

Multi-modal Proteomic Characterization of Lysosomal Function and Proteostasis in Progranulin-Deficient Neurons

Saadia Hasan^{1,2,3#}, Michael S. Fernandopulle^{1,4,5#}, Stewart W. Humble^{1,6#}, Ashley M. Frankenfield⁷, Haorong Li⁷, Ryan Prestil⁴, Kory R. Johnson¹, Brent J. Ryan⁶, Richard Wade-Martins⁶, Michael E. Ward^{1,*}, Ling Hao^{7,*}

¹National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.

²UK Dementia Research Institute, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.

³MD-PhD program, Augusta University/University of Georgia Medical Partnership, Athens, GA, USA.

⁴Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.

⁵Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

⁶Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK.

⁷Department of Chemistry, George Washington University, Washington, DC, USA.

#Contributed equally to this paper

*Co-corresponding authors:

Michael E. Ward

Investigator, NIH/NINDS

wardme@nih.gov

Ling Hao

Assistant Professor, George Washington University

linghao@gwu.edu

1 Abstract

2 Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over
3 70 mutations discovered in the *GRN* gene all result in reduced expression of PGRN protein.
4 However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN
5 deficiency on lysosomal biology remain unclear. Here we leveraged multifaceted proteomic
6 techniques to comprehensively characterize how PGRN deficiency changes the molecular and
7 functional landscape of neuronal lysosomes. Using lysosome proximity labeling and immuno-
8 purification of intact lysosomes, we characterized lysosome compositions and interactomes in both
9 human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i³Neurons) and mouse
10 brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics,
11 we measured global protein half-lives in i³Neurons for the first time and characterized the impact
12 of progranulin deficiency on neuronal proteostasis. Together, this study indicated that PGRN loss
13 impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the
14 lysosome membrane, increased catabolic enzymes within the lysosome, elevated lysosomal pH,
15 and pronounced alterations in neuron protein turnover. Collectively, these results suggested PGRN
16 as a critical regulator of lysosomal pH and degradative capacity, which in turn influences global
17 proteostasis in neurons. The multi-modal techniques developed here also provided useful data
18 resources and tools to study the highly dynamic lysosome biology in neurons.

19

20 Introduction

21 As the primary degradative organelle of the cell, the lysosome orchestrates proteostasis via the
22 autophagy-lysosome pathway and degrades macromolecules such as proteins, lipids,
23 carbohydrates, and RNA^{1–3}. Neurons are particularly sensitive to lysosomal perturbations, as
24 evidenced by numerous neurodegeneration-related mutations in genes that regulate lysosomal
25 biology^{4–6}. In particular, pathogenic mutations in genes that encode lysosomal or lysosome-
26 associated proteins (e.g., *GRN*, *LRRK2*, *GBA*, *TMEM106B*, *C9orf72*) are major causes of inherited
27 neurodegenerative diseases^{5–7}. Genetic mutations associated with defective lysosomal enzymes
28 lead to the accumulation of degradative substrates within the lysosomal lumen, consistent with
29 chronic lysosomal dysfunction⁸. However, the molecular mechanisms by which many of these
30 mutated genes cause lysosomal dysfunction and disease remain unclear.

31 Mutations in the *GRN* gene cause inherited frontotemporal dementia (FTD) and have also
32 been linked to other neurodegenerative diseases, including neuronal ceroid lipofuscinosis (NCL),
33 Alzheimer’s disease (AD) and Parkinson’s disease (PD)^{9–12}. Over 70 pathogenic mutations in the
34 *GRN* gene have been discovered, and all of these mutations result in reduced expression of
35 progranulin (PGRN) protein^{13–15}. Progranulin is trafficked to the lysosome and cleaved by
36 cathepsins into smaller intra-lysosomal proteins called granulins¹⁶. Functionally, progranulin loss
37 leads to a host of lysosome-related phenotypes, including defective autophagy and
38 autophagosome-lysosome fusion^{17,18}. Recently, lysosomal lipid dysregulation was found to be a
39 major element of *GRN*-related disease pathogenesis^{19,20}. However, the molecular cascade by which
40 loss of intra-lysosomal progranulin impacts lysosomal biology and eventually leads to FTD
41 remains elusive.

42 Capturing the dynamic lysosomal activities in highly polarized neurons is a challenging
43 task, particularly in a high-throughput fashion. Our human induced pluripotent stem cells (iPSCs)-
44 derived glutamatergic neuron (i³Neuron²¹⁻²³) platform provides pure and scalable human neurons
45 and can be genetically edited to create *GRN* null neurons as a neuronal model to study progranulin
46 deficiency. Recent advances in capturing organelle dynamics have provided useful tools, such as
47 proximity labeling in living cells via engineered ascorbate peroxidase (APEX²⁴) or biotin ligases²⁵,
48 immunopurification of intact organelles²⁶, and biotinylation by antibody recognition (BAR²⁷) in
49 primary tissues, though mostly in non-neuronal contexts. Other proteomics-based studies in
50 progranulin mouse models mostly captured global changes regardless of cell type or organelle²⁸⁻
51 ³⁰. Developing proteomic techniques to probe lysosomes in neurons can provide valuable insights
52 in the converging pathway of lysosomal dysfunctions in neurodegenerative diseases. We recently
53 developed a lysosome proximity labeling method (Lyso-APEX) to characterize the dynamic
54 lysosome interactome in wild-type (WT) i³Neurons³¹⁻³³. In this study, we further expanded the
55 lysosome toolbox by implementing the immunopurification of intact lysosomes (Lyso-IP)
56 technique in our i³Neuron platform and Lyso-BAR technique in mouse brains. We
57 comprehensively characterized lysosomal content and interactions using Lyso-APEX and Lyso-IP
58 in i³Neurons and Lyso-BAR in fixed mouse brain tissues. To characterize global proteostasis in
59 human neurons, we also designed a dynamic stable isotope labeling by amino acids in cell culture
60 (dSILAC³⁴) proteomic method that was suitable for iPSC-derived neuron cell type to measure
61 global protein half-lives in i³Neurons for the first time.

62 Leveraging these multifaceted proteomic techniques, we systematically characterized the
63 impact of progranulin loss using multi-modal readouts of lysosomal biology in i³Neurons and
64 mouse brain. We found that loss of PGRN in human neurons presented increased levels of v-

65 ATPase subunits on the lysosome membrane, increased catabolic enzymes within the lysosome,
66 and elevated lysosomal pH. Mouse brains lacking PGRN also present elevated levels of lysosomal
67 catabolic enzymes and bi-directional protein changes related to lysosomal transport. Using
68 fluorescence microscopy, we confirmed that PGRN-deficient lysosomes are less acidic and have
69 decreased cathepsin B activity compared to WT lysosomes. Consistent with impairments in protein
70 homeostasis, *GRN* deficient i³Neurons have pronounced alterations in protein turnover, which was
71 validated by FTD patient-derived i³Neurons carrying *GRN* mutation. Collectively, these results
72 show that progranulin loss leads to a downstream molecular cascade involving lysosomal
73 alkalinization and decreased degradative capacity, thereby impacting neuronal proteostasis.
74 Multiple downstream proteins affected by these changes are involved in neurodegenerative
75 pathways, suggesting molecular convergence of multiple neurodegeneration-related genes at the
76 lysosome.

77

78 **Results**

79 **Multi-modal proteomics captures holistic lysosomal biology**

80 Lysosomes play critical roles in neurons such as degradation, endocytosis, signal transduction,
81 nutrient sensing, and long-distance trafficking through axons³⁵⁻³⁷. Different methods of
82 characterizing lysosomal composition and interactions now exist, each with its own
83 strengths^{33,38,39}. However, a comprehensive characterization of lysosomal biology in neurons with
84 these modern tools has not been performed. We optimized and implemented three complementary
85 proteomic strategies to characterize dynamic lysosomal interactions and lysosomal contents in
86 both human neurons and mouse brain (**Figure 1A**). Lysosome proximity labeling using ascorbate
87 peroxidase (Lyo-APEX) captured neuronal lysosome interactions with other cellular components

88 as well as lysosome membrane proteins in living human neurons. Rapid lysosomal
89 immunopurification (Lyso-IP) provided both lysosome lumen and membrane proteins in human
90 neurons. Lysosomal biotinylation by antibody recognition (Lyso-BAR) revealed lysosome
91 interactions *in situ* from fixed mouse brains. Proper location of these probes was validated by
92 immunofluorescence and western blotting (**Figure 1B and Supplemental Figure S1**). Control
93 groups were carefully selected for each probe to reduce nonspecific labeling and ensure
94 intracellular spatial specificity (**Figure 1C**).

95 Lyso-APEX, Lyso-IP, and Lyso-BAR proteomics provided complementary coverage of
96 the lysosomal microenvironment in human neurons and mouse brain tissues (**Figure 1D**,
97 **Supplemental Figure S1**). Lysosomal membrane proteins such as v-ATPase subunits, LAMP
98 proteins, and Ragulator subunits are identified and enriched by all three probes compared to
99 corresponding controls. Lysosomal lumen proteins, especially hydrolases, are highly enriched in
100 Lyso-IP proteomics, consistent with the degradative nature of the isolated organelles. Besides
101 lysosome-resident proteins, both Lyso-APEX and Lyso-BAR proteomics captured dynamic
102 lysosomal interaction partners related to organelle trafficking and axon transport (*e.g.*, Kinesins,
103 MAPs). Lyso-APEX favored surface-bound and surface-interacting proteins over luminal proteins
104 due to the limited membrane permeability of reactive phenol-biotin generated on the cytosolic face
105 of lysosomes during APEX-mediated labeling (**Figure 1C**). By contrast, Lyso-BAR revealed more
106 intraluminal lysosomal proteins since BAR activation in fixed brain tissues requires membrane
107 permeabilization. Lyso-BAR proteomics in mouse brain also captured numerous synaptic proteins,
108 likely due to enhanced synaptic maturation *in vivo* compared to cultured iPSC-derived i³Neurons
109 (**Figure 1D, Supplemental Figure S1**). Collectively, combining Lyso-APEX, Lyso-IP, and Lyso-
110 BAR proteomic strategies allows us to obtain comprehensive lysosomal lumen and membrane

111 proteomes as well as lysosomal interactomes in both cultured human i³Neurons and fixed mouse
112 brains.

113

114 **Neuronal progranulin loss results in upregulation of vacuolar ATPases and alkalinization of**
115 **lysosomal pH**

116 Equipped with these new tools, we characterized how progranulin loss altered lysosomal biology.

117 Using CRISPR-Cas9, we knocked out the *GRN* gene in wild type (WT) iPSCs harboring the Lyso-
118 APEX probe and differentiated them into cortical neurons (**Figure 2A**). Immunofluorescence

119 microscopy showed that progranulin protein colocalizes with lysosomes in WT i³Neurons as
120 expected, and that no progranulin signal was observed in *GRN* KO i³Neurons (**Figure 2B**). Using

121 Lyso-APEX proteomics, we found that PGRN depletion altered the abundance of many lysosome
122 membrane proteins and lysosome interaction partners in human neurons (**Figure 2C**). Gene

123 Ontology (GO) enrichment analysis revealed upregulation of proteins related to lysosomal
124 acidification and autophagy (**Figure 2D**). Numerous vacuolar ATPase (v-ATPase) and chloride

125 channel proteins (CLCNs) were substantially up-regulated in *GRN* KO vs. WT i³Neurons (**Figure**
126 **2E, Supplementary Figure S2A**). GO enrichment analysis of significantly down-regulated

127 proteins indicated impairment of lysosomal transport and RNA processing (**Supplementary**
128 **Figure S2B**). Given the centrality of v-ATPases in establishing the acidic lysosomal lumen pH

129 and the strong upregulation of acidification-related proteins in PGRN deficiency, we hypothesized
130 that lysosomal pH could be perturbed by the loss of PGRN inside the neuronal lysosome⁴⁰.

131 To measure neuronal lysosomal acidification, we used a ratiometric fluorescent dextran
132 assay. We co-generated an *in-situ* calibration curve using buffers of known pH, allowing accurate
133 calculations of absolute pH within the lysosome with both nonlinear and linear curve fitting models

134 (Figure 2F, Supplementary Figure S2E). Lysosomal pH is significantly increased in *GRN* KO
135 i³Neurons (4.81 ± 0.24) compared to WT i³Neurons (4.31 ± 0.16). While this difference in pH may
136 seem like a subtle change, it equates to a nearly three-fold decrease in the concentration of protons
137 in the lysosomal compartment of *GRN* KO i³Neurons compared to WT counterparts due to the
138 logarithmic nature of the pH scale ($[H^+]$ in WT $\approx 52 \pm 19$ μM , *GRN* KO $\approx 18 \pm 9$ μM). These
139 observations show that *GRN* KO i³Neurons have alkalinized lysosomes, which could trigger the
140 upregulation of acidification machinery to compensate for this effect.

141

142 **Progranulin-null lysosomes contain increased abundance of catabolic enzymes but have**
143 **decreased enzymatic activity**

144 Lysosomes require acidic luminal pH to degrade proteins using hydrolases⁴¹. Since lysosomes
145 from progranulin-null neurons are less acidic, we hypothesized that these lysosomes may have
146 altered abundances or activity of pH-dependent proteases. Using Lyso-IP proteomics, we
147 characterized lysosome composition in *GRN* KO vs. WT i³Neurons (Figure 3A). PGRN protein
148 was indeed enriched in WT Lyso-IP data and absent in *GRN* KO i³Neurons (Supplementary
149 Figure S3A). Proteins involved in catabolism and lysosomal acidification were significantly
150 increased in PGRN-deficient lysosomes in human neurons (Figure 3B, 3C, Supplementary
151 Figure S3B). To investigate the impact of progranulin deficiency on lysosomes in mouse brain,
152 we conducted Lyso-BAR proteomics in *GRN*^{-/-} vs. WT fixed mouse brains (Figure 3D). Similar
153 protein catabolic processes were upregulated in *GRN*^{-/-} mice as indicated in Lyso-IP proteomics,
154 particularly lysosomal proteases such as cathepsins (Figure 3E, 3F, Supplementary Figure S3C).

155 Prior studies of *GRN*^{-/-} mouse models have suggested that cathepsins may be less active in
156 progranulin-null cells, despite increased abundance^{30,42,43}. To directly evaluate the impact of

157 programulin depletion on lysosomal activity in human neurons, we quantified cathepsin B activity
158 using a Magic Red assay in living WT and *GRN* KO i³Neurons. We observed a significant decrease
159 in cathepsin B activity in PGRN-null i³Neurons compared to WT, indicating impaired proteolytic
160 function (**Figure 3G, 3H, Supplementary Figure S3D**). To mimic alkalinization-related
161 phenotypes observed in *GRN* KO i³Neurons, we treated neurons with chloroquine, an agent that
162 neutralizes lysosomal pH. As predicted, direct alkalinization of lysosomes with chloroquine
163 treatment reduced Magic Red fluorescence (**Figure 3G**). These findings confirm that although
164 lysosomal hydrolases were upregulated in the absence of programulin, their activity was decreased,
165 likely due to alkalinized lysosomal lumens.

166

167 **Characterizing global protein turnover in human iPSC-derived neurons**

168 Since lysosomes are major proteostatic organelles and their degradative function is impaired in
169 programulin-depleted neurons, we hypothesized that programulin deficiency could influence global
170 proteostasis. To measure the global protein turnover in neurons, we designed a dynamic SILAC
171 proteomic method in cultured i³Neurons to obtain protein half-lives with multiple-time-point and
172 single-time-point approaches (**Figure 4A**). By modeling the peptide degradation curves in WT
173 i³Neurons, we found that most peptides' degradation curves follow first-order exponential decay
174 (**Figure 4B, Supplementary Figure S4A**). Peptide level and protein level half-lives correlate well
175 with each other, with a median half-life of 4 days (**Figure 4C, 4D and Supplementary Figure**
176 **S4B, S4C**). Therefore, peptide and protein half-lives can be obtained using a single-time-point at
177 4 days (96 hrs) after heavy medium switch (**Supplementary Figure S4D**). As we examined the
178 distribution of protein half-lives, we found that numerous histones, nucleoporin proteins (Nups),
179 proteins inside lysosomes as autophagy machinery (WDR45, GAA), and inner mitochondrial

180 membrane proteins have extremely long half-lives (> 20 days) in i³Neurons, in agreement with
181 recent studies in primary rodent neurons and brain tissues⁴⁴⁻⁴⁶. In contrast, proteins related to
182 neurosecretion (GPM6B, VGF), axonal transport (kinesins), and ubiquitination (UBL4, USP11)
183 have very short half-lives (0.3-2 days) (**Figure 4E, Supplemental Figure S4B**). Notably, one of
184 the shortest half-life proteins in the entire neuronal proteome was STMN2, a microtubule-binding,
185 golgi-localized protein implicated in ALS pathogenesis^{47,48}. Lysosomal proteins have a median
186 half-life of 3.6 days, slightly shorter than the median half-life of global neuronal proteins. Further
187 investigation into the lysosomal compartment revealed a median half-life of 7.5 days for
188 degradative enzymes, 3.5 days for V-ATPases, 6.2 days for lysosome-associated membrane
189 glycoproteins (Lamps), 3.5 days for LAMTOR and HOPS complex subunits, and 3.1 days for
190 BLOC1 complex subunits (**Figure 4F**). Together, this method enabled us to calculate global
191 protein half-lives in live human i³Neurons for the first time.

192

193 **Progranulin deficiency alters neuronal protein turnover and decreases lysosomal
194 degradative function**

195 Using our dynamic SILAC proteomics approach, we evaluated protein turnover in WT vs. *GRN*
196 KO i³Neurons (**Figure 5A**). The median of protein half-lives remained unchanged, but a
197 remarkable 25% of all measured proteins presented significantly altered half-lives in *GRN* KO vs.
198 WT i³Neurons (**Figure 5B and 5C**). Proteins related to polymerization and fiber organization
199 showed significantly slower turnover, which may indicate a propensity for protein misfolding and
200 aggregation in *GRN* KO neurons related to FTD pathogenesis (**Figure 5D**)⁴⁹. Despite the
201 significantly slower turnover of both cathepsin B and cathepsin D, proteins related to RNA
202 catabolic processes showed faster turnover, which further implicates the disturbance of molecular

203 degradation pathways (**Figure 5E**). Several proteins with altered half-lives (either faster or slower
204 turnover) are involved in ALS/FTD and other neurodegenerative diseases, suggesting potential
205 converging pathways among different neurodegenerative diseases and dysfunction of key
206 regulators of proteostasis (**Figure 5F**).

207 Given our observations that lysosomes within *GRN* KO i³Neurons are alkalinized, have
208 reduced cathepsin activity, and exhibit major changes in global protein homeostasis, we predicted
209 that *GRN* KO lysosomes would exhibit impaired lysosome-mediated protein degradation. We
210 directly assayed lysosomal degradative capacity using a fluorescent DQ-BSA Red assay (**Figure**
211 **5G, 5H**)^{50,51}. The DQ-BSA substrate is initially self-quenching due to the close spatial proximity
212 of the fluorophores. Once cleaved in acidic lysosomes, the DQ-BSA substrate exhibit bright
213 fluorescence signals. The mean DQ-BSA intensity in *GRN* KO i³Neurons was significantly
214 decreased compared to WT neurons (**Figure 5I**), similar to pharmacological inhibition of
215 lysosomal degradation using chloroquine (**Supplemental Figure S5A**). The change in active
216 proteolysis was independent of lysosomal biogenesis, as there was no change in the number of
217 puncta per cell in *GRN* KO vs. WT (**Supplemental Figure S5B**). Taken together, these results
218 show that *GRN* KO lysosomes have significantly hindered proteolytic capacity, consistent with
219 our observations of pathological impairment in lysosomal acidification and impaired lysosomal
220 hydrolase activity.

221
222 **An isogenic series of *GRN* mutation patient-derived iPSC neurons exhibit altered protein**
223 **homeostasis**

224 To further explore the relationship between *GRN* insufficiency and protein homeostasis
225 abnormalities, we created i³Neurons from an FTD patient-derived iPSC line with a heterozygous

226 *GRN* mutation⁵² (c.26 C>A, p.A9D; referred subsequently as ptMut), as well as the isogenic iPSC
227 control line with corrected *GRN* mutation (ptWT). We further knocked out *GRN* in this control
228 line to create an additional isogenic *GRN* KO iPSC line (ptKO) (**Figure 6A**). After differentiating
229 each of these lines to i³Neurons, performing dSILAC, and measuring their protein half-lives, we
230 found that over 25% of proteins showed significantly altered half-lives in ptKO compared to ptWT
231 i³Neurons (**Figure 6B**), consistent with *GRN*-KO vs. WT comparison in **Figure 5C**. About 15%
232 of protein half-lives were significantly altered in ptMut compared to ptWT group (**Figure 6B and**
233 **6C**). Principal component analysis and hierarchical clustering showed complete separations of
234 both genetic background and *GRN* genotypes from five i³Neurons lines (*GRN*-KO, WT, ptKO,
235 ptMut, ptWT) based on protein half-lives (**Figure 6D, 6E**). The overall protein half-life changes
236 also suggested a potential gene dosage effect, in which many proteins have greater fold changes
237 in *GRN*-KO neurons compared to *GRN*-mutant neurons (**Figure 6F, Supplementary Figure**
238 **S6A**). Half-life changes of key overlapping proteins in the three comparisons (*GRN*-KO vs. WT,
239 ptKO vs. ptWT, ptMut vs. ptWT) are highlighted in **Figure 6G and Supplementary Figure S6B**.

240 The findings in patient-derived *GRN* mutant and KO neurons validate our observations of
241 dysregulated protein homeostasis in settings of *GRN* depletion and insufficiency, including
242 alterations in the half-lives of numerous neurodegeneration-associated proteins. Many lysosomal
243 enzymes showed prolonged protein half-lives, such as cathepsins (CTSD, CTSB), which was
244 especially notable given our direct measurements of increased cathepsin levels and reduced CTSB
245 activity in *GRN* KO neurons. Our findings additionally show that substantial upregulation of
246 numerous lysosomal-associated proteins and enzymes occurs in *GRN*-deficient neurons – many
247 via prolongation in protein half-lives – but that these homeostatic changes are insufficient to
248 normalize lysosomal degradative capacity. As summarized in **Figure 6H**, we propose that *GRN*

249 mutations that cause PGRN deficiency inside neuronal lysosomes result in alkalinized lysosomal
250 pH, decreased proteolytic activities, and impaired global protein homeostasis that eventually lead
251 to frontotemporal dementia.

252

253 **Discussion**

254 Lysosomal dysfunction is a convergent pathological mechanism across multiple
255 neurodegenerative diseases^{5,6}. Progranulin, a glycoprotein linked to FTD, ALS, PD, and AD, is
256 trafficked to, processed by, and resides within the lysosome¹⁵. Despite this knowledge, the primary
257 molecular functions of progranulin and the impact of progranulin deficiency on lysosomal biology
258 and protein homeostasis remain unclear. This is in part due to limited tools available for
259 understanding the role of progranulin in the highly dynamic lysosomes in the brain. Here, we
260 designed a combination of *in vitro* and *in situ* proximity labeling, lysosome immunopurification,
261 and dynamic SILAC proteomic approaches to map the organellar and cellular architectures of
262 neuronal progranulin deficiency.

263 For the first time, we implemented the antibody-guided biotinylation strategy to measure
264 lysosomal composition in the brain and the lysosomal immunopurification method to characterize
265 neuronal lysosomes. We additionally developed and optimized a neuron dynamic SILAC
266 proteomic method to calculate protein half-lives in i³Neurons for the first time. Despite the
267 application of dynamic SILAC in various cell culture and mouse models, it remains challenging
268 to measure protein turnover rates in non-dividing cells, particularly in human neurons^{44,45,53}. Many
269 neuronal proteins exhibit extremely long half-lives, particularly nuclear proteins due to a lack of
270 cell division. For the first time, we measured the global protein turnover in i³Neurons and found
271 that the dynamics of most proteins can be modeled using first-order exponential decay. This

272 enabled the measurement of global neuron protein half-lives using a 4-day single time point
273 method, significantly reducing the starting materials and reagents compared to multiple-time-point
274 method and allowing the streamlined comparison of multiple i³Neuron lines with different genome
275 backgrounds and *GRN* genotypes.

276 Using these new multi-modal proteomic strategies, we discovered that progranulin
277 deficiency leads to increased expression of v-ATPases on the lysosomal membrane in i³Neurons.
278 Upon further investigation, we discovered that progranulin deficiency had a severe impact on the
279 lysosomes' ability to properly acidify, which results in impaired hydrolytic activity despite an
280 upregulation of acidification machinery. These results suggest that progranulin plays an important
281 role in maintaining lysosomal pH, with v-ATPases either contributing to that effect or providing a
282 compensatory response for that effect. Since alkalinized lysosomes cannot properly hydrolyze
283 substrates, we next looked at how the contents of progranulin-null lysosomes were affected. We
284 found that several lysosomal enzymes were upregulated both in the mouse and human dataset,
285 notably cathepsins. We showed decreased cathepsin B activity in live neurons, a phenomenon only
286 shown in *in vitro* assays before^{52,54-56}. Similar perturbations of lysosomal acidification have been
287 reported in non-neuron cells and other neurodegenerative diseases^{57,58}.

288 Mutations in the *GRN* gene cause progranulin deficiency inside the lysosome and have
289 been shown to impair lysosomal function and the autophagy pathway^{13,18}. However, whether
290 progranulin deficiency alters protein turnover in human neurons has not been systematically
291 investigated previously. We found that progranulin deficiency broadly influenced proteostasis,
292 altering the half-lives of over 15% and 25% neuron proteins in *GRN* mutant and KO i³Neurons,
293 respectively. Lysosomes degradative capacity was compromised by PGRN deficiency, as
294 evidenced in our DQ-BSA assay. Critically, the recapitulation of global proteostasis defects in

295 FTD-patient-derived neurons suggests that altered protein turnover rates are relevant to disease
296 pathophysiology.

297 Although we have established exciting new tools and characterized the neuronal lysosome
298 quite extensively, there are several limitations in this study. Although LAMP1 is a classic
299 lysosome marker, it is also expressed on late endosomes and other endocytic species⁵⁹. Despite
300 this limitation, our data is consistent with degradative lysosome proteomics, and we obtained new
301 insights into neuronal lysosomes specifically. We also recognize that human iPSC-derived neurons
302 are not fully mature and representative of late-stage disease, and therefore have supplemented
303 i³Neuron data with lysosomal proteomics in aged mice. As neuron is the major cell type of the
304 brain, LysoBAR proteomics provide consistent and complementary lysosomal changes compared
305 to cultured i³Neuron. However, LysoBAR method is not cell-type specific and will also include
306 lysosome profiles from other cell types such as microglia, which has higher expression level of
307 programulin compared to neurons^{9,15}. It will be important to investigate whether aged human
308 neurons exhibit different proteomic changes and if human microglial lysosomes behave differently
309 compared to neurons in future studies. Furthermore, future research can focus on individual
310 proteins with altered lysosomal enrichment and half-lives as novel handles for elucidating disease
311 mechanisms, discovering disease biomarkers, and further assessing whether these neuronal
312 proteostatic changes manifest in established mechanisms of neurodegenerative pathology, such as
313 stress granule persistence, impaired macroautophagy, and failed fusion of lysosomes to
314 autophagosomes.

315 Overall, this study developed and implemented a set of novel proteomics techniques to
316 decipher neuronal lysosomal biology and proteostasis in the context of *GRN* insufficiency that
317 causes frontotemporal dementia. We provided new insights of programulin function in regulating

318 lysosomal pH, lysosomal catabolic activity, and global proteostasis in neurons, opens numerous
319 avenues for future follow-up studies to determine specific molecular mechanisms underpinning
320 the protein changes discovered here. This work also illustrated a roadmap for how multi-modal
321 proteomics can be used to illuminate lysosomal biology, providing useful data and technical
322 resources that can be applied to characterize other organelle dynamics in neurons.

323

324 **Methods**

325 **Human i³Neuron Culture**

326 Human iPSC-derived cortical neurons (i³Neurons) were cultured based on our previously
327 established protocol²³. Briefly, human iPSCs were maintained on Matrigel (Corning Incorporated
328 #354277) coated tissue culture dishes in Essential 8 medium (Gibco #A1517001). Several iPSC
329 lines were used in this study as listed in **Table 1**. A doxycycline-inducible neurogenin2 (NGN2)
330 cassette (Addgene #105840) was stably integrated into each iPSC line, enabling rapid
331 differentiation to glutamatergic cortical neurons (i³Neurons) in a week. Between day 0 and day 3,
332 iPSCs were maintained in neuronal induction medium²³. Day-3 neurons were replated on poly-L-
333 ornithine coated plates in Brainphys neuron medium and maintained by half-medium change every
334 two days until neuronal maturation in two weeks.

335 **Table 1:** List of human iPSC lines used in this study.

Cell line	Description	Source
WT	WTC 11 line, Healthy 30-year-old Japanese male donor	Coriell Institute #GM25256

GRN KO	WTC11 line with a 7 base pair insertion in one <i>GRN</i> allele and 10 base pair deletion in the other <i>GRN</i> allele resulting in complete loss of function	Generated in house
ptMut	FTD patient cell line harboring a heterozygous <i>GRN</i> mutation (c.26 C > A, p.A9D)	Dr. Dimitri Krainc ⁵²
ptWT	Isogenic control line by correcting the <i>GRN</i> mutation in ptMut line.	Dr. Dimitri Krainc ⁵²
ptKO	Complete knock out of <i>GRN</i> in ptWT line using CRISPR-Cas9	Generated in house

336

337 **Animals**

338 All mice used in this study were obtained from the Jackson Laboratory and housed in the NIH
339 animal facility that followed NINDS/NIDCD/NCCAM Animal Care and Use Committee (ACUC)
340 Policy for animal husbandry and euthanasia. WT (C57BL/6J) and *GRN*^{-/-} (B6.129S4(FVB)-
341 Grntm1.1Far/Mmjax, MMRRC stock#036771-JAX) mice were used here⁶⁰. Whole brains were
342 dissected from 20-month-old male WT and *GRN*^{-/-} mice after cardiac perfusion with 4%
343 paraformaldehyde (PFA). Cortex was fixed in 4% PFA overnight, incubated in 30% sucrose for
344 24 hours, and snap frozen on dry ice. A microtome was used to generate 40 μ m thick coronal slices
345 that were stored in cryoprotectant at -30°C.

346

347 **Lysosomal proximity labeling in i³Neurons**

348 Lysosomal proximity labeling was achieved by stable integration of ascorbate peroxidase
349 (APEX2) enzyme onto the C terminus of LAMP1 protein in human iPSCs and differentiating

350 iPSCs into i³Neurons, as the previously established KuD-LAMP1-APEX (Lyso-APEX) line³². A
351 cytosolic localized nuclear exporting signal (NES) APEX i³Neuron line was used as the spatial
352 control^{31,32}. Prior to proximity labeling, i³Neurons were incubated in 500 μM biotin-tyramide
353 (Adipogen, #41994-02-9) for 30 min in a CO₂ incubator. Proximity labeling was induced by
354 incubating the cells in 1 mM of hydrogen peroxide for exactly 1 min followed by rapid quenching
355 using ice-cold quench buffer (10 mM sodium azide, 10 mM sodium ascorbate, 5 mM TROLOX
356 in PBS). Neurons were lysed with cold lysis buffer (50 mM Tris-Cl pH 7.4, 500 mM NaCl, 0.2%
357 SDS, 1 mM DTT, 10 mM sodium azide, 10 mM sodium ascorbate, 5 mM TROLOX, cOmplete
358 mini protease inhibitor tablets). Detailed sample preparation procedures have been described
359 previously³³. Briefly, neuron lysates were sonicated with QSonica (Q800R) sonicator for 15 min
360 at 2°C and clarified by centrifugation. Total protein concentrations were measured using a
361 detergent-compatible (DC) Colorimetric Protein Assay (Bio-Rad #5000111). Biotinylated proteins
362 were enriched with streptavidin (SA) magnetic beads (Cytiva, # 28-9857-99) for 18 h rotating at
363 4°C and washed extensively to reduce non-specific bindings. Biotinylated proteins were reduced,
364 alkalinized, and digested into peptides on the SA beads. The optimal SA beads-to-protein ratio and
365 trypsin-to-SA beads ratio were previously determined³². After overnight digestion using
366 Trypsin/Lys-C (Promega, #V5073), supernatant was collected from the magnetic beads, and the
367 digestion reaction was quenched with 10% trifluoroacetic acid until pH < 3. Peptides were desalted
368 with a Waters Oasis HLB 96-well extraction plate, dried under SpeedVac, and stored at -30 °C
369 until LC-MS analysis.

370

371 **Rapid Lysosome Immunopurification from i³Neurons**

372 Lysosome Immunopurification (Lyo-IP) iPSC line was generated by the stable expression of
373 LAMP1-3xHA in WT and *GRN* KO iPSC lines. i³Neurons were differentiated as described above
374 and maintained in 15cm dishes until day 14. A control i³Neurons line without HA expression
375 (mEmerald) was used to control nonspecific labeling background. Neurons were washed 2 times
376 with PBS and dissociated from the plate using forceful pipetting of 10 ml of PBS. Next, neurons
377 were resuspended in 1ml cold KPBS (136 mM KCl, 10 mM KH₂PO₄, pH 7.25 adjusted with
378 KOH) and gently homogenized with 21 strokes through an isobiotec balch-style cell homogenizer
379 with a 10µm ball bearing. Each neuron lysate sample was incubated with 150 µL of pre-washed
380 anti-HA magnetic beads (Thermo #88836/88837) for 3 min on a rotator and gently washed three
381 times with KPBS. Beads bound with intact lysosomes were resuspended in 100 µl of Lyso-IP lysis
382 buffer (50 mM HEPES, 50 mM NaCl, 5 mM EDTA, 1% SDS, 1% TritonX, 1% NP-40, 1% Tween
383 20, 1% deoxycholate, 1% glycerol, 5 mM TCEP) and heated at 60 °C for 30 mins at 1000 g
384 agitation. The supernatant was collected, and the beads were washed with an additional 50 µl of
385 lysis buffer. Supernatant was combined into a new tube for routine bottom-up proteomics steps as
386 described below.

387

388 **Lysosomal proximity labeling in mouse brains**

389 Mouse brain slices were picked evenly throughout the whole brain and washed with PBS three
390 times. Endogenous peroxidase activity in brain slices was quenched with 0.3% H₂O₂ in PBS for
391 30 minutes. The slices were blocked using 3% donkey serum and 0.25% Triton X in PBS followed
392 by primary antibodies in blocking buffer at 4°C on a rocker overnight. After the slices were washed
393 thoroughly with PBST, they were incubated with secondary antibody conjugated to HRP in
394 blocking buffer for 1 hour at room temperature and extensively washed in PBST. The slices were

395 then incubated in biotin-tyramide with 1% fetal bovine serum (FBS) in PBS for 30 min, and then
396 0.003% H₂O₂ for 10 min, immediately followed by washing with quench buffer (10 mM sodium
397 azide and 500 mM sodium ascorbate). Brain slices without primary antibody treatment were used
398 as the negative control group to compare with Lyso-BAR. One slice from each group was further
399 treated with appropriate Alexa Fluor for microscopy imaging. Twenty brain slices from each group
400 were transferred to 100 μ L of Lyso-BAR lysis buffer (3% SDS + 2% sodium deoxycholate in
401 PBS), boiled at 99°C for 1 hour at 1200 g agitation, and sonicated with QSonica Sonicator for 15
402 min. The lysate was boiled again at 99°C for an additional 30 min until all tissues were
403 homogenized and dissolved into solution. The lysate was diluted using PBS to reduce SDS
404 concentration and clarified by centrifugation. Biotinylated proteins were enriched following the
405 same steps described above for Lyso-APEX sample preparation with optimized SA beads-to-
406 protein ratio and trypsin-to-beads ratio for Lyso-BAR samples.

407

408 **Dynamic SILAC proteomics in i³Neurons**

409 Human i³Neurons were maintained on PLO coated 12-well dishes in light amino acid-containing
410 media (DMEM:F12 for SILAC medium (Athena Enzyme Systems #0423), N2 Supplement (Life
411 Technologies Corporation #17502048), B27 Supplement (Life Technologies #NC1001496),
412 NEAA (Life Technologies #11140050), GlutaMAX (Life Technologies #35050061), BDNF
413 (PeproTech #450-02), NT-3 (PeproTech #AF-450-03-100ug), 0.3 mM of Arginine (Sigma
414 #A4599), and 0.5 mM of Lysine (Sigma #L7039)). On day 10 of i³Neuron culture, neurons were
415 gently washed with PBS twice and switched into media containing the same components except
416 for replacing light lysine with heavy stable isotope labeled (¹³C₆¹⁵N₂) lysine (Cambridge Isotope
417 Laboratories #CNLM-291-H-PK). For multiple time point experiments, neurons were harvested

418 at 1, 2, 4, and 6 days (accurate to within 10 min) after media switch. For single time point
419 experiments, neurons were harvested after 4 days (96 hours) of media switch. Neurons were gently
420 washed with PBS twice, lysed in 100 μ L of ice-cold lysis buffer containing 0.1% Rapigest (Waters
421 #186008740), 150 mM NaCl, and 50 mM Tris-HCl, sonicated for 15 min, and clarified by
422 centrifugation. Total protein concentrations were determined by DC Protein assay (BioRad).
423 Protein disulfide bonds were reduced by 5 mM of Tris(2-carboxyethyl) phosphine (TCEP) for 30
424 min, followed by addition of 15 mM of iodoacetamide (IAA) for 30 min in a ThermoMixer shaking
425 at 800 g at 37°C. Proteins were digested with LysC (Promega #VA1170) at 1:30 (enzyme:protein)
426 ratio for 16 hours at 37°C and quenched with 10% trifluoroacetic acid (TFA) until pH<3. Peptides
427 were desalted using a Waters Oasis HLB 96-well extraction plate based on the manufacturer's
428 protocol. Peptide samples were dried under SpeedVac and stored at -80°C until LC-MS analysis.
429

430 **LC-MS/MS analysis**

431 LC-MS/MS analyses were conducted on a Dionex UltiMate3000 nanoLC system coupled with a
432 Thermo Scientific Q-Exactive HF-X or a Fusion Lumos mass spectrometer. Before injection,
433 peptide samples were reconstituted in 2% acetonitrile (ACN), 0.1% formic acid (FA) in LC-MS
434 grade water and centrifuged to collect supernatant. Easy-spray PepMap C18 columns (2 μ m, 100
435 \AA , 75 μ m \times 75 cm) were used for peptide separation with a flow rate of 0.2 μ L/min and column
436 temperature of 60°C. The mobile phase buffer A was 0.1% FA in water, and buffer B was 0.1%
437 FA in acetonitrile. A two-hour gradient was used for proximity labeling proteomics, and a three-
438 hour gradient was used for SILAC proteomics. LC-MS/MS analyses were conducted with a top
439 40 data dependent acquisition with MS range of m/z 400-1500, MS resolution of 120K, isolation
440 window of m/z 1.4, dynamic exclusion of 22.5 s, and collision energy of 30% for higher-energy

441 collisional dissociation (HCD) fragmentation. Automatic gain control (AGC) targets were 1×10^6
442 for MS and 2×10^5 for MS/MS. Maximum injection times were 30 ms for MS and 35 ms for
443 MS/MS.

444 **Proteomics Data analysis**

445 LC-MS/MS raw files from Lyso-APEX, Lyso-IP, and Lyso-BAR proteomic experiments were
446 analyzed with Thermo Fisher Proteome Discoverer (2.4.1.15) software. For dynamic SILAC
447 proteomic data, MaxQuant (1.6.17.0) software was used for data analysis. Swiss-Prot *Homo*
448 *sapiens* database was used for ¹³Neuron data and *Mus musculus* database was used for mouse data
449 with 1% false discovery rate (FDR) for protein identification. Custom-made contaminant protein
450 libraries (<https://github.com/HaoGroup-ProtContLib>) were included in the data analysis pipeline
451 to identify and remove contaminant proteins⁶¹. Trypsin was selected as the enzyme with a
452 maximum of two missed cleavages. Cysteine carbamidomethylation was included as fixed
453 modification, and oxidation of methionine and acetylation of the protein N-terminus were selected
454 as variable modifications.

455 Protein/peptide identification and peak intensities were output as excel files for further
456 analysis using Python or R. Statistical analyses (t-test) and volcano plots for Lyso-APEX, Lyso-
457 IP, and Lyso-BAR proteomics were conducted in Python. Lyso-APEX and Lyso-BAR data were
458 normalized to the most abundant endogenously biotinylated protein (PCCA) before statistical
459 analysis as described previously³². For dynamic SILAC data, Maxquant output files were further
460 processed with R to calculate heavy/light peptide ratios and construct the degradation and synthesis
461 curves as well as curve-fitting to the first-order kinetic in multiple time point experiment. For
462 single time point experiments, peptide level Maxquant output files were processed with Python to
463 calculate the peptide half-lives using the equation: $t_{1/2} = t_s \times [\ln 2 / \ln (1+\Psi)]$, where t_s represents

464 the sampling time after media switch, and Ψ represents the heavy-to-light abundance ratio of the
465 peptide. Protein level half-lives were calculated by averaging the half-lives of unique peptides
466 belonging to the specific protein. Statistical analysis was conducted with t-test, and multiple half-
467 life datasets were merged by uniprot protein accession in Python. Protein GO enrichment analysis
468 was conducted using ShinyGO⁶². Protein network analysis was conducted with STRING⁶³.

469

470 **Live Cell Ratiometric pH Assay**

471 Live cell ratiometric lysosomal pH measurements were conducted using a modified method from
472 Saric et al⁶⁴, further optimized for high content imaging and analysis. WT and *GRN*-KO i³Neurons
473 were maintained on 96-well dishes. On day 10, neurons were loaded with 50 μ g/mL pH-sensitive
474 Oregon Green-488 dextran (Invitrogen, #D7171), and 50 μ g/mL pH-insensitive/loading control
475 Alexa Fluor-555 red dextran (Invitrogen, #D34679) for 4 hours, before washing three times with
476 PBS then chased overnight with neuronal media after PBS washes the day before imaging. These
477 dextrans accumulate in lysosomes, and high-content microscopy quantification of their
478 fluorescence enables ratiometric calculations of pH within individual lysosomes. Physiological
479 buffers of known pH (4-8) containing 10 μ g/mL nigericin were placed on WT neurons to generate
480 a calibration curve. Live cell spinning disk confocal microscopy was performed using a Opera
481 Phenix HCS System (PerkinElmer); calibration and sample wells were imaged at 63 \times ;
482 counterstaining was done with NucBlue Live ReadyProbes Reagent (Invitrogen, #R37605) to
483 count and segment nuclei. Lysosome pH was calculated as ratiometric measurement of lysosomes
484 (488/555nm), with subsequent calculation of the pH of those compartments based on the
485 corresponding calibration curve. All analysis was performed using PerkinElmer's Harmony HCA

486 Software (PerkinElmer). Statistical analyses for all imaging data were conducted using
487 independent student's t-test.

488

489 **Magic Red cathepsin B activity assay**

490 Human i³Neurons were plated at a density of 50,000 cells on PLO-coated ibidi slides (Ibidi #
491 80827) and maintained to day 10. Magic Red (Abcam #AB270772-25TEST) was added to the
492 cells at 1:25 final dilution and incubated in the dark for 30 mins at 37°C. Cells were washed twice
493 with PBS and incubated with Hoechst 33342 (Thermo Scientific #62249) at 1:10,000 for 5-10
494 mins and then washed with PBS. Neurons were imaged using Nikon spinning disk confocal at 60×
495 oil objective. Images were edited and analyzed using ImageJ software⁶⁵. Statistical analysis was
496 conducted using independent student's t-test.

497

498 **Live cell DQ-BSA Assay in i³Neurons**

499 WT and *GRN*-KO i³Neurons were plated on 384-well dishes. On day 10, neurons were incubated
500 with 45 µg/mL DQ-BSA Red (Invitrogen, #D12051) for 5 hours to allow for substrate endocytosis.
501 Live-cell spinning disk confocal microscopy was performed via Opera Phenix HCS System
502 (PerkinElmer); control and sample wells were imaged at 40× and counterstaining was done with
503 NucBlue Live ReadyProbes Reagent (Invitrogen, #R37605) to count and segment nuclei. All
504 analysis was performed via PerkinElmer's Harmony HCA Software (PerkinElmer).

505

506 **Western blotting**

507 Intact lysosomes were isolated via immunopurification as described above. The intact lysosomes
508 on beads were boiled with sample buffer at 95°C for 5 mins. The beads were magnetized, and the

509 supernatant was used for immunoblotting. Lysates were separated using 4-15% precast
510 polyacrylamide gels (Bio-Rad, # 4561083) at **100 V** and then transferred using the Trans-Blot
511 Turbo transfer kit onto nitrocellulose membranes (Bio-Rad, #1704270). Membranes were blocked
512 with 5% nonfat dry milk prepared in TBST (Tris-buffered saline with Tween 20) for 1 hour at
513 room temperature and probed with primary antibodies in 5% bovine serum albumin (BSA) in
514 TBST at 4°C overnight (See **Table 2** for antibodies and dilutions). Following incubation,
515 membranes were washed 3× with TBST and incubated in secondary antibodies diluted 1:5000 in
516 5% BSA for 1 hour at room temperature. Membranes were then washed 3× with TBST and
517 visualized using ECL western blotting substrate.

518

519 **Fluorescence imaging**

520 *i*³Neurons were cultured on PLO-coated ibidi slides (Ibidi #81506) for fluorescence imaging.
521 Neurons were fixed in 4% PFA for 10 mins, washed very gently with PBS, and incubated in
522 blocking buffer (1% bovine serum albumin + 0.1% TritonX) for 1 hour at room temperature (RT).
523 Next, neurons were incubated with primary antibody in blocking buffer overnight at 4°C, gently
524 washed with PBS, and incubated in secondary antibody for 1 hour at RT. Following thorough
525 washes, neurons were ready to be imaged. Mouse brain slices were prepared in the same steps as
526 neuron culture for fluorescence imaging. All antibodies and their respective applications and
527 dilutions are listed in **Table 2**. Confocal images were obtained using a Nikon Eclipse Ti spinning
528 disk confocal microscope at 60× using an oil immersion objective with constant setting between
529 experimental groups. Data analysis was conducted in ImageJ.

530

531

532 **Table 2.** Antibodies used for immunostaining.

Antibody	Company	Catalog	Application	Dilution
LAMP1	Developmental Studies Hybridoma Bank	#H4A3	Immunofluorescence	1:3000
LAMTOR4	Cell Signaling Technology	#13140S	Immunofluorescence	1:500
HA	Millipore Sigma	# 11867423001	Immunofluorescence	1:500
HOECHST	Millipore Sigma	#63493	Immunofluorescence	1:10000
Streptavidin-680	Jackson ImmunoResearch	#016-620-084	Immunofluorescence	1:1000
Streptavidin-488	Jackson ImmunoResearch	#016-540-084	Immunofluorescence	1:1000
PGRN	R&D systems	#AF2420	Immunofluorescence	1:1000
Rhodamine Red Donkey anti-Mouse IgG (H+L)	Jackson ImmunoResearch	#715-295-151	Immunofluorescence	1:1000
Rhodamine Red Donkey anti-Rabbit IgG (H+L)	Jackson ImmunoResearch	(#711-295-152	Immunofluorescence	1:1000
Rhodamine Red Donkey anti-Rat IgG (H+L)	Jackson ImmunoResearch	#711-295-153	Immunofluorescence	1:1000
Alexa Fluor 488 Donkey anti-Mouse IgG	Jackson ImmunoResearch	#715-545-151	Immunofluorescence	1:1000
Rodamine Red Donkey anti-Goat IgG	Jackson ImmunoResearch	#705-295-147	Immunofluorescence	1:1000
LAMP2	Cell Signaling Technology	#D5C2P	Western blot	1:5000
Calreticulin	Cell Signaling Technology	#D3E6	Western blot	1:5000
CTSD	Proteintech	#21327-I-AP	Western blot	1:5000
Catalase	Proteintech	#2126-1-AP	Western blot	1:5000
P70 S6 Kinase	Cell Signaling Technology	#49D7	Western blot	1:5000
PGRN	R&D systems	#AF2420		

534 **Author Contributions**

535 Author contributions: L.H. and M.E.W. initiated the project with help from S.H. and M.S.F. to
536 design the experimental plan. S.H., M.S.F., S.W.H., R.P., and L.H. conducted iPSC-neuron culture
537 and sample preparation. S.H. conducted mouse brain sample preparation. S.H., M.S.F., A.M.F.,
538 H.L., and L.H. conducted proteomics experiments. A.M.F., K.J., and L.H. performed proteomics
539 data analysis. S.H. and M.S.F. performed western blotting and microscopy experiments. S.W.H.,
540 S.H., and B.J.R. conducted live cell assays. S.H. and L.H. wrote the manuscript with input from
541 M.S.F. and M.E.W. and edits from all coauthors.

542 The authors declare no competing financial interests.

543

544 **Acknowledgements**

545 This study is supported by the NIH grant (R01NS121608, Hao), GW intramural grant (UFF, Hao),
546 the Intramural Research Program at NIH/NINDS (Ward), and MRC Dementias Platform UK Stem
547 Cell Network Capital Equipment Awards MR/M024962/1 (Wade-Martins). We would like to
548 thank Maia Parsadanian for her assistance with mouse brain immunostaining and cell culture, Dr.
549 Dimitri Krainc for providing the FTD patient iPSC lines, and Dr. Lingnan Lin for his help in
550 Python data analysis.

551

552 **Data Availability**

553 All proteomics RAW files have been deposited in the PRIDE database (ProteomeXchange
554 Consortium) with the data identifier PXD040251 and will be released upon publication. All other
555 supporting data are available within the article and the supplementary files.

556 References

- 557 1. De Duve, C. & Wattiaux, R. Functions of lysosomes. *Annual review of physiology* **28** (1),
558 435–492 (1966) doi:10.1146/annurev.ph.28.030166.002251.
- 559 2. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease
560 through cellular self-digestion. *Nature* (2008) doi:10.1038/nature06639.
- 561 3. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism
562 and quality control. *Nat. Cell Biol.* **21**, 133–142 (2019).
- 563 4. Ferguson, S. M. Neuronal lysosomes. *Neurosci. Lett.* **697**, 1–9 (2019).
- 564 5. Wang, C., Telpoukhovskaia, M. A., Bahr, B. A., Chen, X. & Gan, L. Endo-lysosomal
565 dysfunction: a converging mechanism in neurodegenerative diseases. *Current Opinion in*
566 *Neurobiology* (2018) doi:10.1016/j.conb.2017.09.005.
- 567 6. Wallings, R. L., Humble, S. W., Ward, M. E. & Wade-Martins, R. Lysosomal Dysfunction
568 at the Centre of Parkinson’s Disease and Frontotemporal Dementia/Amyotrophic Lateral
569 Sclerosis. *Trends Neurosci.* **42**, 899–912 (2019).
- 570 7. Root, J., Merino, P., Nuckols, A., Johnson, M. & Kukar, T. Lysosome dysfunction as a
571 cause of neurodegenerative diseases: Lessons from frontotemporal dementia and
572 amyotrophic lateral sclerosis. *Neurobiology of Disease* vol. 154 (2021).
- 573 8. Platt, F. M., Boland, B. & van der Spoel, A. C. Lysosomal storage disorders: The cellular
574 impact of lysosomal dysfunction. *J. Cell Biol.* **199**, 723–734 (2012).
- 575 9. Paushter, D. H., Du, H., Feng, T. & Hu, F. The lysosomal function of progranulin, a
576 guardian against neurodegeneration. *Acta Neuropathol.* **136**, 1–17 (2018).
- 577 10. Nalls, M. A. *et al.* Evidence for GRN connecting multiple neurodegenerative diseases.
578 *Brain Commun.* **3**, (2021).

579 11. Ward, M. E. *et al.* Early retinal neurodegeneration and impaired Ran-mediated nuclear
580 import of TDP-43 in progranulin-deficient FTLD. *J. Exp. Med.* **211**, 1937–1945 (2014).

581 12. Brouwers, N. *et al.* Genetic variability in progranulin contributes to risk for clinically
582 diagnosed Alzheimer disease. *Neurology* **71**, 656–64 (2008).

583 13. Baker, M. *et al.* Mutations in progranulin cause tau-negative frontotemporal dementia
584 linked to chromosome 17. *Nature* (2006) doi:10.1038/nature05016.

585 14. Cruts, M. *et al.* Null mutations in progranulin cause ubiquitin-positive frontotemporal
586 dementia linked to chromosome 17q21. *Nature* (2006) doi:10.1038/nature05017.

587 15. Kao, A. W., McKay, A., Singh, P. P., Brunet, A. & Huang, E. J. Progranulin, lysosomal
588 regulation and neurodegenerative disease. *Nature Reviews Neuroscience* (2017)
589 doi:10.1038/nrn.2017.36.

590 16. Zhou, X. *et al.* Lysosomal processing of progranulin. *Mol. Neurodegener.* **12**, (2017).

591 17. Zhao, X. *et al.* Progranulin associates with Rab2 and is involved in autophagosome-
592 lysosome fusion in Gaucher disease. *J. Mol. Med.* **99**, 1639–1654 (2021).

593 18. Chang, M. C. *et al.* Progranulin deficiency causes impairment of autophagy and TDP-43
594 accumulation. *J. Exp. Med.* **214**, 2611–2628 (2017).

595 19. Boland, S. *et al.* Deficiency of the frontotemporal dementia gene GRN results in
596 gangliosidosis. *Nat. Commun.* **13**, (2022).

597 20. Logan, T. *et al.* Rescue of a lysosomal storage disorder caused by Grn loss of function with
598 a brain penetrant progranulin biologic. *Cell* **184**, 4651-4668.e25 (2021).

599 21. Wang, C. *et al.* Scalable Production of iPSC-Derived Human Neurons to Identify Tau-
600 Lowering Compounds by High-Content Screening. *Stem Cell Reports* **9**, 1221–1233 (2017).

601 22. Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human pluripotent

602 stem cells. *Neuron* **78**, 785–798 (2013).

603 23. Fernandopulle, M. S. *et al.* Transcription Factor–Mediated Differentiation of Human iPSCs
604 into Neurons. *Curr. Protoc. Cell Biol.* **79**, 1–48 (2018).

605 24. Rhee, H. W. *et al.* Proteomic mapping of mitochondria in living cells via spatially restricted
606 enzymatic tagging. *Science (80-)* **339**, 1328–1331 (2013).

607 25. Go, C. D. *et al.* A proximity-dependent biotinylation map of a human cell. *Nature* **595**, 120–
608 124 (2021).

609 26. Wolfson, R. L. *et al.* KICSTOR recruits GATOR1 to the lysosome and is necessary for
610 nutrients to regulate mTORC1. *Nature* **543**, 438–442 (2017).

611 27. Bar, D. Z. *et al.* Biotinylation by antibody recognition - a method for proximity labeling.
612 *Nat. Methods* **15**, 127–133 (2018).

613 28. Klein, Z. A. *et al.* Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal
614 Dementia-Related Phenotypes in Progranulin-Deficient Mice. *Neuron* **95**, 281-296.e6
615 (2017).

616 29. Miedema, S. S. M. *et al.* Distinct cell type-specific protein signatures in GRN and MAPT
617 genetic subtypes of frontotemporal dementia. *Acta Neuropathol. Commun.* **10**, (2022).

618 30. Huang, M. *et al.* Network analysis of the progranulin-deficient mouse brain proteome
619 reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN
620 mutations. *Acta Neuropathol. Commun.* **8**, 163 (2020).

621 31. Liao, Y. C. *et al.* RNA Granules Hitchhike on Lysosomes for Long-Distance Transport,
622 Using Annexin A11 as a Molecular Tether. *Cell* **179**, 147-164.e20 (2019).

623 32. Frankenfield, A. M., Fernandopulle, M. S., Hasan, S., Ward, M. E. & Hao, L. Development
624 and Comparative Evaluation of Endolysosomal Proximity Labeling-Based Proteomic

625 Methods in Human iPSC-Derived Neurons. *Anal. Chem.* **92**, 15437–15444 (2020).

626 33. Frankenfield, A., Ni, J. & Hao, L. Characterization of Neuronal Lysosome Interactome with
627 Proximity Labeling Proteomics. *J. Vis. Exp.* 1–19 (2022) doi:10.3791/64132.

628 34. Ross, A. B., Langer, J. D. & Jovanovic, M. Proteome turnover in the spotlight: Approaches,
629 applications, and perspectives. *Mol. Cell. Proteomics* **20**, 100016 (2021).

630 35. De Pace, R. *et al.* Synaptic Vesicle Precursors and Lysosomes Are Transported by Different
631 Mechanisms in the Axon of Mammalian Neurons. *Cell Rep.* **31**, (2020).

632 36. Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal
633 homeostasis. *Nat. Rev. Mol. Cell Biol.* **21**, 101–118 (2020).

634 37. Fernandopulle, M. S., Lippincott-Schwartz, J. & Ward, M. E. RNA transport and local
635 translation in neurodevelopmental and neurodegenerative disease. *Nat. Neurosci.* **24**,
636 (2021).

637 38. Abu-Remaileh, M. *et al.* Lysosomal metabolomics reveals V-ATPase- and mTOR-
638 dependent regulation of amino acid efflux from lysosomes. *Science (80-).* **358**, 807–813
639 (2017).

640 39. Muthukottiappan, P. & Winter, D. A Proteomic View on Lysosomes. *Mol. Omi.* (2021)
641 doi:10.1039/d1mo00205h.

642 40. Vasanthakumar, T. & Rubinstein, J. L. Structure and Roles of V-type ATPases. *Trends in
643 Biochemical Sciences* vol. 45 295–307 (2020).

644 41. Nowosad, A. & Besson, A. Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle
645 and Stemness. *Int. J. Mol. Sci.* **23**, (2022).

646 42. Lui, H. *et al.* Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by
647 Microglia via Complement Activation. *Cell* **165**, 921–935 (2016).

648 43. Götzl, J. K. *et al.* Common pathobiochemical hallmarks of progranulin-associated
649 frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. *Acta Neuropathol.*
650 **127**, 845–60 (2014).

651 44. Mathieson, T. *et al.* Systematic analysis of protein turnover in primary cells. *Nat. Commun.*
652 **9**, 1–10 (2018).

653 45. Dörrbaum, A. R., Alvarez-Castelao, B., Nassim-Assir, B., Langer, J. D. & Schuman, E. M.
654 Proteome dynamics during homeostatic scaling in cultured neurons. *Elife* **9**, 1–28 (2020).

655 46. Bomba-Warczak, E., Edassery, S. L., Hark, T. J. & Savas, J. N. Long-lived mitochondrial
656 cristae proteins in mouse heart and brain. *J. Cell Biol.* **220**, (2021).

657 47. Klim, J. R. *et al.* ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of
658 motor neuron growth and repair. *Nat. Neurosci.* **22**, 167–179 (2019).

659 48. Krus, K. L. *et al.* Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor
660 neuropathy. *Cell Rep.* **39**, (2022).

661 49. Neary, D., Snowden, J. & Mann, D. Frontotemporal dementia. *Lancet Neurol.* **4**, 771–780
662 (2005).

663 50. Reis, R. C. M., Sorgine, M. H. F. & Coelho-Sampaio, T. A novel methodology for the
664 investigation of intracellular proteolytic processing in intact cells. *Eur. J. Cell Biol.* **75**, 192–
665 197 (1998).

666 51. Carling, P. J. *et al.* Multiparameter phenotypic screening for endogenous TFEB and TFE3
667 translocation identifies novel chemical series modulating lysosome function. *Autophagy* 1–
668 14 (2022) doi:10.1080/15548627.2022.2095834.

669 52. Valdez, C. *et al.* Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-
670 like phenotypes in neurons derived from FTD patients. *Hum. Mol. Genet.* **26**, 4861–4872

671 (2017).

672 53. Dörrbaum, A. R., Kochen, L., Langer, J. D. & Schuman, E. M. Local and global influences
673 on protein turnover in neurons and glia. *Elife* **7**, 1–24 (2018).

674 54. Mohan, S. *et al.* Processing of progranulin into granulins involves multiple lysosomal
675 proteases and is affected in frontotemporal lobar degeneration. *Mol. Neurodegener.* **16**,
676 (2021).

677 55. Zhang, T. *et al.* Differential regulation of progranulin derived granulin peptides. *Mol.*
678 *Neurodegener.* **17**, (2022).

679 56. Götzl, J. K. *et al.* Early lysosomal maturation deficits in microglia triggers enhanced
680 lysosomal activity in other brain cells of progranulin knockout mice. *Mol. Neurodegener.*
681 **13**, (2018).

682 57. Lee, J. H. *et al.* Presenilin 1 Maintains Lysosomal Ca²⁺ Homeostasis via TRPML1 by
683 Regulating vATPase-Mediated Lysosome Acidification. *Cell Rep.* **12**, 1430–1444 (2015).

684 58. Tanaka, Y. *et al.* Progranulin regulates lysosomal function and biogenesis through
685 acidification of lysosomes. *Hum. Mol. Genet.* **26**, 969–988 (2017).

686 59. Cheng, X. T. *et al.* Characterization of LAMP1-labeled nondegradative lysosomal and
687 endocytic compartments in neurons. *J. Cell Biol.* **217**, 3127–3139 (2018).

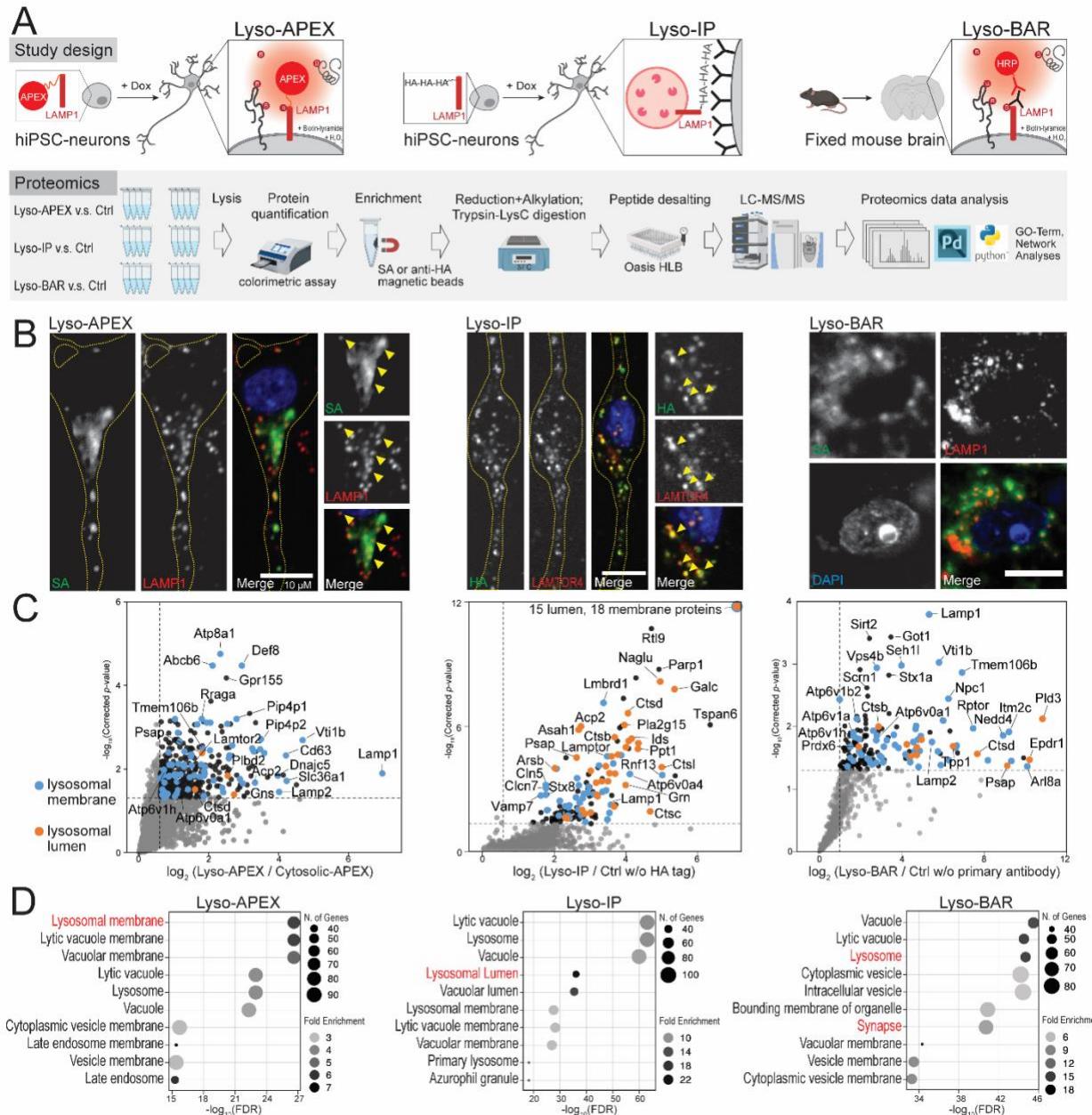
688 60. Kao, A. W. *et al.* A neurodegenerative disease mutation that accelerates the clearance of
689 apoptotic cells. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 4441–6 (2011).

690 61. Frankenfield, A. M., Ni, J., Ahmed, M. & Hao, L. Protein Contaminants Matter: Building
691 Universal Protein Contaminant Libraries for DDA and DIA Proteomics. *J. Proteome Res.*
692 **21**, 2104–2113 (2022).

693 62. Ge, S. X., Jung, D., Jung, D. & Yao, R. ShinyGO: A graphical gene-set enrichment tool for

694 animals and plants. *Bioinformatics* (2020) doi:10.1093/bioinformatics/btz931.

695 63. Szklarczyk, D. *et al.* STRING v11: Protein-protein association networks with increased
696 coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic
697 Acids Res.* (2019) doi:10.1093/nar/gky1131.


698 64. Saric, A., Grinstein, S. & Freeman, S. A. Measurement of Autolysosomal pH by Dual-
699 Wavelength Ratio Imaging. in *Methods in Enzymology* vol. 588 15–29 (Academic Press
700 Inc., 2017).

701 65. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
702 analysis. *Nature Methods* (2012) doi:10.1038/nmeth.2089.

703

704 **Figures and Figure legends**

705

706

707 **Figure 1. A map of the lysosomal proteome and interactome in human neurons and mouse**

708 **brain. (A)** Schematics of lysosomal proximity labeling (Lyso-APEX) in i^3 Neurons, lysosomal

709 immunopurification (Lyso-IP) in i^3 Neurons, and lysosomal biotinylation by antibody recognition

710 (Lyso-BAR) in fixed mouse brain tissues. **(B)** Fluorescence imaging of Lyso-APEX, Lyso-IP, and
711 Lyso-BAR activities in i³Neurons and fixed mouse brain. Biotinylated proteins, stained with
712 streptavidin (SA), colocalize with lysosomal markers in i³Neurons and fixed mouse brain tissues.
713 HA-tagged lysosomes colocalize with lysosomal markers in i³Neurons. Scale bars are 10 μ m. **(C)**
714 Volcano plots showing significantly enriched proteins from WT Lyso-APEX compared to
715 cytosolic-APEX, Lyso-IP compared to control group without HA expression, and Lyso-BAR
716 compared to control group without primary antibody staining (N=4). Dotted lines denote corrected
717 *p*-value of 0.05 (y-axis) and ratio of 1.5 (x-axis). Known lysosomal membrane and lumen proteins
718 are highlighted in blue and orange colors, respectively. **(D)** GO-term analyses of significantly
719 enriched proteins in Lyso-APEX, Lyso-IP, and Lyso-BAR proteomics.

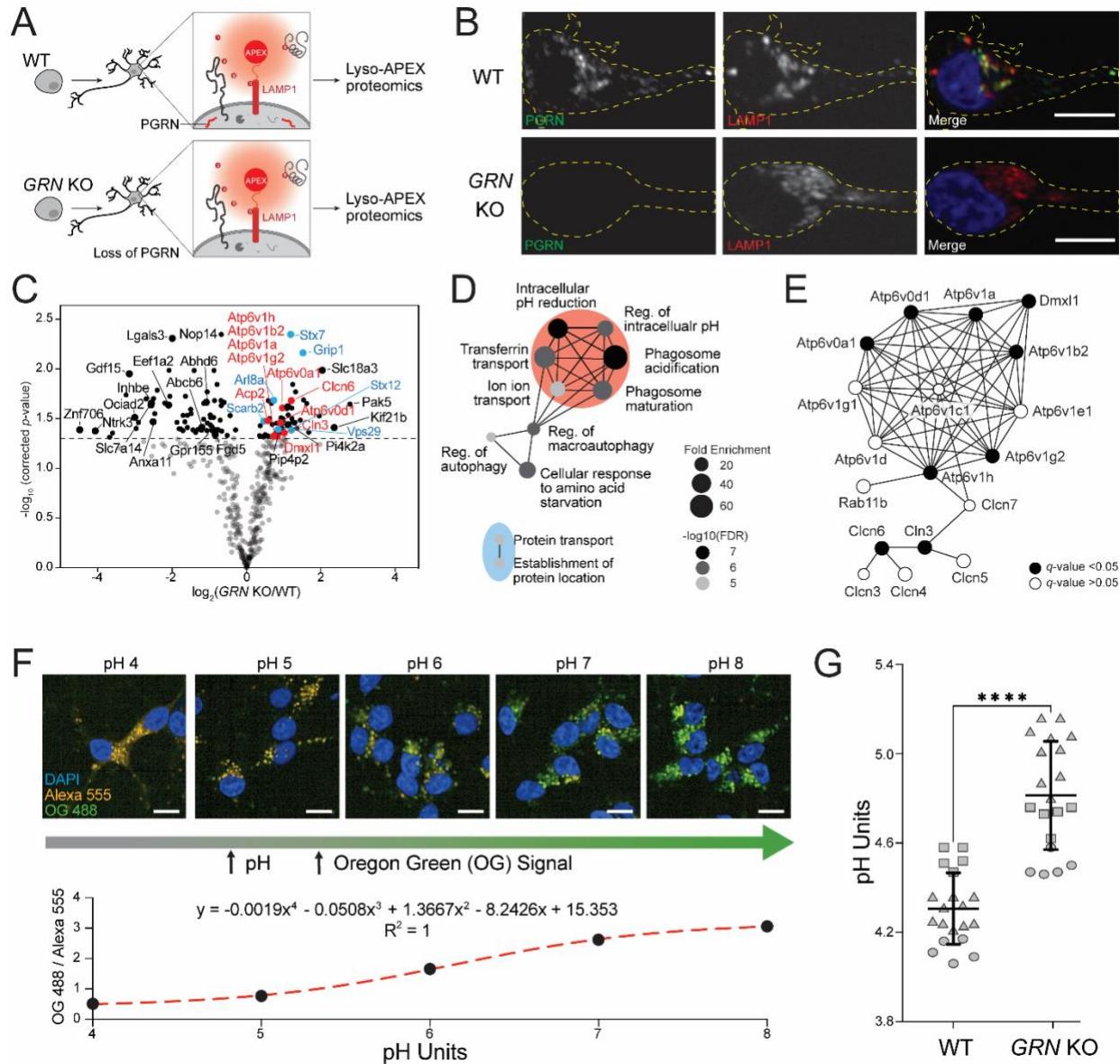
720

721

722

723

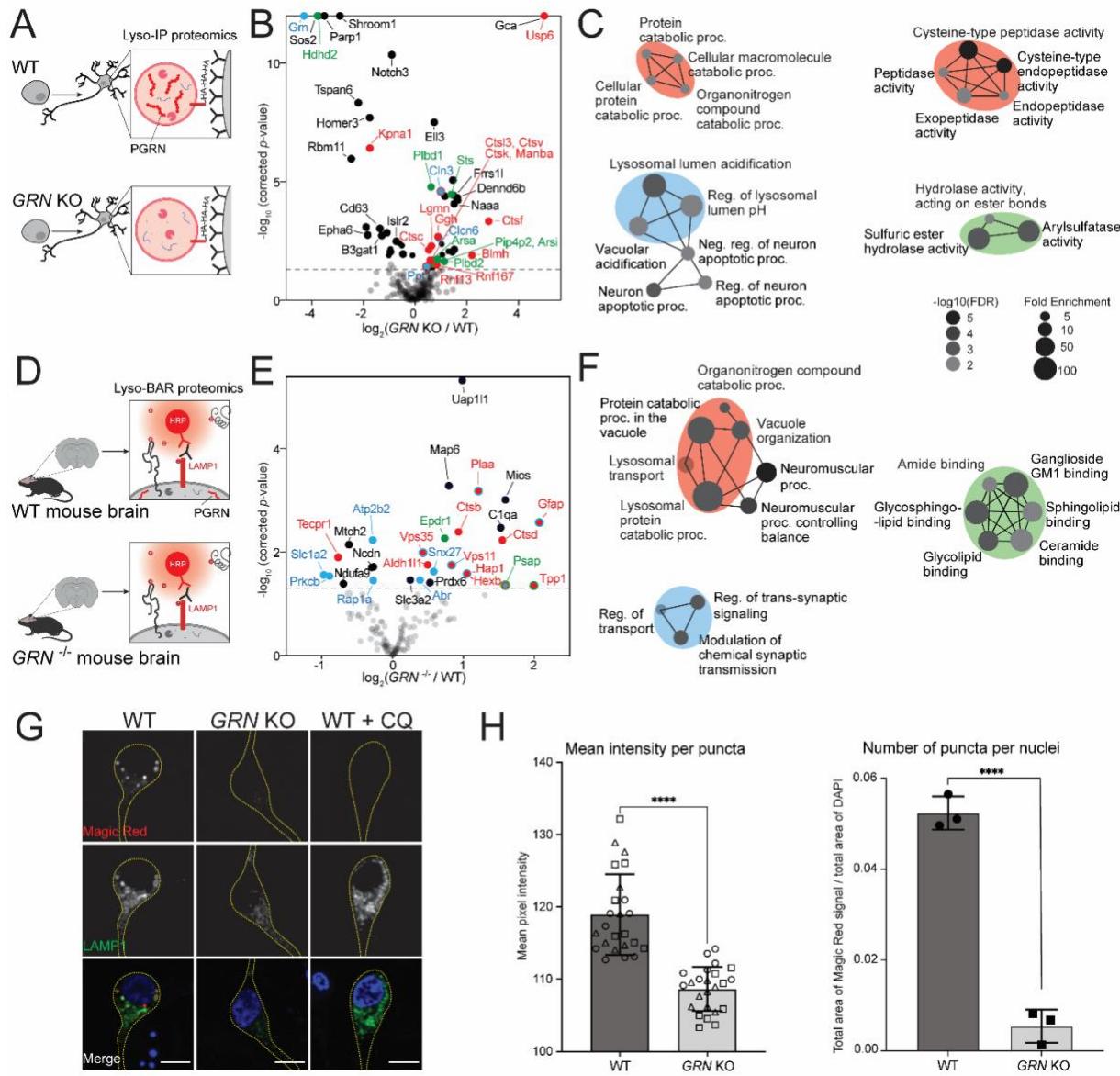
724


725

726

727

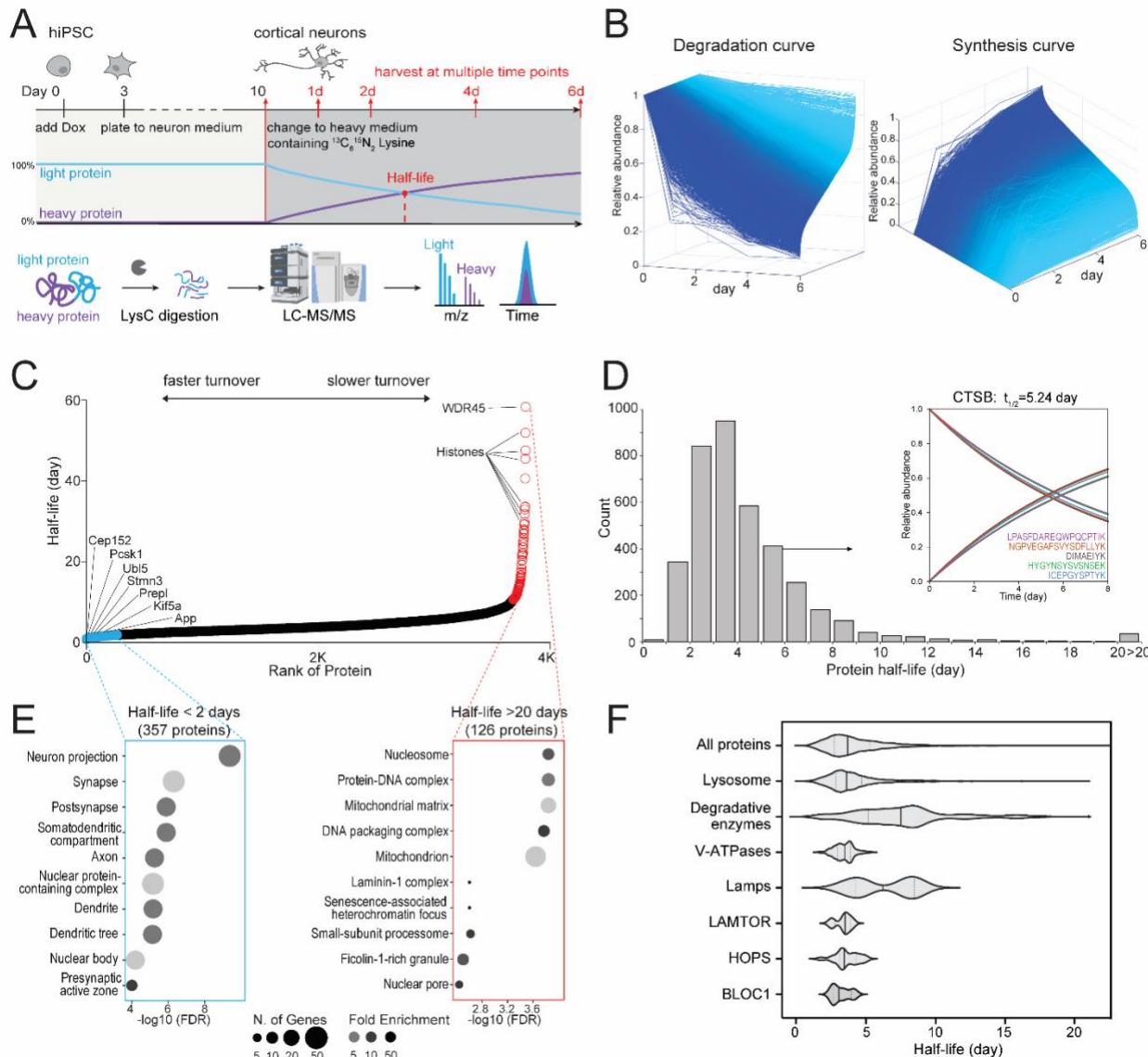
728


729

730

731 **Figure 2. Lysosomal membrane proteins and pH are altered in i^3 Neurons with loss of**
 732 **programulin. (A)** Schematic of Lyso-APEX in WT and isogenic *GRN* KO i^3 Neurons. **(B)**
 733 Fluorescence imaging showing the colocalization of PGRN with lysosomes in WT i^3 Neurons and
 734 loss of programulin (PGRN) signal in *GRN* KO i^3 Neurons. Scale bar is 10 μ m. **(C)** Volcano plot of
 735 Lyso-APEX proteomics in *GRN* KO vs. WT i^3 Neurons. Cytosolic enriched proteins and
 736 nonspecific labelings were removed from the volcano plot based on WT LysoAPEX vs. Cytosolic-

737 APEX comparison. Red and blue colored proteins belong to lysosomal pH and protein transport
738 GO-terms, respectively. **(D)** GO-term network analysis of significantly up-regulated biological
739 processes in *GRN* KO vs. WT Lyso-APEX proteomics. **(E)** Protein network analysis of identified
740 vacuolar-ATPase subunits and their interactors. **(F)** Live cell ratiometric lysosome pH assay. pH
741 calibration curve is generated based on the ratio of pH-sensitive Oregon Green-488 dextran signal
742 and pH-insensitive/loading control Alexa Fluor-555 red dextran in WT i³Neurons. Scale bar is
743 10μm. Other linear and nonlinear curve fitting models are provided in Supplementary Figure S2E.
744 **(G)** Lysosome pH measurements in WT vs. *GRN* KO i³Neurons; multiple biological replicates
745 from three independent experiments are represented with different shapes (**** denotes *p*-value
746 < 0.0001).

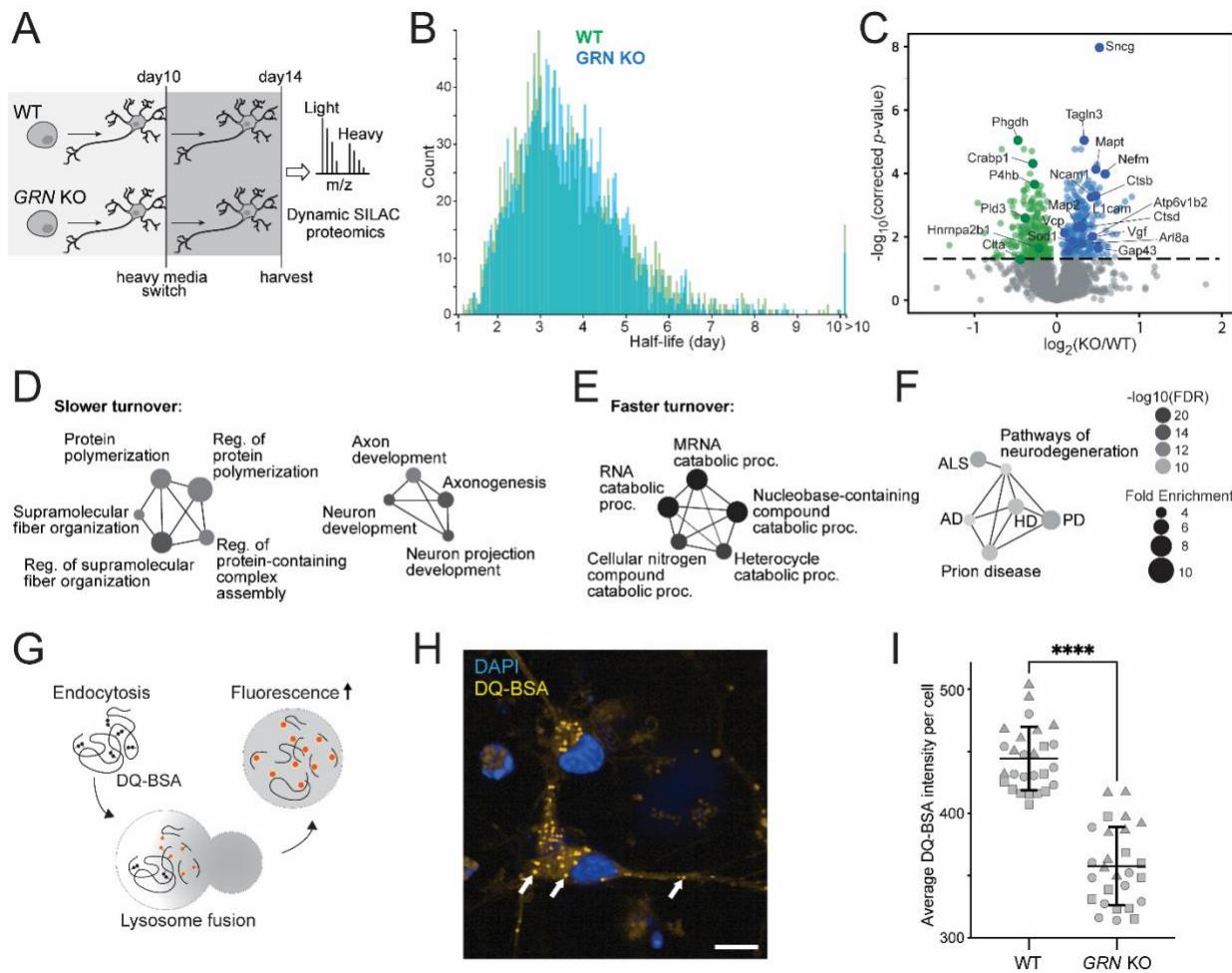


747

748 **Figure 3. Progranulin-null lysosomes from human neurons and mouse brains have increased**
 749 **levels of lysosomal catabolic enzymes and decreased cathepsin B activity. (A)** Schematic of
 750 intact lysosomal isolation (Lyso-IP) proteomics in *GRN* KO vs. WT i^3 Neurons. **(B)** Volcano plot
 751 of Lyso-IP proteomics showing protein changes related to protein catabolic processes (red),
 752 lysosomal pH (blue), and hydrolase activities (green). Nonspecific labeling proteins were removed
 753 based on WT LysoIP vs. control i^3 Neurons without HA expression. **(C)** GO-term network analysis

754 of significantly changed proteins in *GRN* KO vs. WT Lyso-IP proteomics. Enriched biological
755 processes are shown on the left. Molecular functions are shown on the right. Color code
756 corresponds to the volcano plot. **(D)** Schematic of mouse brain Lyso-BAR labeling in *GRN*^{-/-} vs.
757 WT mice. **(E)** Volcano plot showing Lyso-BAR protein changes in *GRN*^{-/-} vs. WT mouse brain.
758 Nonspecific labeling proteins were removed based on WT LysoBAR vs. control without primary
759 antibody staining. **(F)** GO-term network analysis of significantly changed proteins in *GRN*^{-/-} vs.
760 WT Lyso-BAR proteomics. **(G)** Fluorescence imaging of Magic Red assay to measure cathepsin
761 B activity in i³Neurons. CQ stands for chloroquine treatment (50 μ M for 24 hours). Scale bar is 10
762 μ m. **(H)** Quantification of absolute and relative fluorescence intensities indicate decreased
763 cathepsin B activity in *GRN* KO vs. WT i³Neurons (**** denotes p -value < 0.0001).

764

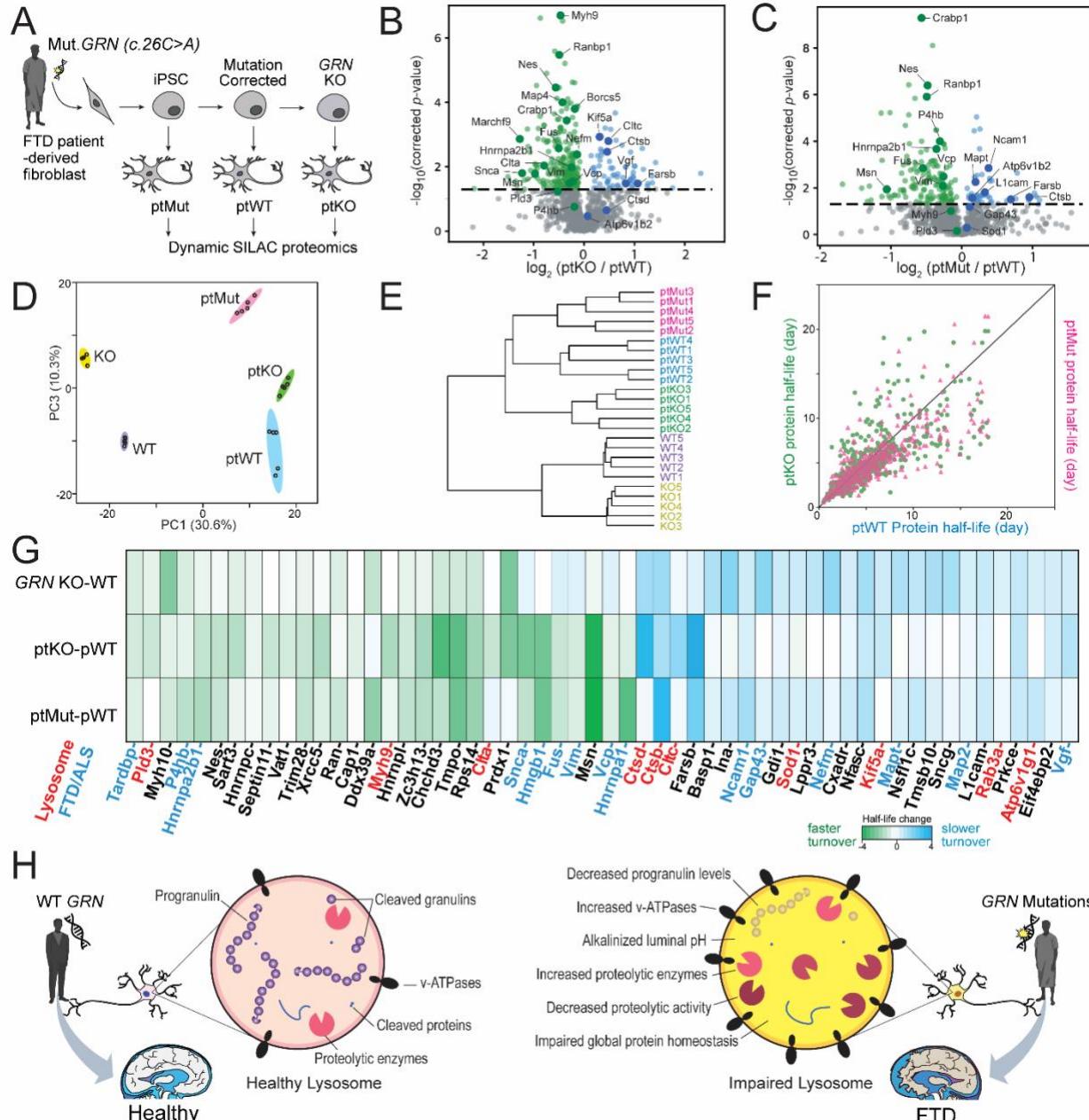


765

766 **Figure 4. Measuring global protein half-lives in cultured human i³Neurons.** (A) Schematic of
 767 dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics to measure
 768 global protein half-lives in cultured human i³Neurons. Cortical neurons were grown in normal
 769 medium until day 10 and then switched to heavy lysine-containing medium. Neurons are harvested
 770 at 1, 2, 4, and 6 days after medium switch followed by bottom-up proteomics. (B) Degradation
 771 and synthesis curves of all quantified proteins in WT i³Neurons. (C) Scatter plot of protein half-
 772 lives measured in WT i³Neurons ranked from fastest turnover to slowest turnover. (D) Histogram

773 distribution of protein half-lives in WT i³Neurons. An example cathepsin B (CTSB) protein with
774 five identified unique peptide sequences is illustrated in the inset. (E) GO-term analysis of the fast
775 (left) and slow (right) turnover proteins in WT i³Neurons. (F) Violin plots of half-life distributions
776 from all proteins and lysosomal proteins in WT i³Neurons.

777



778

779 **Figure 5. Global protein turnover and lysosomal degradative function are impaired in**
 780 **i³Neurons with loss of progranulin. (A)** Schematic of protein half-life measurements in *GRN* KO
 781 vs. WT i³Neurons using dynamic SILAC proteomics. **(B)** Histogram distribution of global protein
 782 half-lives in *GRN* KO (blue) vs. WT (green) i³Neurons. **(C)** Volcano plot of protein half-life
 783 changes in *GRN* KO vs. WT i³Neurons. **(D)** GO-term network analysis of enriched biological
 784 processes from proteins with significantly slower turnover. **(E)** GO-term network analysis of
 785 enriched biological processes from proteins with significantly faster turnover. **(F)** KEGG pathways
 786 enriched from significantly altered protein half-lives in *GRN* KO vs. WT i³Neurons. **(G)** Schematic
 787 of the DQ-BSA Red assay to measure lysosomal degradative function. Extracellular DQ-BSA with

788 self-quenched dye is endocytosed into i³Neurons and trafficed to the lysosome, where it is degraded
789 into smaller protein fragments with isolated fluorophores with fluorescence signals. (H)
790 Representative fluorescence imaging of DQ-BSA Red assay showing DQ-positive lysosomes in
791 i³Neurons. Scale bar is 10 μ m. (I) Quantification of the fluorescence intensities of the DQ-BSA
792 Red assay in WT vs. *GRN* KO i³Neurons, normalized to the total number of puncta in two groups
793 (**** denotes *p*-value < 0.0001).

794

801 control iPSC line (ptWT) and then to knockout *GRN* in pWT to create the ptKO iPSC line. These
802 iPSC lines were then differentiated into i³Neurons and dSILAC proteomics was performed. **(B)**
803 Volcano plot of protein half-life changes in ptKO vs. ptWT i³Neuron. **(C)** Volcano plot of protein
804 half-life changes in ptMut vs. ptWT i³Neuron. **(D)** Principal component analysis using protein
805 half-lives in GRN-KO, WT, ptKO, ptMut, and ptWT i³Neurons groups. **(E)** Hierarchical clustering
806 of five i³Neurons groups. **(F)** Scatter plot of protein half-life changes in ptKO vs. ptWT and ptMut
807 vs. ptWT comparisons showing the consistency and potential gene dosage effect of ptKO and
808 ptMut i³Neurons. **(G)** Heatmap showing key overlapping protein turnover changes in *GRN* KO vs.
809 WT, ptKO vs. ptWT, and ptMut vs. ptWT i³Neurons. Heatmap colors represent the absolute half-
810 life differences between comparison groups. Key proteins from lysosomes and relevant to
811 FTD/ALS are highlighted in red and blue, respectively. **(H)** Schematic of proposed lysosomal
812 impairment in progranulin-deficient neurons caused by *GRN* mutations in FTD patients.

813