. Switch-like and persistent memory 719
663 formation in individual drosophila larvae. *eLife*, 10, 10 2021. ISSN 2050-084X. doi: 10.7554/ 720
664 ELIFE.70317. URL <https://pubmed.ncbi.nlm.nih.gov/34636720/>.

665 50. Tomoko Ohyama, Tihana Jovanic, Gennady Denisov, Tam C. Dang, Dominik Hoffmann, Rex A. 721
666 Kerr, and Marta Zlatic. High-throughput analysis of stimulus-evoked behaviors in drosophila 722
667 larva reveals multiple modality-specific escape strategies. *PLoS ONE*, 8, 2013. ISSN 19326203. 723
668 doi: 10.1371/journal.pone.0071706.

669 51. Fred W. Wolf and Ulrike Heberlein. Invertebrate models of drug abuse. *Journal of Neurobiology*, 54:161–178, 2003. ISSN 00223034. doi: 10.1002/neu.10166.

670 52. Roland J. Bainton, Linus T.Y. Tsai, Carol M. Singh, Monica S. Moore, Wendi S. Neckameyer, 724
671 and Ulrike Heberlein. Dopamine modulates acute responses to cocaine, nicotine and ethanol in 725
672 drosophila. *Current Biology*, 10:187–194, 2000. ISSN 09609822. doi: 10.1016/S0960-9822(00) 726
673 00336-5.

674 53. Morgane Besson and Jean René Martin. Centrophobism/thigmotaxis, a new role for the mushroom 727
675 bodies in drosophila. *Journal of Neurobiology*, 62:386–396, 2005. ISSN 00223034. doi: 10.1002/neu.20111. 728
676

677 54. Bertram Gerber and Reinhard F Stocker. The drosophila larva as a model for studying 729
678 chemosensation and chemosensory learning: A review. *Chemical Senses*, 32:65–89, 1 2007.

679 55. Amir Fayyazuddin, Mahira A. Zaheer, P. Robin Hiesinger, and Hugo J. Bellen. The nicotinic 730
680 acetylcholine receptor da7 is required for an escape behavior in drosophila. *PLoS Biology*, 4: 731
681 0420–0431, 2006. ISSN 15457885. doi: 10.1371/journal.pbio.0040063.

682 56. Brooks G Robinson, Sukant Khurana, Jascha B Pohl, Wen ke Li, Alfredo Ghezzi, Amanda M 732
683 Cady, Kristina Najjar, Michael M Hatch, Ruchita R Shah, Amar Bhat, Omar Hariri, Kareem B 733
684 Haroun, Melvin C Young, Kathryn Fife, Jeff Hooten, Tuan Tran, Daniel Goan, Foram Desai, 734
685 Farhan Husain, Ryan M Godinez, Jeffrey C Sun, Jonathan Corpuz, Jacxelyn Moran, Allen C 735
686 Zhong, William Y Chen, and Nigel S Atkinson. Low concentration of ethanol impairs learning 736
687 but not motor and sensory behavior in drosophila larvae. *PLoS One*, 7, 5 2012.

688 57. Viviana Grdinaru, Feng Zhang, Charu Ramakrishnan, Joanna Mattis, Rohit Prakash, Ilka 737
689 Diester, Inbal Goshen, Kimberly R. Thompson, and Karl Deisseroth. Molecular and cellular 738
690 approaches for diversifying and extending optogenetics. *Cell*, 141:154–165, 2010. ISSN 00928674. 739
691 doi: 10.1016/j.cell.2010.02.037. URL [http://dx.doi.org/10.1016/j.cell. 740
692 2010.02.037](http://dx.doi.org/10.1016/j.cell.2010.02.037).

693 58. Paul M. Salvaterra and Toshihiro Kitamoto. Drosophila cholinergic neurons and processes 741
694 visualized with gal4/vas-gfp. *Gene Expression Patterns*, 1:73–82, 2001. ISSN 1567133X. doi: 742
695 10.1016/S1567-133X(01)00011-4.