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Abstract

Gene-based burden tests are a popular and powerful approach for analysis of exome-wide
association studies. These approaches combine sets of variants within a gene into a single burden
score that is then tested for association. Typically, a range of burden scores are calculated and
tested across a range of annotation classes and frequency bins. Correlation between these tests
can complicate the multiple testing correction and hamper interpretation of the results. We
introduce a new method called the Sparse Burden Association Test (SBAT) that tests the joint set
of burden scores under the assumption that causal burden scores act in the same effect direction.
The method simultaneously assesses the significance of the model fit and selects the set of
burden scores that best explain the association at the same time. Using simulated data, we show
that the method is well calibrated and highlight some scenarios where the test outperforms
existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank
which further illustrates the power of the method. This test is implemented in the REGENIE

software.
Introduction
Large scale exome sequencing studies are being conducted to elucidate the genetic basis of

diseases and traits and discover novel drug targets'~. These studies enable association testing of

rare coding variation not easily accessible via genome-wide association studies (GWAS) using
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genotype microarrays followed by imputation from publicly available reference panels.
Typically, these studies will carry out statistical tests of the combined effect across many single

variants in each gene with a trait of interest.

Possibly the simplest approach involves collapsing a subset of single variants in a gene into a
single marker of gene perturbation or burden*. For example, the set of predicted loss of function
(pLoF) variants below 0.1% minor allele frequency (MAF) could be combined by scoring an
individual as 1 if they have at least one minor allele across the set, and 0 otherwise. This burden
score can then be tested for association in the same way as a SNP (single nucleotide
polymorphisms). Alternatives include a weighted sum of variants, with weights dependent upon
the MAF of variants®, or a set of burden scores across a range of frequency thresholds, with

significance assigned using permutation®.

Burden tests tend to have most power when all collapsed variants are causal and when causal
variants alter gene function in the same effect direction. When these conditions are not met
variance components tests, such as the SKAT test’, that allow variants to have different effect
directions can have more power. Alternatively, combining single variant tests, via the Cauchy
combination test® (called ACAT-V), into a single p-value can be particularly powerful when
there are only a small number of causal variants °. Tests that combine across burden, variance

component and single variant tests have also been proposed and exhibit good power’ !,

As the true set of causal variants is unknown it is common to calculate many burden scores
across a range of MAF thresholds and different variant annotation classes*!2. For example,
Backman et al. 2 considered two annotation classes and five MAF thresholds: a strict burden of
pLoFs and a more permissive burden of pLoFs with predicted deleterious missense variants were
assigned into overlapping groups with MAF < 1%, MAF <0.1%, MAF <0.01%, MAF <0.001%,
and singletons only. This approach tends to produce highly structured, and often highly
correlated sets of tests, which can make the interpretation and accurate multiple testing

correction difficult.
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In this paper we propose an approach that circumvents these difficulties whereby a set of burden
scores are jointly tested for association. We focus on quantitative traits and leave the extension to
binary traits for future work. As the set of nested burden scores tend to be positively correlated
and exhibit the same direction of association with the trait of interest this suggests a prior on the
effect direction of the burden scores, which we enforce through fitting the joint model of burden
scores using a non-negative least squares (NNLS) approach. We propose a quadratic form test
statistic based on the NNLS model fit and show that it has a null distribution that is a mixture of
chi-square distributions (not to be confused with a weighted sum of chi-squares) with mixture
weights that depend on the covariance between the burden scores. We also develop a
computationally efficient method for calculating p-values from this null distribution. NNLS is
known to induce sparsity in its solution and has the added benefit of providing a form of model
selection across the set of burden scores, which can aid interpretation of which frequency bins
and annotation classes harbor the causal variants. In this sense the method is rather unique in
simultaneously achieving both model inference, via well controlled Type I error for the test, and
model selection, with many of the burden scores excluded from the final model fit. We call this

test the Sparse Burden Association Test (SBAT).

Using simulation studies, we show that the SBAT has well calibrated Type I error and highlight
some scenarios where the SBAT has improved power over existing tests. We further show the
performance of the test when applied to 73 quantitative traits from the UK Biobank and illustrate
how the sparse nature of the parameter estimation in the test can aid interpretation of the causal

signal at a gene.

Methods

Sparse Burden Association Test

In a sample of N individuals, let Y denote the N-length vector of a quantitative trait. Let G
denote the N X L matrix, where each column contains the genotypes of L SNPs in a gene of
interest. Further define X to be a matrix of N X P burden scores, where each column contains

one of P distinct burden scores. Each burden score is derived as function of the SNP matrix X, by
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collapsing the subset of variants that fall within a MAF bin and an annotation class. That is X;; is
the indicator variable that the ith individual carries at least one rare variant at any of the SNPs
included in the jth subset. The set of MAF bins and annotation classes are user defined. We
assume that covariates (including the intercept) are projected out from both Y and X. Covariates
may include terms such as REGENIE Step 1 predictors!? that are estimated in advance and

account for polygenicity, population structure and relatedness.

We consider estimating the joint effect of all P burden scores in a linear model with positivity

constraints on the P-vector of regression parameters [ as follows

Y =XB +e¢ (1)
e~N(0, %)
B=0

We assume that 62 is known or is estimated with enough precision so that this can be ignored,
such as the case of large-scale exome sequencing datasets. This is an NNLS problem and we use
the active set method!* to fit the model. We use f to denote the NNLS estimate and

B = (XTX)7'XTY to denote the ordinary least squares (OLS) estimate of 8 without the non-

negativity constraint.

Writing Y — X = (Y -X ﬁ) - X (ﬁ - ﬁ) the least squares objective function for (1) can be re-
expressed as
1 ~ 1 ~
S =XB (O =X = C+ (8= )" (X7X) (8 —F)

Where C = % (Y — XB)T(Y — XPB) and cross product terms vanish as a consequence of the OLS normal
equation X (Y - XB ) = 0. Hence model (1) is equivalent to

B=pB+v

v~N(0,V)

V= ag2XTX)!
=0
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Treatment of this model is explicitly addressed by literature on inference of linear models with
constraints!>~!7, and the model can be thought as a multivariate analogue of the one-sided test '°.
To test the null hypothesis Hy: f = 0 versus the alternative H;: f = 0 (with at least one
inequality strict) we use the quadratic form test statistic

T=p"v"'p
That has a null distribution that is a mixture of chi-squared distributions'*>~!” (not to be confused

with a weighted sum of chi-squares) as follows

P(T>t)= ZwiP(XL? > t)

Where y? is a chi-squared distribution with i degrees of freedom, and w; are weights that sum to
1 and depend upon V as follows

Wi = Xjal=i 4Var )qVaar) , 1 €O, ..., P} 2)
over all subsets of {1, ..., P} of size i denoted by a, and &' is the complement set. V,, is the
covariance matrix of v; , i € a’ and V,.,, is the covariance matrix of v; , i € a@ conditional upon
v; =0,i € a’, and q(Z) is the probability that all the variables of a multivariate normal
distribution with zero mean and covariance X are positive. In the case where V is diagonal the

weights simplify to

w; = (’;) 2P, i€{0,..,P)

In the general case the sum w; has (113) terms to evaluate which can be a potential computational

bottleneck for P > 10. For example, w,, for P = 25 implies evaluating (ig) = 5,200,300 terms

in the sum from Equation 2. Thus, we explored a simple approximation in which a random

sample of K terms in each sum, denoted A;, were used to estimate the full sum

()
w; = %ZaeAi q(Va_ll)q(Va:al) (3)
As we do not know in advance whether the burden scores will be positively or negatively
associated with the quantitative trait under study, we apply the SBAT twice to both Y and —Y.

We then combine the two p-values using the Cauchy combination method®. To avoid numerical
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instability, we apply the QR decomposition to the matrix of burden scores and leave only linearly

independent columns for model fitting and inference.

This approach, together with a general suite of burden, variance component and ACAT
(Aggregated Cauchy Association Test) gene-based tests have been implemented in the
REGENIE version 3.0 software (URLs), and this was used for all simulation and real data

analysis results included in this paper.

Annotations and MAF cutoffs for burden scores

In both simulations and analysis of the UK Biobank data, exome variants were grouped based on
four annotations classes: (1) pLoF only (labeled M1); (2) pLoF or predicted deleterious missense
based on 5/5 in-silico algorithms (labeled M3); (3) pLoF or predicted deleterious missense based
on 1 or more out of 5 in-silico algorithms (labeled M4); (4) and pLoF or missense (labeled M?2).
We also considered several MAF cutoffs when aggregating variants: MAF < 1%, MAF <0.1%,
MAF <0.01%, MAF <0.001% (only for UK Biobank application), and singletons. Exome
variants were annotated using SnpEff and assigned to genes based on Ensembl v85 (most

deleterious consequence across any transcript) as previously described?.

Combining different gene-based tests into a single p-value per gene

We considered four gene-based tests: SBAT, SKAT-0!° and ACAT-V?, and another test,

BURDEN-ACAT, that aggregates evidence of association from multiple burden scores using the
Cauchy combination method with uniform weights®®. For the SBAT and BURDEN-ACAT tests,
input was a set of burden scores built by grouping exome variants using four annotation classes
and five MAF cutoffs as described above. For the SKAT-O and ACAT-V tests, we applied a
single MAF cutoff of 1% along with MAF-dependent variant weights and aggregated the
resulting p-values (across the four annotation classes) by the Cauchy combination method. That
produced a single per-gene p-value for each of the four gene-based tests. Finally, we applied the
Cauchy combination method on the four p-values to derive a single p-value per gene, referred to

as GENE P (Supplementary Figure S3).

Simulated data


https://doi.org/10.1101/2023.02.22.529560
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529560; this version posted February 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

To assess the Type I error calibration of the SBAT, we simulated phenotypes based on real
genetic data from the UK Biobank array'® and exome data? as follows. We randomly selected
100,000 samples from the set of white British participants to include population structure in our
simulations (about 30% of samples are related 3™ degree or closer). For the i-th individual,

quantitative phenotypes were simulated as

M
Y, = z GiiBj + €
=1

where we selected M=25,000 SNPs on odd chromosomes from the UK Biobank genotyping
array to be causal, excluding variants with minor allele count below 100 or involved in inter-
chromosomal LD (Linkage Disequilibrium), and G;; is the standardized genotype value at the ;-
th marker for the i-th individual. The effects for the causal SNPs §; were sampled independently
from a normal distribution with mean zero and the variance was chosen so that they explained
20% of the total phenotypic variance. The environmental effect €; was independently sampled
from a normal distribution with mean zero and variance set to result in a phenotypic variance of
one. We simulated 100 phenotypic replicates, obtained REGENIE Step 1 predictors based on
472,435 array SNPs, and tested the phenotypes for association with 1,000 randomly selected

genes on even chromosomes from whole exome sequencing data to evaluate type 1 error.

We also used UK Biobank array and exome data as the basis for a set of simulations to assess the
power of the SBAT compared to SKAT-O!? and ACAT-V? tests. For the i-th individual,

quantitative phenotypes were simulated as

M
Y, = z GijB; +z GiaYu + €
= Tk

where we followed the same scheme as in the type 1 error simulations to simulate additive
polygenic effects from array SNPs on odd chromosomes, but also added effects from causal
genes selected on even chromosomes, where G}, is the genotype value (non-standardized) for
the /-th exome variant in the k-th causal gene for the i-th individual, and y;;, the corresponding
fixed effect on the phenotype. For each causal gene, we only considered variants that were

annotated either pLoF or missense. The absolute effect sizes |y, | were |0.11ogio(MAF)| for
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pLoF variants, and |0.01log10(MAF)| for missense variants. This reflected the assumption that
functional variants which are more deleterious are likely have larger effect sizes on the
phenotype and be rarer. For singleton variants, we set the effect size to v Rsingieton, Where
Rgingieton = 1 1s a positive constant which enabled singletons to have more severe impact on the
phenotype than that solely based on the MAF. We varied the proportion of causal variants among
non-singleton variants between 10 to 100% and for singleton variants between 30 to 100%. For
the direction of effects, we considered three settings where (1) all variants have positive effects;
(2) 80% of variants have positive effects (and remaining 20% had effects in the opposite
direction); and (3) 50% of variants have positive effects. In all scenarios, the polygenic effect
from array SNPs was set to explain 20% of the phenotypic variance when there are no effects
from the causal genes (i.e., all y;;, = 0) with the remaining 80% of the variance explained by the
environmental effect. We simulated 100 phenotypic replicates which we tested for association
with each of the 10 causal genes resulting in 1,000 p-values and evaluated power in each
scenario. Similarly to the type 1 error simulations, we also obtained REGENIE Step 1 predictors

based on 472,435 array SNPs before scanning for associations.

Analysis of UK Biobank data

We applied SBAT to real data analysis of 73 quantitative phenotypes in the UK Biobank with
sample sizes ranging from 89,734 to 430,074 European participants and up to 18,184 genes on
autosomal chromosomes; these included biomarkers as well as anthropometry outcomes
(Supplementary Table S1). These phenotypes were derived from the phenotypes available
through the UK Biobank Data Showcase on April 1, 2020. For traits measured across multiple
visits, we computed the mean value across all visits for each participant and analyzed the
resulting variable after applying a rank-based inverse-normal transformation. For each trait, we
first performed a GWAS with imputed variants to identify common variants independently
associated with the phenotype as described in Backman et al. Briefly, we tested common
(MAF>1%) single variants imputed from TOPMed (Trans Omics for Precision Medicine) for
association with the trait using REGENIE. We then ran GCTA-COJO?® joint model to identify
independent signals (P < 10~7) using 10,000 randomly selected individuals from the UK
Biobank TOPMed dataset to estimate linkage disequilibrium. These independently associated
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variants were included as covariates in the set-based test analyses we performed on exome rare
variants. For the gene-based association tests, we grouped variants into 20 burden scores using
the same four annotation classes as described above and the MAF cutoffs of 1%, 0.1%, 0.01%,
0.001% and singletons. For SKAT-O and ACAT-V association tests, we only considered a single
MAF cutoff of 1%. Covariates included age, age-squared, sex, age-x-sex, the first ten principal
components based on array data, the first twenty principal components derived from exome
variants with a MAF between 2.6 X 10~° and 1%, and six exome sequence batch indicator

variables.

Results

Approximate SBAT p-values. To mitigate the computational burden of weight calculation for
SBAT (Equation 2), we propose approximation with a single parameter K that controls the size
of the random sample of terms in the weight calculation (Equation 3). We evaluate the
performance of our approximation using three values of K = 1, 10, 100 (Figure 1). The accuracy
of weight approximation naturally improves with K increasing from 1 to 100, as highlighted for
12 burden scores of the APOB gene in the UK Biobank (Figure 1a). We next expand the
comparison to 812 genes on Chromosome 21 in the UK Biobank tested for association with low-
density lipoprotein (LDL) phenotype (Figure 1b-c). The exact and approximate p-values are
almost undistinguishable when K is large enough (R? >0.9999 for K=100), but differences
between p-values are noticeable at very small values of K (R? = 0.990 for K=1). We recommend
the value of K = 10 (default in REGENIE), a reasonable compromise between the accuracy of
approximation and compute time. To further reduce the computational burden of SBAT, we
develop an adaptive strategy, named SBAT-ADAPT, which initially uses K=2 weights to
estimate the p-value, and if it is below a significance level of 0.001, we re-compute the p-value
using K=10 weights. This strategy allows to quickly evaluate p-values for weaker signals and
increase accuracy for stronger signals which we are more interested in. Supplementary Figure 1
shows the high concordance in p-values between this adaptive strategy and using K=10 weights
to calculate all the p-values (R?= 0.991). Furthermore, it led to a 40% reduction in computational
time when performing a whole-exome association scan on a single phenotype compared to using

K=10 weights (Supplementary Table S3). As REGENIE can analyze multiple phenotypes


https://doi.org/10.1101/2023.02.22.529560
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529560; this version posted February 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

within the same analysis run'?, we propose another strategy, named SBAT-MTW, which is better
suited for this context. More precisely, instead of evaluating K weights separately for each trait,
we compute the weights for the first phenotype and re-use these across all phenotypes. Assuming
that the missingness patterns across traits is similar (which is also assumed in the REGENIE
multi-trait setting), the LD matrices for the burden scores obtained given each phenotype’s
missingness patterns should be highly correlated and thus lead to similar weights. We evaluate
this strategy in real-data applications where SBAT-MTW is applied to 50 phenotypes and gives
p-values highly concordant with those from SBAT (R?= 0.997). Supplementary Table S3
shows the timing reduction of SBAT-MTW relative to SBAT when applied to multiple
phenotypes where it increased as more phenotypes are being analyzed in the same REGENIE run

(CPU time reduction of 65% for the multi-trait run with 50 phenotypes).
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Figure 1: Validation of approximate SBAT p-values with different values of parameter K = 1,
10, and 100. (a) Exact (red) and approximate (grey) weights for 12 burden scores of the APOB
gene in the UK Biobank are compared with 5 repetitions (grey curves). (b-c) Scatter plots of
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exact and approximate SBAT p-values at raw and log10 scale for 812 genes on Chromosome 21
and LDL phenotype in the UK Biobank. The R? values are reported for both raw and log10-

transformed p-values.

Type 1 Error Simulation for SBAT. The QQ-plot on the log scale comparing the SBAT p-
values (using K = 10) to the expected values under the null hypothesis of no association based
on 100,000 null simulations is shown on Figure 2. The empirical type | error rates for SBAT for
significance levels @ = 0.05,0.01,0.005,0.001 and 5 X 10~* are presented in Supplementary
Table S2. These results confirmed that the SBAT has correct type 1 error control for quantitative

traits.

Observed (—log;q p-value)

I T T T T
1 2 3 4 5

Expected (— log;o p-value)

Figure 2: Quantile-quantile plot of association test p-values for SBAT in simulation studies
under the null hypothesis. The p-values were obtained from testing 100 simulated phenotypes in
1,000 genes where variants were grouped by four functional annotations and four MAF cutoffs

resulting in 16 burden scores being combined in SBAT.
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Power Simulation. We compared the power performance of SBAT with SKAT-O and ACAT-V
under multiple simulation settings where we varied the proportion as well as the direction of
causal signals based on their functional annotation. Figure 3 shows the empirical power
performance of the tests across a range of 6 simulation configurations. The SBAT test had the
highest power relative to SKAT-O and ACAT-V when the burden assumption of same direction
of effects for all the variants in the gene was held and singleton variants had significantly higher
impact on the phenotype than non-singleton variants. However, the power performance of SBAT
was diminished when only a fraction of the singleton variants was causal. We also found that
when the increased effect of singleton variants was present, SBAT remained as powerful or more
than SKAT-O and ACAT-V even when variant effects were not all in the same direction (80/20
+/-). We found SBAT had the lowest power performance in the settings that were the farthest
from the burden assumption (50/50 +/-). In summary, SBAT performed better than SKAT-O and
ACAT-V when the same effect direction assumption was met, and rarer variants were driving

most of the gene signal.
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Figure 3: Power performance of SBAT in simulation studies under various causal scenarios.
Average y? quantile for the set-based tests as a function of the proportion of causal variants
amongst singletons, pLoF and missense variants. Each row corresponds to different assumptions
for the direction of effects whether they are all positive (100/0 +/-), 80% positive and 20%
negative (80/20 +/-), or half positive and the remaining negative (50/50 +/-). Each column
corresponds to different assumptions for the effect of singleton variants, which was multiplied by

a constant factor Rg;pngieron Telative to non-singletons. The error bars represent 95% confidence

intervals for the average y? quantile.

Application to UK Biobank. We analyzed whole-exome sequencing data on up to 18,184 genes
for 73 quantitative phenotypes in up to 430,074 European participants from the UK Biobank
using SBAT, BURDEN-ACAT, SKAT-O and ACAT-V association tests and conditioning on
common variant signals identified through GCTA-COJO. We adjusted for age, sex, exome
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sequence batch variables as well as principal components derived from array and rare exome
variants. We used a conservative genome-wide significance threshold of @ = 9.4 x 107°
accounting for the 73 quantitative traits, 18,184 genes and 4 association tests applied. The
median runtime per trait was 279 CPU hours to analyze all 18,184 genes with SKAT-O, ACAT-
V, BURDEN-ACAT and SBAT on 20 burden scores conditioning on an average of 644 common
variants (the highest compute timing was for sitting height at 538 CPU hours with 1,722

conditional variants).

Across the 73 traits, SBAT identified 1,339 genome-wide significant associations, compared to
1,274 for BURDEN-ACAT, 1,462 for SKAT-O and 1,175 for ACAT-V. SBAT uniquely
identified 115 signals, which was greater than the signals uniquely identified by BURDEN-
ACAT and SKAT-O, 16 and 58, respectively, and lower than ACAT-V which had 158 unique
signals (Figure 4). Among the 115 signals, the top association was between STRN and mean
platelet thrombocyte volume (SBAT p-value = 5.4 X 10713); previous studies have reported

variant associations at this gene with the phenotype!*-°.

We highlight two examples where using SBAT to jointly combine burden signals was the only
method that led to a detectable signal compared to BURDEN-ACAT, SKAT-O, ACAT-V or the
marginal burden tests using various MAF cutoffs and functional annotations. In Figure 5, the
association between standing height?*-** and PITX1, which encodes a protein critical in the
development of the lower limbs?!"?2, was only discovered by SBAT (p-value = 2.3 X 10711). The
strongest signal amongst the individual burden scores, which came from considering a burden of
singleton pLoF variants, did not reach the genome-wide significance threshold (p-value =

3.8 x 1078). Furthermore, both SKAT-O and ACAT-V gave p-values above that of the strongest
burden signal (smallest p-values = 3.2 X 1077 and 1.5 x 1077, respectively). The joint model
fitted with SBAT indicated that the gene signal was driven primarily by singleton pLoF variants
as well as the combination of pLoF and missense variants predicted deleterious with a MAF
below 0.1%, both associated with lower height. The second example was between platelet count
and ETV6, which encodes a transcription factor®> (Figure 6). The association signal did not reach
genome-wide significance threshold across the burden scores, where the smallest p-value was

from a burden of pLoF and missense variants with a MAF cutoff of 1% (p-value = 2.6 X 1078).
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Only by combining the burden scores signals though SBAT did the association reach the
significance threshold (p-value = 1.3 X 10712). Indeed, combining the burden scores p-values
using the Cauchy combination method ACAT (BURDEN-ACAT) was not sufficient to reach the
significance threshold (p-value = 2.7 x 10~7). Effect size estimates from the SBAT joint model
indicated the signal was driven by singleton variants as well as more common pLoF and

missense variants predicted deleterious.

We also evaluated the performance of the unified test strategy, GENE P, which combines results
across SBAT, SKAT-O, ACAT-V and BURDEN-ACAT using the Cauchy combination method.
GENE P finds the most signals (1,685) compared to the other methods (1,313 for SBAT, 1,447
for SKAT-O, 1,156 for ACAT-V and 1,258 for BURDEN-ACAT) using a genome-wide
significance threshold of 7.5 X 10™° (Supplementary Figure S4). While there are 130 gene/trait
associations that are missed by GENE P, they all correspond to signals near the significance

threshold (less than one order of magnitude away).
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Figure 4: Gene-based analysis of 73 quantitative phenotypes with 18,184 genes using the UK
Biobank data set. (a) Scatterplot of p-values comparing SBAT with BURDEN-ACAT, SKAT-O
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and ACAT-V. Each dot on the plot represents a gene result for a given trait where the y-axis
denotes to the p-value (on -log10 scale) for SBAT and the x-axis denotes the p-value (on -log10
scale) for the comparison test. For BURDEN-ACAT, SKAT-O and ACAT-V, we applied ACAT
to the p-values across the 4 annotation classes (and 5 MAF cutoffs for BURDEN-ACAT) to
obtain a single p-value per gene. The dashed lines represent a significance threshold of

9.4 x 1072 corresponding to a Bonferroni correction for about 5 million tests based on 73 traits
analyzed, 18,184 genes and 4 methods applied. Green points refer to signals only found by
SBAT, yellow points refer to signals detected by both tests and red points represent signals
missed by SBAT but detected by the other test. P-values were capped at 2.2 X 1073%7, (b) Upset
plot of 1,848 genome-wide significant signals discovered across SBAT, BURDEN-ACAT,
SKAT-O and ACAT-V association tests using a significance threshold of 9.4 x 10~°.
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Figure 5: Deep dive into the association between PITX] and standing height. (a) Summary of all

gene-based tests performed for the gene grouping variants based on MAF as well as annotation


https://doi.org/10.1101/2023.02.22.529560
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529560; this version posted February 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

class (M1: pLoF only; M2: pLoF or missense; M3: pLoF or predicted deleterious missense based
on 5/5 in-silico algorithms; M4: pLoF or predicted deleterious missense based on 1 or more out
of 5 in-silico algorithms) using SKAT-O, ACAT-V, Burden test from REGENIE, BURDEN-
ACAT, and SBAT on the burden scores. (b) Effect size estimates for the burden scores grouped
by MAF and annotation class based on a marginal model with each mask (MARGINAL), a joint
model on all scores using ordinary least squares (OLS), or the SBAT joint model (SBAT).
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Figure 6: Deep dive into the association between ETV6 and platelet count. (a) Summary of all
gene-based tests performed for the gene grouping variants based on MAF as well as annotation
class (M1: pLoF only; M2: pLoF or missense; M3: pLoF or predicted deleterious missense based
on 5/5 in-silico algorithms; M4: pLoF or predicted deleterious missense based on 1 or more out
of 5 in-silico algorithms) using SKAT-O, ACAT-V, Burden test from REGENIE, BURDEN-
ACAT and SBAT on the burden scores. (b) Effect size estimates for the burden scores grouped
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by MAF and annotation class based on a marginal model with each mask (MARGINAL), a joint
model on all scores using ordinary least squares (OLS), or the SBAT joint model (SBAT).

Discussion

In this work, we introduced a new gene-based association test that pools information across
multiple burden scores using constrained linear regression. Our approach is well-suited for gene-
based testing: modeling burden scores jointly accounts for burden score correlations, while non-
negative constraints induce sparsity in effect estimates. In simulations we showed that our SBAT
method has well controlled type I error rates and outperforms SKAT-O and ACAT-V in
scenarios where most causal variants have the same effect directions and rarer variants
substantially contribute to the gene signal. We further confirmed our simulation results in the
analysis of 73 quantitative phenotypes in the UK Biobank whole-exome sequencing data and
showed that the four examined tests (SBAT, SKAT-O, ACAT-V and BURDEN-ACAT) share
most of the gene signals, complementing each other by signals that are test-specific. SBAT
notably revealed the highest number of unique associations (115) among the other two tests
targeting the burden signals, SKAT-O (58) and BURDEN-ACAT (16). Following a common

practice in designing gene-burden tests®!%-!!

, we proposed a strategy to provide a single p-value
per gene by combining results from the four tests available at different variant annotation classes

and allele frequency bins.

We highlighted two gene-phenotype SBAT associations in the UK Biobank analysis that were
missed by alternative tests, SKAT-O, ACAT-V and BURDEN-ACAT. The two associations
PITX1-standing height and ETV6-platelet count are well established in the literature?*-**23, Our
results stress the role of pLoF singletons for both gene-phenotype pairs, where the burden scores
with these variants show the lowest p-values (3.8 X 1078 and 2.6 x 1078, respectively) but do
not pass the significance threshold of our study (9.4 x 10~%). The SBAT joint model aggregates
the evidence of association from multiple burden scores amplifying the signal (SBAT p-values
2.3 x 10711 and 1.3 x 10712, respectively). These two SBAT findings agree with our simulation
results, where SBAT outperforms other tests when the signal is concentrated at rarer variants
with the same direction of effects. We also observe that SBAT gives more informative effect

estimates in comparison to marginal and joint OLS estimates (Figures Sb and 6b), selecting the
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top burden scores of pLoF singleton variants and favoring missense burden scores with more

likely deleterious annotations (M3 and M4 are preferred to M2).

Our study also has limitations. We used a particular set of nested annotations for burden scores

2312 and considered only two main methods for comparison, SKAT-O

from our previous works
and ACAT-V. While the list of selected annotations and methods is not exhaustive, we believe
our simulation results served well to contrast the SBAT features against SKAT-O and ACAT-V.
As data generation models can favor one method over the other in simulations, we empirically
showed the competitive performance of SBAT in the exome-wide association study of 73
agnostically selected traits from 430,074 participants in the UK Biobank. The current
implementation of SBAT is developed for quantitative traits, as the previous works on

1517 Future work will

constrained linear regression were built for continuous response variable
be focused on SBAT extension to binary traits, addressing issues such as testing rare variants for

unbalanced binary traits'>.

We envision that the constrained linear regression approach can also be applied to other
association tests of multiple variables: joint testing of multiple traits*® and/or multiple SNPs 7.
To enable these future extensions, we made an important practical contribution with approximate
weight calculation in a mixture of chi-squared distributions for constrained linear regression, a
problem not addressed in the previous theoretical works!>~'7. The constrained test can also
operate using association summary statistics and correlation matrix of tested variables rather than
individual-level data. We derived this summary-statistic option through reformulation of the
constrained regression problem (Equation 1) in terms of joint effect sizes and the residual
variance. The (unconstrained) joint effect estimates can be inferred from the marginal effect

estimates using existing methods?®.

In summary, we developed a scalable multivariate version of the one-sided test with application
to testing multiple burden scores. The SBAT method is available in the REGENIE software and
together with other gene-based tests will empower further discovery from sequencing association

studies.
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REGENIE software https://recgithub.github.io/regenie/
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Supplementary Figure 1: Power performance of SBAT in simulation studies under various
causal scenarios. Average y? quantile for the set-based tests as a function of the proportion of
causal variants amongst singletons, pLoF and missense variants. Each row corresponds to
different assumptions for the direction of effects whether they are all positive (100/0 +/-), 80%
positive and 20% negative (80/20 +/-), or half positive and the remaining negative (50/50 +/-).
Each column corresponds to different assumptions for the effect of singleton variants, which was
multiplied by a constant factor Rg;y geton relative to non-singletons. The error bars represent
95% confidence intervals for the average y? quantile. SBAT is compared to SKAT-O, ACAT-V
and BURDEN-ACAT association tests, where BURDEN-ACAT applies the Cauchy

combination test ACAT to the individual burden mask signals.


https://doi.org/10.1101/2023.02.22.529560
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.22.529560; this version posted February 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

SBAT-ADAPT | [ SBAT-MTW
R%=0.991

300+

200+
Xy
g
oD
o

[
100
0 4
0 100 200 300 0 100 200 300

—l0g10(Psgat)

Supplementary Figure 2: Gene-based association test results for 50 quantitative phenotypes in
UK Biobank. The -logio p-values obtained from SBAT (x-axis) are compared against those using
either the adaptive strategy (SBAT-ADAPT) or the multi-trait weights strategy (SBAT-MTW)
on the y-axis. Each point represents a gene where a joint test is applied on a set of 24 burden
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Supplementary Figure 3: Unified strategy GENE P to obtain a single p-value per gene across
various gene-based tests. The Cauchy combination method ACAT as well as SBAT are applied
to a set of burden scores, and ACAT-V and SKAT-O are applied to single variant results. Variant
are grouped into four annotation classes and 5 MAF cutoffs (single cutoff is used for ACAT-V
and SKAT-O).

GENE_P versus SBAT GENE_P versus BURDEN-ACAT GENE_P versus SKAT-O GENE_P versus ACAT-V

300

200

200

100 100

= loglo(PGENEf)
=; IOglO(PGENE_P)
=, IOQIO(PGENE_P)
= IOglO(PGENE_P)

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
~10g10(Psgar) ~10G10(Psuroen.acar) ~10g10(Psar0) ~10g10(Pacary)

8
T 600
c
2 400
o
2
o 200
< 57 38 36 35 34 31 0
£ 0 I o e S S —— — ——— —— 13 8 7 3 2 1 1 1
GENE_P
I SBAT E I :
I BURDEN-ACAT ° :
— SKAT-O ° :

ra— ACATY
Supplementary Figure 4: Gene-based analysis of 73 quantitative phenotypes with 18,184 genes
using the UK Biobank data set. (a) Scatterplot of p-values comparing unified strategy GENE P
with SBAT, BURDEN-ACAT, SKAT-O and ACAT-V. Each dot on the plot represents a gene
result for a given trait where the y-axis denotes to the p-value (on -log10 scale) for GENE P and
the x-axis denotes the p-value (on -log10 scale) for the comparison test. For BURDEN-ACAT,
SKAT-O and ACAT-V, we applied ACAT to the p-values across the 4 annotation classes (and 5
MAF cutoffs for BURDEN-ACAT) to obtain a single p-value per gene. The dashed lines
represent a significance threshold of 7.5 X 10~° corresponding to a Bonferroni correction for
about 6.6 million tests based on 73 traits analyzed, 18,184 genes and 5 methods applied. Green
points refer to signals only found by GENE P, yellow points refer to signals detected by both
tests and red points represent signals missed by GENE P but detected by the other test. P-values
were capped at 2.2 X 1073%7, (b) Upset plot of 1,815 genome-wide significant signals discovered
across GENE P, SBAT, BURDEN-ACAT, SKAT-O and ACAT-V association tests using a
significance threshold of 7.5 X 107°,
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