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Abstract

Assembly of reads from metagenomic samples is a hard problem, often resulting in highly
fragmented genome assemblies. Metagenomic binning allows us to reconstruct genomes by re-
grouping the sequences by their organism of origin, thus representing a crucial processing step
when exploring the biological diversity of metagenomic samples. Here we present Adversarial
Autoencoders for Metagenomics Binning (AAMB), an ensemble deep learning approach that
integrates sequence co-abundances and tetranucleotide frequencies into a common denoised
space that enables precise clustering of sequences into microbial genomes. When
benchmarked, AAMB presented similar or better results compared with the state-of-the-art
reference-free binner VAMB, reconstructing ~7% more near-complete (NC) genomes across
simulated and real data. In addition, genomes reconstructed using AAMB had higher
completeness and greater taxonomic diversity compared with VAMB. Finally, we
implemented a pipeline integrating VAMB and AAMB that enabled improved binning,
recovering 20% and 29% more simulated and real NC genomes, respectively, compared to
VAMB with moderate additional runtime. AAMB is freely available at
https://github.com/Rasmussenlab/VAMB.
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Introduction

It has been estimated that there are about one trillion (10'?) species of microbes on Earth and
that the large majority of these have yet to be discovered [1]. Decades ago, the standard
approach to studying novel microbes was to isolate and cultivate them in the lab [2]. However,
microorganisms establish and rely upon complex ecosystems that are not feasible to replicate
in ex-natural environment conditions. This so-called “cultivation bottleneck™ limits culturing
approaches to studying microbes [1]. In contrast, metagenomics enables culture-free microbial
diversity characterization by analysing the entire set of genomes present in a given
environmental sample [3]. Unfortunately, despite advances in sequencing throughput and
bioinformatic tooling, reconstructing high-quality genomes from short read sequenced

metagenomics samples remains challenging [4].

In particular, it is still not feasible to assemble reads from shotgun sequences to contigs that
each cover whole original source genomes; instead, recovered genomes are often fragmented
into many smaller contigs [5]. To mitigate this limitation of assemblers, contigs can be
clustered into bins that represent their source genomes in a process called binning.

Hundreds of thousands of Metagenome Assembled Genomes (MAGs) which have previously
been binned are publicly available, allowing detailed investigations of diverse microbial
communities [6]—[8]. Despite the fact that several binners such as MetaBAT2, MaxBin 2.0,
CONCOCT, and Canopy have been developed, binning performances are still far from optimal
[9]-[12]. Recently we have developed a deep learning based method, called VAMB, that
leverages variational autoencoders (VAEs) to obtain superior performance compared to
previous reference-free binners [13]. VAEs are composed of an encoder that transforms the
input features into a latent distribution, and a decoder that samples from the distribution and
attempts to reconstruct the input from the sample. VAEs are widely used due to their ability to
represent a complex feature space into a continuous latent distribution, and their inherent

sampling process makes them suitable as generative models [14].

VAMB uses a VAE to integrate input contig abundances and tetranucleotide frequencies (TNF)
to a common latent representation that can be clustered to yield bins. The regularisation of the
latent space is done using Kullback-Leibler divergence with respect to a prior distribution, in
VAMB’s case the Gaussian unit distribution [13]. However, another autoencoder framework

is the adversarial autoencoder (AAE) where the regularisation of the latent space is achieved
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Figure 1. AAMB model overview and performance across the benchmark datasets.

A. AAMB workflow overview. Tetranucleotide frequencies and abundances across samples are extracted per

contig and input to the encoder. The encoder-decoder was optimised to reconstruct the input contig features from
the regularized latent representations z and y. Regularisation is achieved by adversarial competition between the
discriminators and the encoder, enforcing the latent encodings to stay close to their prior distributions. After
training, latent representations z and y are retrieved. Then, the VAMB clustering algorithm was applied to generate
clusters from the z latent representation, and cluster labels are taken directly from y. Finally, bins from z and y
are deduplicated to the final AAMB clusters. These can then potentially be integrated with VAMB generated
clusters. Dark arrows represent forward propagations. Dashed arrows represent sampling processes from the latent
and priors, grey arrows represent clustering and dereplication steps performed after training AAMB. B. Number
of distinct NC genomes reconstructed from the six benchmark datasets for VAMB (blue), AAMB(z) (light green),
AAMB(y) (dark green), AAMB(z+y) (light purple), AVAMB (dark purple). GI, Gastrointestinal, Urog,
Urogenital.

using another neural network, hence the name “adversarial” [15]. Previous work applying
AAE:s to images showed that AAE models could generate latent representations with sharper
and better-confined clusters compared to VAEs [15]. We, therefore, hypothesised that the
application of an AAE for metagenomics binning could improve on clustering of near-complete
genomes from the latent space. Furthermore, the original AAE implementation used an
additional categorical latent space alongside the continuous one and showed that the model
learned to cluster the input by assigning each cluster to a categorical class [15], [16]. We hoped
that when applying AAEs to metagenomic sequences, the AAE would likewise learn to assign

each genome into a single categorical class in the categorial latent space.

Here, we present Adversarial Autoencoders for Metagenomic Binning (AAMB), an extension
of our original VAMB program. AAMB leverages AAEs to yield more accurate bins than
VAMB’s VAE-based approach. We apply AAMB to both synthetic and real metagenomic

benchmark datasets and show that more high-quality genomes are recovered using AAMB
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compared to using VAMB or other binners and that the extra genomes expand the taxonomic
diversity of recovered genomes. We also present a method for automatically merging VAMB
and AAMB, and show that the resulting ensemble method AVAMB is superior to both VAMB
and AAMB while requiring nothing extra from the user other than a moderate increase in

compute power.

Results

An adversarial autoencoder for metagenomics binning

Inspired by the original AAE implementation, the AAE in AAMB uses both a continuous
(termed z) and a categorical (termed y) latent space (Figure 1a). Therefore, AAMB is able to
extract bins both by clustering z like VAMB does [13], and by extracting the bin label directly
from y. This resulted in two sets of bins, AAMB(z) and AAMB(y), respectively. When we
investigated the structure of the AAMB z space when applied to the CAMI2 short-read human
“toy” datasets (see Methods), we found that distances between contigs from the same genome
tended to be smaller than distances between contigs from different genomes for all benchmark
datasets (Supplementary Figure 1), a prerequisite for clustering into genomes. AAMB’s z
space was more compact than the VAMB latent space, which we believe was due partly to
AAMB’s ability to also encode information in y. When clustering z, it yielded somewhat worse
bins than VAMB, giving a total of 7% fewer NC genomes compared to VAMB across the
CAMI2 and MetaHIT datasets (Figure 1b). The clusters of AAMB(y) were likewise inferior
to VAMB, giving on average 39% fewer NC genomes. The relative performance of AAMB(z)
vs AAMB(y) was dataset dependent; AAMB(z) outperformed AAMB(y) on the CAMI2
Airways, Gastrointestinal, Oral, Skin, and Urogenital datasets, reconstructing between 47-
102% more NC genomes. On the contrary, AAMB(y), outperformed AAMB(z), on the
MetaHIT dataset, by reconstructing 164% more NC genomes (Supplementary Table 1).
Interestingly, the MetaHIT dataset has been difficult for all the binners we have tested,
including MetaBAT2, MaxBin2.0 and Canopy. This suggested to us that the z and y spaces

contained encodings of different subsets of the total information in the input data.

The continuous and categorical latent space encodes different information
The original AAE paper showed how the y and z space primarily encoded high-level variance

(“class”) and low-level variance (“style”), respectively. We hypothesised that AAMB behaved
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Figure 2. AAMB and VAMB reconstructed genomes analysis and integration with dRep.
A. Jaccard correlation between the NC genomes from all benchmark datasets produced by
AAMB(z), AAMB(y), VAMB, and AAMB(z+y) dereplicated bins. B. Contribution and the
intersection of AAMB and VAMB for NC genomes on CAMI2 and MetaHIT datasets. The
aggregated height of each bar expresses the total number of NC genomes reconstructed by
VAMB and AAMB when dereplicating. unique: NC genomes only reconstructed by the given
binner; and: NC genomes reconstructed by all the binner connected with the and operator and
not by any other binner; NC: Near complete. C. Comparison of strains, species, and genera
recovered at NC level by VAMB (blue), AAMB(z) (light green), AAMB(y) (dark green), as
well as AAMB(z+y) (light purple), and AVAMB (dark purple). s.e. of Ctenarytaina euc.,

secondary endosymbiont of Ctenarytaina eucalypti.

similarly, i.e. AAMB(y) would cluster contigs at a higher taxonomic rank than AAMB(z),
which would imply that AAMB(y) might conflate lower taxonomic ranks. To test this, we
measured the taxonomic distance between randomly selected contig pairs from the same cluster
in AAMB(y) and AAMB(z) (Supplementary Figure 2). We found that AAMB(y) conflated
higher ranks more often than AAMB(z), and AAMB(z) conflated strains more often than
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AAMB(y), which did not support our hypothesis. The hypothesis further implied that while
most AAMB(z) clusters would have high strain-level purity, multiple AAMB(y) clusters
representing different higher taxonomic ranks could sometimes be mapped to the same
AAMB(z) space, causing some AAMB(z) clusters to be the union of otherwise pure strains
from disparate high taxonomic ranks. If that was the case, it would imply that some contig pairs
from the same AAMB(z) cluster would be from wildly different clades, but we did not observe
this (Supplementary Figure 3). Further, when splitting AAMB(z) clusters by their y label to
decontaminate this potential contamination, we found the resulting bins were no better
(Supplementary Table 2), contrary to our hypothesis. We thus concluded that neither
AAMB(z) nor AAMB(y) were redundant with respect to each other, nor did z only capture
intra-y variance, but instead the two latent spaces learned complementary information.

Therefore, we decided to explore the intersection and differences in genome reconstruction

between VAMB, AAMB(z), and AAMB(y) (Figure

2a). We found that NC genomes reconstructed by AAMB(y) had a Jaccard index of 0.40 and
0.47 to the NC genomes reconstructed by AAMB(z), and VAMB, respectively (see Methods),
while the Jaccard index of NC bins from AAMB(z) versus VAMB was higher at 0.64. Hence
AAMB(z)’s genomes were more similar to VAMB’s than to AAMB(y)’s. This was not
surprising, as the continuous Gaussian latent space of VAMB is more akin to the similarly

structured z.

Combining the latent spaces AAMB(y) and AAMB(z)

Because AAMB(z) and AAMB(y) reconstructed different sets of genomes, we developed a
technique to dereplicate the genomes sets reconstructed from the two latent spaces. Briefly, we
assessed bin quality with CheckM2 [17] to remove low-quality bins, then for each bin pair that
we deemed to be nearly identical, we removed the lowest-scoring bin. Finally, any contigs
contained in two or more bins were assigned to the bin whose CheckM2 score would be
improved the most by the addition of these contigs (see Methods). When comparing this
dereplication method to a popular alternative MAG dereplication tool dRep [18], our method
preserved more genomes, only losing 28 NC bins in the dereplication process across all the
CAMI2 datasets, compared to 40 when using dRep (Supplementary Table 3).
Simultaneously, our approach produced no duplicated contigs, whereas 6 contigs remain
duplicated when using dRep (Supplementary Table 4). Applying this dereplication process
to the union of AAMB(z) and AAMB(y), we obtained what we termed AAMB(z+y), and found
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that it outperformed VAMB, reconstructing 7% more NC genomes across all CAMI2 datasets
(Figure 1b). This workflow came at some cost of computational power, as training and
clustering time required were 1.9x and 3.4x higher when using GPU or CPU only, respectively,
compared to VAMB (Supplementary Table 5). Because AAMB(z+y) had the best
performance, we used it as the default AAMB workflow and will henceforth refer to it as

simply AAMB.

Combining the AAMB and VAMB framework

We found that AAMB (i.e. AAMB(z+y)) reconstructed a different set of NC genomes than
VAMB (Jaccard index of 0.79) (Figure 2b-c¢, Supplementary Figures 4-9), and so
hypothesised that we could apply the AAMB dereplication approach to also merge VAMB bins
to form a VAMB+AAMB workflow we called AVAMB. The integrated AVAMB model
proved highly performant as it allowed the reconstruction of 6-35% additional NC genomes
compared to using only VAMB across the benchmark datasets (Figure 1b, Supplementary
Table 6). Furthermore, few (2-7) NC genomes were lost during dereplication of AAMB and
VAMB bins. We then investigated the contribution from AAMB(z), AAMB(y), and VAMB,
and found that 23-50% of the NC genomes were reconstructed by all three methods across the
benchmark datasets. On the other hand, we found that up to 27% of the NC genomes in a dataset
were only identified by one method (Figure 2b, Supplementary Table 7). We concluded that
VAMB, AAMB(z), and AAMB(y), each reconstruct different genomes from the benchmark
datasets and that the dereplicated union of all three methods yields better overall performance.
To check if the gains of AVAMB over VAMB were simply due to the former being an
ensemble method, we merged the bins of VAMB and MetaBAT2 and compared this
VAMB+MetaBAT2 with VAMB+AAMB. We found that VAMB+AAMB outperformed
VAMB+MetaBAT2 on 5 of the 6 benchmark datasets, although an ensemble of all three
methods did best on 5 of 6 datasets (Supplementary Table 8). This implies that AAMB has
better synergy with VAMB than MetaBAT2. Since AAMB and VAMB share much of their
pipelines including the computation of inputs to the encoders and are provided by the same
software package, VAMB+AAMB is also significantly faster and easier to use than
VAMB+MetaBAT?2. Finally, we compared to using the semi-supervised binner SemiBin [19]
and found that it reconstructed 15-36% more NC genomes compared to AVAMB on the CAMI
data sets (Supplementary Table 9). This, however, also came at a higher computational cost

taking 35-57 times longer than AVAMB (Supplementary Table 10).
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Figure 3. AAMB performance on real datasets.

A. Number of NC bins reconstructed from the Almeida and HMP2 datasets for VAMB (blue),
AAMB(z) (light green), AAMB(y) (dark green), AAMB(z+y) (light purple), AVAMB (dark
purple). B. Number of taxa with at least one NC genome from the dereplicated set of bins
generated by VAMB and AAMB on the Almeida dataset. AAMB and VAMB dereplicated bins
were classified with GTDB-Tk. Taxa reconstructed only by VAMB (blue), taxa reconstructed
only by AAMB (green), and taxa reconstructed by both AAMB and VAMB (purple). C. NC
bins quality comparison between VAMB and AAMB. VAMB and AAMB bins were
considered equal if belonging to the same sample with 100% identity over at least 75% of the
smallest bin. NC: Near complete. V= A: VAMB and AAMB NC bins with exact same score.
V > A: VAMB NC bins with a higher score than AAMB NC bins, A > V: AAMB NC bins
with a higher score than VAMB NC bins, V unique: VAMB NC bins not reconstructed by any
AAMB NC bin at the selected identity settings, A unique: AAMB NC bins not reconstructed
by any VAMB NC bin at the selected identity settings.

AAMB outperformed and complemented VAMB on real metagenomic datasets

The synthetic nature of the CAMI2 datasets enabled precise benchmarking, but because
synthetic metagenomic datasets are not entirely realistic as they use idealised coverage
distributions and read assemblies [4], we did not know if AAMB’s accuracy translated to real
datasets. Therefore, we ran AAMB on two real datasets, a 1,000 gut microbiome dataset from

Almeida et al. [20] and the Human Microbiome Project 2 Inflammatory Bowel Disease cohort
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with 1,306 longitudinal samples from 90 patients (HMP2 dataset) [21], and evaluated accuracy
using CheckM2 (see Methods). We note that evaluating AAMB using CheckM2 was not
entirely unbiased, since AAMB dereplicate similar bins using CheckM2 scores. Nonetheless,
the observed results mirrored the ones seen on the synthetic CAMI datasets. AAMB(z)
generated more NC bins than AAMB(y) with 1,464 and 1,963 more on the Almeida and HMP2
datasets, respectively. AAMB performed better than either AAMB(z) and AAMB(y) as well
as better than VAMB, reconstructing 5,077 and 2,715 NC genomes, an increase of 9.7% and
2.3% (Figure 3a-b) compared to VAMB. Similarly, AVAMB did even better, yielding a total
of 5,733 and 3,569 NC bins, which corresponded to an increase of 1,103 (24%) and 914 (34%)
NC bins compared to VAMB. Similarly, we tried to use SemiBin on the Almeida data set,
however, it did not complete within one week. From the samples that it finished (134), we
estimated that it would take 52 days to complete using a GPU. In comparison, AVAMB
finished in less than one day (22 hours).

AVAMB recovers more distinct taxa than VAMB at higher quality

In order to investigate the nature of the additional genomes recovered by AAMB compared to
VAMB, we assigned taxonomy to the NC bins recovered from the Almeida and HMP2 datasets
(see Methods). We found that the additional genomes recovered by AAMB compared to
VAMB increased diversity on the species level, but not higher taxonomic levels. As before,
AVAMB performed better than either binner alone and increased diversity further on species
level where it recovered 13% and 28% more unique species from the Almeida and HMP2
datasets respectively, compared to VAMB. Unlike AAMB, AVAMB also increased diversity
on the genus level, where it reconstructed 5.5% and 14% more genera than VAMB (Figure
3b). To gain a better overview of which clades were improved using AVAMB compared to
VAMB, we created a phylogenetic tree of core genes from NC bins recovered by AVAMB
(Figure 4). In the figure, we marked bins that were uniquely recovered by AVAMB and not
VAMB, and also marked bins that were recovered by both binners, but where the bin recovered
by AVAMB was of better quality. AVAMB improved the quality of 2,091 NC bins also
reconstructed by VAMB (Supplementary Table 11). We found that AVAMB recovered more
bins across the entire tree with no apparent biases towards any particular clades, but that

improved bins tended to cluster together in smaller clades across the tree.
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Figure 4. Maximum-likelihood phylogenetic tree of the NC bins reconstructed by VAMB
and AAMB from the Almeida dataset. GTDB-tk was used to generate the multiple sequence
alignment, 1Q-tree to produce the tree, and iTOL to visualise the tree. Red stripe: bins
reconstructed by VAMB with a higher score than AAMB, golden stripe: reconstructed by
AAMB with a higher score than AAMB, blue range: bins reconstructed by VAMB, green
range: bins reconstructed only by AAMB and not by VAMB.

Discussion

We present AAMB, an adversarial autoencoder for metagenomic binning. AAMB is a
probabilistic deep learning model that attempts to integrate and denoise contig features into
two latent spaces. AAMB gave better results than VAMB, a state-of-the-art reference-free
binning method. We found that AAMB bins excellently complemented VAMB bins in number,
bin quality, and taxonomic diversity. Thus, dereplicating the union of VAMB and AAMB’s
bins was found to maximise microbial genome recovery in both synthetic and real

metagenomic datasets.

Dereplicating multiple binnings of the same contig set is not straightforward, but is simpler
than dRep’s goal of dereplicating arbitrary genomes, because the former case involves

duplication of the exact same contigs which is trivial to detect. Furthermore, pairs of
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imperfectly binned MAGs may have a nucleotide identity profile across the genome that is
biologically unrealistic, with some large sections that are nearly identical, and other large
sections with low nucleotide identity, a circumstance which dRep might not be built for. Hence,
we believe the reason our dereplication method was more accurate than dRep was that our
method was designed for the more narrow problem of dereplicating MAGs derived from the

same set of contigs.

The increase in complexity of AAMB with respect to VAMB is not costless. We found that the
training and clustering steps of the pipeline of AAMB were 1.8 to 2.7 times slower on average
compared to VAMB’s when running on a GPU and CPUs, respectively. Furthermore,
dereplication of AAMB and VAMB bins per sample must be accomplished if optimal bin
integration is to be obtained, extending the total runtime by up to 4.2 minutes per sample for

the largest datasets evaluated.

Like VAMB, AAMB leverages a multi-sample approach [13], and so is able to use its
advantages, including more co-abundance signal from the same contigs, increased density of
contig clusters by observing homologous contigs in multiple samples, and increased binning
speed. Even while being slower than VAMB, AVAMB ran 28 times faster on the Almeida
dataset than running MetaBAT2 on each sample and reconstructed 92% more NC bins.
Expectedly, AVAMB reconstructed fewer NC genomes on the CAMI datasets than the semi-
supervised binner SemiBin. However, this was also expected as being semi-supervised
SemiBin uses database information to help bin the contigs at the cost of significantly increased
runtime. On the contrary, AAMB and VAMB are unsupervised in their approach to generating
the genome bins. Further improvement to AAMB, VAMB, and AVAMB could be done by

implementing self or semi-supervised learning in the binning step itself in an efficient manner.
AAMB, the dereplication workflow, and AVAMB have been implemented using Python and

Snakemake [22], and are shipped with the newest release of VAMB. From a software user

perspective, it thus presents minimal differences with respect to the normal VAMB workflow.

Methods
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Overview of AAMB

The AAMB workflow consists of the following main steps (Figure 1a). First, Tetra Nucleotide
Frequencies (TNF) and per sample co-abundances (Coab) are extracted from the contigs and
BAM files of reads mapped to contigs, and input to the AAMB model as a concatenated vector.
The AAMB model encodes a continuous latent space (z) and a categorical latent space (y) and
reconstructs the input from these two as the output. After training, two sets of contig clusters
will be generated, one set from continuous latent space (z clusters) and another set from the
categorical latent space (y clusters). The z space is clustered using the clustering algorithm of
VAMB [13]. The y clusters are implicit from the one-hot categorical latent space and can
simply be extracted as the categorical vector. Therefore, all contigs are present twice, both in
the y and z output. The two sets were then split by sample of origin to per sample-specific bins
using the principle of multi-split binning from the VAMB framework. Finally, the bins were
filtered based on CheckM?2 [17] scores and then dereplicated as described below.

Datasets

We used the same synthetic benchmark datasets used in VAMB. For hyperparameter tuning,
we used the short read Airways (n=10), Oral (n=10), and Urogenital (n=9) from the Critical
Assessment of Metagenome Interpretation (CAMI2) short-read ‘toy’ human datasets [4].
Furthermore, we used the MetaHIT ‘error-free’ dataset as a training set as well [4]. The
remaining two CAMI2 toy human datasets, CAMI2 Gastrointestinal (n=10), and CAMI2 Skin
(n=10) were used for model validation. We further evaluated the methods on a 1,000-sample
human gut microbiome dataset collected by Almeida et al. [20] and processed by Nissen et al.
[25]. Additionally, we evaluated the methods on a dataset from the Human Microbiome Project
2 (HMP2) Inflammatory Bowel Disease (IBD) cohort consisting of 1,338 samples from a total
of 27 healthy controls, 65 Crohn's Disease, and 38 Ulcerative Colitis patients from Lloyd-Price
etal. [21] and [21] processed by Johansen et al. [26].

Contig pre-processing

Contig sequences were transcribed into numerical vectors following the same procedure
described for VAMB [13] and summarised below. Both TNFs and co-abundances (Coab) were
extracted for each contig. For the MetaHIT dataset [23], contig abundances were defined by
the original authors whereas, for the CAMI2 [4], Almeida [20], and HMP2 [21] datasets the
contig abundances were determined as done by Nissen et al [13]. In short, contigs for each

sample were merged into a catalogue, and reads from each sample were aligned using
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minimap?2 (v.2.15r905) [27] to the catalogue. For the HMP2 dataset, we used minimap2 version
v.2.6. Abundances were calculated using the program jgi summarize_bam contig depths
from MetaBAT2 (v.2.10.2) [12, p. 2]. When input to VAMB and AAMB, the abundances were
normalised across samples for the same contig to sum to one in order to mimic a probability
distribution that a random mapping read will come from each sample. TNFs were calculated
using the method as described in VAMB, i.e. projected into 103 orthonormal dimensions as
originally described by Kislyuk et al. [28] and normalised by z-scaling each tetranucleotide
across the contigs in order to increase the relative inter-contig variance [13]. As done in
VAMB, each contig TNFs and Coab vectors were concatenated into a vector of number of

samples + 103, constituting the model input vector [TNFs, Coab]".

Adversarial autoencoder architecture

The AAE architecture was composed of three modules: The encoder-decoder, the z latent space
discriminator, and the y latent space discriminator, as done in the original work from Makhzani
et al. [15] (Figure 1a). The encoder-decoder module learns the contig features and encodes
them into the z and y latent spaces. The discriminators for the z and y latent spaces restrict the
latents to be similar to their priors, thus performing the regularisation of the model, which
imposes a structure on the latent space that makes it clusterable. The encoder is a sequence of
two dense layers with 547 units dense layers, each with LeakyReLU activation function and
batch normalisation. The encoder is connected to the dense layers p, 6 each with 283 units
parameterizing z, and to the y layer with 700 units. Softmax activation is applied on the y latent
layer to mimic a probability distribution. The decoder reconstructs the contig features using a
sample of the Gaussian distribution z ~ N(, ¢), and the y vector. Its architecture is identical to
the encoder. Considering that Coab was normalised across samples to sum to one, softmax was
applied to the Coab output units. The two discriminators of the z and y space, D, and Dy, are
both networks with the same architecture as the decoder model described above, except without
batch normalisation, where the final output layer is one single node. Each discriminator is
trained to discriminate between samples taken from the latent spaces (z, y) and the priors. The
prior for the D, is the unit Gaussian distribution N(u=0, o=I). For Dy, the prior is the
RelaxedOneHotCategorical [29] distribution Cat(t), with the temperature T = 0.15. The
discriminators were optimised for a binary classification task, therefore the softmax activation
function was used for the output node in order to interpret the output as a probability. All three

modules are optimised with Adam [29], and are implemented using PyTorch (v.1.7.1) [29],
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with CUDA (v.8.0.61) being used when a GPU is available. For the results in this paper, we
used an NVIDIA Tesla V100 GPU, and an Intel Xeon Gold 6230 CPU.

Loss functions
The two discriminators were trained to minimise the difference between their binary prediction
and the ground truth using binary cross entropy (BCE) on a pair of samples from the prior and

the latent space, and hence use the loss:

LDz = 12 BCE(D,(2),0) + 1/2BCE(D,(S ~N(0,1),1) (5)
LDy = 1/2 BCE(Dy,(y),0) + 1/2 BCE(D,(C ~ C(1)), 1) (6)

Where LDz and LDy is loss of the discriminators D, and Dy, respectively, and S ~ N'(0,1) and
C ~ Cat(t) are samples from the priors, namely the standard normal distribution and the
Gumbel-softmax distribution [30] with temperature parameter 7.

The encoder/decoder pair’s loss function is the sum of two terms: Reconstruction loss L. and
regularisation loss Lieg. Lrec encourages the networks to faithfully encode the input data’s
information and was implemented as done in VAMB [13]. In short, the cross entropy (CE) loss
was used for reconstructions of the abundances of the contigs (Ain vs Aout) and mean squared
error (MSE) for the reconstruction of the TNFs (Tin vs. Tou). These two terms are weighted

with hyperparameters Weoan and Winr.

Lrec = Wcoab CE (Ain'Aout) + WrNF MSE(Tin' Tout) (1)

L:eg encourages the latent space to be similar to their priors and is the sum of two terms, which

measure the ability of the discriminator to correctly identify the samples from the latent spaces:
LRz = BCE(D,(2),1) (2)

LRy = BCE(D,(¥),1) ()

Lieg 1s then calculated as the sum of LRz and LRy, weighted by the slr hyperparameter:

Lyeg = (I —slr) LRz + slr LRy (4)
Lyeg = (I —slr) —LDz + slr » —LDy (4)

The final model loss L is computed by weighing Liec and Lreg using the hyperpameter sl:
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L= =5l Lygc+slLeg (5

Benchmarking

For the CAMI2 dataset, strains, species, and genus were defined exactly by the original authors
[4]. For the MetaHIT dataset, strain definition was defined as the genomes used to generate the
dataset, while species and genus were defined using NCBI taxonomy of these strains [24].
Calculation of AAMB bin quality within each taxonomy clade was done as in VAMB [13]: At
the strain level, AAMB bin precision and recall were computed using the vamb.benchmark
tools for all genomes in the dataset. Here precision quantifies the purity of the genome in a bin,

and was defined as follows for pair (B, G) of bin B and genome G:

bp of G covered by B contigs (7)

Precisiong ; = -
’ bp of any genome covered by B contigs

Similarly, recall quantify genome retrieval and was defined for bin B and genome G as follows:

bp of G covered by B contigs
Recallg ; = pof 2 92 (8)

Total bpin G

For a higher taxonomic clade L (e.g. species or genus), Recallg. and Recallg was defined by
Recally ; = maxRecallg ¢
’ GeL ’

Precisiong; = Y.;¢; Precisiongg

Binner performance is then given as the number of genomes reconstructed at some
recall/precision threshold (typically 0.9/0.95) in any bin. SemiBin [19] v0.7.0 was run using
the multi_easy bin mode. In the run time comparison, we used 20 CPU, 1 GPU, 20 GB of
RAM, for VAMB, AAMB, and AVAMB, and 1 CPU, 20 GPU, 150 GB of RAM for SemiBin.

Hyperparameter searches

We did two random searches to select the hyperparameters of the AAMB model. During the
first random search (RS1), the evaluated hyperparameters were selected to optimise the binning
performance of the normally distributed latent space z (Supplementary Figure 1). Because
adversarial models can be more unstable during training compared to variational models, the
categorical latent y was not included. We first evaluated the reconstruction/regularisation
scaling factor sl, and number/shape of the encoder/decoder hidden units, as these are important
for stable competition between the encoder/decoder and the discriminators. Then, we added

the categorial y latent, and optimised the related parameters slr and 7 in a second random search


https://doi.org/10.1101/2023.02.27.527078
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.27.527078; this version posted February 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

(RS2), as these determine the model complexity for learning and encoding, respectively.
(Supplementary Figure 2). For each iteration, the hyperparameters were randomly sampled
within a given range, training the model independently on each of the training datasets: CAMI2
Airways, CAMI2 Urog, CAMI2 Oral and MetaHIT. Performance was evaluated based on the
number of reconstructed genomes with precision above 0.9 and recall above 0.9. The final
hyperparameters were sl = 0.0964, slr = 0.5, t = 0.1596, with encoder and decoders of two
hidden layers with 547 hidden nodes per layer, 283 nodes in the latent z layer, and 700 nodes
for the categorical y layer. However, the categorical y layer dimension could be always adjusted
depending upon the estimated taxonomic diversity. Thus, we decided to increment the y layer
size for the Almeida and HMP2 datasets since Nissen et al. [13] reported a higher diversity
with respect to the CAMI2 and MetaHIT datasets.

De-replicating genomes between latent spaces

Because the latent spaces each encode every contig, the contigs are binned multiple times, and
the same bin may be output multiple times in AAMB. Therefore, we devised a technique to
dereplicate the sets of genomes. First, we ran CheckM2 [17] v0.1.3 to assign completeness and
contamination to all genomes and removed all genomes that were not NC (i.e. completeness >

0.9, contamination < 0.05). Each genome was assigned a score computed as

score = completeness — 5 - contamination

We then identified all “near-identical” pairs of bins, where at least 75% of the smaller bin’s
nucleotide content was present in the larger bin. For each of these pairs, we removed the bin
with the lowest score. For each contig still shared by multiple bins, we created a bin without
that contig and scored it with CheckM2 as above. The contig was then assigned the bin to which
its removal would result in the largest score drop. To compare this technique against dRep [18],

we ran dRep v3.0.0 on each sample independently using default parameters.

AAMB and VAMB complementarity tree

NC bins from AVAMB were dereplicated and scored as described above. If a pair of bins, one
from VAMB and the other from AAMB was identified as near-identical as above, then we
consider the retained of the two bins to be recovered from both AAMB and VAMB. From the
dereplicated AVAMB bins, we ran GTDB-tk [31] v.2.1.0 on the bins both to assign taxonomies

to each bin, and to obtain a multiple sequence alignment, from which we inferred a
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phylogenetic tree under the LG amino acid substitution model using IQ-TREE [32] v1.6.8. We
annotated and visualised the tree with iTOL [33].
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