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Detailed descriptions of behavior provide critical insight into the
structure and function of nervous systems. In Drosophila larvae
and many other systems, short behavioral experiments have been
successful in characterizing rapid responses to a range of stimuli at
the population level. However, the lack of long-term continuous ob-
servation makes it difficult to dissect comprehensive behavioral dy-
namics of individual animals and how behavior (and therefore the
nervous system) develops over time. To allow for long-term con-
tinuous observations in individual fly larvae, we have engineered
a robotic instrument that automatically tracks and transports lar-
vae throughout an arena. The flexibility and reliability of its design
enables controlled stimulus delivery and continuous measurement
over developmental time scales, yielding an unprecedented level of
detailed locomotion data. We utilize the new system’s capabilities
to perform continuous observation of exploratory behavior over a
duration of six hours with and without a thermal gradient present,
and in a single larva for over 30 hours. Long-term free-roaming
behavior and analogous short-term experiments show similar dy-
namics that take place at the beginning of each experiment. Fi-
nally, characterization of larval thermotaxis in individuals reveals
a bimodal distribution in navigation efficiency, identifying distinct
phenotypes that are obfuscated when only analyzing population
averages.

Correspondence: v. venkatachalam@northeastern.edu, klein@miami.edu

Introduction

A complete description of an organism’s behavior, or any re-
sponsive system more generally, would include a map of how
inputs transform into outputs. Reflexes or decisions made by
the peripheral and central nervous systems, for example, can be
characterized as functions that take surrounding environmen-
tal (and internal) stimulus information, process it, and lead to
a physical behavior. An organism’s transformation properties
are rarely constant, and instead change over short and long time
scales, determined by its stimulus history and development. A
comprehensive understanding of animal behavior and its under-
lying mechanisms would ideally address all time scales between
fast neural responses through the slow physiological changes
associated with development (1-4). Short-term responses to
individual stimuli have been characterized in many organisms,
but a high-bandwidth treatment with continuous measurement
of behavior through the entire time course of an animal’s devel-
opment has been prohibitive (5-7). While shorter experiments

have been successful in characterizing behavior and acute re-
sponses to stimuli at the population level, the lack of continu-
ous observation make it difficult to dissect individual behavioral
dynamics and their development over time. In most organisms,
behavior is too fast, too complicated, is performed in too large
of a space, or otherwise too difficult to observe with sufficient
resolution over a long time. An ideal system would perform
slow, well-defined actions in a confined space while responding
robustly to internal and external stimuli.

The Drosophila melanogaster larva model system presents an
opportunity to study navigational behavioral dynamics over long
time scales, well-suited to a detailed quantitative treatment. It
possesses a well-defined, slow behavioral repertoire and robust
response to many stimuli (8—10). The fruit fly has a relatively
short life cycle with high accessibility to their three short lar-
val stages (11). During these stages, larvae are highly food-
motivated and thus in the absence of food engage in nearly
continuous exploratory movement, which facilitates behavioral
studies of locomotion over long times (12). They also demon-
strate responses to chemosensory cues (13—15), mechanical and
nociceptive stimulation (16—18), light (19), as well as the abil-
ity to retain memory and change their behaviors in accordance
to learned experiences, and habituate to prolonged stimuli (20—
23). Larvae also perform robust behavioral responses to tem-
perature changes, engaging in thermotaxis along thermal gra-
dients, and modulating aspects of their locomotive behavior,
in particular their turning rate, in order to reach optimal con-
ditions (6, 24). The recent availability of a connectome brain
wiring diagram (25, 26) and numerous genetic tools have fa-
cilitated probing the neural circuits and molecular mechanisms
that underlie these behaviors (2, 8, 27-30). Here we focus on
directly observed exploration and navigation behavior and seek
to continuously measure fly larva crawling over times scales of
many hours.

Responses to a wide range of stimuli in larvae typically occur
through changes in their navigation and locomotion. Their nav-
igation behavior, when confined to flat 2D spaces, is akin to an
organism-scale 2D random walk (31, 32), characterized as an
alternating sequence of forward crawling “runs” and direction-
altering “turns”, making the animal’s behavior and response to
stimuli straightforward to quantify (7, 33-35). However, larvae
crawl away and typically remain at the edges of confining barri-
ers, or climb walls or bury into a substrates (9). Either scenario
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results in the termination of exploratory behavior, limiting most
experiments to shorter snap-shots of larval behavior, typically
on the order of 10 minutes (6, 7, 36, 37). Manually prolonging
exploratory crawling behavior, such as picking up a larva with
a wet paintbrush and placing them back at the center, are inef-
ficient, difficult to perform consistently, and too labor-intensive
over long times, and thus not very practical. Longer experi-
ments with adult Drosophila have successfully been automated
to allow higher throughput (36-38), but no such system has pre-
viously been developed for freely crawling larvae.

Here, we present the design and operation of an automated “larva
picker” robot and demonstrate its capabilities through continu-
ous observation of larval exploration and navigation behavioral
response with high detail and over unprecedented duration. Im-
portantly, identity is maintained throughout tracking, so we can
characterize exploration and navigation at the population and
individual animal levels together, as larvae search for food un-
der varying hunger conditions, or negotiate variable temperature
environments. In doing so, we are able to reveal new behav-
ioral dynamics, where the animals’ search strategy is modulated
over hours and we can discriminate between different individual
statistics that are otherwise hidden by population averages.

Methods

Larva Picker Robot. To perform long-term behavioral studies
with the larva, we have designed and fabricated a robotic in-
strument that automatically tracks, transports, and feeds larvae
throughout a large arena. The flexibility of its design enables
arbitrary stimulus delivery alongside continuous measurement
of behavior, yielding an unprecedented level of detailed loco-
motion data and a comprehensive view of locomotion strategies
at the population and individual animal levels together.

The system operates by tightly coordinating video acquisition
from an overhead camera with a manipulator arm capable of
traversing three dimensions (Fig. 1B). The manipulator arm is
translated by stepper motors (Nema 8) in the X- and Y-axes and
a 5V solenoid (SparkFun) for the Z-axis, which are driven by a
programmable controller board (SmoothieBoard) with physical
and software limits in place to prevent overtravel. At the end of
the arm is a custom 18-Gauge nozzle (Fig. 1C) that can inter-
act with the larva and the experimental arena (Fig. 1D) that sit
below the camera and manipulator assembly.

A 2.3-megapixel CMOS camera (Grasshopper3) observes a small
number (4-6) of larvae crawling on a 22 x 22 cm agar gel (2.5%
wt./vol. agar in water, with 0.75% charcoal added for improved
contrast) and records at 10 Hz. Larvae are illuminated with four
strips of red LEDs (dominant wavelength around 620 nm, which
is outside the visible range of the larva (39), arranged in a square
around the agar gel. To maintain larval exploratory behavior
over a long duration, the camera detects when one nears the
edge of the arena. This triggers the manipulator to pick up the
larva with the nozzle. The larva is maintained on the nozzle via
the surface tension of a water droplet. The water droplet pro-
vides a way to indirectly interact with the larva to prevent caus-
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ing damage to the animal. After the manipulator arm moves to
the center of the arena, it drops off the larva with a slow hor-
izontal motion, effectively rolling it off the nozzle (Fig. 1E).
The manipulator replenishes the water droplet before each pick
up, and a small flat Delrin plastic disk (2 mm diameter) at the
bottom of the nozzle provides more surface area for the droplet
to form (Fig. 1C). When the surface tension of the water is in-
sufficient to pick up the larva, the nozzle is capable of exerting
vacuum suction to assist in pick up, as well as allowing air flow
to release the larva during drop off.

Meanwhile, the mounted camera refreshes the image and there-
fore the position of the larva before and after each step of any
protocol, ensuring that the process is robust to variations in
crawling speed and behavior and to failed attempts, which are
detected and repeated (Fig. 1E). The pick up/drop off procedure
is 99.8%/99.9% successful (90%/95% on the first try), highly
important for the viability of long-term experiments.

Our system must also address desiccation of the agar gel sub-
strate and animal starvation, which limit experiment times and
affect behavior. To address the former, we have built an auto-
replenishing water moat (Fig. 1D) in direct contact with the gel,
which then maintains its water content and physical shape. In
addition, the moat also provides a convenient and readily avail-
able water source for the nozzle. To address the latter, the robot
can automatically administer a drop of apple juice (=~ 0.1g/mL
sugar concentration) directly to the larva on a predetermined
schedule. The larva is allowed to eat for a fixed time, then rinsed
with water so that it can return to a free-crawling state.

With these features in place, our system has so far achieved
more than 30 hours of continuous observation of individual larva
behavior.

In some experiments we observe how larvae navigate a variable
sensory environment. We use a similar system as outlined in
(6) to generate a 1D linear spatial thermal gradient. We fit the
underside of the experimental arena’s aluminium base with hot
and cold reservoirs on opposite sides, each equipped with two

liquid-cooled water blocks. PID (proportional-integral-derivative)

controllers drive thermoelectric coolers between each water block
and its reservoir to maintain a thermal gradient of 0.035 °C/mm
across the agar gel in the arena, with 13 °C on one side and
21 °C on the other side.

Analysis Pipeline. Our data analysis pipeline extracts numerous
behavioral features from video recordings of crawling larvae
(Fig. 2). Custom computer vision software takes raw movies
and extracts the position and body contour of each larva while
preserving individual animal identities (Fig. 2A). Because the
robot arm can briefly block the camera during pickup events, re-
sulting in dropped frames, the software interpolates larval posi-
tions in these frames to maintain continuous observation. Since
the larva’s body length is roughly 1 mm and it crawls with an
average speed well below 1 mm/s, significant behavior events
are unlikely to occur during dropped frames and interpolation is
sufficient to rebuild trajectories.
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Figure 1. The automated larva transport robot enables continuous, long-term observation of fly larva crawling behavior. A. Schematic illustrating the fly larva’s simple search
behavior. They explore their environment in a modified 2D random walk, with 20 example paths (black) shown. Trajectories are characterized by an alternating series of forward
crawling runs (red) and turns (blue). B. Isometric CAD schematic of the transport robot. The robot is built from a modified 3D printer with a custom nozzle. Feedback from a
mounted overhead camera allows for tight coordination with the moving arm to safely and robustly interact with the experimental arena. C. The nozzle is built as a narrow tube
that allows air and vacuum flow with a flat plastic disk fitted at the bottom. The disk provides ample surface area for a water droplet to form, and the droplet’s surface pressure can
pick up larvae while minimizing stress on the animal during the interaction. D. Top and side view schematics of the flat crawling arena. Larvae crawl atop an agar substrate, which
is kept hydrated by a surrounding moat. The robot nozzle picks up larvae as they approach the edge of the arena and transports them back to the center to continue their
free-roaming behavior. E. Flowchart of the larva pick-up feedback process. In standby mode, the camera records a video of larval behavior. When it detects a larva nearing the
perimeter, it triggers the pick-up protocol for the robot. The manipulator arm moves to a point in the moat nearest to the larva and dips the nozzle in, forming a droplet at the tip to
be used for pick up. The camera provides a more recent position for the moving larva as the robot attempts a pick up. If feedback from the camera suggests a successful pick up,
it attempts a drop off. Otherwise, the manipulator repeats its attempt after receiving an updated larval position. Multiple failed attempts can trigger small perturbations to robot
calibration parameters to allow better flexibility through reinforcement learning before continuing pick up attempts. Similarly, the robot performs multiple drop off attempts at the
center of the arena until it receives a positive confirmation from the camera, at which point the system returns to its original standby mode. F. Photographs before (top) and after
(bottom) the robot moves a larva from the perimeter to the center of the arena.

Larva #1 Larva #3 Larva #4 Larva#5

Posture St Y Son, o,
Tracker D SRR SPET T P
Data TumRateMle \ MV M-’\\N\/ M\M{

larva #2 Compiler ‘

Larva b
Tracker
Figure 2. Analysis pipeline. A. Raw video acquired during the experiment is fed into computer vision software that tracks each larva while maintaining their identity. B. A posture

tracker analyzes the isolated crops of each larva to determine its posture and orientation. C. A state tracker determines the behavioral state of each animal at each time point. D.
Compiling all information from the preceding algorithms allows the pipeline to identify and calculate a wide variety of behavioral features.
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The isolated crops (64 x 64 in pixels) of each larva are run
through a recurrent U-Net (40) convolutional neural network
(Fig. 2B) to determine the posture and orientation. The U-Net
architecture has been shown to be highly effective at tasks that
preserve spatial structure in an image by taking advantage of
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both global and local features (40-42). We design our model
such that the output is a probability heat map of the head and
tail of the larva, which preserves the global spatial structure of
the larva’s body.
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Traditional convolutional neural networks, including U-Net, of-
ten fail when analyzing sparse images with low-resolution fea-
tures (41). This is particularly pronounced in our case since
each larva is generally captured as clusters of only ~ 30 uni-
formly bright pixels surrounded by black pixels. To compen-
sate for this, we utilize more temporal information, such as the
current momentum of the centroid. Since larval posture does
not deviate much from frame to frame, we add recurrence in the
form of long short term memory (LSTM) cells (43) at the be-
ginning, middle, and final layers of the network to simplify the
problem at each subsequent time step. The recurrence also cre-
ates an additional cost for head-tail flips which we have found
to be a common issue with previous approaches to the prob-
lem (41, 44, 45).

Using all available information (position, contour, and posture),
we use a densely connected neural network with bidirectional
recurrence to classify the behavioral state of the larva (“run”,
“turn”) at each time point (Fig. 2C) (34). The bidirectional
recurrence here allows the network to identify the bends in the
larva’s path and swings of the larva’s head by comparing frames
both before and after. From here, we can identify a wide range
of behavioral features and track them over extended time peri-
ods.

Results

The robot enables continuous observation of free exploration
over six hours. Optimizing exploration by modulating behav-
ior is essential to the larva’s ability to find a food source effi-
ciently. While previous studies on Drosophila larvae have re-
vealed some changes to its navigation over the first few minutes
of exploration of an isotropic environment, how and whether

their behavior evolves or persists afterwards remains unknown (7).

Studies on another small organism with qualitatively compara-
ble navigation dynamics, the nematode C. elegans, show sim-
ilar changes in behavior during the first ~ 100 seconds. Some
longer-duration experiment (1 hour vs 15 minutes) reveal a tran-
sition in navigation strategy between two distinct modes of lo-
cal and global searches, but transitions across similar or longer
time scales have yet to be observed in Drosophila (7, 46). Here,
we demonstrate how our larva picker robot enables continuous
observation and analysis of larval locomotive behavior on very
long time scales to study changes in its exploration strategy in
an isotropic environment.

In Fig. 3, we present the results from continuous observation of
second instar wild type (Canton-S) larvae (N = 42) freely roam-
ing the experimental stage for a six hour time duration. Fig. 3A
and C show the speed and the turn rate of the larvae, respec-
tively, exhibiting the dynamics of their behavior. Notably, there
is a significant drop in activity (both speed and turn rate) over
the first hour before settling into a plateau that lasts for the fol-
lowing few hours. The correlation between larval crawl speed
and turn rate over time has been previously observed (34) and
is clearly evident here, and we measure a correlation coefficient
of 0.572 in the population mean speeds and turn rates. With
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the large amount of data gathered on each individual, we con-
firm that this correlation also exist at the individual level with
an average correlation coefficient of 0.348 £ 0.098.

Long-term free roaming behavior is consistent with analogous
snapshot observations. Since the larva were not fed over the
duration of the experiment, we compare continuous observa-
tions with short “snapshot” observations of larvae at various
stages of starvation (N = 200 per stage). Larvae were removed
from food and starved over a certain number of hours, then
placed on an agar gel arena to be observe for 10 minutes with-
out interruption, and with no interaction with the robot. The
decline in activity seen in the robot-mediated experiments is
not present when observing crawl speeds averaged over the 10-
minute duration (Fig. 3A, purple bars). Upon closer inspec-
tion, however, larval crawl speed measured in the starvation
studies (Fig. 3B) reveal a trend over time that mirrors what
we observe in the first hour of continuous observations. Over
these 10-minute snapshot observations, we measure an average
decline of —7.7 x 10~° mm/s2, comparable to the average of
—6.9 x 10~° mm/s? seen over the first hour of continuous ob-
servations. The similarity offers confidence that the behavioral
dynamics present here are not caused by transport robot actions
but are real features of the animal that that continue to persist
and develop over a period that is more than 30 times longer than
what snapshot observations can capture.

To further ensure that disruptions to behavior due to the robot’s
interference have minimal influence, we analyzed larval behav-
ior before and after each interaction with the robot (i.e., a pick
up and drop off event). Fig. 3D shows averaged larval crawl
speeds 5 minutes before and 5 minutes after an interaction event
(vertical dashed line). As expected, mean larval speeds before
the interaction shows little change over the small window. We
do observe a transient of approximately 1-2 minutes just after
the interaction, where there is a noticeable increase in speed
(p<0.05), but it quickly returns to the same mean as before (hor-
izontal line).

A freely-crawling single larva is continuously monitored for more
than 30 hours. As noted in the previous section, the robot is also
capable of automatic scheduled feeding. To keep the larva alive
as long as possible, the robot administers a drop of sugar-rich
solution directly to the larva once every hour. The larva is al-
lowed to feed for one minute, then the animal and the drop site
is rinsed with water, and the larva resumes exploration. Using
this protocol, we are able to study larval locomotive behavior for
over 30 hours, yielding an unprecedented amount of behavioral
and developmental information on an individual animal. Fig. 4
presents the trajectory of a single larva and some of its behavior
features observed over a duration of 30 hours, where the indi-
vidual animal crawls for more than 48 meters. Some behavioral
features exhibit steady change, like a decreasing speed through-
out the experiment. Notable differences in path shape occur
approximately half way through the long observation, with dra-
matic increases in curvature and turn size, consistent with the
tight loops seen in the full trajectory plot (Fig. 4 left). We also
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Figure 3. Observations of continuous free roaming for six hours. A. Larval crawl speed over time, comparing the results from continuous 6-hour observation recorded on the

robot system (red, N = 42) to shorter 10-minute observation of larger numbers of starved larvae (purple, N = 200 per bar, from 10 experiments with 20 larvae each). B. Larval

crawl speed over 10 minutes after starvation. We observe a decline in crawl speed (—7.7 x 10~° mm/s?) comparable to that observed during the first hour of the continuous
observation (—6.9 x 10~° mm/s?). C. Larval turn rate over time. Similar to larval crawl speed (A), there is a noticeable drop in turn rate over the first hour, indicating an overall
decrease in activity. D. Analysis of larval crawl speed before and after an interaction with the larva picker robot. We plot larval crawl speed during the five minutes immediately
before (purple) and the five minutes immediately after (red) an interaction with the robot, i.e., a pick up and drop off event (vertical black dashed line). After a 1-2 min. transient
(p < 0.05, Student’s t-test), speed returns to the mean pre-interaction level (horizontal black line). For all panels, shaded regions indicate standard deviation from the mean.

T t=0 hr Speed o5
(mm/s)

Body bend 50 I ‘
angle (deg) 25 ‘ : ‘ k] ST A L s e T

1|
Curvature 5
. (mm™)
:
Turn rate
"\ 0
Turn size '*°
(deg) 100
50
4
Turn
handedness

o 5 0 _ 15 20 25 30
t=30 hr Times (hours)

Figure 4. Long-term observation of a single larva. In order to maintain exploratory behavior in a fly larva without starving it, the robot automatically delivers a drop of apple juice
(=~ 0.1g/mL sugar concentration). The larva is allowed to eat for 1 — 2 minutes, after which the robot uses water and air to rinse the larva, which then continues roaming freely.
This protocol allows for continuous observation of larval behavior over developmental timescales. Left. The larva’s trajectory over a 30-hour duration, with its path (green) stitched
together at each robot pick-up and drop-off positions (orange markers) to produce a continuous trajectory. The larva begins at the top right (red) and ends its run at the bottom
(blue). Cutout. A x20 magnification on a small section of the path, showing the scale of the path compared to the larva’s body (black bar, =~ 1mm). Right. We plot a number of
behavioral features observed during its exploration, including its speed (red), body bend angle (orange), trajectory curvature (green), turn rate (blue), turn size (purple) and turn
handedness (olive). Turn handedness is calculated as (Nies¢+ — Nyignt)/Ntotal, Such that a handedness of 1.0 indicates all left turns, and a handedness of —1.0 indicates
all right turns.

note that this larva maintains a left-turning bias throughout the  Larval thermotaxis is maintained over long periods. By lever-
experiment. aging the automated transport system’s flexible design to de-
liver and study responses to stimuli, we manipulate the tem-
perature of the agar arena to study larval thermotaxis behav-
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ior. Drosophila larvae have robust, highly-sensitive, and well-
documented response to changes in temperature, and work has
been done to decipher the behavioral strategy utilized to effi-
ciently navigate thermal gradients (6, 24). However, there is a
lack of abundant data on individual animals, since single ex-
periments last on the order of 10 minutes, and thus a lack of
understanding of the differences in thermotaxis strategy and its
development between individuals. It is also unknown how ther-
motaxis might evolve over long times. The automated transport
system here provides an opportunity to delve deeper into these
questions.

Navigational effectiveness can be captured by a dimensionless
navigation index equal to (v, )/(v), the average of the compo-
nent of crawling velocity along the thermal gradient normalized
to the average speed. The resulting thermal navigation index
ranges from +1.0 (parallel to gradient, i.e. crawling directly
towards the warm side of the arena) to —1.0 (anti-parallel to
gradient, i.e. crawling directly towards the cold side of the
arena) (6, 24, 47). Fig. 5 shows the thermal navigation index of
second instar wild type (Canton-S) larvae as they crawl across
the experiment arena for six hours, both with (N = 38) and
without (/V = 42) a thermal gradient present. The thermal gradi-
ent is centered at 17 °C with a steepness of 0.032 °C/mm, which
would normally evoke robust cold avoidance behavior (24).

When roaming freely with no stimulus present, we observe an
average navigation index of 0.032£0.020 (range indicating stan-
dard deviation). When a thermal gradient is applied to the arena,
we observe a clear increase in navigation index to an average
of 0.130+0.017 (p < 0.001), indicating positive thermotaxis,
where larvae crawl towards warmer temperature. The naviga-
tion index also remains steady over the 6-hour measurement
time.

Navigation efficiency of individuals exhibits distinct behavioral
phenotypes. Short snapshot observations produce limited infor-
mation on any single individual animal, therefore limiting most
thermotaxis analysis to population-level statistics. Long contin-
uous observation enabled by the transport robot produces much
more detail on individual animals, allowing us to analyze be-
havioral features at the individual level as well (Fig. 6). Impor-
tantly, averaging over a population necessarily results in some
loss of information such that different statistics at the individual
level can generate the same population mean.

Fig. 6A-B demonstrates the differences between two such cases
by examining simulated toy examples of a probability distri-
bution of observations of a navigation index. Each series of
observations is sampled from a Gaussian distribution, whose
mean and standard deviation are randomly determined with two
different statistics. Both simulations have similar distributions
when analyzing navigation index occurrences at the population
level (red), but produce distinct means of intra-animal probabil-
ity distributions (purple). In the first simulation (Fig. 6A), high
intra-animal variability produces a mean of intra-animal distri-
butions that is similar to the population mean distribution. In
the second (Fig. 6B), high inter-animal variability instead pro-
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duces a multimodal distribution for individuals despite the extra
modes not being present at the population level. Because our
long time scale thermotaxis experiments produce enough data
to establish both population-level and invididual-level naviga-
tion indexes, we can examine thermal navigation in a similar
way.

Interestingly, we find that larval thermotaxis behavior switches
between the two models when a thermal gradient is applied (Fig.
6C,D). While the population means have a similar shape and
spread in both contexts (red traces), without a thermal gradient
(Fig. 6C), the individual distributions exhibit high intra-animal
variability and low inter-animal variability, mirroring those seen
in the former (A). When in the presence of a thermal gradient
(Fig. 6D), we observe a bimodal distribution that more closely
resembles the latter (B) instead. We measure a binomial co-
efficient (BC) (33, 48) of 0.67 here, compared to BC' = 0.48
when there is no gradient present. This is a significant increase
(p < 0.01) that crosses the critical value for detecting bimodal-
ity (BCerit = 5/9), clearly indicating a shift in the shape of the
distribution.

Discussion

We have developed an automated system for long-term obser-
vation of Drosophila larvae (Fig. 1). The robotic arm is capable
of transporting larvae as they approach the edge of the experi-
ment arena back to the center, allowing continuous observation
of exploratory or directed navigation behavior from an overhead
camera. Through coordination and constant feedback between
the robot and video acquisition, the system maintains larvae
within the arena with high reliability, and we are able to achieve
continuous observation over developmental timescales. The ac-
companying analysis pipeline takes the output video from these
experiments to track larval posture and behavioral state while
maintaining individual identities. The analysis compensates for
the output video’s low resolution and lack of detailed features
of the larvae through a combination of local and global features
and the use of recurrent neural networks (Fig. 2).

We present a study of free roaming behavior in larvae over six
hours of continuous observation, comparing results to short 10-
minute snapshot observations of larvae at various stages of star-
vation (Fig. 3). The comparison yields dissimilar patterns when
considering the 10-minute averages, but similar dynamics when
considering the change in behavior over time, such that the 10-
minute trajectory in larval crawl speed resembles that seen in
the first hour of continuous observation. The similarity sug-
gests behavioral dynamics that are present in both experiments,
but persist and develop over a duration that is an order of mag-
nitude longer than what snapshot observations can capture.

Since our analysis maintains animal identities throughout the
video, we are able to capture behavioral information on single
individuals with unprecedented detail. We leverage this new
trove of data to analyze larval response to a thermal gradient and
examine the probability distribution of the observed navigation
index over time (Fig. 6). In particular, we note that the same
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Figure 5. Comparison of navigation index in a zero gradient environment (A, N = 42) and in a presence of a linear thermal gradient of 0.035°C'/mm (B, N = 38). Thermal
navigation index is calculated as a dimensionless index equal to (v )/{v), such that +1.0 is parallel to gradient, 0.0 is normal to gradient, and —1.0 is anti-parallel to gradient.
We observe a clear increase in average navigation index when exposed to a thermal gradient (increase from 0.032 £ 0.020 to 0.130 +-0.017 (p < 0.001, Student’s t-test)), but
we do not observe any significant pattern of change in that index over time. Shaded region indicates one standard deviation.

A. High intra-animal variability

— Intra-animal mean
—— Population mean

Simulated
Probability

C. No thermal gradient

. 1
—— Intra-animal mean 1

0.3 —— Population mean

Probability

O ST AES NSS!

-0.5 0.

0.5 1.0

B. High inter-animal variability

D. Inthermal gradient (0.035°C/mm) 0.20

0.15

0.10

0.05

0.00

-1.0 -0.5 0.0 0.5 1.0

Navigation Index

Figure 6. Examination of inter- and intra-animal variability via analysis of probability distribution of the observed larval thermal navigation index. When dissecting probability
distributions of observed behavior, we notice that the same population (inter-animal) mean can be produced by two individual (intra-animal) distributions. A. Simulated example of
individual probability distributions with high intra-animal variability. The resulting mean of intra-animal distribution (purple) closely resembles the population mean (red). B.
Simulated example of individual probability distributions with high inter-animal variability. The resulting mean of intra-animal distribution (purple) form a multimodal distribution
despite a similar population mean (red) as A. C. Probability distribution of thermal navigation index observed without a thermal gradient. There is high intra-animal variability but
low inter-animal variability, such that the intra-animal mean forms a similar distribution to the population mean, as was the case seen in A. D. Probability distribution of thermal
navigation index observed in presence of a thermal gradient (0.035° C/mm). In contrast to C, the intra-animal mean forms a bimodal distribution, more closely resembling a

distribution with high inter-animal variability as seen in B.

population (inter-animal) mean can be produced by different in-
dividual (intra-animal) distributions. Interestingly, larvae seem
to switch between two such distribution shapes upon encoun-
tering a thermal gradient. The individual distributions of ther-
mal navigation index without a thermal gradient exhibits high
intra-animal variability but low inter-animal variability, form-
ing a unimodal mean distribution that is similar to the popu-
lation mean. In contrast, the individual distributions exhibits
high inter-animal variability, such that it become bimodal when
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a gradient is applied, despite the distribution shape remaining
unimodal at the population level. This is consistent with re-
cent findings that suggest a switch-like (all-or-none) learning
behavior in larval Drosophila, which is also not apparent when
only analyzing population means (49). By observing decision-
making behavior of individual larvae over several cycles of stim-
ulus and reward, Lesar, et al. (49) find that Pavlovian training
of preference for carbon dioxide is similarly quantized to two
states (all-or-none), each centered at a fixed preference index.
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While the context and modality for the learning assays are dif- References

ferent than our observation of larval thermotaxis, both results

reveal new features of larval behavior that were previously ob- 1.

scured in population averages. Both results also suggest the ex-

istence of larval “personality types”, or distinct, quantized be- 2

havioral phenotypes that vary between individual animals (6,
34, 49, 50). This work provides some progress in uncovering

such phenotypes and furthering our understanding of learning a.

and development of navigational strategies in individual ani-
mals in addition to population averages.

With the robot’s flexible design, we can continue to probe these

questions in many different contexts. For example, the robot can s

deliver food or soluble drugs directly to the larvae on a predeter-
mined schedule to measure both the acute and chronic effects on

the animal’s behavior and physiology (27, 51-56). We can also 6.

leverage the existing lighting system to implement optogenetic
activation or suppression of specific neurons, allowing delivery
of fictive stimuli or studies of the effects of certain neuronal

circuits on larval behavior and development (4, 5, 19, 57, 58). 7.

This can either be activated on a predetermined schedule, or in-

tegrated directly with the existing robot and camera feedback 8.

system to enable activation triggers based on specific condi-

tions such as larval behavior (e.g. activate upon larva initiating 9.

a turn).

A major obstacle in way of achieving continuous observation
of the entire larval life cycle (= 100 hours) is a reliable method
of delivering enough nutrition and ensuring the larva has suffi-
ciently fed. The current method of delivering drops of sugar-

rich solutions has not been sufficient to trigger molting into the 12

next instar stage, thus limiting us to a single instar stage. We
hope to solve this problem and others as we continue to develop
the system and expand its capabilities, for example with a sec-
ond adjacent arena with more nutritive food where larvae could
experience longer feeding times before being returned by the
robot to the primary behavioral arena. Such rich detail covering
the entire development of the larva would provide powerful in-
sight into the long-term learning, memory, and behavioral adap-
tations in tandem with the physiological developments that take
place between instar stages.

We hope that this study has highlighted some advantages of long
term continuous measurement, and that similar instrumentation
and analysis method could be applied to other organisms, along
with a wide range of investiations in the fly larva.
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