
 

Adversarial and variational autoencoders improve metagenomic binning 

 

Authors 

Pau Piera Líndez1, Joachim Johansen1, Arnor Ingi Sigurdsson1, Jakob Nybo Nissen1,*, Simon 

Rasmussen1,2,* 

 

Affiliations 

1 Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical 

Sciences, University of Copenhagen, Copenhagen N, Denmark 

2 The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute 

of MIT and Harvard, Cambridge, USA 

 

Author List Footnotes 

Correspondence: Jakob Nybo Nissen (jakob.nissen@cpr.ku.dk) and Simon Rasmussen 

(simon.rasmussen@cpr.ku.dk) 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.27.527078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.527078
http://creativecommons.org/licenses/by/4.0/


 

Abstract 

Assembly of reads from metagenomic samples is a hard problem, often resulting in highly 

fragmented genome assemblies. Metagenomic binning allows us to reconstruct genomes by re-

grouping the sequences by their organism of origin, thus representing a crucial processing step 

when exploring the biological diversity of metagenomic samples. Here we present Adversarial 

Autoencoders for Metagenomics Binning (AAMB), an ensemble deep learning approach that 

integrates sequence co-abundances and tetranucleotide frequencies into a common denoised 

space that enables precise clustering of sequences into microbial genomes. When 

benchmarked, AAMB presented similar or better results compared with the state-of-the-art 

reference-free binner VAMB, reconstructing ~7% more near-complete (NC) genomes across 

simulated and real data. In addition, genomes reconstructed using AAMB had higher 

completeness and greater taxonomic diversity compared with VAMB. Finally, we 

implemented a pipeline integrating VAMB and AAMB that enabled improved binning, 

recovering 20% and 29% more simulated and real NC genomes, respectively, compared to 

VAMB with moderate additional runtime. AAMB is freely available at 

https://github.com/RasmussenLab/VAMB. 
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Introduction  

 

It has been estimated that there are about one trillion (1012) species of microbes on Earth and 

that the large majority of these have yet to be discovered [1]. Decades ago, the standard 

approach to studying novel microbes was to isolate and cultivate them in the lab [2]. However, 

microorganisms establish and rely upon complex ecosystems that are not feasible to replicate 

in ex-natural environment conditions. This so-called <cultivation bottleneck= limits culturing 

approaches to studying microbes [1]. In contrast, metagenomics enables culture-free microbial 

diversity characterization by analysing the entire set of genomes present in a given 

environmental sample [3]. Unfortunately, despite advances in sequencing throughput and 

bioinformatic tooling, reconstructing high-quality genomes from short read sequenced 

metagenomics samples remains challenging [4]. 

 

In particular, it is still not feasible to assemble reads from shotgun sequences to contigs that 

each cover whole original source genomes; instead, recovered genomes are often fragmented 

into many smaller contigs [5]. To mitigate this limitation of assemblers, contigs can be 

clustered into bins that represent their source genomes in a process called binning. 

Hundreds of thousands of Metagenome Assembled Genomes (MAGs) which have previously 

been binned are publicly available, allowing detailed investigations of diverse microbial 

communities [6]3[8]. Despite the fact that several binners such as MetaBAT2, MaxBin 2.0, 

CONCOCT, and Canopy have been developed, binning performances are still far from optimal 

[9]3[12]. Recently we have developed a deep learning based method, called VAMB, that 

leverages variational autoencoders (VAEs) to obtain superior performance compared to 

previous reference-free binners [13]. VAEs are composed of an encoder that transforms the 

input features into a latent distribution, and a decoder that samples from the distribution and 

attempts to reconstruct the input from the sample. VAEs are widely used due to their ability to 

represent a complex feature space into a continuous latent distribution, and their inherent 

sampling process makes them suitable as generative models [14]. 

 

VAMB uses a VAE to integrate input contig abundances and tetranucleotide frequencies (TNF) 

to a common latent representation that can be clustered to yield bins. The regularisation of the 

latent space is done using Kullback-Leibler divergence with respect to a prior distribution, in 

VAMB9s case the Gaussian unit distribution [13]. However, another autoencoder framework 

is the adversarial autoencoder (AAE) where the regularisation of the latent space is achieved  
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Figure 1. AAMB model overview and performance across the benchmark datasets.  

A. AAMB workflow overview. Tetranucleotide frequencies and abundances across samples are extracted per 

contig and input to the encoder. The encoder-decoder was optimised to reconstruct the input contig features from 

the regularized latent representations z and y. Regularisation is achieved by adversarial competition between the 

discriminators and the encoder, enforcing the latent encodings to stay close to their prior distributions. After 

training, latent representations z and y are retrieved. Then, the VAMB clustering algorithm was applied to generate 

clusters from the z latent representation, and cluster labels are taken directly from y. Finally, bins from z and y 

are deduplicated to the final AAMB clusters. These can then potentially be integrated with VAMB generated 

clusters. Dark arrows represent forward propagations. Dashed arrows represent sampling processes from the latent 

and priors, grey arrows represent clustering and dereplication steps performed after training AAMB. B. Number 

of distinct NC genomes reconstructed from the six benchmark datasets for VAMB (blue), AAMB(z) (light green), 

AAMB(y) (dark green), AAMB(z+y) (light purple), AVAMB (dark purple). GI, Gastrointestinal; Urog, 

Urogenital. 

 

using another neural network, hence the name <adversarial= [15]. Previous work applying 

AAEs to images showed that AAE models could generate latent representations with sharper 

and better-confined clusters compared to VAEs [15]. We, therefore, hypothesised that the 

application of an AAE for metagenomics binning could improve on clustering of near-complete 

genomes from the latent space. Furthermore, the original AAE implementation used an 

additional categorical latent space alongside the continuous one and showed that the model 

learned to cluster the input by assigning each cluster to a categorical class [15], [16]. We hoped 

that when applying AAEs to metagenomic sequences, the AAE would likewise learn to assign 

each genome into a single categorical class in the categorial latent space. 

 

Here, we present Adversarial Autoencoders for Metagenomic Binning (AAMB), an extension 

of our original VAMB program. AAMB leverages AAEs to yield more accurate bins than 

VAMB9s VAE-based approach. We apply AAMB to both synthetic and real metagenomic 

benchmark datasets and show that more high-quality genomes are recovered using AAMB 
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compared to using VAMB or other binners and that the extra genomes expand the taxonomic 

diversity of recovered genomes. We also present a method for automatically merging VAMB 

and AAMB, and show that the resulting ensemble method AVAMB is superior to both VAMB 

and AAMB while requiring nothing extra from the user other than a moderate increase in 

compute power. 

 

 

Results 

 

An adversarial autoencoder for metagenomics binning 

Inspired by the original AAE implementation, the AAE in AAMB uses both a continuous 

(termed z) and a categorical (termed y) latent space (Figure 1a). Therefore, AAMB is able to 

extract bins both by clustering z like VAMB does [13], and by extracting the bin label directly 

from y. This resulted in two sets of bins, AAMB(z) and AAMB(y), respectively. When we 

investigated the structure of the AAMB z space when applied to the CAMI2 short-read human 

<toy= datasets (see Methods), we found that distances between contigs from the same genome 

tended to be smaller than distances between contigs from different genomes for all benchmark 

datasets (Supplementary Figure 1), a prerequisite for clustering into genomes. AAMB9s z 

space was more compact than the VAMB latent space, which we believe was due partly to 

AAMB9s ability to also encode information in y. When clustering z, it yielded somewhat worse  

bins than VAMB, giving a total of 7% fewer NC genomes compared to VAMB across the 

CAMI2 and MetaHIT datasets (Figure 1b). The clusters of AAMB(y) were likewise inferior 

to VAMB, giving on average 39% fewer NC genomes. The relative performance of AAMB(z) 

vs AAMB(y) was dataset dependent; AAMB(z) outperformed AAMB(y) on the CAMI2 

Airways, Gastrointestinal, Oral, Skin, and Urogenital datasets, reconstructing between 47-

102% more NC genomes. On the contrary, AAMB(y), outperformed AAMB(z), on the 

MetaHIT dataset, by reconstructing 164% more NC genomes (Supplementary Table 1). 

Interestingly, the MetaHIT dataset has been difficult for all the binners we have tested, 

including MetaBAT2, MaxBin2.0 and Canopy. This suggested to us that the z and y spaces 

contained encodings of different subsets of the total information in the input data. 

 

The continuous and categorical latent space encodes different information 

The original AAE paper showed how the y and z space primarily encoded high-level variance 

(<class=) and low-level variance (<style=), respectively. We hypothesised that AAMB behaved  
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Figure 2. AAMB and VAMB reconstructed genomes analysis and integration with dRep. 

A. Jaccard correlation between the NC genomes from all benchmark datasets produced by 

AAMB(z), AAMB(y), VAMB, and AAMB(z+y) dereplicated bins. B. Contribution and the 

intersection of AAMB and VAMB for NC genomes on CAMI2 and MetaHIT datasets. The 

aggregated height of each bar expresses the total number of NC genomes reconstructed by 

VAMB and AAMB when dereplicating. unique: NC genomes only reconstructed by the given 

binner; and: NC genomes reconstructed by all the binner connected with the and operator and 

not by any other binner; NC: Near complete. C. Comparison of strains, species, and genera 

recovered at NC level by VAMB (blue), AAMB(z) (light green), AAMB(y) (dark green), as 

well as AAMB(z+y) (light purple), and AVAMB (dark purple). s.e. of Ctenarytaina euc., 

secondary endosymbiont of Ctenarytaina eucalypti.  

 

similarly, i.e. AAMB(y) would cluster contigs at a higher taxonomic rank than AAMB(z), 

which would imply that AAMB(y) might conflate lower taxonomic ranks. To test this, we 

measured the taxonomic distance between randomly selected contig pairs from the same cluster 

in AAMB(y) and AAMB(z) (Supplementary Figure 2). We found that AAMB(y) conflated 

higher ranks more often than AAMB(z), and AAMB(z) conflated strains more often than 
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AAMB(y), which did not support our hypothesis. The hypothesis further implied that while 

most AAMB(z) clusters would have high strain-level purity, multiple AAMB(y) clusters 

representing different higher taxonomic ranks could sometimes be mapped to the same 

AAMB(z) space, causing some AAMB(z) clusters to be the union of otherwise pure strains 

from disparate high taxonomic ranks. If that was the case, it would imply that some contig pairs 

from the same AAMB(z) cluster would be from wildly different clades, but we did not observe 

this (Supplementary Figure 3). Further, when splitting AAMB(z) clusters by their y label to 

decontaminate this potential contamination, we found the resulting bins were no better 

(Supplementary Table 2), contrary to our hypothesis. We thus concluded that neither 

AAMB(z) nor AAMB(y) were redundant with respect to each other, nor did z only capture 

intra-y variance, but instead the two latent spaces learned complementary information. 

Therefore, we decided to explore the intersection and differences in genome reconstruction 

between VAMB, AAMB(z), and AAMB(y) (Figure  

 

2a). We found that NC genomes reconstructed by AAMB(y) had a Jaccard index of 0.40 and 

0.47 to the NC genomes reconstructed by AAMB(z), and VAMB, respectively (see Methods), 

while the Jaccard index of NC bins from AAMB(z) versus VAMB was higher at 0.64. Hence 

AAMB(z)9s genomes were more similar to VAMB9s than to AAMB(y)9s. This was not 

surprising, as the continuous Gaussian latent space of VAMB is more akin to the similarly 

structured z. 

 

Combining the latent spaces AAMB(y) and AAMB(z) 

Because AAMB(z) and AAMB(y) reconstructed different sets of genomes, we developed a 

technique to dereplicate the genomes sets reconstructed from the two latent spaces. Briefly, we 

assessed bin quality with CheckM2 [17] to remove low-quality bins, then for each bin pair that 

we deemed to be nearly identical, we removed the lowest-scoring bin. Finally, any contigs 

contained in two or more bins were assigned to the bin whose CheckM2 score would be 

improved the most by the addition of these contigs (see Methods). When comparing this 

dereplication method to a popular alternative MAG dereplication tool dRep [18], our method  

preserved more genomes, only losing 28 NC bins in the dereplication process across all the 

CAMI2 datasets, compared to 40 when using dRep (Supplementary Table 3). 

Simultaneously, our approach produced no duplicated contigs, whereas 6 contigs remain 

duplicated when using dRep (Supplementary Table 4). Applying this dereplication process 

to the union of AAMB(z) and AAMB(y), we obtained what we termed AAMB(z+y), and found 
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that it outperformed VAMB, reconstructing 7% more NC genomes across all CAMI2 datasets 

(Figure 1b). This workflow came at some cost of computational power, as training and 

clustering time required were 1.9x and 3.4x higher when using GPU or CPU only, respectively, 

compared to VAMB (Supplementary Table 5). Because AAMB(z+y) had the best 

performance, we used it as the default AAMB workflow and will henceforth refer to it as 

simply AAMB. 

 

Combining the AAMB and VAMB framework 

We found that AAMB (i.e. AAMB(z+y)) reconstructed a different set of NC genomes than 

VAMB (Jaccard index of 0.79) (Figure 2b-c, Supplementary Figures 4-9), and so 

hypothesised that we could apply the AAMB dereplication approach to also merge VAMB bins 

to form a VAMB+AAMB workflow we called AVAMB. The integrated AVAMB model 

proved highly performant as it allowed the reconstruction of 6-35% additional NC genomes 

compared to using only VAMB across the benchmark datasets (Figure 1b, Supplementary 

Table 6). Furthermore, few (2-7) NC genomes were lost during dereplication of AAMB and 

VAMB bins. We then investigated the contribution from AAMB(z), AAMB(y), and VAMB, 

and found that 23-50% of the NC genomes were reconstructed by all three methods across the 

benchmark datasets. On the other hand, we found that up to 27% of the NC genomes in a dataset 

were only identified by one method (Figure 2b, Supplementary Table 7). We concluded that 

VAMB, AAMB(z), and AAMB(y), each reconstruct different genomes from the benchmark 

datasets and that the dereplicated union of all three methods yields better overall performance. 

To check if the gains of AVAMB over VAMB were simply due to the former being an 

ensemble method, we merged the bins of VAMB and MetaBAT2 and compared this 

VAMB+MetaBAT2 with VAMB+AAMB. We found that VAMB+AAMB outperformed 

VAMB+MetaBAT2 on 5 of the 6 benchmark datasets, although an ensemble of all three 

methods did best on 5 of 6 datasets (Supplementary Table 8). This implies that AAMB has 

better synergy with VAMB than MetaBAT2. Since AAMB and VAMB share much of their 

pipelines including the computation of inputs to the encoders and are provided by the same 

software package, VAMB+AAMB is also significantly faster and easier to use than 

VAMB+MetaBAT2. Finally, we compared to using the semi-supervised binner SemiBin [19] 

and found that it reconstructed 15-36% more NC genomes compared to AVAMB on the CAMI 

data sets (Supplementary Table 9). This, however, also came at a higher computational cost 

taking 35-57 times longer than AVAMB (Supplementary Table 10).  
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Figure 3. AAMB performance on real datasets.  

A. Number of NC bins reconstructed from the Almeida and HMP2 datasets for VAMB (blue), 

AAMB(z) (light green), AAMB(y) (dark green), AAMB(z+y) (light purple), AVAMB (dark 

purple). B. Number of taxa with at least one NC genome from the dereplicated set of bins 

generated by VAMB and AAMB on the Almeida dataset. AAMB and VAMB dereplicated bins 

were classified with GTDB-Tk. Taxa reconstructed only by VAMB (blue), taxa reconstructed 

only by AAMB (green), and taxa reconstructed by both AAMB and VAMB (purple). C.  NC 

bins quality comparison between VAMB and AAMB. VAMB and AAMB bins were 

considered equal if belonging to the same sample with 100% identity over at least 75% of the 

smallest bin. NC: Near complete. V = A: VAMB and AAMB NC bins with exact same score. 

V > A:  VAMB NC bins with a higher score than AAMB NC bins, A > V: AAMB NC bins 

with a higher score than VAMB NC bins, V unique: VAMB NC bins not reconstructed by any 

AAMB NC bin at the selected identity settings, A unique: AAMB NC bins not reconstructed 

by any VAMB NC bin at the selected identity settings. 

 

AAMB outperformed and complemented VAMB on real metagenomic datasets 

The synthetic nature of the CAMI2 datasets enabled precise benchmarking, but because 

synthetic metagenomic datasets are not entirely realistic as they use idealised coverage 

distributions and read assemblies [4], we did not know if AAMB9s accuracy translated to real 

datasets. Therefore, we ran AAMB on two real datasets, a 1,000 gut microbiome dataset from 

Almeida et al. [20] and the Human Microbiome Project 2 Inflammatory Bowel Disease cohort 
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with 1,306 longitudinal samples from 90 patients (HMP2 dataset) [21], and evaluated accuracy 

using CheckM2 (see Methods). We note that evaluating AAMB using CheckM2 was not 

entirely unbiased, since AAMB dereplicate similar bins using CheckM2 scores. Nonetheless, 

the observed results mirrored the ones seen on the synthetic CAMI datasets. AAMB(z) 

generated more NC bins than AAMB(y) with 1,464 and 1,963 more on the Almeida and HMP2 

datasets, respectively. AAMB performed better than either AAMB(z) and AAMB(y) as well 

as better than VAMB, reconstructing 5,077 and 2,715 NC genomes, an increase of 9.7% and 

2.3% (Figure 3a-b) compared to VAMB. Similarly, AVAMB did even better, yielding a total 

of 5,733 and 3,569 NC bins, which corresponded to an increase of 1,103 (24%) and 914 (34%) 

NC bins compared to VAMB. Similarly, we tried to use SemiBin on the Almeida data set, 

however, it did not complete within one week. From the samples that it finished (134), we 

estimated that it would take 52 days to complete using a GPU. In comparison, AVAMB 

finished in less than one day (22 hours). 

 

AVAMB recovers more distinct taxa than VAMB at higher quality 

In order to investigate the nature of the additional genomes recovered by AAMB compared to 

VAMB, we assigned taxonomy to the NC bins recovered from the Almeida and HMP2 datasets 

(see Methods). We found that the additional genomes recovered by AAMB compared to 

VAMB increased diversity on the species level, but not higher taxonomic levels. As before, 

AVAMB performed better than either binner alone and increased diversity further on species 

level where it recovered 13% and 28% more unique species from the Almeida and HMP2 

datasets respectively, compared to VAMB. Unlike AAMB, AVAMB also increased diversity 

on the genus level, where it reconstructed 5.5% and 14% more genera than VAMB (Figure 

3b). To gain a better overview of which clades were improved using AVAMB compared to 

VAMB, we created a phylogenetic tree of core genes from NC bins recovered by AVAMB 

(Figure 4). In the figure, we marked bins that were uniquely recovered by AVAMB and not 

VAMB, and also marked bins that were recovered by both binners, but where the bin recovered 

by AVAMB was of better quality. AVAMB improved the quality of 2,091 NC bins also 

reconstructed by VAMB (Supplementary Table 11). We found that AVAMB recovered more 

bins across the entire tree with no apparent biases towards any particular clades, but that 

improved bins tended to cluster together in smaller clades across the tree. 
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Figure 4. Maximum-likelihood phylogenetic tree of the NC bins reconstructed by VAMB 

and AAMB from the Almeida dataset. GTDB-tk was used to generate the multiple sequence 

alignment, IQ-tree to produce the tree, and iTOL to visualise the tree. Red stripe: bins 

reconstructed by VAMB with a higher score than AAMB, golden stripe: reconstructed by 

AAMB with a higher score than AAMB, blue range: bins reconstructed by VAMB, green 

range: bins reconstructed only by AAMB and not by VAMB.  

 

 

Discussion 

 

We present AAMB, an adversarial autoencoder for metagenomic binning. AAMB is a 

probabilistic deep learning model that attempts to integrate and denoise contig features into 

two latent spaces. AAMB gave better results than VAMB, a state-of-the-art reference-free 

binning method. We found that AAMB bins excellently complemented VAMB bins in number, 

bin quality, and taxonomic diversity. Thus, dereplicating the union of VAMB and AAMB9s 

bins was found to maximise microbial genome recovery in both synthetic and real 

metagenomic datasets. 

 

Dereplicating multiple binnings of the same contig set is not straightforward, but is simpler 

than dRep9s goal of dereplicating arbitrary genomes, because the former case involves 

duplication of the exact same contigs which is trivial to detect. Furthermore, pairs of 

Tree scale: 1

Quality of VAMB > Quality of AAMB

Quality of VAMB < Quality of AAMB

VAMB total NC bins

AAMB unique NC bins
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imperfectly binned MAGs may have a nucleotide identity profile across the genome that is 

biologically unrealistic, with some large sections that are nearly identical, and other large 

sections with low nucleotide identity, a circumstance which dRep might not be built for. Hence, 

we believe the reason our dereplication method was more accurate than dRep was that our 

method was designed for the more narrow problem of dereplicating MAGs derived from the 

same set of contigs. 

 

The increase in complexity of AAMB with respect to VAMB is not costless. We found that the 

training and clustering steps of the pipeline of AAMB were  1.8 to 2.7 times slower on average 

compared to VAMB9s when running on a GPU and CPUs, respectively. Furthermore, 

dereplication of AAMB and VAMB bins per sample must be accomplished if optimal bin 

integration is to be obtained, extending the total runtime by up to 4.2 minutes per sample for 

the largest datasets evaluated. 

 

Like VAMB, AAMB leverages a multi-sample approach [13], and so is able to use its 

advantages, including more co-abundance signal from the same contigs, increased density of 

contig clusters by observing homologous contigs in multiple samples, and increased binning 

speed. Even while being slower than VAMB, AVAMB ran 28 times faster on the Almeida 

dataset than running MetaBAT2 on each sample and reconstructed 92% more NC bins.  

Expectedly, AVAMB reconstructed fewer NC genomes on the CAMI datasets than the semi-

supervised binner SemiBin. However, this was also expected as being semi-supervised 

SemiBin uses database information to help bin the contigs at the cost of significantly increased 

runtime. On the contrary, AAMB and VAMB are unsupervised in their approach to generating 

the genome bins. Further improvement to AAMB, VAMB, and AVAMB could be done by 

implementing self or semi-supervised learning in the binning step itself in an efficient manner. 

 

AAMB, the dereplication workflow, and AVAMB have been implemented using Python and 

Snakemake [22], and are shipped with the newest release of VAMB. From a software user 

perspective, it thus presents minimal differences with respect to the normal VAMB workflow. 

 

 

Methods 
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Overview of AAMB 

The AAMB workflow consists of the following main steps (Figure 1a). First, Tetra Nucleotide 

Frequencies (TNF) and per sample co-abundances (Coab) are extracted from the contigs and 

BAM files of reads mapped to contigs, and input to the AAMB model as a concatenated vector. 

The AAMB model encodes a continuous latent space (z) and a categorical latent space (y) and 

reconstructs the input from these two as the output. After training, two sets of contig clusters 

will be generated, one set from continuous latent space (z clusters) and another set from the 

categorical latent space (y clusters). The z space is clustered using the clustering algorithm of 

VAMB [13]. The y clusters are implicit from the one-hot categorical latent space and can 

simply be extracted as the categorical vector. Therefore, all contigs are present twice, both in 

the y and z output. The two sets were then split by sample of origin to per sample-specific bins 

using the principle of multi-split binning from the VAMB framework. Finally, the bins were 

filtered based on CheckM2 [17] scores and then dereplicated as described below. 

 

Datasets 

We used the same synthetic benchmark datasets used in VAMB. For hyperparameter tuning, 

we used the short read Airways (n=10), Oral (n=10), and Urogenital (n=9) from the Critical 

Assessment of Metagenome Interpretation (CAMI2) short-read 8toy9 human datasets [4]. 

Furthermore, we used the MetaHIT 8error-free9 dataset as a training set as well [4]. The 

remaining two CAMI2 toy human datasets, CAMI2 Gastrointestinal (n=10), and CAMI2 Skin 

(n=10) were used for model validation. We further evaluated the methods on a 1,000-sample 

human gut microbiome dataset collected by Almeida et al. [20] and processed by Nissen et al. 

[25]. Additionally, we evaluated the methods on a dataset from the Human Microbiome Project 

2 (HMP2) Inflammatory Bowel Disease (IBD) cohort consisting of 1,338 samples from a total 

of 27 healthy controls, 65 Crohn's Disease, and 38 Ulcerative Colitis patients from Lloyd-Price 

et al. [21] and [21] processed by Johansen et al. [26].  

 

Contig pre-processing  

Contig sequences were transcribed into numerical vectors following the same procedure 

described for VAMB [13] and summarised below. Both TNFs and co-abundances (Coab) were 

extracted for each contig. For the MetaHIT dataset [23], contig abundances were defined by 

the original authors whereas, for the CAMI2 [4], Almeida [20], and HMP2 [21] datasets the 

contig abundances were determined as done by Nissen et al [13]. In short, contigs for each 

sample were merged into a catalogue, and reads from each sample were aligned using 
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minimap2 (v.2.15r905) [27] to the catalogue. For the HMP2 dataset, we used minimap2 version 

v.2.6. Abundances were calculated using the program jgi_summarize_bam_contig_depths 

from MetaBAT2 (v.2.10.2) [12, p. 2]. When input to VAMB and AAMB, the abundances were 

normalised across samples for the same contig to sum to one in order to mimic a probability 

distribution that a random mapping read will come from each sample. TNFs were calculated 

using the method as described in VAMB, i.e. projected into 103 orthonormal dimensions as 

originally described by Kislyuk et al. [28] and normalised by z-scaling each tetranucleotide 

across the contigs in order to increase the relative inter-contig variance [13]. As done in 

VAMB, each contig TNFs and Coab vectors were concatenated into a vector of number of 

samples + 103, constituting the model input vector [TNFs, Coab]T. 

 

Adversarial autoencoder architecture 

The AAE architecture was composed of three modules: The encoder-decoder, the z latent space 

discriminator, and the y latent space discriminator, as done in the original work from Makhzani 

et al. [15] (Figure 1a). The encoder-decoder module learns the contig features and encodes 

them into the z and y latent spaces. The discriminators for the z and y latent spaces restrict the 

latents to be similar to their priors, thus performing the regularisation of the model, which 

imposes a structure on the latent space that makes it clusterable. The encoder is a sequence of 

two dense layers with 547 units dense layers, each with LeakyReLU activation function and 

batch normalisation. The encoder is connected to the dense layers ¿, Ã each with 283 units 

parameterizing z, and to the y layer with 700 units. Softmax activation is applied on the y latent 

layer to mimic a probability distribution. The decoder reconstructs the contig features using a 

sample of the Gaussian distribution z ~ N(¿, Ã), and the y vector. Its architecture is identical to 

the encoder. Considering that Coab was normalised across samples to sum to one, softmax was 

applied to the Coab output units. The two discriminators of the z and y space, Dz and Dy, are 

both networks with the same architecture as the decoder model described above, except without 

batch normalisation, where the final output layer is one single node. Each discriminator is 

trained to discriminate between samples taken from the latent spaces (z, y) and the priors. The 

prior for the Dz is the unit Gaussian distribution N(¿=0, �=I). For Dy, the prior is the 

RelaxedOneHotCategorical [29] distribution Cat(�), with the temperature � = 0.15. The 

discriminators were optimised for a binary classification task, therefore the softmax activation 

function was used for the output node in order to interpret the output as a probability. All three 

modules are optimised with Adam [29], and are implemented using PyTorch (v.1.7.1) [29], 
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with CUDA (v.8.0.61) being used when a GPU is available. For the results in this paper, we 

used an NVIDIA Tesla V100 GPU, and an Intel Xeon Gold 6230 CPU. 

 

Loss functions 

The two discriminators were trained to minimise the difference between their binary prediction 

and the ground truth using binary cross entropy (BCE) on a pair of samples from the prior and 

the latent space, and hence use the loss: 

 

��� = 	1/2	���(�!(�),0) 	+ 	1/2	���(�!(�	~	�(0, �)), 1)			(5) 

��� = 	1/2	���(�#(�),0) 	+ 	1/2	���(�#(�	~	�(�)), 1)			(6) 

 

Where LDz and LDy is loss of the discriminators Dz and Dy, respectively, and �	~	�(0, �)	and 

�	~	���(�) are samples from the priors, namely the standard normal distribution and the 

Gumbel-softmax distribution [30] with temperature parameter �. 

The encoder/decoder pair9s loss function is the sum of two terms: Reconstruction loss Lrec and 

regularisation loss Lreg. Lrec encourages the networks to faithfully encode the input data9s 

information and was implemented as done in VAMB [13]. In short, the cross entropy (CE) loss 

was used for reconstructions of the abundances of the contigs (Ain vs Aout) and mean squared 

error (MSE) for the reconstruction of the TNFs (Tin vs. Tout). These two terms are weighted 

with hyperparameters wcoab and wTNF. 

 

�$%& =	�&'()	�� (�*+, �',-) 	+	�./0 	���(�*+, �',-) (1) 

 

Lreg encourages the latent space to be similar to their priors and is the sum of two terms, which 

measure the ability of the discriminator to correctly identify the samples from the latent spaces: 

��� = 	���(�!(�), 1)		(2) 

��� = 	���(�#(�), 1)	 (3) 

 

Lreg is then calculated as the sum of LRz and LRy, weighted by the slr hyperparameter: 

 

�$%1 	= (12 ���)	��� + ���	��� (4) 

�$%1 	= (12 ���) 	2 ��� + ���	 7 	2��� (4) 

 

The final model loss L is computed by weighing Lrec and Lreg using the hyperpameter sl: 
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� = (12 ��)	�$%& + ��	�$%1 (5) 

 

Benchmarking 

For the CAMI2 dataset, strains, species, and genus were defined exactly by the original authors 

[4]. For the MetaHIT dataset, strain definition was defined as the genomes used to generate the 

dataset, while species and genus were defined using NCBI taxonomy of these strains [24]. 

Calculation of AAMB bin quality within each taxonomy clade was done as in VAMB [13]: At 

the strain level, AAMB bin precision and recall were computed using the vamb.benchmark 

tools for all genomes in the dataset. Here precision quantifies the purity of the genome in a bin, 

and was defined as follows for pair (B, G) of bin B and genome G:  

 

���������2,4 =
)5	'6	4	&'7%$%8	)#	2	&'+-*19

)5	'6	(+#	1%+':%	&'7%$%8	)#	2	&'+-*19
 (7) 

Similarly, recall quantify genome retrieval and was defined for bin B and genome G as follows:  

������2,4 =
)5	'6	4	&'7%$%8	)#	2	&'+-*19

.'-(;	)5	*+	4
	(8) 

For a higher taxonomic clade L (e.g. species or genus), RecallB,L and RecallB,L was defined by 

������!,# = ���
$	*	#

������!,$  

���������!,# = 3$	*	# ���������!,$   

Binner performance is then given as the number of genomes reconstructed at some 

recall/precision threshold (typically 0.9/0.95) in any bin. SemiBin [19] v0.7.0 was run using 

the multi_easy_bin mode. In the run time comparison, we used 20 CPU, 1 GPU, 20 GB of 

RAM, for VAMB, AAMB, and AVAMB, and 1 CPU, 20 GPU, 150 GB of RAM for SemiBin. 

 

Hyperparameter searches 

We did two random searches to select the hyperparameters of the AAMB model. During the 

first random search (RS1), the evaluated hyperparameters were selected to optimise the binning 

performance of the normally distributed latent space z (Supplementary Figure 1). Because 

adversarial models can be more unstable during training compared to variational models, the 

categorical latent y was not included. We first evaluated the reconstruction/regularisation 

scaling factor sl, and number/shape of the encoder/decoder hidden units, as these are important 

for stable competition between the encoder/decoder and the discriminators. Then, we added 

the categorial y latent, and optimised the related parameters slr and Ç in a second random search 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.27.527078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.27.527078
http://creativecommons.org/licenses/by/4.0/


 

(RS2), as these determine the model complexity for learning and encoding, respectively. 

(Supplementary Figure 2). For each iteration, the hyperparameters were randomly sampled 

within a given range, training the model independently on each of the training datasets: CAMI2 

Airways, CAMI2 Urog, CAMI2 Oral and MetaHIT. Performance was evaluated based on the 

number of reconstructed genomes with precision above 0.9 and recall above 0.9. The final 

hyperparameters were sl = 0.0964, slr = 0.5, Ç = 0.1596, with encoder and decoders of two 

hidden layers with 547 hidden nodes per layer, 283 nodes in the latent z layer, and 700 nodes 

for the categorical y layer. However, the categorical y layer dimension could be always adjusted 

depending upon the estimated taxonomic diversity. Thus, we decided to increment the y layer 

size for the Almeida and HMP2 datasets since Nissen et al. [13] reported a higher diversity 

with respect to the CAMI2 and MetaHIT datasets. 

 

De-replicating genomes between latent spaces 

Because the latent spaces each encode every contig, the contigs are binned multiple times, and 

the same bin may be output multiple times in AAMB. Therefore, we devised a technique to 

dereplicate the sets of genomes. First, we ran CheckM2 [17] v0.1.3 to assign completeness and 

contamination to all genomes and removed all genomes that were not NC (i.e. completeness > 

0.9, contamination < 0.05). Each genome was assigned a score computed as 

 

�����	 = 	������������	 2 	5	 ç ������������� 

 

We then identified all <near-identical= pairs of bins, where at least 75% of the smaller bin9s 

nucleotide content was present in the larger bin. For each of these pairs, we removed the bin 

with the lowest score. For each contig still shared by multiple bins, we created a bin without 

that contig and scored it with CheckM2 as above. The contig was then assigned the bin to which 

its removal would result in the largest score drop. To compare this technique against dRep [18], 

we ran dRep v3.0.0 on each sample independently using default parameters. 

 

AAMB and VAMB complementarity tree 

NC bins from AVAMB were dereplicated and scored as described above. If a pair of bins, one 

from VAMB and the other from AAMB was identified as near-identical as above, then we 

consider the retained of the two bins to be recovered from both AAMB and VAMB. From the 

dereplicated AVAMB bins, we ran GTDB-tk [31] v.2.1.0 on the bins both to assign taxonomies 

to each bin, and to obtain a multiple sequence alignment, from which we inferred a 
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phylogenetic tree under the LG amino acid substitution model using IQ-TREE [32] v1.6.8. We 

annotated and visualised the tree with iTOL [33]. 
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