

1 *Forum paper*

2

3 **What mycologists should talk about when they are talking about the International Code of
4 Nomenclature for algae, fungi, and plants**

5

6 R. Henrik Nilsson^{1,*}, Martin Ryberg², Christian Wurzbacher³, Leho Tedersoo^{4,5}, Sten Anslan⁴,
7 Sergei Põlme⁶, Viacheslav Spirin^{1,7}, Vladimir Mikryukov⁶, Sten Svantesson^{1,2}, Martin
8 Hartmann⁸, Charlotte Lennartsdotter¹, Pauline Belford⁹, Maryia Khomich¹⁰, Alice Retter¹¹,
9 Natália Corcoll¹, Daniela Gómez Martinez¹, Tobias Jansson¹, Masoomeh Ghobad-Nejhad¹²,
10 Duong Vu¹³, Marisol Sanchez-Garcia¹⁴, Erik Kristiansson¹⁵, Kessy Abarenkov¹⁶

11

12 ¹ Gothenburg Global Biodiversity Centre, Department of Biological and Environmental
13 Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden

14 ² Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala,
15 Sweden

16 ³ Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall
17 3, 85748 Garching, Germany

18 ⁴ Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia

19 ⁵ College of Science, King Saud University, 1145 Riyadh, Saudi Arabia

20 ⁶ Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia

21 ⁷ Botany Unit (Mycology), Finnish Museum of Natural History, P.O. Box 7, FI-00014
22 University of Helsinki, Finland

23 ⁸ Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092
24 Zürich, Switzerland

25 ⁹ Interaction Design and Software Engineering, Chalmers University of Technology,
26 Lindholmsplatsen 1, 417 56 Göteborg, Sweden

27 ¹⁰ Department of Clinical Science, University of Bergen, Box 7804, 5020 Bergen, Norway

28 ¹¹ Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1,
29 A-1030 Vienna, Austria

30 ¹² Department of Biotechnology, Iranian Research Organization for Science and Technology,
31 PO Box 3353-5111, Tehran 3353136846, Iran

32 ¹³ Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

33 ¹⁴ Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural
34 Sciences, Box 7026, 750 07 Uppsala, Sweden

35 ¹⁵ Department of Mathematical Sciences, Chalmers University of Technology and University
36 of Gothenburg, Göteborg, Sweden

37 ¹⁶ Natural History Museum, University of Tartu, Vanemuise 46, Tartu 51014, Estonia

38

39

40 * Corresponding author: henrik.nilsson@bioenv.gu.se

41

42 **Abstract**

43 Fungal metabarcoding of substrates such as soil, wood, and water are uncovering an
44 unprecedented number of fungal species that do not seem to produce tangible morphological
45 structures and that defy our best attempts at cultivation, thus falling outside of the ambit of
46 the International Code of Nomenclature for algae, fungi, and plants. The present study uses
47 the new, ninth release of the species hypotheses of the UNITE database to show that species
48 discovery through environmental sequencing vastly outpaces traditional, Sanger sequencing-
49 based efforts in a strongly increasing trend over the last five years. Our findings challenge the
50 present stance of the mycological community – that “the code” works fine and that these
51 complications will somehow sort themselves out given enough time and a following wind –
52 and suggest that we should be discussing not whether to allow DNA-based descriptions
53 (typifications) of species and by extension higher ranks of fungi, but what the precise
54 requirements for such DNA-based typifications should be. We submit a tentative list of such
55 criteria for further discussion. However, the present authors fear that no waves of change will
56 be lapping the shores of mycology for the foreseeable future, leaving the overwhelming
57 majority of extant fungi without formal names and thus scientific and environmental agency.
58 It is not clear to us who benefits from that, but neither fungi nor mycology are likely to be on
59 the winning side.

60

61 **Keywords** dark taxa, ICN, nomenclature, species description, taxonomy, type principle

62

63 **Introduction**

64 Dark matter is an astronomical concept that denotes mass of a hitherto unknown nature. That
65 mass is detectable indirectly through the gravity it exerts – such as the bending of passing
66 light – but its exact nature has so far defied scientific explanation. Mycology offers an analogy
67 in the form of dark taxa, which are taxa that do not seem to produce tangible morphological
68 structures and that we cannot seem to cultivate in the lab. As with dark matter, dark taxa are
69 chiefly detected by other means than direct observation, notably through DNA sequencing
70 (Grossart et al. 2016; Lücking et al. 2021). The field of mycology has become intimately
71 entwined with the concept of dark taxa in the wake of environmental metabarcoding, where
72 seemingly dark taxa often make up more than half of the taxa recovered (e.g., Retter et al.
73 2019). Dark taxa seem to permeate the fungal tree of life and are known from all major fungal
74 lineages. Indeed, a non-trivial number of large fungal lineages are constituted solely by dark
75 taxa (Tedersoo et al. 2017, 2020). Studying the fungal kingdom sans its dark components is to
76 study a paraphyletic group, something that contemporary phylogenetic thinking advises
77 strongly against.

78 Most of the present authors have spent considerable time in the company of dark
79 fungal taxa (DFT) as recovered through environmental metabarcoding and as manifested in
80 the UNITE database for molecular identification of fungi (Nilsson et al. 2019). The sheer
81 magnitude of extant sequence data from DFT signals a need to take these taxa seriously. Yet
82 it seems to the present authors that contemporary mycology treats DFT as if they had a lesser
83 – in fact, no – biological validity. The International Code of Nomenclature for algae, fungi, and
84 plants (ICN; Turland et al. 2018) does not permit species descriptions typified from DNA
85 sequences alone, and a recent effort to bring about change in this regard was overthrown
86 with overwhelming majority (May et al. 2018). Similarly, DFT are routinely ignored in the
87 context of, e.g., phylogenetic inference, ecology, and nature conservation (Ryberg and
88 Nilsson, 2018). Indeed, it is as if the DFT have no agency at all, scientific or otherwise. This
89 goes very much against the experience of the present authors, who have used DFT to tease
90 out branching orders, dominant but entirely overlooked taxa, and major ecological patterns
91 that otherwise would have been lost on science (Khan et al. 2020; Nilsson et al. 2011, 2016;
92 Tedersoo et al. 2022). Similarly, in an attempt to accord some taxonomic standing to the DFT,
93 UNITE has assigned DOI-based digital identifiers to all DFT known from nuclear ribosomal
94 internal transcribed spacer region (ITS) data to facilitate and promote unambiguous scientific

95 communication across datasets and studies (Kõlalg et al. 2013). These efforts have largely
96 fallen short of sparking the debate they were hoping to.

97 In the present forum paper, we wish to visualize the relative contribution of DFT to
98 molecular mycological species discovery over time. We do this through two molecular
99 datasets, both of which reflect current knowledge but also biases in various ways. These
100 datasets are: 1) all full-length fungal ITS sequences in the international sequence database
101 collaboration (INSDC; Arita et al. 2021) as of October 11, 2022 and 2) the five large
102 metabarcoding datasets – chiefly of soil fungi (e.g., Tedersoo et al. 2022) – so far incorporated
103 into the UNITE database. We find that the DFT overwhelmingly dominate the species
104 discovery process, and it seems patently clear that extant fungal diversity presents us with
105 patterns that cannot be accurately represented only by species defined by morphology or
106 cultivation alone. It strikes us as unfortunate that what seems to be the absolute majority of
107 fungi fall outside the ambit of the ICN, and we hope that the present results will instigate a
108 much needed – and much overdue – debate on how and when we should allow formal species
109 descriptions based on DNA sequence data alone.

110

111 **Materials and Methods**

112 The full flow of operation behind the UNITE database is described elsewhere (Kõlalg et al.
113 2013, 2020; Nilsson et al. 2019). In brief, UNITE clusters the fungal ITS sequences of INSDC
114 jointly with the UNITE-contributed DFT ITS sequences into species hypotheses (SHs) at
115 distance thresholds 0.5% through to 3.0% in steps of 0.5%. These operational taxonomic units
116 can be thought of as entities roughly at the species level. The sequences and the SHs are
117 available for web-based interaction as well as for download in various formats
118 (<https://unite.ut.ee/repository.php>).

119 We downloaded all sequences included in the October 2022 version 9 release of the
120 UNITE species hypothesis system. To allow us to contrast the species discovery from
121 taxonomic and metabarcoding studies, we made the admittedly coarse assumption that all
122 SHs that contained at least one sequence from the INSDC could be considered as taxonomy-
123 derived SHs, that is, SHs with some sort of footing in traditional taxonomy. In analogy, all SHs
124 comprised solely of metabarcoding sequences were considered as DFT. Based on the date of
125 initial submission of each sequence (submission to INSDC and to UNITE, respectively, for
126 INSDC and DFT sequences), we examined the accumulation of SHs over time. We plotted the

127 accumulation of taxonomy-derived and DFT-only SHs against date of initial discovery in R v.
128 4.2.2 (R core team 2020).

129 While there is little hope of piecing together the ecological context of these sequences
130 in an automated way, at least there is an opportunity to visualize the country of collection for
131 many of the sequences in INSDC and UNITE. We thus sought to illustrate the geographical
132 component of the SH accumulation curves by summarizing the country of collection of the
133 taxonomy-derived and DFT sequences. In total, 63% of the taxonomy-derived, and 99.9% of
134 the DFT, sequences were tagged with an explicit country of origin. The 20 most common
135 countries of origin in each dataset were compiled using R.

136

137 **Results**

138 We retrieved a total of 1.26 M taxonomy-derived sequences from INSDC and 7.1 M DFT
139 sequences from UNITE. The taxonomy-derived sequences were found to stem from a total of
140 88,665 distinct published and unpublished studies as defined by the combination of the INSDC
141 fields AUTHORS, TITLE, and JOURNAL. The DFT sequences were found to stem from 5 studies.
142 The SH accumulation curves at the dynamic 1.5% similarity threshold level are shown in Figure
143 1. Table 1 shows the top 20 countries of origin for the taxonomy-derived and DFT sequences
144 for which this data was available. Figure 2 shows the collection localities for all Sanger and
145 metabarcoding sequences with geo-coordinates.

146

147 **Discussion**

148 The present study approximated fungal species accumulation over time as deduced from
149 taxonomic and metabarcoding efforts. We found that the DFT account for the lion's share of
150 the new species discovered in the last five years (although some limited proportion of both
151 the Sanger-derived and the DFT sequences may possibly correspond to described, but so far
152 unsequenced, species). We reached this conclusion based on a very limited number of studies
153 – in fact, just five – on soil fungal communities and in almost complete absence of
154 metabarcoding data from, e.g., water, air, wood, and plant material. One can only imagine
155 that Figure 1 would have shown an even more dramatic trend had a wider selection of
156 metabarcoding datasets been available in UNITE. Figure 2 paints a similar picture with respect
157 to the geographical coverage. It shows that whereas the sampling effort of the five
158 metabarcoding studies was wide, it pales in comparison to that of the combined Sanger-

159 derived studies. It is reasonable to think that at least some of the unsampled geographical
160 regions are rich in DFT and would have contributed to an even steeper trend in Figure 1, had
161 they been sampled.

162 It is often said that when data are sparse, opinions may be maintained and cherished
163 for longer than necessary. Our results show that data are no longer sparse; DFT, in view of
164 their diversity and abundance, form a major, inextricable component of the fungal kingdom.
165 They simply cannot be swept under the carpet. It is not scientifically defensible to exclude
166 them from mycological efforts in phylogeny, ecology, or biogeography; they simply cannot be
167 swept under the carpet. We therefore argue that it does not make sense to deny them a
168 formal standing under the ICN. It is time – in fact, long overdue – to start discussing what the
169 requirements should be for DFT to be formally considered under the ICN. Clearly,
170 morphological structures or cultivability cannot be part of those requirements. We feel it is
171 time for serious discussion on this topic , and we would like to reiterate the observations of
172 Lücking et al. (2021) that a limited number of thought-through requirements would probably
173 suffice. These should reflect the need for scientific reproducibility and should be stringent
174 enough that only particularly well-vetted and documented DFT can be considered for DNA-
175 based typification and formal description. At the same time, they should be realistic and
176 reasonable enough that formal taxonomic description does become possible for such
177 particularly well-vetted and documented DFT. We submit the following as tentative criteria:

178

- 179 • A minimum length/coverage for the underlying sequence data (such as all of SSU, ITS,
180 and LSU in a contiguous stretch).
- 181 • Sufficiently high read quality.
- 182 • At least two independent recoveries of the taxon across separate datasets, perhaps
183 from separate research teams.
- 184 • A thorough analysis of the public sequence databases for relevant additional
185 sequences to maximise the penetration of available data and to minimize redundant
186 descriptions.
- 187 • An underlying phylogenetic analysis based on a multiple sequence (perhaps SSU plus
188 LSU, or at least LSU) alignment.

189 • Bundling of open, richly annotated raw sequence data/FASTQ/chromatograms and
190 metadata on, e.g., the ecological and geographical specifics of the sampling sites.
191 • Publication in a scientific journal with a formal impact factor.
192 • It furthermore seems reasonable to us to allow DNA sequences as types only in fungal
193 groups that are predominantly or exclusively dark at, say, the order or supra-order
194 level. We would be against DNA-based typifications in groups where morphological
195 structures and/or cultivation may be within reach (e.g., *Cortinarius* and *Fusarium*).
196 • At least one mycological taxonomist should be involved in the description of DFT
197 (indeed, all fungi). There is no shortage of potential complications that, when
198 overlooked, could lead to needless and haphazard introduction of new species and
199 genera in DFT and beyond. For instance, it is well known that some extant genera offer
200 examples of very divergent ITS (or other ribosomal) regions (e.g., *Basidiobolus*,
201 *Oliveonia*, and *Cantharellus*; Feibelman et al. 1994; Alm Rosenblad et al. 2022). When
202 considered in isolation and out of context – in, say, a molecular ecology dataset – such
203 sequences could be interpreted to warrant new species and genus descriptions.
204 Needless to say, the present authors are against premature description of species and
205 other taxonomic groups.

206

207 There is clearly room for refinement of the requirements mentioned here, and we are
208 furthermore certain that the mycological community can come up with additional
209 prerequisites to further increase stringency and reduce the risk for haphazard, more or less
210 irreproducible or irresponsible use of DNA sequences as types (cf. Hibbett et al. 2016; Zamora
211 et al. 2018; Lücking et al. 2018). The present authors warmly welcome – indeed, invite – such
212 a discussion.

213 It could be argued that a separate nomenclature code should be erected for the DFT,
214 akin perhaps to the *Candidatus* concept in bacteria (Murray and Stackebrandt 1995) or to the
215 extant DOI-based species identifiers of UNITE. We remain sceptical, however, and we argue
216 for full-fledged integration of the DFT into the ICN. After all, the *Candidatus* concept never
217 really took off, and the UNITE DOIs for DFT remain under-used. It seems likely to us that DFT
218 as governed by a separate and more or less unofficial code would simply remain relegated to
219 some state of secondary – in practise, no – importance. That is not the message delivered by

220 Figure 1, however, and not a state fit to reflect the crucial roles fungi are increasingly
221 understood to play in the ecosystems of the world – by the scientific community and the
222 general public alike. On the contrary, DFT seem to dominate the fungal kingdom. This puts
223 the ICN in a position where it governs an ever-dwindling proportion of the extant fungi –
224 maybe just some few percent. Such a position would seem untenable and, ultimately,
225 vulnerable to usurpation. After all, the new and rebellious prokaryotic SeqCode (Hedlund et
226 al. 2022) grew out of frustration at the inability of the International Code of Nomenclature of
227 Prokaryotes (ICNP) to adapt enough to be able to reflect extant prokaryotic diversity properly.
228 While the ultimate fate of SeqCode remains to be seen (Marinov et al. 2022), it does set an
229 eerie example of what the future may hold in store for ICN should DFT continue to be
230 dismissed as irrelevant. We argue that formal scientific names for DFT are necessary for their
231 scientific agency. Similarly, formal names will in practice be needed in biological conservation
232 and in efforts exploring DFT for, e.g., medical and industrial use. These fungi deserve and need
233 formal names, and it is our firm belief and opinion that this is achievable.

234

235 **Conclusion**

236 The concept of dark taxa draws from the astronomical concept of dark matter. In the context
237 of the latest release of the UNITE SH system, astronomy offers one further analogy: that of
238 the night sky. Much as stars form tiny specks of light against the massively dark expanse of
239 space, taxonomy-derived SHs in the ninth UNITE SH release give a diminutive impression
240 against the massive backdrop of DFT SHs. It was roughly 100 years ago that astronomy came
241 to terms with the fact that space stretched far beyond our own galaxy, and it is only fit that
242 mycology finally reaches a comparable conclusion with respect to extant fungal diversity.

243

244 **Acknowledgements**

245 The GenBank staff is gratefully acknowledged for assistance with establishing the date of
246 submission for the INSDC entries.

247

248 **References**

249 Alm Rosenblad M, Larsson E, Walker A, Thongklang N, Wurzbacher C, Nilsson RH
250 (2022) Evidence for further non-coding RNA genes in the fungal rDNA region. MycoKeys 90:
251 203–213. doi: 10.3897/mycokeys.90.84866

252
253 Arita M, Karsch-Mizrachi I, Cochrane G (2021) The international nucleotide sequence
254 database collaboration. *Nucleic Acids Research* 49: D121–D124.
255 <https://doi.org/10.1093/nar/gkaa967>
256
257 Feibelman T, Bayman P, Cibula WG (1994) Length variation in the internal transcribed spacer
258 of ribosomal DNA in chanterelles. *Mycological Research* 98(6): 614–618.
259 [https://doi.org/10.1016/S0953-7562\(09\)80407-3](https://doi.org/10.1016/S0953-7562(09)80407-3)
260
261 Grossart H-P, Wurzbacher C, James T, Kagami Maiko (2016) Discovery of dark matter fungi
262 in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic
263 fungi. *Fungal Ecology* 19: 28–38. <https://doi.org/10.1016/j.funeco.2015.06.004>
264
265 Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, Parks
266 DH, Probst AJ, Reysenbach A-L, Rodriguez LM, Rossello-Mora R, Sutcliffe IC, Venter SN,
267 Whitman WB (2022) SeqCode: a nomenclatural code for prokaryotes described from
268 sequence data. *Nature Microbiology* 7(10): 1702–1708. <https://doi.org/10.1038/s41564-022-01214-9>
269
270
271 Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, Wang Q, Crous P, Robert V,
272 Helgason T, Herr JR, Kirk P, Lueschow S, O'Donnell K, Nilsson RH, Oono R, Schoch C, Smyth C,
273 Walker DM, Porras-Alfaro A, Taylor JW, Geiser GM (2016) Sequence-based classification and
274 identification of Fungi. *Mycologia* 108(6): 1049–1068. <https://doi.org/10.3852/16-130>
275
276 Khan F, Kluting K, Tångrot J, Urbina H, Ammunet T, Sahraei SE, Rydén M, Ryberg M, Rosling
277 A (2020) Naming the untouchable–environmental sequences and niche partitioning as
278 taxonomical evidence in fungi. *IMA Fungus* 11: 1–12. <https://doi.org/10.1186/s43008-020-00045-9>
279
280
281 Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD,
282 Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc
283 T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP,

284 Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Pöldmaa K,
285 Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss
286 M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of
287 fungi. *Molecular Ecology* 22(21): 5271–5277. <https://doi.org/10.1111/mec.12481>
288

289 Köljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson K-H, May TW, Taylor AFS, Stjernegaard
290 Jeppesen T, Guldberg Frøslev T, Lindahl BD, Pöldmaa K, Saar I, Suija A, Savchenko A, Yatsiuk
291 I, Adojaan K, Ivanov F, Piirmann T, Pöhönen R, Zirk A, Abarenkov K (2020) The taxon
292 hypothesis paradigm - On the unambiguous detection and communication of taxa.
293 *Microorganisms* 8(12): 1910. <https://doi.org/10.3390%2Fmicroorganisms8121910>
294

295 Lücking R, Kirk PM, Hawksworth DL (2018) Sequence-based nomenclature: a reply to Thines
296 et al. and Zamora et al. and provisions for an amended proposal “from the floor” to allow
297 DNA sequences as types of names. *IMA Fungus* 9: 185–198.
298 <https://doi.org/10.5598/imafungus.2018.09.01.12>
299

300 Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, Cardinali G, Crous PW,
301 Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk
302 PM, Malosso E, May TW, Meyer W, Nilsson RH, Öpik M, Robert V, Stadler S, Thines M, Vu D,
303 Yurkov AM, Zhang N, Schoch CL (2021) Fungal taxonomy and sequence-based
304 nomenclature. *Nature Microbiology* 6(5): 540–548. [https://doi.org/10.1038/s41564-021-00888-x](https://doi.org/10.1038/s41564-021-
305 00888-x)
306

307 Marinov M, Fitzhugh K, Reis RE, Engel MS (2022) Putting the cart before the horse:
308 SeqCode’s attempt to solve systematics issues with changes to nomenclature. *Bionomina*
309 31(1): 97–107. <https://doi.org/10.11646/bionomina.31.1.6>
310

311 May TW, Redhead SA, Lombard L, Rossman AY (2018) XI International Mycological Congress:
312 report of Congress action on nomenclature proposals relating to fungi. *IMA Fungus* 9: xxii–
313 xxvii. <https://doi.org/10.1007/BF03449448>
314

315 Murray RGE, Stackebrandt E (1995) Taxonomic note: implementation of the provisional
316 status *Candidatus* for incompletely described prokaryotes. *International Journal of*
317 *Systematic and Evolutionary Bacteriology* 45(1): 195–196.
318 <https://doi.org/10.1099/00207713-45-1-186>
319
320 Nilsson RH, Ryberg M, Sjökvist E, Abarenkov K (2011) Rethinking taxon sampling in the light
321 of environmental sequencing. *Cladistics* 27: 197–203. <https://doi.org/10.1111/j.1096-0031.2010.00336.x>
323
324 Nilsson RH, Wurzbacher C, Bahram M, Coimbra VRM, Larsson E, Tedersoo L, Eriksson J,
325 Duarte C, Svantesson S, Sánchez-García M, Ryberg MK, Kristiansson E, Abarenkov K (2016)
326 Top 50 most wanted fungi. *MycoKeys* 12: 29–40.
327 <https://doi.org/10.3897/mycokeys.12.7553>
328
329 Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P,
330 Picard K, Glöckner FO, Tedersoo L, Saar I, Köljalg U, Abarenkov K (2019) The UNITE database
331 for molecular identification of fungi: handling dark taxa and parallel taxonomic
332 classifications. *Nucleic Acids Research* 47(D1): D259–D264.
333 <https://doi.org/10.1093/nar/gky1022>
334
335 R Core Team (2020). R: A language and environment for statistical computing. R Foundation
336 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>
337
338 Retter A, Nilsson RH, Bourlat SJ (2019) Exploring the taxonomic composition of two fungal
339 communities on the Swedish west coast through metabarcoding. *Biodiversity Data Journal*
340 7: e35332. <https://doi.org/10.3897/BDJ.7.e35332>
341
342 Ryberg M, Nilsson RH (2018) New light on names and naming of dark taxa. *MycoKeys* 30:
343 31–39. <https://doi.org/10.3897%2Fmycokeys.30.24376>
344

345 Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades
346 fill gaps in the fungal tree of life. *Microbiome* 5(1): 1–10. <https://doi.org/10.1186/s40168-017-0259-5>

348

349 Tedersoo L, Anslan S, Bahram M, Kõlalg U, Abarenkov K (2020) Identifying the
350 ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. *Fungal*
351 *Diversity* 103: 273–293. <https://doi.org/10.1007/s13225-020-00456-4>

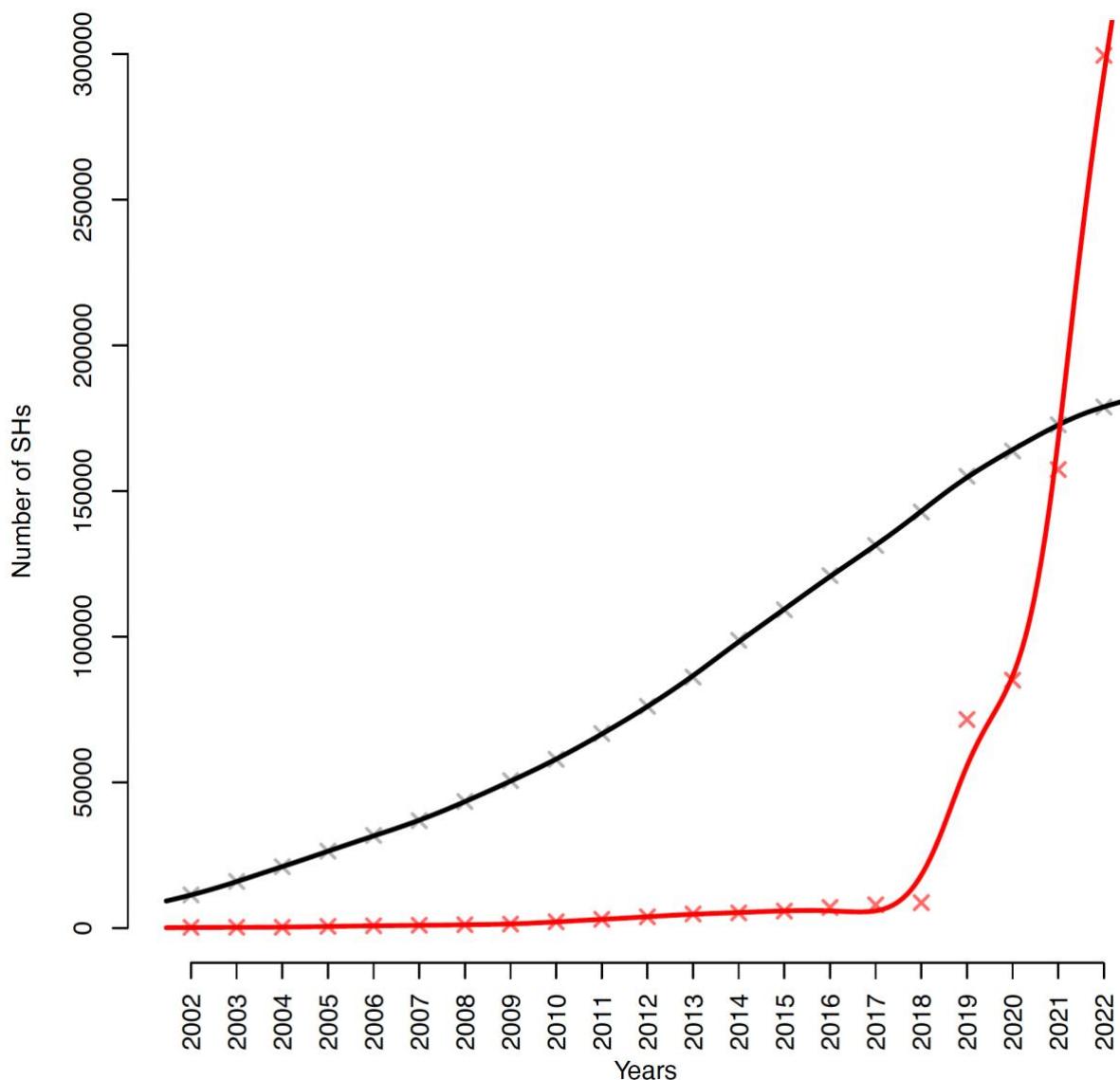
352

353 Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-
354 Baquerizo M, Maestre FT, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander U,
355 Khalid AN, Corrales A, Agan A, Vasco-Palacios A-V, Saitta A, Rinaldi AC, Verbeken A, Sulistyo
356 BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Gohar D,
357 Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron EK, De Crop E,
358 Otsing E, Davydov EA, Albornoz FE, Brearley FQ, Buegger F, Zahn G, Bonito G, Hiiesalu I,
359 Barrio IC, Heilmann-Clausen J, Ankuda J, Kupagme JY, Maciá-Vicente JG, Fovo JD, Geml J,
360 Alatalo JM, Alvarez-Manjarrez J, Pöldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K,
361 Tchan KI, Armolaitis K, Hyde KD, Newsham KK, Panksep K, Lateef AA, Tiermann L, Hansson L,
362 Lamit LJ, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene N,
363 Yorou NS, Kurina O, Mortimer PE, Meidl P, Kohout P, Nilsson RH, Puusepp R, Drenkhan R,
364 Garibay-Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov SV, Pölme S, Ghosh S, Mundra S,
365 Ahmed T, Netherway T, Henkel TW, Roslin T, Nteziryayo V, Fedosov VE, Onipchenko VG,
366 Yasanthika WAE, Lim YW, Soudzilovskaia NA, Antonelli A, Kõlalg U, Abarenkov K (2022)
367 Global patterns in endemicity and vulnerability of soil fungi. *Global Change Biology* 28(22):
368 6696–6710. <https://doi.org/10.1111/gcb.16398>

369

370 Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S,
371 Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF
372 (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code)
373 adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017.
374 *Regnum Vegetabile* 159. Glashütten: Koeltz Botanical Books.
375 <https://doi.org/10.12705/Code.2018>

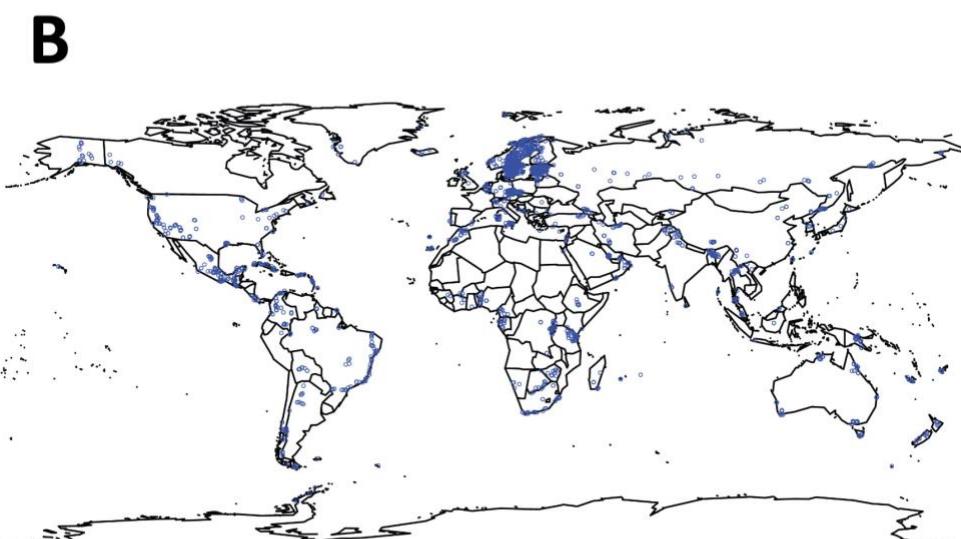
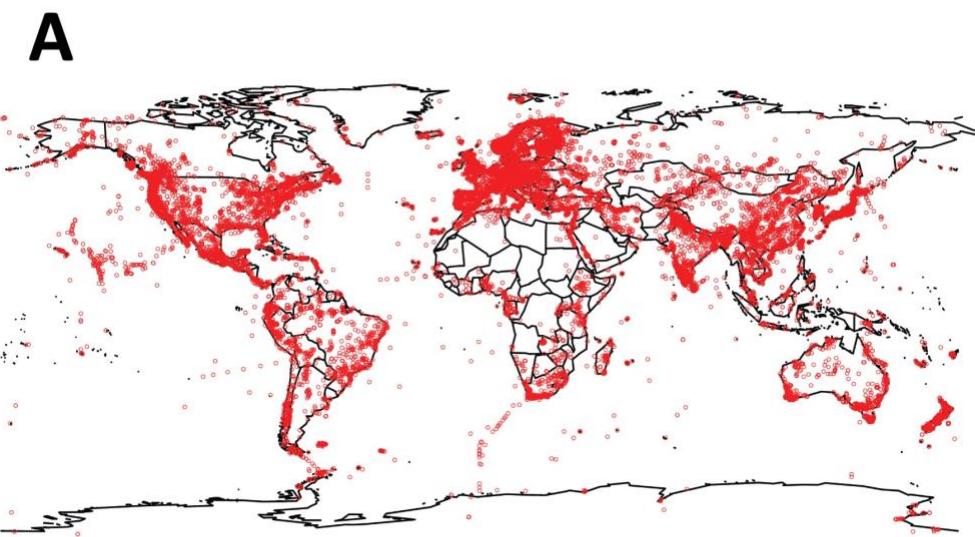
376


377 Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S, Parra LA, Geml J, Rosling A,
378 Adamčík S, Ahti T, Aime MC, Ainsworth AM, Albert L, Albertó E, Altés García A, Ageev D,
379 Agerer R, Aguirre-Hudson B, Ammirati J, Andersson H, Angelini C, Antonín V, Aoki T, Aptroot
380 A, Argaud D, Arguello Sosa BI, Aronsen A, Arup U, Asgari B, Assyov B, Atienza V, Bandini D,
381 Baptista-Ferreira JL, Baral HO, Baroni T, Barreto RW, Beker H, Bell A, Bellanger JM, Bellù F,
382 Bemann M, Bendiksby M, Bendiksen E, Bendiksen K, Benedek L, Bérešová-Guttová A,
383 Berger F, Berndt R, Bernicchia A, Biketova AY, Bizio E, Bjork C, Boekhout T, Boertmann D,
384 Böhning T, Boittin F, Boluda CG, Boomsluiter MW, Borovička J, Brandrud TE, Braun U, Brodo
385 I, Bulyonkova T, Burdsall Jr HH, Buyck B, Burgaz AR, Calatayud V, Callac P, Campo E,
386 Candusso M, Capoen B, Carbó J, Carbone M, Castañeda-Ruiz RF, Castellano MA, Chen J,
387 Clerc P, Consiglio G, Corriol G, Courtecuisse R, Crespo A, Cripps C, Crous PW, da Silva GA, da
388 Silva M, Dam M, Dam N, Dämmrich F, Das K, Davies L, De Crop E, De Kesel A, De Lange R, De
389 Madrignac Bonzi B, dela Cruz TEE, Delgat L, Demoulin V, Desjardin DE, Diederich P, Dima B,
390 Dios MM, Divakar PK, Douanla-Meli C, Douglas B, Drechsler-Santos ER, Dyer PS, Eberhardt U,
391 Ertz D, Esteve-Raventós F, Etayo Salazar JA, Evenson V, Eyssartier G, Farkas E, Favre A,
392 Fedosova AG, Filippa M, Finy P, Flakus A, Fos S, Fournier J, Fraiture A, Franchi P, Franco
393 Molano AE, Friebes G, Frisch A, Fryday A, Furci G, Galán Márquez R, Garbelotto M, García-
394 Martín JM, García Otálora MA, García Sánchez D, Gardiennet A, Garnica S, Garrido Benavent
395 I, Gates G, Gerlach ACL, Ghobad-Nejhad M, Gibertoni TB, Grebenc T, Greilhuber I, Grishkan
396 B, Groenewald JZ, Grube M, Gruhn G, Gueidan C, Gulden G, Gusmão LFP, Hafellner J,
397 Hairaud M, Halama M, Hallenberg N, Halling RE, Hansen K, Harder CB, Heilmann-Clausen J,
398 Helleman S, Henriot A, Hernandez-Restrepo M, Herve R, Hobart C, Hoffmeister M, Høiland
399 K, Holec J, Holien H, Hughes K, Hubka V, Huhtinen S, Ivančevi B, Jagers M, Jaklitsch W,
400 Jansen AE, Jayawardena RS, Jeppesen TS, Jeppson M, Johnston P, Jørgensen PM, Kärnefelt I,
401 Kalinina LB, Kantvilas G, Karadelev M, Kasuya T, Kautmanová I, Kerrigan RW, Kirchmair M,
402 Kiyashko A, Knapp DG, Knudsen H, Knudsen K, Knutsson T, Kolařík M, Köljalg U, Košuthová A,
403 Koszka A, Kotiranta H, Kotkova V, Koukol O, Kout J, Kovács GM, Kříž M, Kruys Å, Kučera V,
404 Kudzma L, Kuhar F, Kukwa M, Kumar TKA, Kunca V, Kušan I, Kuyper TW, Lado C, Læssøe T,
405 Lainé P, Langer E, Larsson E, Larsson KH, Laursen G, Lechat C, Lee S, Lendemer JC, Levin L,
406 Lindemann U, Lindström H, Liu X, Llarena Hernandez RC, Llop E, Locsmárdi C, Lodge DJ,
407 Loizides M, Lőkös L, Luangsa-ard J, Lüderitz M, Lumbsch T, Lutz M, Mahoney D, Malysheva E,
408 Malysheva V, Manimohan P, Marin-Felix Y, Marques G, Martínez-Gil R, Marson G, Mata G,

409 Matheny PB, Mathiassen GH, Matočec N, Mayrhofer H, Mehrabi M, Melo I, Meši A,
410 Methven AS, Miettinen O, Millanes Romero AM, Miller AN, Mitchell JK, Moberg R, Moreau
411 PA, Moreno G, Morozova O, Morte A, Muggia L, Muñoz González G, Mylllys L, Nagy I, Nagy
412 LG, Neves MA, Niemelä T, Nimis PL, Niveiro N, Noordeloos ME, Nordin A, Noumeur SR,
413 Novozhilov Y, Nuytinck J, Ohenoja E, Oliveira Fiúza P, Orange A, Ordynets A, Ortiz-Santana B,
414 Pacheco L, Pál-Fám F, Palacio M, Palice Z, Papp V, Pärtel K, Pawlowska J, Paz A, Peintner U,
415 Pennycook S, Pereira OL, Pérez Daniëls P, Pérez-De-Gregorio Capella MÀ, Pérez del Amo CM,
416 Pérez Gorjón S, Pérez-Ortega S, Pérez-Vargas I, Perry BA, Petersen JH, Petersen RH, Pfister
417 DH, Phukhamsakda C, Piątek M, Piepenbring M, Pino-Bodas R, Pinzón Esquivel JP, Pirot P,
418 Popov ES, Popoff O, Prieto Álvaro M, Printzen C, Psurtseva N, Purahong W, Quijada L,
419 Rambold G, Ramírez NA, Raja H, Raspé O, Raymundo T, Réblová M, Rebriev YA, Reyes García
420 JD, Ribes Ripoll MA, Richard F, Richardson MJ, Rico VJ, Robledo GL, Rodrigues Barbosa F,
421 Rodriguez-Caycedo C, Rodriguez-Flakus P, Ronikier A, Rubio Casas L, Rusevska K, Saar G, Saar
422 I, Salcedo I, Salcedo Martínez SM, Salvador Montoya CA, Sánchez Ramírez S, Sandoval-Sierra
423 JV, Santamaria S, Santana Monteiro J, Schroers HJ, Schulz B, Schmidt-Stohn G, Schumacher
424 T, Senn-Irlet B, Ševčíková H, Shchepin O, Shirouzu T, Shiryaev A, Siepe K, Sir EB, Sohrabi M,
425 Soop K, Spirin V, Spribille T, Stadler M, Stalpers J, Stenroos S, Suija A, Sunhede S, Svantesson
426 S, Svensson S, Svetasheva TYu, Świerkosz K, Tamm H, Taskin H, Taudière A, Tedebrand J-O,
427 Tena Lahoz R, Temina M, Thell A, Thines M, Thor G, Thüs H, Tibell L, Tibell S, Timdal E,
428 Tkalčec Z, Tønsberg T, Trichies G, Triebel D, Tsurykau A, Tulloss RE, Tuovinen V, Ulloa Sosa
429 M, Urcelay C, Valade F, Valenzuela Garza R, van den Boom P, Van Vooren N, Vasco-Palacios
430 AM, Vauras J, Velasco Santos JM, Vellinga E, Verbeken A, Vetlesen P, Vizzini A, Voglmayr H,
431 Volobuev S, von Brackel W, Voronina E, Walther G, Watling R, Weber E, Wedin M, Weholt Ø,
432 Westberg M, Yurchenko E, Zehnálek P, Zhang H, Zhurbenko MP, Ekman S (2018)
433 Considerations and consequences of allowing DNA sequence data as types of fungal taxa.
434 IMA Fungus 9(1): 167–175. <https://doi.org/10.5598%2Fimafungus.2018.09.01.10>
435
436

437 **Figure legends**

438



439 **Figure 1** – The accumulation of SHs at the 1.5% distance threshold over time in the Sanger
440 (black; 88,665 studies of various sizes) and the DFT (red; 5 large studies) datasets. The Y axis
441 depicts the number of SHs and the X axis depicts year of sequence deposition. Solid trend
442 lines were calculated using cubic smoothing splines.

443

444

445 **Figure 2** – Maps showing the collection localities for the (A) Sanger sequences and (B)
446 metabarcoding sequences that came with geo-coordinates (36,559 Sanger collection
447 localities and 3,688 metabarcoding collection localities).

448
449

450 **Table 1** – The 20 most common countries of collection for the Sanger and the DFT sequences.
451 The DFT dataset is dominated by sequences from Estonia, from which the five metabarcoding
452 studies were run. Estonia is not known as any particularly rich hotspot of biodiversity, perhaps
453 suggesting that additional worldwide sampling would have produced even more dramatic
454 increases in the number of DFT SHs.

455

1	INSDC country	INSDC seq.	DFT country	DFT seq.
2	Unknown	463524	Estonia	1788894
3	United States	133496	United States	350869
4	China	117292	Italy	287842
5	India	31788	Brazil	285473
6	Japan	29754	Czechia	260611
7	Brazil	27765	Russian Federation	228979
8	Canada	26038	Mexico	210643
9	Spain	22362	Norway	208422
10	Australia	22205	Colombia	204172
11	Germany	19971	Australia	177777
12	Italy	18078	Sweden	177318
13	Mexico	16326	Latvia	169168
14	France	14896	Lithuania	166553
15	Korea, Republic of	12434	Georgia	146440
16	Russian Federation	11668	Finland	127258
17	Iran, Islamic Republic of	11285	India	123706
18	Poland	10969	Argentina	116852
19	New Zealand	10956	China	100143
20	Thailand	10708	Papua New Guinea	96253
21	South Africa	10642	Tanzania, United	95203

456

457